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Volume displacement effects during bubble
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When a few bubbles are entrained in a travelling vortex ring, it has been shown
that, even at extremely low volume loadings, their presence can significantly affect
the structure of the vortex core (Sridhar & Katz, J. Fluid Mech., vol. 397, 1999, pp.
171–202). A typical Euler–Lagrange point-particle model with two-way coupling for
this dilute system, wherein the bubbles are assumed subgrid and momentum point
sources are used to model their effect on the flow, is shown to be unable to capture
accurately the experimental trends of bubble settling location, bubble escape and
vortex distortion for a range of bubble parameters and vortex strengths. The bubbles
experience significant amounts of drag, lift, added mass, pressure and gravity forces.
However, these forces are in balance with each other as the bubbles reach a mean
settling location away from the vortex core. The reaction force on the fluid due
to the net summation of these forces alone is thus very small and is unable to
affect the vortex core. By accounting for fluid volume displacement due to bubble
motion, experimental trends on vortex distortion and bubble settling location are
captured accurately. The fluid displacement effects are studied by computing various
contributions to an effective volume displacement force and are found to be important
even at low volume loadings. As the bubble size and hence bubble Reynolds number
increase, the bubbles settle further away from the vortex centre and have strong
potential for vortex distortion. The net volume displacement force depends on the
radial pressure force, the radial settling location of the bubble, as well as the vortex
Reynolds number. The resultant of the volume displacement force is found to be
roughly at 45◦ with the vortex travel direction, resulting in wakes directed towards
the vortex centre. Finally, a simple modification to the standard point-particle two-
way coupling approach is developed wherein the interphase reaction source terms are
consistently altered to account for the fluid displacement effects and reactions due to
bubble accelerations.

Key words: bubble dynamics, multiphase flow, vortex interactions

1. Introduction
1.1. Background

The features of the interaction between vortical structures and bubbles are important
in many applications, including microbubble-induced drag reduction in a turbulent
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FIGURE 1. A map of the bubble Stokes number versus the non-dimensional bubble size
(db/∆cv), modified after Balachandar (2009) and Balachandar & Eaton (2010). The bubble
size is non-dimensionalized by the size of the smallest scales of the flow, which are generally
proportional to the grid resolution, for example in a direct numerical simulation. Also marked,
by X are the cases presented in the present work on bubble–vortex ring interactions.

boundary layer (Ceccio 2010), chemical mixing in bubble column and stirred tank
reactors (Sokolichin et al. 1997; van der Hoef et al. 2008), cavitating tip vortex
flows (Hsiao & Chahine 2004) as well as the breakup/coalescence of bubbles in swirl
atomizers (Higuera 2004). There is a diverse set of modelling strategies available for
simulating dispersed two-phase and bubbly flows. The choice of a particular approach
is typically motivated by three parameters emphasized in recent reviews (Balachandar
2009; Balachandar & Eaton 2010), namely, the Stokes number of the dispersed phase,
the grid resolution available in the simulation and the bubble volume loading.

Figure 1 is a map, adapted from Balachandar & Eaton (2010), of Stokes number
(Stb = ρbωd2

b/36µ`) versus the ratio of the dispersed-phase (bubble/particle) diameter
(db) to the smallest flow scales resolved on the computational grid (∆cv = V 1/3

cv ,
where Vcv is the volume of the computational cell) and the corresponding numerical
modelling approaches that can be used. Note that a time scale based on mean
vorticity (circulation) is used here, as it is the most physically relevant fluid time
scale for vortex-dominated flows. For example, for very low Stokes numbers, the
bubbles mainly act as tracers, and a dusty gas (Stb < 10−3) or an equilibrium Eulerian
approach (10−3 < Stb < 10−1) (Ferry & Balachandar 2001) is applicable and most
efficient. For the range 10−1 < Stb < 1, a two-fluid Eulerian approach (Druzhinin &
Elghobashi 1998; Fevrier, Simonin & Squires 2005) is valid, wherein the carrier fluid
and the dispersed bubble phases are represented by interpenetrating fluid media, and
Eulerian conservation equations are solved for the fluid as well as the dispersed phase
together with a concentration evolution equation. Such an approach is advantageous
for large numbers of dispersed-phase particles. The Lagrangian point-particle approach
(Maxey & Riley 1987; Squires & Eaton 1991) is the most commonly used technique
for moderate-sized dispersed phase (up to millions of bubbles/particles) with larger
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Stokes numbers (Stb > 0.1). In this approach, the dispersed phase is assumed subgrid
in scale (smaller than the smallest grid resolution used, with 0.09 6 Stb 6 2.89 for
this work), and particle dynamics equations are solved in a Lagrangian frame. The
momentum exchange between the dispersed and continuum phases are modelled as
point sources.

The point-particle approach is strictly valid for dispersed particles that are much
smaller than the smallest flow scale (for example, the Kolmogorov scale, η ≈ ∆cv,
in turbulent flow, when the fluid flow equations are solved using direct numerical
simulation (DNS)). For db/∆cv > 0.1, the finite-size effects of the dispersed particles,
such as wakes and mass/volume displacement, become important, and these effects
should be accounted for in any modelling strategy. Fully resolved simulation
techniques, wherein all length scales and the associated dynamics of the two-phase
system are completely resolved on the computational grid, are necessary to capture
such effects. However, at least 10 or more grid points in each direction are needed
within the particle domain to be able to use this approach. With such high resolution
requirements, this approach can be prohibitively expensive for a large number of
dispersed particles. In addition, for the regime 0.1 6 db/∆cv < 10, one has to rely
on subgrid models for the finite-size effects. Under such conditions, the Lagrangian
point-particle approach is potentially the only viable approach. This also suggests
that it is important to develop less expensive two-fluid and/or Eulerian–Lagrangian
models capable of reproducing experimentally observed fundamental physics of
bubble-laden turbulent flows. For db/∆cv > 10, finite-size effects are still important;
however, the grid is sufficiently resolved to capture these effects without requiring
any additional models. This is important not just for simulations of small-scale
bubble–fluid interactions, but also for the development of closures for higher-order
models based on the Reynolds-averaged Navier–Stokes equations. Of particular interest
are methods for handling bubbles whose size is near that of the smallest resolved
fluid scales (0.16 db/∆cv 6 1). Around this scale, individual particles/bubbles are large
enough to displace a significant amount of fluid mass as they move, but are too small
to be modelled with any sort of resolved approach.

There are several ways to implement Lagrangian point-particle models for disperse
multiphase systems (Elghobashi 1991). The three traditional methods are known as:
(i) one-way coupling; (ii) two-way coupling; and (iii) four-way coupling. A series
of works aimed at classifying the dominant mechanisms in particle-laden isotropic
turbulence have been performed (Elghobashi 1991, 1994, 2006), which led to the
development of a map relating the particle Stokes number and system volume fraction
(φ) to the dominant mechanisms of interphase momentum transport. While the current
work focuses on bubbles, the maps developed in this series of papers should be
generally valid for interface-contaminated bubbles of the same Stokes numbers as the
particles. Figure 2 shows this map, adapted from Elghobashi (2006), which is designed
to reflect the dominant effects on the global flow structures, not necessarily local
transient effects.

In one-way coupling, the fluid phase moves the disperse phase, but the reaction
force of the particles onto the fluid is considered negligible. In general, this
approximation is considered valid when both the volume loading and Stokes number
of the dispersed phase are small, in other words, when the disperse phase is expected
to have minimal influence on carrier phase motion. The majority of studies based
on the Lagrangian point-particle approach for practical applications utilize a two-way
coupling method, in which the disperse phase is modelled as a collection of point
sources in the carrier fluid momentum equation. For example, several simulations
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FIGURE 2. Map of Stokes number versus volume loading, modified based on Elghobashi
(2006), identifying different momentum transfer modelling approaches applicable for particle-
laden flows. The cases presented in this work are marked with an X.

of particle-laden flows have been performed with the carrier fluid simulated using
direct numerical simulation (Reade & Collins 2000; Armenio & Fiorotto 2001; Li
et al. 2001; Rouson & Eaton 2001; Xu, Maxey & Karniadakis 2002; Vreman 2007;
Mazzitelli & Lohse 2009), large-eddy simulation (Wang & Squires 1996; Apte et al.
2003; Segura, Eaton & Oefelein 2004; Moin & Apte 2006), or Reynolds-averaged
Navier–Stokes equations (Sommerfeld, Ando & Wennerberg 1992; Sommerfeld & Qiu
1993).

The two-way coupling approximation is valid when inter-phase momentum transport
is dominated by the drag between individual elements of the dispersed phase
and collisions between the dispersed phase do not alter the momentum transfer
significantly. For dense suspensions (large volume loadings), however, inter-particle
collisions must be accounted for in addition to the two-way coupling effects, in a
model termed four-way coupling. Four-way coupling can be important even under
some moderate loadings, such as the particle-laden jet studied by Lain & Garcia
(2006) or turbulent channel flows investigated by Yamamoto et al. (2001), and are
necessary for applications involving fluidized beds and bubble-column reactors (van
der Hoef et al. 2008).

The aforementioned coupling methods typically neglect the fact that locally the
dispersed phase can displace fluid mass. In many systems, these effects may be
unimportant, such as an air pipe flow laden with copper beads (Vreman 2007), where
the drag from the two-way reaction coupling force is the dominant mechanism of
momentum exchange. For many densely loaded systems, the fluid mass displacement
effects are accounted for as part of the four-way coupling formulation, for example,
bubble–liquid interactions in column mixers (Sokolichin et al. 1997), rising bubble
columns (Shams, Finn & Apte 2011) and boundary layer drag reduction (Ferrante
& Elghobashi 2005, 2007a), among others. Two-fluid formulations implicitly include
these effects, through local variations in dispersed-phase concentration (Druzhinin &
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Volume displacement effects during bubble entrainment 229

Elghobashi 1998; Ferrante & Elghobashi 2007b), owing to the assumption that these
effects are only dominant when the dispersed-phase volume fraction is significant.

In the present work, it is hypothesized that the local fluid mass (or volume)
displacement effects are important even under dilute loadings, especially for lighter-
than-fluid dispersed bubbly flows (Finn, Shams & Apte 2011; Shams et al. 2011)
or particle–fluid systems with small specific gravity such as sediment flows (Apte,
Mahesh & Lundgren 2008), wherein the two-way interaction force can be very small.
In order to distinguish these effects from the standard momentum coupling techniques
described above, we refer to this model as volumetric coupling in this work. The main
hypotheses that are central to this work are as follows:

(a) For subgrid but large dispersed bubbles (0.1 < db/∆cv < 1), a point-particle
Lagrangian approach, with standard two-way interphase momentum coupling, may
be insufficient to capture accurately the effect of the bubbles on the fluid flow.

(b) The fluid volume displacement effects associated with the motion of the bubbles,
as well as due to local clustering, are important and should be accounted for to
appropriately capture the effect of the bubbles on the fluid flow, even for low
volume loadings.

A major objective of this paper is to show that bubble-laden flows in this regime
can be effectively modelled using an Eulerian–Lagrangian approach that accounts for
the volume displacement effects of the bubbles. In order to test these hypotheses,
a test case of a travelling vortex ring laden with a small number of microbubbles
is considered, as detailed experimental data are available (Sridhar & Katz 1999).
Experimental evidence from this configuration suggests that, under certain conditions,
a few small bubbles, corresponding to the conditions marked by an X in figures 1 and
2, can drastically alter local flow structures. In the map, the bubble Stokes number is
obtained as Stb = τb/τf = ρbωd2

b/36µ`, where τb = ρbd2
b/36µ` is the bubble response

time scale, τf = 1/ω is the small feature fluid time scale, ω is the mean local vorticity,
db is the bubble diameter and µ` is the dynamic viscosity. These maps indicate that
a two-way coupling Lagrangian point-particle approach is appropriate for this problem.
However, it will be shown that solely utilizing the two-way momentum coupling
methods is not sufficient to reproduce the experimental observations. It should also be
noted that the cases studied fall in the range of 0.1< db/∆cv < 1 (figure 1), for which
the standard Lagrangian point-source approximation is not strictly valid; however,
performing fully resolved simulations is prohibitively expensive.

1.2. Vortex–bubble interaction
The interaction of bubbles with vortical flow features serves as an important canonical
problem to advance our basic understanding of more complex flows where such flow
structures are common, such as turbulent, separated or wall-bounded flows, and has
been studied extensively. Oweis et al. (2005) studied the properties of bubble capture
and cavitation in a line vortex. Their study utilized a one-way coupling approach
to predict capture times, which was found to be accurate when utilized for small
bubbles, but was not sufficient when bubble growth was a significant factor. Sridhar
& Katz (1995), Van Nierop et al. (2007), Bluemink et al. (2009) and Rastello, Marié
& Lance (2011) utilized experimental methods to determine empirical correlations for
drag and lift coefficients on bubbles in vortical structures. In studying these lift and
drag coefficients, Sridhar & Katz (1995) found significantly higher lift coefficients
than were present in many previous studies and suggest that an appropriate choice
of drag model is very important within an isolated vortical structure to correctly
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predict bubble behaviour. Two-way coupling of bubble interactions with homogeneous
isotropic turbulence was investigated by Mazzitelli, Lohse & Toschi (2003). They
concluded that bubble accumulation on the downward side of vortices was primarily
due to the lift force, in what is known as the preferential sweeping mechanism.
Deng, Wang & Smith (2006) experimentally investigated the behaviour of bubbles in
a Taylor vortex wherein the drag and buoyancy forces are in balance, in line with
later observation in this work. Lohse & Prosperetti (2003) studied the equilibrium
position of a bubble in a horizontally rotating cylinder and suggested the need for
future studies investigating different lift models.

Sridhar & Katz (1999) showed that a few low-Stokes-number bubbles have the
ability to augment the core structure of both laminar and turbulent travelling vortex
rings during their entrainment cycle. This is significant, owing to the extremely low
overall volume fraction in comparison with the magnitude of the core distortion
observed. The case of bubble entrainment into a travelling vortex ring was chosen
to test the ability of the volumetric coupling approach to predict the experimental
trends for this low-volume-loading case. This case is also ideally suited to identify the
effects of volume displacement, as the bubbles tend to settle in a small region away
from the ring centre, where all the forces on the bubbles are in balance. The effect of
any point-source reaction force on the flow structure is thus generally small.

Recently, Finn et al. (2011) investigated a two-dimensional generalization of this
problem, by studying a travelling vortex tube laden with a few microbubbles, wherein
a periodic boundary condition was used in the direction of the vorticity vector. With
dilute bubble volume loadings (<10−2), the volume displacement effects due to bubble
motion were found to be significant. Results from that work suggested that, for the
two-dimensional vortex tube, there was a decrease in the local vorticity at the core
centre and volume displacement effects were necessary for significant vortex distortion
to occur. However, periodicity in the spanwise direction implied that there are several
bubbles in the plane normal to the propagation of the vortex tube. In this work,
it will be verified that, even in a three-dimensional vortex-ring configuration, these
effects are dominant in comparison to two-way coupling momentum transport. The
concept of a volume displacement force, the force induced on the liquid due to volume
displacement effects, will be developed and compared with the standard two-way
coupling force to evaluate their relative magnitudes. The goal of the present work is
not only to show that the volumetric coupling effects are important to predict the
experimentally observed trends for the bubble-laden travelling vortex ring, but also
to study the fundamental nature of the bubble–vortex interactions and explain some
of the trends observed by performing various parametric studies. The following key
contributions of this work can be identified.

(a) The previous work (Finn et al. 2011) was a two-dimensional study and the
present work is a full three-dimensional study. Although this in itself is a
significant difference in the actual problem setting, this work also focuses on
several new aspects of the bubble–vortex ring interactions and helps explore
fundamental physics of this interaction by using two-phase flow modelling. Note
that the two-dimensional study involving a travelling vortex tube has periodic
conditions in the spanwise direction, resulting in periodic volume loading and
thus increasing the overall volume loading compared to a full three-dimensional
domain where only eight bubbles are injected in the whole domain. In addition, the
overall computational difficulty associated with unsteady, three-dimensional flows
is significantly larger than the two-dimensional counterpart.
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(b) The comparison of the two-way and volumetric coupling formulations is part of
the previous work as well; however, in the present work, a method of measuring
and analysing volume displacement effects is introduced, which relies on the
notion of the volumetric reaction force (§ 2). Previously, these forces were obtained
by mapping the vortex flow onto a simple two-dimensional Gaussian vortex model.
However, in the present work, the various mechanisms that contribute to the
volumetric reaction force are explicitly determined by directly evaluating each
term in the volumetric coupling model. These force contributions are analysed
in detail and they also show key differences when compared with the simplified
two-dimensional Gaussian vortex estimate. This work demonstrates that, for a full
three-dimensional system, the volume displacement forces are significantly larger
than the point-particle momentum coupling forces. This detailed force analysis
also facilitates computation of the direction of the net force on the fluid due to
the presence of bubbles, which correlates well with the direction of the vortex
distortion observed in the present work as well as in the experiments.

(c) The present three-dimensional work also facilitates direct comparison with the
experimental data of Sridhar & Katz (1999), and helps to explain the mechanisms
of vortex distortion by a few micrometre-sized bubbles through a wide range of
parametric studies. For example, it is argued that the volumetric coupling model
captures the wake effects produced behind the bubbles that are essentially not
captured by the standard point-particle approach. The present work, through scaling
analysis, shows that the vortex distortion due to bubbles is dependent on the bubble
settling location as well as the vortex Reynolds number. Although the bubble
settling locations are mainly governed by the buoyancy (bubble size) and pressure-
gradient (vortex strength) effects, the present work shows that, in order to predict
the distortion of the vortex due to bubbles, the vortex Reynolds number also
plays an important role. It is shown that the non-dimensionalized net volumetric
displacement force is dependent on the bubble settling location (r̄s) and the square
of the vortex Reynolds number.

(d) Finally, a novel simplified mathematical model that modifies the standard two-
way coupling interaction force to include the volumetric displacement effects is
formulated. The model can be used in any Euler–Lagrange computation, without
the need for significant changes in the numerical algorithm that accounts for local
changes in bubble void fractions. The model is consistent, in the sense that, in
the limit of extremely small volume loadings θ`→ 1, it reverts to the standard
point-particle two-way coupling approach.

1.3. Problem description
A travelling vortex ring, shown in figure 3(a), is generated through an inlet velocity
pulse (Sridhar & Katz 1999; Finn et al. 2011). This pulse forms a shear layer, which
rolls up into a vortex ring that is convected downstream. At 0.5 m downstream from
the inlet, the vortex ring is fully developed, at which point bubbles are injected
individually every 10 ms just in front of and below the bottom portion of the ring. The
bubbles then begin the entrainment process, in which they circle the lowest portion
of the ring to arrive in front of the vortex core centre, as shown in figure 3(b).
Once the entrainment process is complete, the bubbles tend to settle around a mean
location, referred to as the bubble settling location, with coordinates (rs, θs) defined
with respect to the core centre. At the settling location, the forces on the bubble are
nearly in balance, i.e. sum close to zero in each direction. The force balance on the
bubbles at a radial settling location from the core, shown in figure 3(c), indicates a
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FIGURE 3. (Colour online) Bubble entrainment and escape process in a travelling vortex
ring created by an inlet pulse that rolls up and propagates downstream. (a) Bubble injection
location and motion relative to the moving vortex core. (b) Settling location (rs, θs) and a
typical trajectory of bubbles in cylindrical coordinates. (c) Mean force balance occurring at
the settled location (here Fd is drag, F` is lift, Fam is added mass, Fg is gravity and Fp
is the pressure force, with sub-indices h and d representing the hydrostatic and dynamic
components, respectively). (d) Bubble escape path along the centre of the vortex core,
measured as an angle φ on either side of the plane of bubble injection.

balance of the pressure (Fp), added mass (Fam), lift (F`), drag (Fd) and gravity forces
(Fg), respectively (Sridhar & Katz 1999; Finn et al. 2011; Rastello et al. 2011). For
the cases studied in the present work, the angle (θs) at which the bubbles settle is
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typically small (θs→ 0) and, under such a situation, the gravity and buoyancy forces
are approximately balanced by the drag force, whereas the radial settling location
(rs) is then obtained from an approximate balance of the lift, the added mass and
the dynamic pressure-gradient forces, respectively. While the force balance broken
up into these two components is only an approximation, it has been shown to be
extremely accurate for these types of flows (Sridhar & Katz 1995; Finn et al. 2011).
As the bubbles entrain and settle, their presence forces an alteration of the local flow
field, which can result in observable levels of distortion. If this distortion becomes
significant, the bubbles tend to leave the plane of injection and escape laterally along
the vortex core centre; see figure 3(d). Once the bubbles escape the plane of injection,
the vortex ring along this plane can slowly begin to repair itself back to a structure
similar to its pre-bubble entrainment form in some cases. Using this system as a model
problem, volume displacement effects will be shown to be significant even for very
dilute volume loadings. These effects will be measured and their influence on the
carrier phase analysed.

The rest of the paper is arranged as follows. In § 2 we will present the mathematical
formulation, a brief description of the numerical method, and an analysis technique
for volume displacement effects, specifically how they can be isolated and measured.
The simulation set-up is described in § 3.1. Section 3.2 discusses the behaviour of both
phases, showing agreement with experimental data. Quantification of vortex distortion,
bubble escape and their effects on the forces on the bubbles are presented in § 3.3.
The vortex distortion effects are explained by qualitatively correlating them to the
wake structures created by the bubbles in § 3.4. In § 4 we quantify and analyse
these volumetric coupling effects in our system and propose a simplified model to
improve the two-way coupling momentum transfer approach in a consistent manner. A
summary of the results and some conclusions are given in § 5.

2. Mathematical formulation
In the present volumetric coupling formulation, the bubbles are assumed spherical,

subgrid scale and constant in size. Standard Lagrangian particle tracking is performed
to track the centroid of the bubble by using closure models for the various forces
exerted by the flow on the bubbles. The reaction from the bubbles to the fluid
is handled as a point source, similar to the two-way coupling methodology. In
addition, the effect of fluid displaced by the bubbles is accounted for through the
local bubble volume fractions, computed by mapping the Lagrangian bubble location
and its volume onto a fixed Eulerian grid used for fluid flow solutions. In the
present work, all scales associated with the undisturbed fluid flow are captured on
the computational grid by using a fine enough mesh, similar to a direct numerical
solution procedure. Bubble–bubble collisions are neglected because only eight bubbles
(300 µm< db < 1300 µm) are used in all the cases studied, resulting in extremely low
volume fractions (10−5 < VF < 10−3; see figure 2). The volume fraction is based on
the slice of the bottom of the vortex ring around which the bubbles settle, not the
entire domain. It was also verified in the computation that the bubble trajectories do
not frequently cross over the duration of the simulation.

2.1. Dispersed phase
The bubble phase is handled using the equations of motion developed by Gatignol
(1983) and Maxey (1983). Forces on bubbles are computed from explicit carrier
(liquid) phase information. The forces are used to update the bubble velocity and
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position by solving the following system of ordinary differential equations:

d
dt
(xb)= ub, (2.1)

mb
d
dt
(ub)=

∑
Fb. (2.2)

Here, xb is the bubble location, mb is the mass of an individual bubble, ub is the
bubble velocity vector and Fb denotes the force acting on a bubble. In this case Fb can
be broken up into the gravity (Fg), drag (Fd), lift (F`), added mass (Fam) and pressure
(Fp) forces on the bubble:∑

Fb = Fg + Fd + F` + Fam + Fp. (2.3)

The gravitational force is simply taken as the weight of the bubble, where g is the
gravitational acceleration (g= 9.81 m s−2 vertically), and is given as

Fg =−ρbVbg, (2.4)

where the volume of the individual particle is denoted by Vb and the bubble density is
ρb.

The drag force on the bubble is modelled using the standard drag equation for flow
past a sphere,

Fd =− 1
8 Cdρ`πd2

b|ub − u`,b|(ub − u`,b), (2.5)

where Cd is the drag coefficient, ρ` is the liquid density, db is the bubble diameter,
ub is the bubble velocity and u`,b is the local fluid velocity vector interpolated at the
bubble centroid. This solid-sphere drag model choice is appropriate for this system
because the impurities that gather on the bubble surface create a no-slip condition
(Harper 1972; Magnaudet & Eames 2000). Experiments (Sridhar & Katz 1995) also
indicate the presence of ‘dirty’ bubbles. This choice of a drag model has been verified
in the experimental work of Sridhar & Katz (1995), and is consistent with the lift
model given here. Here, u`,b strictly denotes the ‘undisturbed’ fluid velocity at the
bubble location, which is close to the local fluid velocity for small, subgrid bubbles, as
studied in this work. For larger bubbles, finding u`,b is not straightforward, and may
require additional modelling, including stochastic components to the drag forces. Such
second-order changes to the drag force may alter the bubble trajectory slightly, but its
influence on the volume displacement effects to be studied in this work is negligible.
For the Reynolds-number ranges and bubble mass loadings being studied here, the
Schiller & Naumann (1935) drag curve has been selected. In this model, the drag
coefficient is determined using

Cd = 24
Reb

(1+ 0.15Re0.687
b ), (2.6)

in which Reb is the bubble Reynolds number, given by Reb = (ρ`db|ub − u`,b|)/µ`,
where µ` is the dynamic viscosity of the fluid. The bubble Reynolds numbers range
over 20–160 for the cases studied in this work.

The lift force is modelled based on the experimentally determined lift model
(Sridhar & Katz 1995) for this particular configuration,

F` =−C`ρ`
πd2

b

4
(ub − u`,b)× (∇ × u`,b). (2.7)
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In the present work, the lift coefficient is based on the experimentally determined
model (Sridhar & Katz 1995) and is given as

C` = 0.22α−3/4 where α = |∇ × u`,b|db

2|u`,b − ub| . (2.8)

In their experimental study, Sridhar & Katz (1995) emphasized the importance of C`

on bubble trajectory and settling location. Their experimentally determined lift model
gave higher coefficients, C`, than most analytically developed models. The higher lift
coefficients are due to contaminants on the bubble–liquid interface causing a change
from a no-shear condition to a no-slip condition at the interface. This yields high
bubble spin rates and thus the higher lift coefficients (Sridhar & Katz 1995; Rastello
et al. 2009).

The added mass force (Fam) is modelled as

Fam =−1
2
ρ`Vb

(
dub

dt
− Du`,b

Dt

)
. (2.9)

Here, D/Dt is the total derivative following a fluid parcel and d/dt is the derivative
following the bubble velocity. The standard added mass coefficient of 1/2 is used.

The far-field pressure force on the bubbles is due to the buoyancy force (hydrostatic
pressure gradient), the inertial forces and the viscous strains,

Fp =−Vb∇p. (2.10)

A short note on the history force is given here. The history force can be modelled as

Fh = 3πd2
bµ`

2

∫ t

0

d(ub − u`,b)/dτ√
πν`(t − τ) dτ. (2.11)

The history force effects were shown to be smaller than 6 % of the buoyancy force
at any time for this system (Sridhar & Katz 1995). Owing to the settling nature of
the bubbles in this system, once the bubbles are settled, the history effect is small,
as the relative acceleration is not large compared to ‖u`,b − ub‖2 /db (Merle, Legendre
& Magnaudet 2005). The history force is neglected in this work, as its maximum
magnitude was determined to be less than one-third of the smallest force component
on the bubbles at any time.

2.2. Continuous phase
In the volumetric coupling formulation, the fluid-phase equations are altered to account
for the mass displaced by the presence and motion of the bubbles (Joseph et al. 1990).
Each bubble occupies a volume, Vb, which corresponds to a local bubble volume
fraction, θb. The local liquid volume fraction is defined as θ` = 1 − θb. Accounting for
the mass of the bubble within a control volume, the conservation of mass becomes

∂

∂t
(ρ`θ`)+∇ · (ρ`θ`u`)= 0, (2.12)

where ρ` is the liquid density. No summation is implied on the subscript `. Note that
in this form the flow field, even for an incompressible fluid, is not divergence-free as
long as the volume fraction changes with time or has spatial gradients. Rearrangement
of (2.12) yields an expression for the local divergence,

∇ ·u` =− 1
θ`

(
∂θ`

∂t
+ u` ·∇θ`

)
=− 1

θ`

Dθ`
Dt
. (2.13)
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In a similar manner, the conservation-of-momentum equation is altered to include
the presence of bubbles (Joseph et al. 1990; Gidaspow 1994; Jackson 1997; Zhang &
Prosperetti 1997),

∂

∂t
(ρ`θ`u`)+∇ · (ρ`θ`u`u`)=−∇p+∇ · (µ`θ`D)− θ`ρ`g+ f t

b→`, (2.14)

where p is the dynamic pressure in the fluid phase, and D = ∇u` + ∇uT
` is the

deformation tensor. The total reaction force (f t
b→`) from the bubbles onto the fluid per

unit mass of fluid contains contributions from the surface forces and is given as

f t
b→`(xcv)=−

Nb∑
b=1

G1(xcv, xb)(Fp + Fd + F` + Fam), (2.15)

where G1 denotes the interpolation function from the bubble locations on to the
Eulerian grid and is constrained by the conservation condition

∫
V

G1 dV = 1. In the
present work, a Gaussian interpolation function is used; see Apte et al. (2008) and
Shams et al. (2011) for details. Here xcv and xb are the centres of the control volume
and bubble, respectively, and Nb is the total number of bubbles in the neighbourhood
of the control volume centred at xcv.

Note that the total force on the bubble consists of the pressure force, Fp = −Vb∇p.
The reaction of this force onto the fluid phase results in the force density +θb∇p. The
governing equation then becomes

∂

∂t
(ρ`θ`u`)+∇ · (ρ`θ`u`u`)
=−∇p+∇ · (θ`µ`D)− θ`ρ`g+ fb→` + θb∇p︸ ︷︷ ︸

Fp force density

, (2.16)

where θb∇p is the Eulerian force density obtained from the pressure force and fb→`
is the Eulerian force density constructed from the Lagrangian force on the bubbles
without the pressure force (equation (2.15) without the pressure force, Fp). Noting that
θb + θ` = 1, the above equation (2.16) can be rewritten in a more commonly used form
by combining the first and last terms on the right-hand side:

∂

∂t
(ρ`θ`u`)+∇ · (ρ`θ`u`u`)=−θ`∇p+∇ · (θ`µ`D)− θ`ρ`g+ fb→`. (2.17)

This formulation is commonly used in gas-fluidized beds (Kuipers et al. 1993;
Gidaspow 1994; Darmana, Deen & Kuipers 2006; van der Hoef et al. 2008). Note
that, in the absence of any fluid velocity, but in the presence of bubbles, the
pressure-gradient force is then appropriately balanced by the gravity force. The
pressure-gradient and the gravitational terms can also be combined together to remove
the hydrostatic part of the pressure field by dropping the gravitational term in the
momentum equation. In such a case, the gravitational force on the bubble (equation
(2.4)) typically includes the buoyancy force.

The only difference between the volumetric and two-way coupling approach is that
in the two-way coupling model it is assumed that the volume occupied by the bubbles
is negligibly small. That is, in the two-way coupling model, for a control volume
containing bubbles, the liquid volume fraction θ` is still assumed to be equal to 1. The
two-way coupling formulation can be obtained by simply setting θ` = 1 in all terms of
the continuity and momentum equations (2.12) and (2.14) or (2.17). For completeness,
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the standard point-particle two-way coupling continuity and momentum equations are

∇ ·u` = 0, (2.18)

ρ`

(
∂u`
∂t
+∇ · (u`u`)

)
=−∇p+ µ`(∇ ·D)− ρ`g+ fb→`. (2.19)

2.3. Numerical method

Details of the mathematical formulation and numerical method can be found in Finn
et al. (2011) and Shams et al. (2011), so only a brief description is given here. The
above set of variable density equations (owing to local variations in fluid volume
fractions) are solved using a pressure-based, second-order, fractional time-stepping
scheme on a collocated grid arrangement. The velocity, pressure and volume fractions
are stored at the centroids of the volumes. The Lagrangian bubble equations are
advanced first using a simple forward Euler approximation with subcycling within
each fluid time step (Shams et al. 2011) to accurately account for the bubble time
scales relative to the flow time scales. Knowing the bubble locations, the bubble and
fluid volume fractions are computed at cell centres. The cell-centred velocities (or
ρ`θ`u`) are advanced by solving the momentum equation as a predictor step. The
predicted velocities are interpolated to the faces and then projected to satisfy the
continuity constraint. Projection yields the pressure potential at the cell centres, and
its gradient is used to correct the cell and face-normal velocities. With the volumetric
coupling formulation, the pressure term in the momentum equation (2.17) is multiplied
by the local fluid volume fraction (θ`), and a standard projection operation yields
a variable-coefficient Poisson equation. Shams et al. (2011) have shown how to
preserve the constant-coefficient pressure Poisson equation, by treating part of the
pressure-gradient term in the momentum equation as a subgrid, Lagrangian reaction
source term, and accelerating the solution procedure with use of algebraic multigrid
techniques. The solver is fully parallel and has been verified for a variety of particle-
laden flows (Apte et al. 2008; Shams & Apte 2010; Finn et al. 2011).

The details of the simulation set-up are given in § 3.1.

2.4. Measuring volumetric influences

The volume displacement effects in the volumetric coupling formulation play an
integral role in properly modelling the equations for conservation of mass and
momentum. It is important to understand how these effects manifest themselves, and
a method of quantification in comparison with the standard two-way coupling point-
source approach is needed. In order to find the magnitude of the volume displacement
forces on the flow, an expression for the source term due to volume displacement
effects is derived by writing the original conservative form of the governing equations
in a non-conservative form and expressing the additional terms in comparison with
the two-way coupling formulation as the volume displacement force. Equation (2.20)
gives the volumetric coupling momentum equations in the conservative form, with fb→`
being the two-way coupling source term:

∂(ρ`θ`u`)
∂t

+∇ · (ρ`θ`u`u`)
=−θ`∇p+∇ · [µ`θ`(∇u` +∇uT

` )] + fb→` − ρ`θ`g. (2.20)
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The first two terms are then expanded in a non-conservative form to obtain

u`

(
∂(ρ`θ`)

∂t
+∇ · (ρ`θ`u`)

)
︸ ︷︷ ︸

(I)

+ρ`θ`
(
∂u`
∂t
+ u` ·∇u`

)

=−θ`∇p+∇ · (µ`θ`(∇u` +∇uT
` ))+ fb→` − ρ`θ`g. (2.21)

Utilizing conservation of mass, term (I) vanishes, and it gives

ρ`θ`

(
∂u`
∂t
+ u` ·∇u`

)
=−θ`∇p+∇ · [µ`θ`(∇u` +∇uT

` )] + fb→` − ρ`θ`g. (2.22)

The above equation can be rewritten using the product rule for the advective terms
and rearranging to get

ρ`θ`

(
∂u`
∂t
+∇ · (u`u`)

)
=−θ`∇p+∇ · [µ`θ`(∇u` +∇uT

` )] + fb→` − ρ`θ`g+ ρ`θ`(u`∇ ·u`). (2.23)

To find the forcing terms arising from the volume displacement effect, (2.23) is
compared to the traditional one-way coupling equations for an incompressible fluid
with an additional source 1̂V given as

ρ`

(
∂u`
∂t
+∇ · (u`u`)

)
=−∇p+∇ · [µ`(∇u` +∇uT

` )] − ρ`g+ 1̂V . (2.24)

Note that the advective terms in (2.24) (and hence in (2.23) as well) are written
in a conservative form, mainly because, for incompressible flows, the numerical
approach uses this form for discrete approximations. The source 1̂V can be obtained
by subtracting (2.24) from (2.23):

1̂V = θb∇p︸ ︷︷ ︸
(1̂V1)

+ ρ`θb

(
∂u`
∂t
+∇ · (u`u`)

)
︸ ︷︷ ︸

(1̂V2)

−µ`[∇ · θb(∇u` +∇uT
` )]︸ ︷︷ ︸

(1̂V3)

+ fb→`︸︷︷︸
(1̂V4)

+ ρ`θbg︸ ︷︷ ︸
(1̂V5)

+ ρ`θ`u`(∇ ·u`)︸ ︷︷ ︸
(1̂V6)

. (2.25)

The net source includes both the liquid displacement effects, due to spatial and
temporal volume fraction gradients, as well as the two-way momentum coupling force.

The terms on the right-hand side of (2.25) can be interpreted as follows:

1̂V 1 = local pressure-gradient term, (2.26a)

1̂V 2 = unsteady and fluid inertial terms, (2.26b)

1̂V 3 = viscous stresses due to volume fraction variation, (2.26c)

1̂V 4 = point-source momentum transfer term, (2.26d)

1̂V 5 = hydrostatic buoyancy term, (2.26e)

1̂V 6 = local flow divergence term. (2.26f )
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Note that 1̂V 1 and 1̂V 4 can be combined together to obtain the net two-way
coupling momentum source f t

b→`. By separating out volume displacement effects in
this manner, it is possible to measure the relative influence of these effects compared
to the traditional two-way coupling momentum transfer formulation given by (2.18)
and (2.19).

3. Results
3.1. Simulation set-up

The vortex ring is generated within a rectangular box of dimensions 0.8 m × 0.3 m ×
0.3 m in the streamwise (x̂), vertical (ŷ) and lateral (ẑ) directions, respectively. This
domain size was found to be sufficient based on previous two-dimensional studies
(Finn et al. 2011) and provides appropriate amount of field of view for bubbles to
get entrained within the ring and influence the ring after settling. In addition, it was
verified that further increase in the domain size does not alter the vortex-ring structure
or its propagation.

The inlet pipe section is of radius 0.05 m and centred around the x = 0 plane, the
inlet injects a pulse of fluid generating the vortex ring, which is captured by using a
simple Cartesian grid. This was found to give clean generation of the vortex ring as
opposed to use of tetrahedral unstructured grids. A Cartesian grid, 800 × 241 × 241,
is utilized in this work. Cell spacing is coarse in the corners and dense in the centre
to resolve the inlet section as well as the region of interest accurately. For studying
vortex-ring formation, Mohseni, Ran & Colonius (2001) used a grid resolution of
1/25th of the inlet radius to achieve grid convergence. The finest grid used in this
study has even finer spacing of 1/50th of the inlet radius in order to resolve the
inlet ring generation accurately. Several grid resolutions were studied to ensure proper
vortex behaviour. This was monitored by computing the vortex-ring evolution and its
strength decay from the inlet to the exit. With the fine grid resolution used in this
study, the vortex ring propagates for the length of the numerical experiment with
minimal dissipation of the vortex strength, in line with experimental observations. The
time step was kept constant at 1t = 0.001 s in order to accurately capture the temporal
evolution of the vortex-ring and bubble dynamics. The inlet velocity profile (see
figure 4) is assigned through a polynomial interpolation of the experimental profile;
see Finn et al. (2011) for details. The inlet condition is handled as a velocity source,
which accurately represents the experimental piston inlet profile of the experiments
(James & Madnia 1996). In order to achieve the three different strengths of vortex
rings studied in this work, the cylindrical slug model of Glezer (1988) is used to
match the experimental data. The vortex strength, Γ0, is computed as shown in (3.1),
with its associated vortex Reynolds number (Revx) in (3.2):

Γ0 =
∫ T

0

u2
0(t)

2
dt = 0.0159, 0.0207, 0.0254 m2 s−1, (3.1)

Revx = 1
2ν`

∫ T

0
u2

0(t) dt = 15 900, 20 700, 25 400. (3.2)

The inlet velocity profile is scaled by a constant value for the three different
vortex strengths. The weakest of the three strengths, Γ0 = 0.0159 m2 s−1, constitutes
a transitional vortex, while the two stronger vortices can be classified as turbulent
based on Glezer (1988). As the liquid enters into the ambient domain, a shear
layer forms that rolls up to create a vortex ring that strengthens as the inlet pulse
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0.1

FIGURE 4. Inlet velocity profile used for generating the vortex ring: present work (—) and
experimental data of Sridhar & Katz (1999) (- - -).

Case
no.

Γ0 (m2 s−1) 2rb (µm) Stb gr3
b/Γ

2
0 (×106) rb/rc 2rb/∆cv VF(×104)

1 0.0159 300 0.09 0.13 0.013 0.21 0.11
2 0.0159 500 0.27 0.61 0.022 0.35 0.51
3 0.0159 700 0.53 1.66 0.031 0.50 1.39
4 0.0159 900 0.87 3.54 0.039 0.65 2.96
5 0.0159 1100 1.30 6.46 0.048 0.79 5.42
6 0.0159 1300 1.81 10.66 0.057 0.93 8.94
7 0.0207 700 0.68 0.98 0.031 0.50 1.39
8 0.0254 500 0.43 0.24 0.022 0.35 0.51
9 0.0254 700 0.84 0.60 0.031 0.50 1.39

10 0.0254 900 1.39 1.39 0.039 0.65 2.96
11 0.0254 1100 2.07 2.53 0.048 0.79 5.42
12 0.0254 1300 2.89 4.18 0.057 0.93 8.94

TABLE 1. Parameter variations for travelling vortex-ring cases. Here Γ0 is the vortex
strength, rb is bubble radius, rc is vortex core radius, Stb is the bubble Stokes number, ∆cv

is the local grid resolution and VF is the volume loading.

dissipates. The generated travelling vortex ring propagates to the end of the domain.
The ring maintains a consistent structure during the entire path of its motion. The core
propagation speeds, averaged over the entire time of the simulation, are 0.11, 0.16
and 0.19 m s−1 for the three strengths, respectively. The vortex ring formed from this
process is symmetric, as plotted in figure 3(a) based on the computed flow.

Table 1 lists the various cases studied in this work, similar to those studied in
Sridhar & Katz (1999) and Finn et al. (2011). Three different vortex strengths,
weak (Γ0 = 0.0159 m2 s−1), medium (0.0207 m2 s−1) and strong (0.0254 m2 s−1), are
used for generating the travelling vortex ring. A wide range of bubble diameters
(300–1300 µm) are injected to study their effect on the vortex. For the cases studied,
the ratio of bubble diameter to grid resolution, db/∆cv, is less than one and ranges
between 0.21 and 0.93. The volume loading of the disperse phase is based on only the
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region of the vortex core where bubbles are present, not on the entire domain, but is
still very small.

Let the vortex core radius, rc, be the length scale, the velocity at the settling
location, Urel = Γ0rs/2πr2

c , be the velocity scale, and ρ`rsΓ
2

0 /4π
2r4

c be the local
pressure-gradient scale at the bubble settling location for the flow structure in a vortex
ring. Then, the following non-dimensional groups can be obtained for the bubble
dynamics and bubble settling location (Sridhar & Katz 1999):

r̄s = rs/rc, r̄b = rb/rc, ḡ= gr3
c/Γ

2
0 and Revx = Γ0/ν`, (3.3)

where r̄s is the non-dimensional settling location, r̄b is the non-dimensional bubble
radius, ḡ is the non-dimensional gravity force and Revx is the vortex Reynolds number.
The non-dimensional gravity force is proportional to the ratio of the weight of the fluid
in the vortex core to the integrated pressure gradient in the core. In the present cases,
the vortex core size (rc) remains roughly constant for all cases and is much larger
than the bubble size (rb). Then r̄b and ḡ can be combined to form a non-dimensional
group (gr3

b/Γ
2

0 ), which becomes the ratio of the buoyancy force on the bubble to
the hydrodynamic pressure-gradient force. The non-dimensional settling location (r̄s) is
then a function of this parameter (ḡr̄3

b) and the vortex Reynolds number. The Reynolds
number dependence mainly comes through the drag and lift coefficients, which can
depend on the bubble size and bubble (or vortex) Reynolds number.

Likewise, r̄b and Revx can be combined to obtain the bubble Stokes number,

Stb = (ω)
(
ρbd2

b

36µ`

)
=
(
Γ0

πr2
c

)(
ρbd2

b

36µ`

)
= 1

9π
ρb

ρ`
r̄2

bRevx = 1
9
ρb

ρ`

r̄b

r̄s
Rerefb , (3.4)

where Rerefb = Ureldb/ν` is the reference bubble Reynolds number based on the bubble
diameter. Bubble Stokes numbers range from 0.09 to 2.89, with three different vortex
strengths. Sridhar & Katz (1999) argued that the bubble Reynolds number varies
over a small range, 20 < Rerefb < 80, for the given Stokes number range, whereas the
gravity-based parameter (ḡr̄3

b) varies by two orders of magnitude for the cases studied
(see table 1) and assumed that the settling location is only a weak function of the
Reynolds number.

3.2. Bubble behaviour and vortex distortion
The vortex ring is allowed to develop until it reaches 0.5 m downstream of the
injection plane. The position of the vortex ring is tracked by finding the weighted
centre of vorticity on the plane of bubble injection (the lowest two-dimensional slice
of the core) with coordinates (Xc,Yc), which are calculated as

Xc =
∑

i

Xiω
2
i

/∑
i

ω2
i , Yc =

∑
i

Yiω
2
i

/∑
i

ω2
i . (3.5)

In a perfectly symmetric vortex, the core centre would be at the point of zero velocity
relative to the motion of the structure. In the bubble-free case, this is close but not
exactly true, as the core has a slight asymmetry due to its travelling nature and
turbulent features. In the bubble-laden cases, however, the two points of zero velocity
and the weighted centre of vorticity may not be in close proximity owing to core
fragmentation and asymmetry of the vortex core. When the vortex ring reaches 0.5 m,
the bubbles are released in front of and below the core in the z = 0 plane containing
part of the vortex ring, as shown in figure 3(a). Eight bubbles are injected individually
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FIGURE 5. (Colour online) Ratio of buoyancy force to hydrodynamic pressure gradient
versus the non-dimensional bubble settling location: two-way coupling ( ); volumetric
coupling ( ); and experimental data of Sridhar & Katz (1999) (•).

every 10 ms. Each bubble is injected, then entrained separately. Although each bubble
entrains at a different time, each follows a very similar path initially.

Figure 5 plots the gravity parameter (gr3
b/Γ

2
0 ) versus the non-dimensional bubble

settling locations (r̄s = rs/rc) for the cases studied, where r̄s is the average position of
the bubbles after entrainment into the first quadrant of the vortex. Predictions based
on two-way and volumetric coupling formulations are compared with the experimental
data of Sridhar & Katz (1999). It is observed that both formulations predict the
basic trend that, as the ratio of the buoyancy to the pressure gradient is increased,
the bubbles settle further away from the vortex centre. Similarly, for bubbles of the
same size, increase in the vortex strength results in settling locations closer to the
vortex core. The surface forces such as drag and lift are proportional to r2

b, whereas
the buoyancy, the added mass and pressure-gradient forces are proportional to r3

b.
The variability in the settling location with respect to the force ratio, gr3

b/Γ
2

0 , is
attributed to the dimensional analysis process neglecting the dependence on the vortex
Reynolds number. It is also observed that the two-way coupling formulation tends
to underpredict the settling location for the entire range of ratios of buoyancy to
hydrodynamic pressure gradient, with the error between the predicted location and the
actual location being proportional to bubble size. The volumetric coupling formulation,
however, provides better agreement with experimental results. It will be shown later
that the fluid displacement effects present in the volumetric coupling formulation are
critical in affecting the distribution of vorticity within the vortex core for bubbles
that settle beyond rs/rc > 0.2, whereas the two-way coupling formulation showed a
negligible effect on vorticity distribution (later in this section). It is also shown in § 4.4
that the fluid displacement effects, expressed as an equivalent momentum coupling
force (2.25), show a dependence on the vortex Reynolds number (Γ0/ν`).

Bubble trajectories relative to the vortex core centre are shown in figure 6 for
the weak as well as the strong vortex cases with two representative bubble sizes.
The coordinate system used to describe the bubble settling locations is shown in
figure 3(b). The relative bubble positions are computed as xrel = xb−Xc, then converted
to cylindrical coordinates and plotted as (rrel, θrel) on the plane of bubble injection, so
(0, 0) is the core centre as computed in (3.5). The differences in entrainment time
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0 0.5 1.0 0 0.5 1.0

0 0.5 1.0 0 0.5 1.0

(a) (b)

(c) (d )

FIGURE 6. Bubble trajectories and settling locations relative to the vortex core centre: strong
vortex cases (a) db = 500 µm (case no. 8) and (c) db = 900 µm (case no. 10); and weak vortex
cases (b) 300 µm (case no. 1) and (d) 1100 µm (case no. 5).

and trajectories among the cases are easily noticeable. Large bubbles tend to take a
more direct path to their settling location, whereas smaller bubbles take a longer route.
For the present three-dimensional vortex-ring studies, the bubbles do not completely
settle but tend to move in a small circular path around a mean settling location. Some
of this may be due to the three-dimensional transitional flow within the vortex ring,
since these were not observed in the two-dimensional work of Finn et al. (2011).
These oscillations were, however, noted in experimental work, such as Rastello et al.
(2009). For the weak vortex cases, large bubbles tend to show considerable volatility in
settling position after they are entrained.

Compared to the past work on two-dimensional travelling vortex tubes (Finn et al.
2011), in the present three-dimensional simulations, the bubbles do not perfectly
remain in the plane of injection for the entire duration of the simulation. After
achieving a mean settling location in the plane of injection, the bubbles drifted from
this plane as the vortex ring travelled downstream. This behaviour of the bubbles is
referred to as bubble escape and is shown schematically in figure 3(d). Note that
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FIGURE 7. Paths traversed by bubbles within a vortex ring showing bubble escape:
(a) marginal escape for strong vortex case no. 8 (db = 500 µm); (b) moderate escape for
weak vortex case no. 3 (db = 700 µm); and (c) significant escape for weak vortex case no. 5
(db = 1100 µm).

only minimal escape of the bubbles was obtained with two-way coupling computations,
whereas significant escape is observed in some cases with volumetric coupling. In the
vortex ring, bubbles escape to both sides of the plane of injection; however, for the
sake of quantifying escape, the absolute value of the lateral (ẑ) component of their
position is used in averaging their position along the core. This position is plotted
at the end of simulation, i.e. when Xc = 0.65 m. It is observed that bubble escape
is smaller for stronger vortex strength, whereas with weaker vortex ring the bubbles
tend to escape more. The amount of bubble escape (i.e. angle φ from the plane of
injection) changes with time. Figure 7 shows the escape trajectories of eight bubbles
for representative strong and weak vortex strengths. For the strong vortex case (no. 8),
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all eight bubbles stay relatively close together as they move downstream in the flow
direction (x direction) and do not veer to either side of the vortex ring, showing
minimal bubble escape. For the weak vortex case with 700 µm bubbles (case no. 3),
the bubbles show moderate escape that increases as they travel downstream along with
the vortex ring. Case no. 5 with large bubbles (1100 µm) shows significant escape,
to an extent that the bubbles are no longer entrained into the vortex core at later
times, but are still contained within the upper portions of the ring. As the bubbles
escape from the injection plane, the vortex ring was found to begin to repair itself
back to a structure similar to its pre-bubble entrainment form for some cases. This is
found to be related to the variations in local bubble concentrations and hence the fluid
displacement effects as discussed later.

Figure 8 shows the temporal evolution of the out-of-plane vorticity contours plotted
in the moving cylindrical frame for unladen as well as bubble-laden cases for the
weak vortex strength of Γ0 = 0.0159 m2 s−1. The transitional nature of the vortex
ring is evident. For the unladen case (as well as bubble-laden case computed using
a two-way coupling reaction point source), a strong vortex core is observed (seen
as the dark-grey (red online) spot at the centre) and remains mostly unaltered
over the duration of the simulation. Figure 8 also shows the time evolution of
the vortex ring when eight bubbles are entrained, obtained using the volumetric
coupling formulation, in comparison with the corresponding unladen case. The four
visualizations roughly correspond to positions of the vortex ring at which the bubbles
are injected (x = 0.5 m), entrained (x = 0.55 m), settled (x = 0.6 m) and escape in
the ẑ direction (x = 0.65 m). Before bubble injection, the vorticity profile consists of
mainly concentric iso-vorticity contours, as shown in figure 8(a,b). As the bubbles
are injected and they become entrained into the ring, they begin to alter the vortex
structure. As the bubble is entrained and passes through close to the vortex centre
(x = 0.55 m, figure 8(d), it splits the high-vorticity region into smaller regions. Settled
bubbles cause significant distortion in the vortex structure (figure 8f,h), not just in the
local region of bubble motion, but within the entire core radius (rc = 0.011 45 m), an
observation similar to the experimental data. The vortex core radius is the same as
utilized in the experimental studies. The volume displacement effects present in the
volumetric coupling cases were found to be important in predicting this behaviour.
As is discussed later, this process of vortex core fragmentation was not observed
using standard two-way coupling approaches even with the presence of bubbles. With
two-way coupling, the vortex structure is very similar to the unladen case, indicating
that the point-source momentum coupling alone is insufficient to affect the vorticity
distribution within the core.

Figure 9 shows bubble escape characterized by the angle φ from the plane of
injection and obtained by averaging over all bubbles in the vortex ring at x = 0.65 m,
close to the end of the simulations. The scatter in radial distance from the centre of
the vortex ring (R) is evident for cases with different vortex strengths. The degree
of escape was found to be substantially larger in the volumetric coupling cases as
compared to the two-way coupling, which confirms that the effect of bubbles on
the vortex structure is driving this escape behaviour. For some cases, small-bubble
escape was present even without the effects of vortex distortion, as bubbles can
travel laterally across an undistorted vortex axis. However, the differences between the
escape characteristics predicted by the two-way and volumetric coupling models can
be mostly attributed to vortex distortion induced by volume displacement effects. It is
conjectured that the bubble escape is dependent on the degree to which the bubbles
have locally weakened the vortex, which can change with time. This vortex distortion
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)
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FIGURE 8. (Colour online) Temporal evolution of the out-of-plane vorticity in cylindrical
coordinates for the weak vortex case no. 3, Γ0 = 0.0159 m2 s−1. Panels (a), (c), (e), (g) are
for the unladen case; panels (b), (d), (f ), (h) are when eight bubbles of db = 700 µm are
entrained; (a), (b) xc = 0.5 m; (c), (d) xc = 0.55 m; (e), (f ) xc = 0.6 m; (g), (h) xc = 0.65 m.
The time difference between each plot is approximately 0.4 s. The vorticity field has been
filtered below ωz < 10 to show the high degree of distortion and core fragmentation.
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FIGURE 9. (Colour online) Bubble escape locations away from the plane of injection for
the volumetric coupling simulations. Position indicated is the average location of the eight
bubbles in each case when the vortex core centre reaches 0.65 m: Γ0 = 0.0159 m2 s−1 (N);
Γ0 = 0.207 m2 s−1 ( ); Γ0 = 0.0254 m2 s−1 ( ).

is discussed in § 3.3. As shown in figure 8, large bubbles entrained in a weak vortex
can fragment the vortex core, and hence the escape of the bubbles from the plane of
injection is more likely and their positions more scattered. Although the bubble escape
was observed in the experiments, it was not quantified or correlated to the vortex
distortion. For the strong vortex cases, the distortions in the vortex structure are small
and the bubbles are settled in relatively close proximity of each other (with minimal
escape). However, for weak vortex cases, the bubbles show moderate to significant
escape and are scattered further away from each other. This means that local variations
in the liquid volume fraction will be reduced, and the distorted vortex core can begin
to repair itself under certain conditions, as seen in the experimental observations of
Sridhar & Katz (1999).

3.3. Quantification of vortex distortion and its effects
It is clear from the previous discussion that the fluid displacement effects are
important in distorting the vortex and distributing the vorticity within the core.
This can be further seen by inspecting the radial variation of azimuthally averaged
vorticity for the unladen and bubble-laden case no. 5 (corresponding to the weak
vortex strength of Γ0 = 0.0159 m2 s−1 and large bubbles db = 1100 µm) with different
modelling techniques, as shown in figure 10. As shown before, this case exhibits
significant escape of bubbles when the vortex ring reaches x = 0.65 m (figures 8h
and 7c). Figure 8 shows that, on the plane of injection, the regions of peak vorticity
are pushed outwards from the core centre due to the bubbles passing nearby. Once
the bubbles settle further away from the core and slowly escape from the plane of
injection, a different trend appears. With averages taken over the region of bubble
escape, a consistent increase in the core centre vorticity was observed. This suggests
that, as the bubbles move into planes other than the injection plane, they affect a
much larger area of the ring. A core centre increase in vorticity was also found in the
experiments by Sridhar & Katz (1999). It is also observed from these figures that the
one-way and two-way profiles are very similar; the maximum variation in the averaged
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FIGURE 10. (Colour online) Radial variation of azimuthally averaged vorticity profiles for
the weak vortex case of Γ0 = 0.0159 m2 s−1 for db = 1300 µm, corresponding to case no. 5:
one-way, unladen case (—); two-way coupling ( ; which cannot be distinguished from
the previous curve); volumetric coupling ( ); average azimuthally as well as over different
planes within a thickness of 0.004 m, representative of bubble escape.
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FIGURE 11. (Colour online) Radial variation of azimuthally averaged vorticity profiles,
average taken over several planes within a thickness 0.004 m representative of bubble escape,
for the weak vortex case of Γ0 = 0.0159 m2 s−1 using the volumetric coupling formulation:
unladen case (—); 500 µm ( ); 700 µm ( ); 900 µm ( ); 1100 µm ( ).

vorticity is less than 1 % at any location within the domain. This indicates that, even
for weak vortex strength and large bubbles, the point-source momentum coupling
induced no effect on the flow structure, unlike that observed in the experiments.

Figure 11 compares the change in azimuthally averaged vorticity distribution when
bubbles of different size are entrained in the weak vortex. In general, the core centre
vorticity increase is larger as the size of the bubbles entrained is increased. It also
shows that vorticity increases near the core centre, r/rc < 0.4, and decreases further
away from the core, 0.5< r/rc < 1. In the strong vortex cases, these averaged vorticity
profiles differed only marginally from the unladen cases.
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Case
no.

Cr (×10−5 m) I0.4 I Distortion

1 2.15 0.07 0.68 Minimal
2 8.85 0.26 1.63 Minimal
3 5.15 1.01 5.68 Moderate
4 10.65 0.71 4.15 Significant
5 46.15 2.54 11.8 Significant
6 53.15 1.92 8.77 Significant
7 7.2 0.71 2.1 Minimal
8 7.5 0.09 0.48 Minimal
9 3.75 0.23 1.10 Minimal

10 22.9 0.61 4.10 Moderate
11 20.9 0.62 4.02 Moderate
12 33.6 0.79 4.26 Moderate

TABLE 2. Quantification of vortex distortion using various measures.

In order to further quantify the degree of vortex distortion as a function of bubble
size or bubble settling location, several measures can be used. Sridhar & Katz (1999)
used two point measurements to characterize the vortex distortion, namely: (i) relative
rise in peak vorticity within the vortex core; and (ii) relative rise in the vortex core
centre (termed core rise Cr) due to bubble entrainment in comparison with the unladen
case. Based on the amount of increase in the peak vorticity or core rise, they classified
distortion into minimal, moderate and significant. They found that bubbles that settled
in a band of 0.26 rs/rc 6 0.4 showed moderate to significant distortion based on these
criteria. In the present work, in addition to the core rise as the point measure, a global
measure based on change in azimuthally averaged vorticity in the bottom plane for
bubble-laden and unladen cases was computed and used to quantify vortex distortion.
Accordingly, two measures are defined as

I0.4 =

∫ 2π

0

∫ 0.4rc

0
|ω(r)− ω (r)unladen |r dr dθ

Γ0
× 100, (3.6)

I =

∫ 2π

0

∫ 1.71rc

0
|ω(r)− ω (r)unladen | rdr dθ

Γ0
× 100, (3.7)

where ω and ωunladen represent the local vorticity in the bubble-laden and unladen
cases, respectively. Note that this measure can be obtained by using vorticity values
in the plane of injection only or by averaging vorticity values over several planes in
a region of certain thickness, corresponding to the bubble escape, around the plane
of injection. The limits for radial integrations are based on the region containing the
settled bubbles where an increase in average vorticity was obtained compared to the
unladen case (<0.4rc) or the entire radial region of vortex, not just the core. Both are
normalized by the vortex strength, Γ0.

Table 2 lists the values of these measures and accordingly quantifies the amount
of distortion as minimal, moderate or significant. Moderate distortion was classified
as having I > 2.0 and Cr > 5.0 × 10−5 m, significant distortion features I > 4.0 and
Cr > 10.0 × 10−5 m. Anything less than moderate is classified as minimal distortion.
Figure 12 shows a measure of vortex distortion (I) as a function of bubble settling
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FIGURE 12. (Colour online) Variation of the vortex distortion measures versus bubble
settling location for the weak (N, Γ0 = 0.0159 m2 s−1) and strong ( , Γ0 = 0.0254 m2 s−1)
vortex cases.

location for the weak as well as strong vortex strengths. These measures indicate
that, as bubbles settle further away from the vortex core, they strongly influence the
vorticity distribution within the core. As discussed later, within injection of bubbles
into the vortex ring, fluid is displaced locally through their presence and motion. The
magnitude of fluid displacement and its impact on fluid momentum increases with
rs/rc. The deformation to the vortex core increases with increased bubble size and
final settling location. Note that these measures based on averaged vorticity within the
region of bubble escape showed an increase in vortex distortion, even for bubbles that
show significant escape as discussed in the previous paragraph.

3.4. Wake effects
The vortex distortion observed in some of the cases can be explained by investigating
the bubble wakes. In the present volumetric coupling model, the complete wakes of
the bubbles are not fully resolved because the bubbles are subgrid. However, the
fluid displaced by the bubbles indeed captures the wake effects reasonably well. This
can even be observed by looking at a simple rising bubble in a quiescent flow. The
volumetric coupling model predicts a reasonable wake, whereas the the standard point-
particle approach with two-way coupling does not lead to significant displacement of
the fluid.

In studying the forces acting on interface-contaminated bubbles in a rotating flow,
Rastello et al. (2009) noted three distinct regimes that led to varying levels of
distortion in their vortices. Their experiment consisted of a single bubble being trapped
in a solid-body rotating flow. Small bubbles that tend to settle close to the core centre
had small enough Reynolds numbers, owing to both a low relative velocity and small
diameter, that their wake had little effect on the mean flow. In some intermediate
range, the bubble had a significantly strong wake so that the bubble would experience
a distorted flow field; in turn compounding the effect. The largest bubbles will settle
outside of this intermediate range. While they leave a large wake, it is not strong
enough to travel around the vortex as that wake must travel a distance of 2πrs in order
for the bubble to experience it. Their work noted that the bubble wakes tended to
wrap towards the centre of the vortex, as opposed to precisely following a streamline
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FIGURE 13. (Colour online) Bubble Reynolds number (Rerefb ) versus non-dimensional bubble
settling location for the weak (N, Γ0 = 0.0159 m2 s−1) and strong ( , Γ0 = 0.0254 m2 s−1)
vortex cases.

(Rastello et al. 2009). Since the vortex was forced by the spinning cylinder, the wake
was probably degraded strongly with time.

In the present work, it is postulated that the bubble wakes and their interaction with
the centre of the vortex play a critical role in vortex distortion. In order to obtain
an estimate of the nature of the bubble wake, the reference Reynolds number of the
bubbles (Rerefb ) is plotted versus the bubble settling location in figure 13. Here Rerefb
is defined, with Urel as the velocity scale and db as the length scale. It is important
to note that the bubble settling location cannot be solely determined by the bubble
Reynolds number. It is observed that, for both low as well as strong vortex strengths,
the bubble Reynolds number increases with bubble settling location, which is further
away from the vortex centre for larger bubbles. The bubble Reynolds numbers range
over 20–160 for the cases studied, whereas for bubbles with settling location within
0.26 r̄s 6 0.4 this range is between 30 and 90.

In general, for flow over a sphere, the wake tends to be steady and symmetric when
the bubble Reynolds number is below 150, assuming the incoming flow is uniform.
Between roughly 150 and 280 the wake is steady but asymmetric, and beyond 280
unsteadiness can set in (Ormières & Provansal 1999; Tomboulides & Orszag 2000;
Mittal et al. 2008). For the ranges considered in this paper, if the flow experienced by
a settled bubble was uniform, we would expect steady wakes with lengths and widths
of the order of the bubble diameter (Mittal et al. 2008). However, in the present work,
the vortices do not offer a uniform flow and the bubbles, as mentioned previously,
circulate around a settling location, as opposed to actually remaining stationary. This
will cause the wakes to be unsteady, even when the bubble Reynolds number is well
under 280.

In the present case involving a travelling vortex ring, two of the regimes noted by
Rastello et al. (2009) seem to occur. The smallest bubbles that settle closer to the
vortex centre (r̄s 6 0.2) have low bubble Reynolds numbers and thus lead to wakes
that are too weak to distort the flow significantly. The wakes for these bubbles also
span over a very small distance and do not reach the vortex centre. As the bubble
sizes get larger, which causes the bubbles to settle further away from the vortex core,
the wakes generated are stronger and have the potential to distort the vortex core,
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which would place them in the intermediate regime observed by Rastello et al. (2009).
Figures 11 and 12 show that the observed distortion characterized by (3.7) increases
with bubble size for the entire range studied at a given vortex strength. It is sensible
to view the vortex distortion as a competition between the natural inclination of the
vortex structure to repair itself, as observed in Sridhar & Katz (1999), and the strength
of the disturbances generated. Bubbles that settled within the range of 0.2 6 r̄s 6 0.4
also remained in the plane of injection and showed little escape as shown in figure 9.
They are thus more clustered together and show large vortex distortion.

It is also informative to compare the distortion index for the weak and the strong
vortex cases. For the weak vortex, as the bubble size increases, their settling location
increases, the bubble Reynolds numbers are larger and the vortex distortion observed is
also large. For these cases, the bubbles also tend to escape more and thus any initial
distortion is likely to dampen with time. For the strong vortex strength, the vortex
distortion also increases with bubble size and settling location. However, the amount
of distortion for the largest bubbles is smaller compared to the corresponding weak
vortex cases. Thus, even though large bubbles in the strong vortex have a stronger
wake (owing to a higher Urel and db), the observed distortion is subject to a stronger
damping in those cases. This suggests that the vortex distortion is a function of the
bubble settling location as well as the vortex strength or the vortex Reynolds number,
and this is indeed shown to be the case in the following section.

4. Quantifying the volume displacement effects
The results presented in § 3.2 demonstrated that a low volume fraction of low-

Stokes-number bubbles can have a substantial effect on the carrier phase flow when
volume displacement effects are included. With only the point-particle momentum-
source model, that is, two-way coupling, the vortex-ring structure was very similar
to an unladen case. It is thus important to quantify and investigate these volume
displacement effects in order to understand the mechanisms that alter the vortex
structures. First the effects on the forces experienced by the bubbles is quantified
by obtaining probability mass functions for different forces and comparing them with
the unladen and two-way coupling cases. Next, as derived in § 2.4, the effect of
local variations in fluid volume fractions can be isolated by comparing the linear
momentum equations with the two-way coupling counterpart. Equation (2.25) gives an
expression for the volumetric coupling influences on the flow field. A few measures to
quantify these effects are identified here that are used to discuss the importance of the
volumetric coupling formulation for bubble-laden flows.

4.1. Effect on bubble forces
In order to investigate how the changes in the vortex flow structure affect bubble
motion, the probability mass functions of the radial pressure, added mass and lift
forces on the bubble are shown in figure 14 for the one-way, two-way and volumetric
coupling formulations. The forces are normalized by the maximum absolute value
among the three coupling methods, so changes in both the mean and maximum can be
seen. It can be seen that the probability mass functions for these force variations
are nearly identical for the unladen (one-way) case and bubble-laden case with
two-way coupling. However, all forces show a broader distribution with volumetric
coupling. Comparing the mean of the distributions between the volumetric and two-
way coupling, the pressure and added mass forces indicate a smaller force exerted onto
the bubble inward towards the core with the volumetric coupling formulation. The
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FIGURE 14. (Colour online) Probability mass functions for the radial components of forces
on the bubble obtained in one-way (—), two-way ( ) and volumetric coupling ( )
formulations for case no. 5: (a) radial pressure force; (b) radial added mass force; and
(c) radial lift force, normalized by the maximum absolute value. Mean values of the forces are
also given for one-way (or unladen), two-way and volumetric coupling methods.
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FIGURE 15. (Colour online) The magnitudes of individual forces on the bubbles (averaged
over all bubbles) and normalized by the bubble weight for different cases on log-linear scale:
drag ( ); dynamic pressure gradient ( ); lift (•); added mass ( ); hydrostatic pressure gradient
( ); and summation of net force on the bubble ( ).

mean pressure force decreased by 7.6 %, whereas the added mass force decreased by
12.8 %, while the lift force shows a larger force pushing outwards from the core centre,
with an increase of 1.7 %. The effect on drag force was found to be very small. The
combined effect of changes in these forces results in a radial settling location that
is slightly further away when the volume displacement effects are considered. These
modifications to bubble forces due to vortex distortion are found to be important to
obtain the correct trend for settling locations as shown in figure 5.

4.2. Two-way point-source versus volumetric coupling
The individual contributions of different reaction terms in f t

b→` are computed on
each bubble for the different cases studied. The magnitudes of forces (averaged over
the Nb = 8 injected bubbles) are plotted against the gravity parameter gr3

b/Γ
2

0 in
figure 15. The forces are normalized by the bubble weight. The buoyancy force (or
the hydrostatic pressure-gradient force, ρ`Vbg) is close to 1000 times the weight of the
bubble owing to the small specific gravity of the bubble. It is also observed that the
magnitudes of individual drag, lift, added mass and pressure forces (due to dynamic
pressure gradient) are large, and of the order of 300–1200 times the bubble weight.
However, the net two-way reaction force, f t

b→`, is found to be small and does not
affect the vortex-ring structure in a two-way coupling formulation, even for the weak
vortex case. This can be explained based on the balance of the forces on the bubbles.

If the bubbles settle perfectly at a location that remains stationary with respect to the
vortex core, then the different forces acting on them are in perfect balance with their
weight, that is,

(Fd + F` + Fam + Fp)=−Fg = ρbVbg. (4.1)

Owing to transitional flow in a vortex ring, the bubbles do not settle perfectly but
continue to circle around a mean settling location. However, the net reaction force
is still small in a two-way coupling formulation due to the small specific gravity
of the bubbles. While these forces have components in all three directions, they are
dominated by the components in the settling plane as shown in figure 3(c).
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FIGURE 16. (Colour online) The magnitudes of individual volumetric coupling reaction
forces (defined in (2.25)) normalized by the net bubble weight on log-linear scale. The
forces are averaged in time after the bubbles are settled: unsteady and inertial terms, 1V2 ( );
two-way coupling momentum transfer term, 1V1 +1V4 ( ); hydrostatic buoyancy term, 1V5

( ); local divergence term, 1V6 (�); and total magnitude of signed summation of the volume
displacement forces, 1Vnet ( ).

Figure 16 shows the relative magnitudes of the various volumetric source terms
obtained in (2.25). These magnitudes are obtained by accounting for the net sources
on the fluid and averaging them over the period of time after the bubbles have settled
around a mean position. The magnitudes are normalized by the net bubble weight and
are given as

1V i =

∑
cv

|1̂Vi|Vcv

Wb
=

∑
cv

(1̂V
2

ix
+ 1̂V

2

iy
+ 1̂V

2

iz
)

1/2

Vcv

NbρbVbg
, (4.2)

where Nb is the number of bubbles, Wb is the weight of the bubbles, Vcv is the
volume of the cell and the overbar represents time average. Also shown in figure 16
is the magnitude of the vector sum (signed sum) of the volume displacement forces
normalized by the net bubble weight,

1Vnet = 1̂Vnet

Wb
=

∑
cv

∣∣∣∣∣
6∑

i=1

1̂Vi

∣∣∣∣∣Vcv

NbρbVbg
. (4.3)

It is observed that the individual magnitudes of the different volume displacement
coupling forces are large, with the divergence-based reaction term (1V6) being the
largest in all cases. Since the local divergence in the flow field is related to the local
spatio-temporal variations in the bubble volume fraction (see (2.13)), the effect of fluid
displaced by the presence of bubbles can be significant. The summed magnitudes of
two-way coupling forces, although large, are still smaller than this divergence reaction
term. The forces here are roughly constant when normalized by the bubble weight
for all gr3

b/Γ
2

0 , since both the volume displacement forces and the bubble weights
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are proportional to the bubble volume. There are variations caused by the differences
in the flow field seen by the bubbles due to their respective settling distances and
bubble escape properties. The net magnitude of the vector summation of the volume
displacement forces (1Vnet) shows that the net addition is smaller than some of
the individual components, and thus some of these effects are balancing each other.
However, the net magnitude is still considerably larger than the net magnitude of
the two-way coupled forces (which is close to the weight of the bubbles for settled
bubbles). Thus, the volumetric coupling does impart a larger reaction force and can
cause distortion of the vortex ring for certain cases.

4.3. Comparing volume displacement forces to a simple two-dimensional estimate

In previous two-dimensional work on bubble–vortex tube interactions (Finn et al.
2011), models have been developed to estimate an analogous expression for the
volume displacement force. The reaction force was derived by directly subtracting the
one-way coupled Navier–Stokes equation (4.4) from the volumetric coupling equation
(2.14), shown again here for completeness in (4.5):

∂(ρ`u`)
∂t

+∇ · (ρ`u`u`)︸ ︷︷ ︸
C

=−∇p︸ ︷︷ ︸
P

+∇ · [µ`(∇u+∇uT)]︸ ︷︷ ︸
V

− ρ`g︸︷︷︸
B

, (4.4)

∂(ρ`θ`u`)
∂t

+∇ · (ρ`θ`u`u`)︸ ︷︷ ︸
Ĉ

=−∇p︸ ︷︷ ︸
P̂

+∇ · [µ`θ`(∇u+∇uT)]︸ ︷︷ ︸
V̂

− ρ`θ`g︸ ︷︷ ︸
B̂

+f t
b→`. (4.5)

This expression is in general agreement with those given by Druzhinin & Elghobashi
(1998) and Sridhar & Katz (1999) for similar bubble-laden systems. Subtracting the
previous two equations gives

1̂R= (C − Ĉ)+ (P̂ − P)+ (V̂ − V)+ (B̂− B)+ f t
b→`. (4.6)

To obtain a simple two-dimensional estimate of the reaction force, the differences in
the convective, viscous, pressure, buoyancy and two-way coupling momentum transfer
terms, shown in (4.6), can be approximated using a Gaussian vortex profile (based
on the nature of the averaged vorticity distribution shown in figure 10) under the
assumptions of an undisturbed flow field and zero bubble acceleration (or assuming
that the forces on bubbles are in balance), which provides good estimates for velocity,
vorticity and dynamic pressure gradient at all positions in the vortex core. The
resultant 1̂R is non-zero because, under the two-way coupling model, convective and
buoyancy effects are not weighted by the actual local fluid volume fraction, whereas
under the volumetric coupling model these terms are weighted by the actual amount of
fluid present. The reasoning here is equivalent to that which was used to find 1̂V in
§ 2.4. The individual terms in (4.6) can then be simplified by neglecting the viscous
terms (for low volume loadings and large Revx) as (Finn et al. 2011)

C − Ĉ = ρ`Du`
Dt
− D (ρ`θ`u`)

Dt
≈ ρ` u2

θ

r
− ρ` θ`u

2
θ

r
≈ ρ`θb

u2
θ

r
, (4.7)

B̂− B=−θ`ρ`g+ ρ`g=+θbρ`g. (4.8)
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FIGURE 17. (Colour online) Comparison of the net volume displacement force obtained
in present three-dimensional computations to the two-dimensional estimate based on a
simplified Gaussian vortex of similar strength for the weak (N, Γ0 = 0.0159 m2 s−1) and
strong ( , Γ0 = 0.0254 m2 s−1) cases.

Also, assuming that the bubbles reach a settling location that is steady with respect to
the vortex core, the net forces on the bubble are in balance,

Fb→` =−(Fd + F` + Fam + Fp)∼ Fg =−ρbVbg, (4.9)

f t
b→` ∼

Nb∑
b=1

G1(Fb→`)=−θbρbg. (4.10)

Note that the interphase reaction term will be small when the bubbles are not
accelerating, explaining why the point-particle, two-way coupling source causes almost
no vortex distortion. If all terms in (4.8) and (4.10) are combined, and multiplied
through by the local volume of the fluid cell, then the two-dimensional approximation
to the total reaction force (1R = Vcv1̂R) onto the fluid because of Nb bubbles having
volume Vb can be obtained. The radial and tangential components (radially outwards
and anticlockwise being positive) of this force are given as

Rr =−NbVb(ρ`u
2
θ/rs − g(ρ` − ρb) sin(θs)), (4.11)

Rθ = NbVbg(ρ` − ρb) cos(θs), (4.12)

Rmag =
√

R2
r + R2

θ , (4.13)

where Rmag denotes the net magnitude of these two components. Note that (4.13)
indicates that the two-dimensional estimate of the interaction force varies with
the bubble volume. Figure 17 compares the volume displacement force magnitudes
directly computed in this work (|1̂Vnet |) to the prediction based on the stationary
two-dimensional model (Rmag). For the strong vortex cases, where the vortex distortion
is minimal and the bubbles tend to settle close to each other, the present computational
prediction of the volume displacement force is directly correlated with the two-
dimensional estimate. For these cases, the bubble escape observed in the computations
was minimal and the steady two-dimensional assumption seems valid. For the weak
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FIGURE 18. (Colour online) The resultant volume displacement force (1̂Vnet ) normalized
by the net bubble weight for the weak (N, Γ0 = 0.0159 m2 s−1) and strong ( , Γ0 =
0.0254 m2 s−1) vortex cases, versus the mean non-dimensional settling location (rs/rc).

vortex, however, the forces tend to deviate from a direct correlation. The three-
dimensional vortex distortion effects, bubble escape and unsteady nature of the
bubble–vortex interactions were important for these cases.

4.4. Volume displacement force and vortex distortion

In order to study the influence of the net volume displacement force (1Vnet) on the
vortex structure and other forces acting on the bubble, it is first non-dimensionalized
by the net bubble weight and plotted against the non-dimensional bubble settling
location, r̄s, in figure 18. The weak and strong vortex cases are identified for
comparison. It is observed that, for the strong vortex case, as the bubbles settle
further away from the vortex core, the net volume displacement force is large. This
is also the trend for the majority of the bubbles with the weak vortex, except for
two cases where the bubbles settle further away from the core, where the normalized
reaction force is lower. The magnitudes of these forces are larger for the strong vortex
cases compared to the weaker vortex. These two effects can be explained as follows.
For the strong vortex, the bubbles tend to settle in close proximity to each other with
little or no escape, increasing the local spatial gradient in the bubble volume fraction.
This increases the local divergence term and hence the local volume displacement
effects. They also tend to move more rapidly because of the larger circulation rates.
For the weaker vortex, on the other hand, the bubbles continue to move in small
circles around a mean settling location and generally are more dispersed. They also
show significant bubble escape from the plane of injection as shown in figures 7
and 9. These combined effects tend to have relatively lower net volume displacement
forces for the weaker vortex. However, it is observed in the experiments as well as
in the simulations that the large bubbles distort the weaker vortex significantly more
compared to the strong vortex. To explain the effect of volume displacement forces
on the vortex distortion, it is important to compare the volume displacement force to
some measure of the vortex strength.

The volume displacement force can be normalized by the radial hydrodynamic
pressure force within an undisturbed vortex core, which scales as ρ`Γ 2

0 (which was
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FIGURE 19. (Colour online) The net volume displacement force (1̂Vnet ) as a function
of the mean settling location, rs/rc, for the weak (N, Γ0 = 0.0159 m2 s−1) and strong
( , Γ0 = 0.0254 m2 s−1) vortex strengths: (a) normalized by the net radial hydrodynamic
pressure force in an undisturbed vortex (ρ`Γ 2

0 ); and (b) normalized by ρ`Γ 2
0 Re

2
vx.

also used to non-dimensionalize the bubble weight to obtain ḡ). The variation of
this normalized force against the settling location, r̄s, is shown in figure 19(a). Two
distinct trend curves arise from this normalization, indicating that the bubbles tend
to settle further away for the weak vortex as compared to the large vortex. Note
that the relationship of this normalized force with respect to the settling location
for weak as well as strong vortex strengths is not linear. Since variation of the
vortex strengths results in different vortex Reynolds numbers, Revx = Γ0/ν`, it is then
reasonable to assume that the normalized volume displacement force depends on Revx.
The trend tends to collapse well when the net volume displacement force is normalized
by the net hydrodynamic pressure force times the vortex Reynolds number squared,
ρ`Γ

2
0 Re

2
vx, as shown in figure 19(b). This plot shows that, as the bubbles tend to settle

further away for the weak vortex, the normalized force is larger compared with the
corresponding cases for the strong vortices. This plot thus indicates that the potential
of the bubbles to distort the vortex ring is large for the weaker vortex, and hence
significant distortion of the ring is observed for these cases. The volume displacement
forces thus are given as

1̂Vnet

ρ`Γ
2

0

= Re2
vxF (r̄s), (4.14)

where F is a nonlinear function of the settling location (r̄s). In addition, it was
previously shown that the settling location depends on the ratio of the bubble weight
to the hydrodynamic pressure force, ḡ = gr3

b/Γ
2

0 . It is important to note that the drag
and lift forces acting on the bubble implicitly depend on bubble Reynolds number Reb,
which in turn depends on Revx. The bubble Reynolds numbers do not vary appreciably
for the present case and hence the dependence of the drag and lift forces on vortex
Reynolds number is weak. However, it is observed that the volume displacement
forces, when normalized by Re2

vx and the hydrodynamic pressure force (ρ`Γ 2
0 ), are

direct functions of the settling location and collapse the data onto a single curve. This
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0

FIGURE 20. (Colour online) The normalized resultant volume displacement force

(1̂Vnet/ρ`Γ
2

0 Re
2
vx) at different mean settling locations for strong ( , Γ0 = 0.0254 m2 s−1)

and weak (N, Γ0 = 0.0159 m2 s−1) vortices. Arrow length represents 1× 10−12 dimensionless
units.

indicates that the vortex distortion occurring due to the fluid volume displaced by the
bubbles is a function of Revx and gr3

b/Γ
2

0 .
In order to understand the directionality of the normalized net volume displacement

force (1Vnet/ρ`Γ
2

0 Re
2
vx), it is plotted in the rs–θs coordinates together with the location

of the settled bubbles as shown in figure 20. The arrow denotes the directionality
of the net force and the magnitude is represented by its length. It is observed that,
for the weak as well as the strong vortex cases, as the bubbles settle further away
from the vortex core, the net volume displacement force is also large. The resultant
reaction force is still large for these cases. It is noticed from these plots that the
resultant volume displacement forces are aligned roughly at 45◦ from the horizontal.
Present computational results as well as experimental data (Sridhar & Katz 1999)
indicate a core elongation at roughly 45◦ incline from the horizontal for cases in which
significant distortion occurs. This approximate angle at which the core elongation
occurs is the result of a competition between two mechanisms, the natural inclination
of the vortex to have a horizontal elongation owing to its travelling nature, and the
influence of the bubbles attempting to push the core to a more vertically inclined
angle, shown in figure 20. The effect of fluid displaced by the bubbles is to locally
elongate the flow structure near the centre of the vortex core. It is also important to
note that in a steady flow a wake will develop at an angle of 180◦ relative to the net
force reaction force on the fluid (1̂V ). Based on the resultant direction of the volume
displacement force shown in figure 20, the bubble wakes are directed inwards (or
towards the vortex centre), similar to the observations by Rastello et al. (2009) based
on their work on a forced vortex.

Finally, the vortex distortion index (I) defined in (3.7) is plotted against the
normalized volume displacement force in figure 21. This plot clearly shows that
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FIGURE 21. (Colour online) The vortex distortion index (I) versus the normalized resultant

volume displacement force (1̂Vnet/ρ`Γ
2

0 Re
2
vx) for strong ( , Γ0 = 0.0254 m2 s−1) and weak

(N, Γ0 = 0.0159 m2 s−1) vortex cases.

increase in volume displacement force increases the vortex distortion. Since the
volume displacement force contains a major contribution from the local divergence
term in the velocity field, then vortex distortion increases as the bubbles displace the
fluid locally. As larger bubbles tend to displace more fluid and also settle further
away from the vortex core, vortex distortion increases with increase in bubble settling
location as shown previously in figure 12. Here it is shown that the vortex distortion
index is correlated to volume displacement force, which also increases with bubble
settling location.

4.5. A simple modification to point-source momentum coupling
To account for the volumetric displacements, the formulation presented here involves
modification to the continuity and momentum equations. The fluid flow solver
algorithm has to be modified considerably to account for the local variations in
volume fractions and a variable-density-like pressure-based formulation is needed. The
pressure Poisson equation has a source term due to variations in the local volume
fractions and the flow field is no longer divergence-free. This can cause convergence
issues in regions of large variations in volume fractions or for densely loaded systems.

A simplified approach that retains some of the main features of the volumetric
coupling can be obtained for dilute loadings such that considerable changes to the
basic incompressible flow solver are not needed. If the size of the dispersed phase
is assumed small compared to the grid size (as in the cases studied in this work),
the volume displacement force in the momentum equation (2.23) can be accounted
for as a volumetric source term in the momentum equation, in addition to the two-
way coupling point source. The cost associated with incorporating these additional
source/sink terms along with the two-way coupling reaction force is negligible,
and this model presents an effective alternative to incorporate some of the effects
associated with the finite size of the dispersed phase in a point-particle approach.

Starting with (2.23), dividing throughout by θ`, expanding the viscous term using the
product rule, and subtracting from this the one-way coupling equation (2.24) with a
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volumetric source term (1̂V ), we get

1̂V = 1
θ`
fb→` + ρ`(u`∇ ·u`)+ 1

θ`
(µ`(∇u` +∇uT

` )) ·∇θ` (4.15)

= 1
θ`
fb→` − ρ`u`

θ`

(
∂θ`

∂t
+ u` ·∇θ`

)
+ µ`(∇u` +∇uT

` ) ·
1
θ`
∇θ`, (4.16)

= 1
θ`
fb→`︸ ︷︷ ︸
I

− ρ`u` D
Dt
(ln θ`)︸ ︷︷ ︸

II

+µ`(∇u` +∇uT
` ) ·∇(ln θ`)︸ ︷︷ ︸

III

, (4.17)

where the velocity divergence is replaced by the material rate of change of the fluid
volume fraction from the continuity equation (2.13).

This shows that the volume displacement forces can be obtained by simply dividing
the two-way coupling momentum point source by the local fluid volume fraction (term
I), and adding two additional volumetric sources based on the local variations in the
fluid volume fractions (terms II and III). The term II involves the local temporal
and spatial variations in the volume fractions caused by motion of the bubbles. The
third term represents modification of the viscous effects due to local variations in
the volume fraction. For high Reynolds numbers, this viscous effect may be small
compared to the other terms and may be neglected. Note that the last two terms
are written as derivatives of the logarithm of the volume fraction. Owing to the
Lagrangian nature of the bubbles, the source terms due to volume fraction variations
can vary rapidly from one cell to another. Derivatives of the logarithm of the volume
fraction will be smoother compared to the derivatives of the volume fraction field
itself. The standard Lagrangian point-particle approach can now be easily modified
by modelling the net reaction source in this way. If the effects of bubbles on the
continuity equation are neglected, the basic fluid flow solver used in these approaches
will remain unchanged.

The above equation indicates that, for small bubbles (db/∆cv � 1, θ` → 1), the
variations in the local volume fractions will be small and terms II and III will
be negligible. The standard two-way coupling point source is then recovered in a
consistent manner. Depending upon the application, the dominant reaction term could
be because of the net acceleration of bubbles (term I) or displacement of the fluid
due to bubble motions (term II). This may in general depend on the dispersed-phase
volume loading, the particle Stokes number, particle-to-fluid density ratio, the flow
Reynolds number, orientation of gravity, and boundary conditions/effects.

For denser-than-fluid particle systems where the particle-to-fluid density ratio is
small (for example, sediment transport, liquid fluidized beds and risers, etc.), the
volumetric displacement effects can be large compared to the standard two-way
point source. Even for large density ratios, in regions where the subgrid particles
are nearly in equilibrium with the fluid (reached terminal velocity), such as in the
near-wall region, the volume displacement effects may become important, and should
be considered.

The volumetric coupling effects give rise to a variable-density-like formulation in
an incompressible fluid solver (§ 2); the actual implementation of the approach is
not completely straightforward. Hence, the simplified approach as presented here
introduces an effective volumetric coupling force, which can be thought of as
an improvement over the standard point-particle two-coupling force, which in part
addresses the finite size of the particle. From that perspective, this model is indeed
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attractive and straightforward to implement. It presents an area for future research to
investigate its validity and suitability for different flow configurations.

5. Conclusions

In this work, direct numerical simulation utilizing point-particle Lagrangian bubble
tracking was performed to study interactions of a few small bubbles with a travelling
vortex ring, corresponding to the experimental set-up of Sridhar & Katz (1999).
Two approaches modelling the effects of bubbles on the vortex ring were studied:
(i) two-way coupling; and (ii) volumetric coupling. In both approaches, the bubbles
are considered subgrid and only the centres of the bubbles are tracked by modelling
the forces on the bubbles through drag, lift, pressure, added mass and gravity. In
the traditional two-way coupling approach, the effect of the bubbles on the flow was
modelled through momentum point sources based on the net reaction of forces exerted
on the bubble by the fluid. In volumetric coupling, in addition to this momentum point
source, the local variations in the bubble (or fluid) volume fractions are accounted
for by modifying the continuity and momentum equations. With this formulation, the
velocity field is no longer divergence-free even in an incompressible fluid owing to the
presence of discrete bubbles.

The two approaches were used to study bubble–ring interactions by varying
both the bubble size (300 6 db 6 1300) and the vortex strengths (Γ0 =
0.0159, 0.0207, 0.0254 m2 s−1). It was found that the two-way coupling point-
particle approach was insufficient to reproduce the experimental observations for
bubble settling location, bubble escape properties, vortex core deformation and core
fragmentation even with the use of experimentally determined lift coefficients (Sridhar
& Katz 1999). The volumetric coupling approach performed well in reproducing
these observations for both the bubble and liquid phases. It was shown that, even
for low volume loadings, a small number of bubbles entrained in a vortex ring can
significantly alter the vortex core for certain combinations of the vortex strengths and
bubble sizes. The bubbles were able to fragment the vortex core so as to increase the
vorticity at the core centre, similar to experimental observations. For the weak vortex
strength, the entrained bubbles also escape from the plane of injection along the vortex
ring, with the larger bubbles showing more escape. The distortion of the vortex ring
was found to be significant for the weak vortex case, when bubbles of medium size
were entrained between 20 and 40 % of the core radius. Bubbles that are entrained too
close to the vortex core resulted in significantly less distortion.

The distortion of the vortex structure caused by bubbles is attributed to the fluid
volume displacement due to bubble motion. The bubbles, once entrained in the
vortex ring, nearly settle at a mean position away from the vortex core, owing to
the balance between the drag, lift, pressure and added mass forces. Once settled, the
bubbles do not experience any appreciable acceleration to exert a strong momentum
coupling force and thus the point-source two-way coupling model does not affect the
vortex-ring structure. It was shown that the local displacement of the fluid due to
bubbles tends to alter the vortex-ring structure, distorting it completely for certain
cases. These volume displacement effects were found to be critical in reproducing
experimental observations. It has been postulated that these volume displacement
effects are required in order to model the effects of the wake trailing a bubble.
The wake characteristics are critical in determining whether significant distortion of
the vortex will occur, or if it will stay nearly unperturbed. The directionality of these
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volume displacement effects was also well correlated to experimental observation of
wake propagation in a rotating flow.

A method for isolating volume displacement effects was derived in detail from the
momentum equations by introducing the notion of a volume displacement force on the
fluid. This force was shown to have contributions from the local pressure gradient, the
unsteady and inertial terms, viscous terms due to local variations in the fluid volume
fraction, the interphase momentum exchange, the hydrostatic force, and the local flow
divergence due to the volume displaced by the bubbles. The magnitudes of these
individual forces were compared with the individual forces on the bubble, namely,
drag, lift, added mass and pressure, to show that they were of the same order; however,
the net contribution was also large, unlike the balance among the forces on the bubble.
The contribution due to the flow divergence was found to be the most dominant
mechanism in distorting the vortex core. The volumetric force was also compared with
an analytical estimate of this force based on a two-dimensional symmetric Gaussian
vortex to show good correlation for the strong as well as weak vortices, which showed
minimal bubble escape from the plane of injection. For cases with large distortion of
the vortex core, the three-dimensional bubble escape and unsteady effects were found
to be important.

The volume displacement forces, when non-dimensionalized by the measure of
hydrodynamic pressure force (ρ`Γ 2

0 ), showed a direct dependence on the non-
dimensional bubble settling location, rs/rc, as well as the vortex Reynolds number,
Revx = Γ0/ν`. The reaction force normalized by ρ`Γ

2
0 Re

2
vx collapsed onto a single

curve showing strong correlation with the settling location. The magnitude of the
normalized reaction force increased monotonically with the bubble settling location,
indicating that the volume displacement effects, and hence vortex distortion potential,
were large if the bubbles settled further away from the vortex core. The direction of
the net resultant force was found to be aligned at roughly 45◦ in the bubble settling
plane, rs–θs, which explains the elongation of the vortex core, as seen in experimental
results and this work, in this direction.

This work has established the need for the inclusion of the volume displacement
effects, due to motion of a disperse phase even for dilute volume loading, to
model the two-phase interactions properly. It is shown that, for subgrid particles
where the finite-size effects are important but conducting fully resolved simulations
is not realistic (0.1 < db/∆cv < 1 and Stb > 0.1), accounting for local variations in
bubble volume fractions can provide a practical and improved approach to standard
two-way point-particle method. A simplified model, modifying the standard two-way
coupling reaction force by including the volume displacement effects, was developed
for disperse two-phase flows that includes contributions from the two approaches in a
consistent manner.
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ORMIÈRES, D. & PROVANSAL, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev.
Lett. 83 (1), 80–83.

OWEIS, G. F., VAN DER HOUT, I. E., IYER, C., TRYGGVASON, G. & CECCIO, S. L. 2005 Capture
and inception of bubbles near line vortices. Phys. Fluids 17 (2), 022105.
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