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Conventional visual ship tracking methods employ single and shallow features for the ship track-
ing task, which may fail when a ship presents a different appearance and shape in maritime
surveillance videos. To overcome this difficulty, we propose to employ a multi-view learning
algorithm to extract a highly coupled and robust ship descriptor from multiple distinct ship
feature sets. First, we explore multiple distinct ship feature sets consisting of a Laplacian-of-
Gaussian (LoG) descriptor, a Local Binary Patterns (LBP) descriptor, a Gabor filter, a Histogram
of Oriented Gradients (HOG) descriptor and a Canny descriptor, which present geometry struc-
ture, texture and contour information, and more. Then, we propose a framework for integrating
a multi-view learning algorithm and a sparse representation method to track ships efficiently and
effectively. Finally, our framework is evaluated in four typical maritime surveillance scenarios.
The experimental results show that the proposed framework outperforms the conventional and
typical ship tracking methods.
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1. INTRODUCTION. The “smart ship”, which can be defined as a vessel which can
automatically collect data, assess its environment and make intelligent sailing decisions, is
a future development trend in the shipping industry as it has the potential to lower risks to
crew at sea, improve maritime traffic safety (Statheros et al., 2008; Wang, 2010) and signif-
icantly reduce the costs to general manufacturing industry. Smart ships will be complicated
and novel vessels which can detect their navigation surroundings autonomously and make
sailing decisions without a human being’s involvement (Burmeister et al., 2014; Statheros
et al., 2008). Thus, it can be seen that the smart ship will remould the future operation
modes of the shipping industry. Ship tracking is one of the critical technologies to facilatate
the ability of smart ships to make sailing decisions and has attracted the attention of many
researchers. Numerous studies have been completed which are relevant to the ship tracking
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topic, such as tracking and attacking intrusive ships (Gray et al., 2011; 2012; Han et al.,
2014), illegal fishing (Hu et al., 2011), anti-piracy (Szpak and Tapamo, 2011) and so on.
We do not list studies of ship tracking in darkness as our work does not cover this aspect.

Previous studies have shown that image processing-based methods can achieve satis-
factory results in ship tracking. Ma et al. (2011) tried to find target ships in Vessel Traffic
Services (VTS) videos with a Kalman filter algorithm. Considering ships recorded in videos
with different viewpoints, Loomans et al. (2013) proposed an efficient object descriptor
using a visual feature point tracker to carry out ship tracking tasks robustly. Teng et al.
(2013; 2014) and Teng and Liu (2014) conducted several studies to track ships sailing
in inland waterways in real time. Some researchers have employed Automatic Identi-
fication System (AIS) and Synthetic Aperture Radar (SAR) technologies to track ships
(Chaturvedi et al., 2012; Zhao et al., 2014). From the perspective of traditional naviga-
tion, the above-mentioned ship tracking methods can sufficiently meet the ship-tracking
demands of maritime safety administrations, ship owners, etc. In the smart ship era, crews
will be smaller, resulting in challenges for the autonomous ship tracking task.

Firstly, the models used for ship tracking need to be very robust in varied environ-
ments, such as lighting variation, extreme weather, different viewpoints, etc. Conventional
ship tracking methods may be ineffective in handling such challenges. For instance, SAR-
based technologies have a degraded tracking performance under conditions of rain, snow
and strong sea clutter. In addition, the disadvantage of AIS is that not all ships have been
equipped with AIS, and ships at sea may deactivate their AIS transmitters (for example,
warships, ships engaged in illegal activity, etc) (Xiao et al., 2015; Zhang et al., 2015; 2016;
2017a). In such a situation, other techniques are required to help AIS-based methods track
ships. Another ship tracking technique is Long Range Identification and Tracking (LRIT).
Although the LRIT system provides accurate ship positions, it sends out ship information
every six hours at best, far from all ships participate in LRIT, and LRIT data is seldom
accessed by merchant ships but by shore authorities such as flag state, port or administra-
tion (Chen, 2014). The data interval is too long for ship tracking in the smart ship era. Also,
merchant ships may not be able to access LRIT data as the dataset is confidential (Lapinski
et al., 2016; Vespe et al., 2015).

Secondly, ship video information (such as ship’s imaging width and length) is crucial for
a smart ship making sailing decisions. However, little attention has been paid to obtaining
visual information in the existing ship tracking models. Thirdly, from the perspective of
image processing, ship tracking in the smart ship era requires a higher accuracy compared
to that in the traditional navigation era. Hence, efficient computer vision-based models are
needed to assist in tackling the above-mentioned ship tracking challenges. We anticipate
that a smart ship would employ both visual and non-visual tracking models to obtain a
robust ship tracking performance.

Smart ships will require robust visual ship tracking methods to cope with different and
challenging tracking situations. Several computer vision and machine learning methods
have presented favourable results in the object tracking field (Joshi and Thakore, 2012;
Tang et al., 2017; Teng et al., 2013; Yan et al., 2017). Optical flow operators, Kalman
trackers, Camshift and Meanshift descriptors are popular object tracking methods, which
have shown their potential in ship tracking in smart ship applications (Allen et al., 2004;
Bardow et al., 2016; Chauhan and Krishan, 2013; Tripathi et al., 2016). These methods
track a target according to a target’s single feature. The problem is that we cannot determine
a universal single feature which can be applied in different tracking situations. Thus, these
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models may be inefficient in demanding ship-tracking situations (Tang et al., 2013; 2015;
Xu et al., 2013; Zhang et al., 2017b).

Recently, multi-view learning-based methods have been proposed to solve the ineffec-
tiveness of single-feature tracking methods. A bank of distinctive visual features, such
as colour, intensity, edge and texture, are integrated into multi-view learning methods to
achieve robust object tracking. Many studies have shown excellent tracking performance of
multi-view methods (Delamarre and Faugeras, 1999; Hong et al., 2013; 2015; Taj and Cav-
allaro, 2010). Impressed by the high performance of multi-view learning methods, a novel
multi-view learning-based ship tracking framework is proposed in the context of smart ship
applications. The proposed framework employs a multi-view learning method to explore
intrinsic relationships between different unique ship-contour related features including
Laplacian-of-Gaussian (LoG), Local Binary Patterns (LBP), Gabor, Histogram of Oriented
Gradients (HOG) and Canny descriptors. A sparse representation method is then applied
to represent mutual relations between the distinct features. Traditional powerful tracking
methods, including Kalman and Meanshift trackers, have been implemented to verify the
proposed methodology’s efficiency and accuracy. Combining visual and traditional tracking
methods can enhance maritime traffic safety considerably.

Our contributions can be summarised as follows. First, as there is no publicly acces-
sible benchmark for evaluating ship trackers’ performance, we collected four typical
video datasets for assessing different ship trackers’ performance. Second, we analysed
bottlenecks existing in the visual ship tracking task. To solve this problem, we intro-
duce a novel visual ship tracking framework based on a multi-view learning model and
a sparse representation method. Third, the standard multi-view learning model employs
appearance-based feature descriptors to obtain a robust tracking performance. Specifi-
cally, colour-related features play an important role in obtaining high tracking performance
for conventional multi-view learning models. However, ships sailing in waterways often
present similar or identical colours. Also, it is quite common for ships to have similar
shapes. It is quite possible that a target ship has a similar appearance to its neighbours in
tracking videos. Thus, the standard multi-view-based models, tracking through appearance-
based feature sets, cannot deliver a satisfactory ship-tracking performance. However, it
is worth noting that different ships possess unique textures and contours. Thus, we pro-
pose a novel ship tracking model based on a customised multi-view learning framework,
which employs distinctive texture and contour-related features to complete the visual
ship-tracking task.

2. METHODOLOGY FOR VISUAL SHIP TRACKING.
2.1. Multi-view learning and sparse representation-based ship tracker. A ship track-

ing model needs to track ships in the Region Of Interest (ROI) with robust performance and
low computational complexity. A Lasso regularisation (L1-norm)-based tracker, abbrevi-
ated as L1 tracker, is a popular object tracker, and it shows advantageous tracking accuracy
with a short computation time (Friedman et al., 2008; Mei and Ling, 2011). Hong et al.
(2013) pointed out that the L1 tracker may fail to track objects whose shape varies in track-
ing image sequences. Thus, a multi-view learning-based method was proposed to improve
the L1 tracker’s performance. Building on this work, we propose a novel ship tracking
framework based on multi-view learning and a sparse representation method. The flowchart
of our proposed ship tracker is shown in Figure 1.
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Figure 1. Workflow of the proposed ship tracker.

2.1.1. Feature extraction. Ships have clear contours and edges compared to water in
videos. Hence, texture and structure-based feature descriptors are preferred for extracting
ship features in the ROI. HOG and LoG descriptors are two useful texture descriptors
which have shown success in many tracking tasks (Dalal and Triggs, 2005; Gunn, 1999;
Yang et al., 2012). Details of obtaining a HOG descriptor can be found in Dalal and Triggs
(2005) and Suard et al. (2006). The LoG descriptor is a popular blob-detector method
(Silvas et al., 2016), which suits well for visual ship tracking tasks. The LBP descriptor
possesses features of rotation and brightness invariance. These two feature descriptors are
scale-invariant and are very useful for tracking target ships that show a varied appearance
in surveillance videos. The Gabor descriptor is insensitive to illumination variance, and
we employ a Two-Dimensional (2D) Gabor filter as another distinct ship edge descriptor.
More details can be found in Sun et al. (2005). A Canny descriptor is a ladder-shaped edge
detector which is sensitive in detecting ship edge variation (Canny, 1986). The proposed
ship tracker extracts these five distinct edge descriptors and integrates them into a coupled
ship tracking descriptor. In the following section, we use symbol M, instead of five, to
indicate the number of views in our proposed multi-view learning model.

2.1.2. Robust Ship Tracker based on Multi-view learning and Sparse representation
(STMS).

2.1.2.1. Ship tracking model by multi-view learning and sparse representation. Hong
et al. (2013) and Mei et al. (2015) proposed a generative multi-view learning-based tracker
which showed impressive tracking performance. However the tracker proposed by Hong et
al. (2013) cannot be used to perform the visual ship tracking task directly. The reason is that
the to-be-tracked features in the Hong-proposed tracker are of a colour and intensity which
may be quite similar among different ships. Thus, the Hong-proposed tracker is prone to fail
in the visual ship tracking task. To address this problem, we propose a robust multi-view
learning and sparse representation-based ship tracker.

For a view k in the STMS model, we denote Ck as a complete ship dictionary, and Xk is
the corresponding feature matrix. The representation matrix for Ck is demonstrated as Wk.
Our tracker solves the ship tracking problem by finding the minimum value of Equation
(1). The product of the complete dictionary and feature matrix of M views (

∑M
k=1 CkWk
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in Equation (1)) represents a potential ship target. fL(CkWk − Xk) (k = 1, 2, . . . M) is a
cost function of evaluating the vessel reconstruction error between the ship candidate and
ship template regarding the kth view. A smaller value of the cost function fL(CkWk − Xk)
means better tracking performance. Hence, the optimal tracking performance of our tracker
is obtained when we find the minimum value of Equation (1).

We introduce a sparse representation method to find a robust solution for Equation (1)
more efficiently. We decompose the representation matrix Wk (k = 1, 2. . .M) as coefficient
matrix Pk and Qk (see Equation (2)). Pk is the representation matrix for the kth view. Global
representation matrix P (similar to Q) is acquired by padding Pks (k = 1, 2. . .M) horizon-
tally. The STMS model of Equation (1) is then rewritten as Equation (3). As the dictionary
Ck is an over-complete dictionary in the kth view of Equation (3), more elements in Pk and
Qk will better explore the intrinsic relationship between the M-views. Hence, the discrep-
ancy between the ship candidate’s feature Ck(Pk + Qk) and the extracted feature Xk will
become smaller. A higher order of P and Q will lead to better tracking accuracy in terms of
the cost function in Equation (3).

However, a higher order for the coefficient matrices P and Q results in higher com-
plexity for our tracker. So, the method of group Least Absolute Shrinkage and Selection
Operator (LASSO) penalty, denoted as �1,2, is introduced to reduce the tracker’s complex-
ity. Parameter ‖P‖1,2 represents the independence of each view and is constrained via row
sparse representation through the �1,2 method. The constraint of the row sparse representa-
tion for the matrix P helps our tracker explore latent relationships between different views,
and a stronger relationship will lead to a lower order of P. Meanwhile, the lower order of
P indicates that P is a lower-order sparsity matrix. Parameters λ1 in Equation (3) control
the sparsity of the coefficient matrix of P. The term λ1‖P‖1,2 reduces the order of P to a
minimum level in the procedure of finding the optimal solution in Equation (3).

‖QT‖1,2 in Equation (3) represents the abnormal tracking results which are subjected to
a group LASSO penalty, and λ2 is a sparse coefficient of Q. A smaller order for Q means
that the tracking results have fewer outliers. Thus, fewer elements in the over-complete
dictionary will be employed in the proposed ship tracker. In summary, lower orders for
P and Q represent smaller values for the term of λ1‖P‖1,2 + λ2‖QT‖1,2, which leads to
a better solution for Equation (3). Based on the above discussions about the constraints
on the sparse matrices P and Q, we can conclude that our proposed ship tracker can find
the optimal tracking result by solving Equation (3). Previous studies have shown that high
performance is obtained by substituting the cost function in Equation (3) with the Frobenius
norm (Mei et al., 2015). The Frobenius norm is denoted as ‖•‖2

F . Therefore, our tracker can
be reformulated to Equation (4).

Min
c,w,x

M∑
k=1

fL
(
CkWk − Xk) (1)

Wk = Pk + Qk k = 1, 2 . . . M (2)

Min
c,w,x

M∑
k=1

fL
(
CkWk − Xk) + λ1‖P‖1,2 + λ2‖QT‖1,2 (3)

Min
c,w,x

M∑
k=1

1
2
‖CkWk − Xk‖2

F + λ1‖P‖1,2 + λ2‖QT‖1,2 (4)
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2.1.2.2. Optimal solution for STMS model. The tracking performance of the STMS
model largely depends on the solution of Equation (4). For the sake of simplicity, we rewrite
Equation (4) into two parts as shown in Equations (5) and (6), respectively. So, solutions
for Equations (5) and (6) represent the potential tracking target. The Accelerated Proximal
Gradient (APG) method is efficient in solving Frobenius-norm based problems (Zhang et
al., 2012). In fact, the APG method acquires O

( 1
m2

)
residual of the optimal solution at the

mth iteration. Hence, we employ an APG algorithm to solve Equations (5) and (6). The
APG algorithm finds an optimal solution for Equation (4) through two steps: composite
gradient mapping and aggregation.

s (P, Q) =
M∑

k=1

1
2
‖CkWk − Xk‖2

F (5)

r (P, Q) = λ1‖P‖1,2 + λ2‖QT‖1,2 (6)

Step 1: Composite Gradient Mapping. Inspired by Gong et al. (2012) and Hong et al.
(2013), we apply a composite gradient mapping algorithm to address Equation (4). Thus,
based on Equations (5) and (6), Equation (4) can be reformulated as Equation (7). In
Equation (7), s(U, V) is the value of s(P, Q) at point (U, V) and s(U, V) is estimated by the
first order of the corresponding Taylor expansion. Parameter r(P, Q) in �(P, Q; U, V) is a
regularised factor. We employ the squared Euclidean distance between (P, Q) and (R, S) to
represent the regularisation term.

�(P, Q; U, V) = s(U, V) + 〈∇Us(U, V), P − U〉 + 〈∇Vs(U, V), Q − V〉
+

σ

2
‖P − U‖2

F +
σ

2
‖Q − V‖2

F + r(P, Q) (7)

where ∇Us(U, V) and ∇Vs(U, V) are partial derivatives of s(U, V) for U and V respectively.
The term 〈∇Us(U, V), P − U〉 is the inner product of ∇Us(U, V) and P − U. Also, parameter
〈∇Us(U, V), Q − V〉 is the inner product of ∇Vs(U, V) and Q − V. Parameter σ is a penalty
parameter.

Step 2: Aggregation. For the mth APG iteration process, (Um+1, Vm+1) is obtained
through a linear combination of (Pm, Qm) and (Pm−1, Qm−1). Thus, we can update
(Um+1, Vm+1) with Equations (8) and (9) which is termed as the aggregation step. The
parameter βm is obtained by Equation (10).

Um+1 = Pm + βm

(
1

βm−1
− 1

)
(Pm − Pm−1) (8)

Vm+1 = Qm + βm

(
1

βm−1
− 1

)
(Qm − Qm−1) (9)

βm =

⎧⎪⎨
⎪⎩

2
m + 3

m > 0

1 m = 0
(10)

P0, Q0, U1, V1 are set to zero for initialisation.
Given an aggregation point (Um, Vm), the solution for the mth APG iteration process

is obtained by solving Equation (11). The minimisation Equation (11) is reformulated as
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finding optimal solutions for Pm and Qm in Equations (12) and (13). According to Hong
et al. (2013) there is an efficient close-form solution for obtaining an optimal Pm and Qm.
Equations (14) and (15) present final solutions for Pm and Qm, respectively. In Equation
(14), Pm

i,. is the ith row of Pm, and Qm
.,j in Equation (15) is the jth column for Qm. Um

i,. is the
ith row of Um and Vm

.,j is the jth column of Vm. We obtain P and Q by computing Equations
(14) and (15) iteratively. Our proposed ship tracker determines the final tracked ship based
on the final solutions of Equations (14) and (15). The symbol ‖•‖ in Equation (14) and (15)
represents the Euclidean distance.

(Pm, Qm) = argP,Q min �(P, Q; Um, Vm) (11)

Pm = arg Min
P

1
2
‖P − (Um − 1

σ
∇Us(Um, Vm))‖

2

F
+

λ1

σ
‖P‖1,2 (12)

Qm = arg Min
Q

1
2

∥∥∥∥Q −
(

Vm − 1
σ

∇Vs(Um, Vm)
)∥∥∥∥

2

F
+

λ2

σ
‖QT‖1,2 (13)

Pm
i,. = max

(
0, 1 − λ1

‖σUm
i,. − ∇Us(Um

i,., Vm)‖

)
Um

i,. (14)

Qm
.,j = max

(
0, 1 − λ2

‖σVm
.,i − ∇Vs(Um, Vm

.,i)‖

)
Vm

.,j (15)

3. EXPERIMENTS AND RESULTS.
3.1. Data. Currently, there are few ship video datasets available for evaluating visual

ship trackers’ performance. Hence, it is necessary to establish a benchmark of ship videos.
To this end, we have taken maritime surveillance videos of four common scenarios at
Shanghai Port. The collected videos for the four scenarios are denoted as Case-1, Case-2,
Case-3 and Case-4. It is known that ripples and wakes impose strong interference on ship
tracking models, so Case-1 aims to test the ship tracker’s robustness within the constraints.

Another challenge is ship-overlapping in the image sequences, and we collected two
videos to evaluate the ship tracker’s performance under such a situation. Specifically, Case-
2 is a video in which a to-be-tracked ship shows a different appearance (that is, colour and
shapes, etc.) from the neighbouring ships. In the other video (that is, Case-3), the to-be-
tracked ship has a similar appearance to its neighbours. Case-4 is to assess a tracker’s
performance in a tracking situation where the to-be-tracked ship is in the distance. To visu-
alise a ship tracker’s performance, we have manually labelled the Target Region (TR), in
the form of a rectangle, in each frame of the four datasets. The TR rectangle is stored
with the information of x-coordinate and y-coordinate of its upper-left vertex, width and
height. Ship videos and TR sequences of the above four cases are available from the
correspondence e-mail address. As these four cases are common situations in ship track-
ing applications, they can assist in adequately assessing and evaluating a ship tracker’s
performance. Samples of the collected videos for each case are shown in Figure 2.

3.2. Evaluation criteria. To evaluate our ship tracker’s performance, we compared
the tracking results with the manually labelled TR rectangles in the collected videos.
Tracking results are stored in the same data format as TR rectangles. For simplicity, both
the TR rectangle and the tracked ship rectangle are denoted by their centre point (that
is, the Intersection Point (IP) of a rectangle’s diagonals). Based on that, we compare the
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Figure 2. Samples of collected datasets for each case (the TR is encircled with red rectangle in each image).

distance of centre points between the tracked and TR rectangles to quantify a ship tracker’s
performance.

Two statistical indicators are used to demonstrate a ship tracker’s performance, which
are Mean Square Error (MSE) and Mean Absolute Difference (MAD). For a given video
with n-frames, we denote GIP(x, y) as the IP coordinate of a rectangle in the TR sequences.
TIP(x, y) is the centre point of the tracked rectangle. Here, the square root is denoted by
symbol ‖•‖ 1

2 and a quadratic operator is denoted by ‖•‖2. So, the offset between the tracked
ship-rectangle and the TR rectangle is measured by the distance between GIP(x, y) and
TIP(x, y) (see Equation (16)). Parameter Dt(x) represents the squared distance, in the x-axis,
between GIP(x, y) and TIP(x, y) of the tth frame. Similarly, Dt (y) represents the squared
distance in the y-axis. Parameters Dt (x) and Dt (y) are obtained by Equations (17) and
(18), respectively.

After obtaining the distance in Equation (16), a ship tracker’s performance is measured
by the statistical indicators MSE and MAD (see Equations (19) and (20)). Parameter D̄
in Equation (19) is the average Euclidean distance. Equation (21) presents the calculation
process for D̄. Smaller values of MSE and MAD show better tracking performance for the
ship tracker.

Dt(GIP(x, y), TIP(x, y)) = ‖Dt(x) + Dt(y)‖ 1
2 (16)

Dt(x) = ‖Gt
IP(x) − Tt

IP(x)‖2 (17)
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Table 1. Statistical performance of different ship trackers
for Case-1.

MSE (pixels) MAD (pixels)

Kalman 176·6 142·7
Meanshift 26·9 17·2
STMS 3·6 2·8

Dt(y) = ‖Gt
IP(y) − Tt

IP(y)‖2 (18)

MSE =
∥∥∥∥
∑n

t=1 ‖Dt(GIP(x, y), TIP(x, y)) − D̄‖2

n

∥∥∥∥
1
2

(19)

MAD =
∑n

t=1 |Dt(GIP(x, y), TIP(x, y)) − D̄|
n

(20)

D̄ =
∑n

t=1 Dt(GIP(x, y), TIP(x, y))
n

(21)

3.3. Experiment setup and results. To evaluate our tracker’s performance, two classi-
cal tracking algorithms, a basic Kalman tracker (Welch and Bishop, 1995) and a Meanshift
tracker (Comaniciu et al., 2000), were implemented on the collected datasets. All trackers
were executed on the Windows 10 Operation System PC with 8GB RAM and a 3·4 GHz
CPU. Meanwhile, these models were built through Matlab (R2011 version) and a c++
library. The TR locations of the first frame in the four datasets were used to initialise ROI
for the three trackers.

3.3.1. Tracking results for Case-1. All three trackers have been tested on the Case-1
dataset to present their robustness against ripple interference. It is clearly shown in Table 1
that our proposed ship tracker was better than other trackers. Specifically, MSE for the
Kalman tracker was six times larger than that of the Meanshift tracker. Meanwhile, the
MSE obtained by the Meanshift tracker was almost eight times larger than the STMS
model. In sum, the STMS model could track a ship successfully in terms of MSE, while
the Kalman tracker was the worst tracker under Case-1. The minimum statistical tracking
errors of MSE and MAD were 3·6 and 2·8 pixels, respectively. Both of these were obtained
by the STMS model. Based on the tracking errors, denoted by MSE and MAD, it is reason-
able to conclude that our proposed ship tracker is more robust to ripple interference when
compared to the other two trackers.

Figure 3(a) shows the distance between the Tracked IP and TR’s IP (TTRIP). In order
to better visualise the distance variation for Case-1, the maximum value of TTRIP was set
to 200 pixels. The distance distribution showed that the Kalman tracker was vulnerable to
ripple interference. It is observed that the TTRIP, obtained by the Kalman tracker, increased
significantly with the increase of tracking sequences, arriving at the maximum value at the
80th frame for the first time. Although the TTRIP fluctuated significantly in the subsequent
30 frames, it stayed at a maximum value from the 110th frame.

In contrast, both the Meanshift and STMS trackers obtained a smaller TTRIP than
that of the Kalman tracker as shown in Figure 3(a). In the first 350 frames, the Mean-
shift and STMS models had similar tracking result as the TTRIPs were quite close to each
other. However, the TTRIP of the Meanshift tracker increased dramatically in the last 130
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Figure 3. Distance distribution of TTRIP for the three trackers in each case.

frames while STMS maintained a small value. After carefully checking the initial tracking
video, we found that the target ship became smaller in the later frames. So, some rip-
ples were tracked by the Meanshift tracker. As ripples randomly changed in each frame,
such variation resulted in a degraded performance of the Meanshift tracker. Figure 3(a)
shows that the STMS tracker obtained smaller values than the other two trackers for TTRIP
in Case-1.

Some typical tracking results of the three trackers for Case-1 are shown in Figure 4. At
the beginning of tracking, all three trackers showed good tracking results (see frame # 40 of
Figure 4). However, the Kalman and Meanshift trackers failed to track the ship in the latter
two frames, as shown in frames # 372, and 450 in Figure 4. The main reason is that the two
traditional ship trackers track shallow and single ship features (such as pixel areas moving
at limited speed and minimal intensity variations) which are sensitive to interference (such
as neighbouring ships’ movement, wakes, and own-ship’s appearance and size variation in
frames). The STMS tracker extracted a set of affine invariant ship features (LBP, HOG,
Gabor, LoG and Canny descriptors), and assembled them into a robust distinctive ship
feature. The interference feature (that is, wakes feature in the four frames of Figure 4) is
completely different from the target ship and thus can be easily suppressed. Based on the
aforementioned analysis, we can draw the conclusion that the STMS tracker is robust to
wake interference.

3.3.2. Tracking results for Case-2 and Case-3. Case-2 involved the image sequences
where the target ship was dissimilar to the overlapping ship. Statistical indices listed in
Table 2 show that the Kalman tracker achieved the worst tracking performance and the
STMS model continued to achieve the best tracking performance. The minimum MSE, in
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Figure 4. Tracking results for different trackers of Case-1.

Table 2. Statistical performance of different ship trackers
for Case-2.

MSE (pixels) MAD (pixels)

Kalman 57·9 38·0
Meanshift 29·5 24·8
STMS 14·2 12·0

Case-2, was 14·2 pixels, which was obtained by the STMS tracker. MSEs for the Kalman
and Meanshift trackers were at least one-fold higher than that of the STMS model. The
MAD indicator for Case-2 presented a similar variation trend as MSE. The minimum value
for MAD was 12 pixels which was obtained by the STMS model. From the perspective of
MSE and MAD, our proposed tracker achieved the best performance.

Figure 3(b) shows TTRIP distributions for case-2. We found that tracking accuracy for
the Kalman model fluctuated significantly in the first 200 frames. After carefully check-
ing the tracking results, we observed that the Kalman tracker tracked almost one-third of
each frame’s image patch. However, the TTRIP of the Kalman tracker showed a decreasing
trend in the last 350 frames. The reason is that the target ship sailed towards the Kalman’s
tracked ROI in the last 350 image sequences. The Meanshift tracker lost the target in
the 200th frame and then its tracking ROI located the overlapped ship, hence the corre-
sponding TTRIP for the Meanshift tracker experienced an increasing tendency as shown in
Figure 3(b).

The Kalman tracker considered the region with large and obvious displacement as the
target ship. Thus, three moving ships and neighbouring wake pixels were wrongly tracked
as the target ship as shown in frame # 74 of Figure 5. Due to the same reason, the Kalman
tracker lost the target ship in frames # 462 and # 540 as shown in Figure 5. We also observed
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Figure 5. Tracking results for different trackers for Case-2.

Table 3. Statistical performance of different ship trackers
for Case-3.

MSE (pixels) MAD (pixels)

Kalman 52·9 45·5
Meanshift 30·2 24·1
STMS 7·3 4·8

that the Meanshift tracker failed to track the target ship when the target ship was sheltered
by its neighbour (that is, in frame # 462 and # 540 in the same figure). The reason is that
only the tracked target feature in the previous frame was employed to help the Meanshift
tracker determine the candidate ship area. The advantage of the STMS tracker is that it
persistently updated its tracking template. Thus, although the STMS tracker lost the target
when the target was sheltered by its neighbour (see frame # 462 in Figure 5), the STMS
tracker could still determine the tracking ship correctly as long as the ship re-appeared in
the frame (see frame # 540 in Figure 5).

Case-3 tested the robustness of three trackers where the target ship’s appearance was
similar to its overlapping neighbour. Overall, tracking accuracy for the three trackers was
better than Case-2 in terms of MSE and MAD. As shown in Table 3, the MSE obtained
by the STMS tracker was 7·3 pixels which is less than a quarter of that of the Meanshift
tracker. In addition, the MSE of the Kalman tracker was 52·9 pixels which was almost twice
as high as the Meanshift tracker. The variation trend of MAD was consistent with MSE in
Case-3. Distributions of statistical indicators showed that the STMS model obtained better
tracking accuracy compared with the Kalman and Meanshift trackers.
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Figure 6. Tracking results for different trackers for Case-3.

TTRIP, shown in Figure 3(c), showed that the magnitude of tracking errors for both
Kalman and Meanshift trackers were lower in contrast to Case-2. In addition, there were
some peaks observed in TTRIP of the STMS tracker. This phenomenon showed that the
STMS model failed to distinguish the target ship and the overlapped ship when they
encountered each other in the video. However, in contrast to the Kalman and Meanshift
trackers, the STMS re-found the target ship in later frames.

Ship tracking in Case-3 was more difficult than in Case-2 in that the overlapping ship
imposed additional interference to the different trackers. As ships in the bottom-left area
(see frames #200, # 259, #348 in Figure 6) had less observable movements than other ships
in Case-3, the Kalman tracker mistook the bottom-left area as the target ship region. At the
beginning of overlap (see frame # 200 in Figure 6), a partial target ship was visible, and
the Meanshift tracker could still track the target ship despite a large tracking error. When
the target ship was completely sheltered by its neighbour, the Meanshift tracker failed to
find the target ship’s feature, and could only track its neighbour (see frames # 259 and #
348 in Figure 6). In contrast, the STMS tracker, with the ability of updating the tracking
template automatically and extracting highly-coupled ship features, could track the target
ship robustly when the target ship was visible ((see frames # 200, # 259, # 348 in the
same figure). With the above analysis, we can say that the STMS tracker can track ships
successfully under an overlapping situation.

3.3.3. Tracking results for Case-4. The last video aims to test different trackers’ per-
formance on tracking ships in the distance. As shown in Table 4, the MSE for the Kalman
tracker was 70·9 pixels, which is larger than the MSE values of the Meanshift and STMS
trackers. This shows that the Kalman tracker was not good at tracking ships in this situation.
Compared to the Kalman tracker, the indicators in Table 4 show that the Meanshift tracker
has a much closer tracking accuracy to the STMS tracker than the Kalman tracker. The
MAD for the Kalman tracker was 33·6 pixels while its counterpart for the STMS tracker
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Table 4. Statistical performance of different ship trackers
for Case-4.

MSE (pixels) MAD (pixels)

Kalman 70·9 33·6
Meanshift 11·5 9·4
STMS 5·9 5·1

Figure 7. Tracking results for different trackers for Case-4.

was 5·1 pixels. MAD for the Meanshift model was almost twice that of the STMS model.
From the perspective of MSE and MAD, the STMS tracker performed better than the
Kalman and Meanshift trackers in Case-4. The TTRIP distributions shown in Figure 3(d)
proves our analysis.

The main challenge of ship tracking in Case-4 is that the target ship’s visual contours
are blurred, and thus it is difficult to extract distinctive features for tracking ships. In this
case, the Kalman tracker was interfered with by the bottom-right container ship in frames
# 300, 434, and 578 in Figure 7. Meanwhile, the Meanshift tracker lost the target in the
frame # 578 in Figure 7 as the tracked area (that is, the wrongly tracked ship) had more
clear and distinctive colour information. The STMS tracker could extract the target ship’s
highly-coupled feature, and obtained robust tracking results (see frames # 300, 434, and
578 in Figure 7). Based on the above discussions, our proposed STMS ship tracker can
obtain robust and reliable tracking results under different tracking scenarios.

4. CONCLUSION. Visual ship tracking is a key technology to support the development
of smart shipping, but to be successful, it must overcome many challenges and different
situations. Here, we propose a robust visual ship tracking framework via a multi-view
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learning mechanism and a sparse representation method to solve the problem. The proposed
ship tracker employs edge information-based features (HOG, LBP, Gabor filter, LoG and
Canny descriptors) to find a target ship in tracking videos. We have assessed our track-
ers’ performance in four challenging tracking situations. Experimental results show that
the proposed visual ship tracking model can achieve great success. From the perspective of
MAD and MSE, our proposed tracker obtained better tracking performance compared to
traditional object tracking models such as Kalman and Meanshift trackers. Specifically, the
location of tracked ships obtained from the STMS tracker was very close to the manually
labelled ROI in terms of TTRIP. The proposed visual ship tracking model offsets some of
the disadvantages of AIS, SAR, LRIT and other traditional tracking technologies. Thus, the
combination of the proposed visual tracking method and traditional tracking technologies
could help a smart ship perceive the navigation environments in a more timely and efficient
manner. This has the potential to assist in the improvement of maritime traffic safety in the
smart ship era.

In future, we will focus on two aspects. First, the proposed method can obtain sat-
isfactory tracking accuracy for single ship tracking tasks. Testing the proposed model’s
performance on tracking multiple ships is now required. Second, as some tracking outliers
still exist in ship-intersection scenarios, we will employ more traditional ship tracking tech-
niques (such as AIS, SAR, LRIT) to increase the tracking accuracy of the proposed visual
tracking model.
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