
J. Fluid Mech. (2019), vol. 871, pp. 186–211. c© Cambridge University Press 2019
doi:10.1017/jfm.2019.314

186
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Existing studies suggest that wavy leading edges (WLEs) offer substantial reduction of
broadband noise generated by an aerofoil undergoing upstream vortical disturbances.
In this context, there are two universal trends in the frequency spectra of the noise
reduction which have been observed and reported to date: (i) no significant reduction
at low frequencies followed by (ii) a rapid growth of the noise reduction that persists
in the medium-to-high frequency range. These trends are known to be insensitive to
the aerofoil type and flow condition used. This paper aims to provide comprehensive
understandings as to how these universal trends are formed and what the major
drivers are. The current work is based on very-high-resolution numerical simulations
of a semi-infinite flat-plate aerofoil impinged by a prescribed divergence-free vortex
in an inviscid base flow at zero incidence angle, continued from recent work by the
authors (Turner & Kim, J. Fluid Mech., vol. 811, 2017, pp. 582–611). One of the
most significant findings in the current work is that the noise source distribution
on the aerofoil surface becomes entirely two-dimensional (highly non-uniform in
the spanwise direction as well as streamwise) at high frequencies when the WLE
is involved. Also, the sources downstream of the LE make crucial contributions
to creating the universal trends across all frequencies. These findings contradict
the conventional LE-focused one-dimensional source analysis that has widely been
accepted for all frequencies. The current study suggests that the universal trends in the
noise-reduction spectra can be properly understood by taking the downstream source
contributions into account, in terms of both magnitude and phase variations. After
including the downstream sources, it is shown in this paper that the first universal
trend is due to the conservation of total (surface integrated) source energy at low
frequencies. The surface-integrated source magnitude that decreases faster with the
WLE correlates very well with the noise-reduction spectrum at medium frequencies.
In the meantime, the high-frequency noise reduction is driven almost entirely by
destructive phase interference that increases rapidly and consistently with frequency,
explaining the second universal trend.
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1. Introduction
Wavy leading edges (WLEs) are an effective means to reduce broadband noise

caused by interaction of an aerofoil with upstream vortical disturbances. Here, the
reduction of the noise is measured relative to the straight leading edge (SLE) case.
The noise-reduction effect of WLEs has been demonstrated through mathematical (Lyu
& Azarpeyvand 2017; Ayton & Kim 2018; Mathews & Peake 2018), experimental
(Hansen, Kelso & Doolan 2012; Chong et al. 2015; Narayanan et al. 2015; Roger
& Moreau 2016; Biedermann et al. 2017; Chaitanya et al. 2017; Juknevicius &
Chong 2018) and computational studies (Clair et al. 2013; Lau, Haeri & Kim 2013;
Agrawal & Sharma 2016; Kim, Haeri & Joseph 2016; Turner & Kim 2017; Tong
et al. 2018). The previous studies reported that significant noise reduction (typically
more than 3 dB) was available for Strouhal numbers StLE > 0.5 (normalised by
the peak-to-root distance of the WLE and the free-stream velocity). A high level
of reduction exceeding 20 dB was often observed at the higher frequencies. Some
parametric studies were also conducted with regard to the variation of geometry
and flow conditions. However, despite the rapid progress obtained in the research
community in recent years, there still are various gaps to fill in order to complete
the understanding of the core mechanisms by which the noise reduction is achieved.
In particular, there are two universal trends in the observed frequency spectra of the
noise reduction in the previous studies: (i) no significant reduction at low frequencies
(StLE < 0.5) followed by (ii) a rapid and persistent growth of the reduction in the
medium-to-high frequency range (StLE > 0.5). As far as the existing observations are
concerned, these trends are insensitive to the aerofoil type and flow condition used,
unless viscous effects give rise to self-noise overtaking the interaction noise after
a certain frequency. In the meantime, there are two widely discussed explanations
to the noise reduction offered by WLEs: (i) reduced source magnitude (perturbed
surface pressure jump) at certain locations on the WLE; and, (ii) destructive phase
interference in the source signals, both of which vary with frequency. There are
a few theories without a conclusive evidence to date about both mechanisms with
regard to their relative contributions towards constructing the universal trends in the
noise-reduction spectra.

The fundamental noise-reduction mechanisms mentioned above were first hypothesized
and discussed by Kim et al. (2016). It was demonstrated that the source magnitude
is significantly reduced in the WLE’s hill region (see figure 1) at all frequencies,
whereas the root and peak regions show a similar level of source magnitude to that
of SLE. The reduced source magnitude at the hill region has also been observed
by Clair et al. (2013) and Tong et al. (2018). Additionally, an increasing level of
destructive phase interference in the source signals along the WLE (compared to SLE)
appeared in the early study of Kim et al. (2016). The noise-reduction mechanisms
were investigated in more detail by Turner & Kim (2017), who revealed the formation
of secondary horseshoe vortex structures playing an important role to create source
distribution along the WLE. The work also prompted that the substantially reduced
source magnitude at the hill region did not contribute to the noise reduction at low
frequencies in the far field, which was suggested as a dilemma to solve.

Recently, mathematical work based on sawtooth LE serrations by Lyu & Azarpeyvand
(2017) and Ayton & Kim (2018) provided results that support the destructive phase
interference as the primary mechanism of noise reduction. Lyu & Azarpeyvand
(2017) demonstrated that the predicted scattered surface pressure along the sawtooth
LE exhibits more rapid phase changes at a fixed frequency as the serration amplitude
increases. Ayton & Kim (2018) suggested that the LE serrations redistribute
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FIGURE 1. (Colour online) (a) Schematic diagram of the current aerofoil–vortex
interaction (AVI) problem. The centre of the prescribed spanwise vortex has zero offset
from the aerofoil surface, and therefore the vortex is bisected by the aerofoil during the
course of the interaction. (b) Grid meshes used on the aerofoil surface: planform views
enlarged in the vicinity of LEs. The streamwise distance between the peak and the root
is 2hLE where hLE is the amplitude of the WLE sinusoid and λLE is the wavelength.

the acoustic energy from the lower (cut-on) modes to higher (cut-off) to result
in significant far-field noise reduction, increasing with the peak-to-root distance.
Interestingly, however, there is a disagreement between the mathematical solutions at
low frequencies where Lyu & Azarpeyvand (2017) predicted noise increase (rather
than decrease) but Ayton & Kim (2018) provided the correct trend (almost no
reduction at low frequencies). It should be noted that the mathematical solutions are
based on the Helmholtz equation and harmonic gusts where nonlinear effects and/or
secondary vortical structures are omitted.

In the meantime, Chaitanya et al. (2017) proposed an approximate linear model
of the noise-reduction spectra based on their experimental data that revealed
a self-similarity between the spectra when the frequency is normalised by the
peak-to-root distance of the WLE and the free-stream velocity. The simple linear
model was derived by integrating the expected phase variation of the source signals
(assuming a constant magnitude) across one WLE cycle. The derivation resulted
in an oscillatory Bessel function, the local minima of which matched very well
with the experimental data. This outcome initially implied that the noise reduction
was determined primarily by destructive phase interference regardless of frequency.
However, they also achieved the same linear model, not including the phase variation
at all, but only assuming ‘effective source length’ to decrease as frequency increases.
There is no clear evidence at present to judge which one of the theories is correct or
more suitable.

Therefore, further work is required in order to resolve the conflicting theories and
dilemmas currently existing in the study of WLEs. Upon a collective view on all
these issues, it is noticeable that they are all closely related with either of the two
universal trends in the noise-reduction spectra described above. Hence, it is critical
to achieve a comprehensive understanding of the universal trends in the first place,
and it is the aim of the paper. Before moving forward, the authors would like to
point out that there exists one common assumption that has widely been used in
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the earlier discussions, i.e. highly focused source localisation along the LE (in both
SLE and WLE cases) where the downstream sources are entirely neglected. It is
revealed in this paper, however, that this assumption is not valid at high frequencies
where the downstream sources are far from negligible. One of the most significant
findings in this work is that the universal trends can be properly understood by
taking the downstream sources into account. The current study is performed by
using very-high-resolution numerical simulations of a prescribed divergence-free
vortex impinging onto a semi-infinite flat-plate aerofoil in an inviscid base flow
at zero incidence angle, extended from the authors’ earlier work (Turner & Kim
2017). The extra high resolution is required in order to accurately capture the critical
high-frequency events. The inviscid flow condition eliminates self-noise contributions
due to boundary-layer turbulence which may dominate in the high frequency range
if present. The current inviscid results will also be of interest to those who wish to
improve the mathematical models.

The paper is organised as follows. Section 2 provides technical details of the
computational set-up, including the WLE geometry and prescribed vortical disturbance
used. In § 3, the well-known universal trends of the noise-reduction spectra are
introduced and brief discussions are made on the LE-focused one-dimensional
source analysis. Section 4 unveils the two-dimensional source distribution and the
significance of the downstream sources which become the key to understanding of the
universal trends. With the downstream sources included, § 5 provides comprehensive
explanations as to how the universal trends are constructed. Some additional test cases
with regard to the generality of the current findings are provided in the appendix A.
Finally, concluding remarks and additional discussions are made in § 6.

2. Description of problem and computational set-up
A schematic illustration of the current aerofoil–vortex interaction (AVI) problem is

shown in figure 1. In this paper, the authors focus on the primary inviscid mechanism
of the vortex scattering at the LE and its downstream convection, but exclude the
secondary mechanisms associated with viscous effects and/or the presence of a
trailing edge (a finite-chord aerofoil). A study on the secondary mechanisms can be
found in a separate publication by the authors (Turner & Kim 2019). In addition, the
authors consider spanwise coherent disturbances only in this paper. Some discussion
on the incoherence of the impinging disturbances (in relation to the optimal WLE
wavelength) can be found in Chaitanya et al. (2017).

2.1. Computational domain and aerofoil geometry
The computational domain is a rectangular cuboid containing a semi-infinite flat-plate
aerofoil. The mean (spanwise averaged) LE of the aerofoil is located at xLE =−Lc/2
where Lc is a reference length unit chosen in this work which was set to the finite
chord of the aerofoil in the previous work (Kim et al. 2016). The zero-thickness
aerofoil is modelled by using an H-topology multi-block grid system where the
horizontal block interface (consisting of two cell nodes overlapped) downstream of
the LE acts as a branch cut representing the aerofoil’s upper and lower surfaces with
no gap between them. The longitudinal and vertical boundaries of the domain are
surrounded by a sponge layer through which the flow is (gently) forced to maintain
the potential mean flow condition. Acoustic waves are attenuated and absorbed in the
sponge layer to suppress numerical reflections at the outer boundaries. The lateral
(spanwise) boundaries of the domain are interconnected via a periodic boundary
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condition. The entire computational domain (D∞) is subdivided into the physical
zone (Dphysical) and the sponge layer zone (Dsponge) as

D∞ = {x | x/Lc ∈ [−7, 11], y/Lc ∈ [−7, 7], z/Lz ∈ [−
1
2 ,

1
2 ]}

Dphysical = {x | x/Lc ∈ [−5, 5], y/Lc ∈ [−5, 5], z/Lz ∈ [−
1
2 ,

1
2 ]}

Dsponge =D∞ −Dphysical

 , (2.1)

where Lz is the spanwise length of the domain set to cover one wavelength of the
WLE profile given (Lz= λLE). In this work, Lz= λLE= 2Lc/15 is chosen in accordance
with Turner & Kim (2017).

The aerofoil’s WLE profile is generated by using a sinusoidal function where the
most protruded point is defined as ‘peak’, the most recessed point as ‘root’ and the
steepest point as ‘hill’ as denoted in figure 1(b). The hill point coincides with the
spanwise-averaged LE which is equal to the SLE. Herein, hLE is the WLE amplitude
(2hLE being the peak-to-root distance) and λLE is the WLE wavelength. The streamwise
coordinate of the LE (xLE) as a function of the spanwise coordinate (z) in this study
is given by

xLE(z)=−
1
2

Lc + hLE sin
(

2πz
λLE

)
, z ∈

[
−

1
2
λLE,

1
2
λLE

]
. (2.2a,b)

With λLE = 2Lc/15 fixed, various values of hLE are covered in this paper, where the
default aspect ratio of the WLE geometry selected is ARLE = 2hLE/λLE = 1 unless
otherwise stated.

2.2. Governing equations and numerical methods
Following up on the previous work (Kim & Haeri 2015; Kim et al. 2016) the current
work employs full three-dimensional compressible Euler equations (with a source term
for the sponge layer mentioned earlier) in a conservative form transformed onto a
generalised coordinate system. The governing equations are given as follows:

∂

∂t

(
Q
J

)
+

∂

∂ξi

(
Fj

J
∂ξi

∂xj

)
=−

a∞
Lc

S
J
, (2.3)

where the indices i= 1, 2, 3 and j= 1, 2, 3 denote the three-dimensional coordinates.
The conservative variable and flux vectors are given by

Q= [ρ, ρu, ρv, ρw, ρet]
T

Fj = [ρuj, (ρuuj + δ1jp), (ρvuj + δ2jp), (ρwuj + δ3jp), (ρet + p)uj]
T

}
, (2.4)

where ξi = {ξ, η, ζ } are the generalised coordinates, xj = {x, y, z} are the Cartesian
coordinates, δij is the Kronecker delta, uj = {u, v, w}, et = p/[(γ − 1)ρ] + ujuj/2
and γ = 1.4 for air. The Jacobian determinant of the coordinate transformation (from
Cartesian to the generalised) is given by J−1

= |∂(x, y, z)/∂(ξ, η, ζ )| (Kim & Morris
2002). The extra source term S on the right-hand side of (2.3) is non-zero within the
sponge layer only, which is described in Kim, Lau & Sandham (2010a,b).

In this work, the governing equations are solved by using high-order accurate
numerical schemes, which allows for directly capturing the radiated sound waves
across a wide range of amplitudes and frequencies. The flux derivatives are
calculated based on fourth-order pentadiagonal compact finite difference schemes
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with seven-point stencils (Kim 2007). Explicit time advancing of the numerical
solution is carried out by using the classical fourth-order Runge–Kutta scheme with
a Courant-Friedrichs-Lewy (CFL) number of 0.95. Numerical stability is maintained
by implementing sixth-order pentadiagonal compact filters for which the cutoff
wavenumber (normalised by the grid spacing) is set to 0.85π (Kim 2010). In addition
to the sponge layers used, characteristics-based non-reflecting boundary conditions
(Kim & Lee 2000) are applied at the far boundaries in order to ensure that the level
of numerical reflections is sufficiently low across all resolvable frequencies. Periodic
conditions are used across the spanwise boundary planes as indicated earlier. Slip
wall (no penetration) boundary conditions are implemented on the aerofoil surface
(Kim & Lee 2004), which is extended downstream (all the way down to the exit
boundary) to account for the semi-infinite chord length.

A structured grid fitted to the WLE profile is used in the current computation. The
grid spacings are maintained fairly uniform within Dphysical and then stretched outwards
in Dsponge. The total grid cell count is Nξ ×Nη ×Nζ = 2400× 960× 64= 147 456 000
where Nξ , Nη and Nζ are the number of cells in the streamwise, vertical and
lateral/spanwise directions, respectively. The smallest cells are positioned along
the LE line where 1xmin = 1ymin = 0.002Lc and 1zmin = 0.002083Lc. The current
grid density is chosen so that it captures all the broadband frequency contents of the
vortex scattering at the LE and the subsequent convection of the scattered vortical
structures travelling far downstream of the LE. The same type of computational set-up
has been used and validated against an analytical solution in Ayton & Kim (2018).

The computation is distributed onto 1024 or 512 separate processor cores via
domain decomposition and message passing interface (MPI) technique. The parallel
implementation of the compact finite difference schemes and filters is achieved by
using a quasi-disjoint matrix inversion technique developed by Kim (2013). This
approach allows for artefact-free numerical solutions across subdomain boundaries,
and offers super-linear scalability for a large number of processor cores used.
The parallel computation has successfully been carried out in the UK national
supercomputer ARCHER as well as in the local IRIDIS4 at the University of
Southampton.

2.3. Prescribed spanwise vortex model
The current study employs a spanwise-uniform vortex model that contains broadband
frequency contents, prescribed as an initial condition. The vortex model is based on
a Gaussian shape function suggested by Yee, Sandham & Djomehri (1999), which
superimposes divergence-free velocity perturbations onto the uniform base flow as
follows:

{u(x), v(x),w(x)} = a∞ψ(x)
{

M∞ + σ
y
Lc
,−σ

x− x0

Lc
, 0
}
, (2.5)

where x0 is the initial streamwise location of the vortex centre. M∞ and a∞ are
the free-stream Mach number and speed of sound, respectively. The Gaussian shape
function is defined as

ψ(x)=
ε

2π
exp

[
1
2
− σ 2 (x− x0)

2
+ y2

2L2
c

]
. (2.6)
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The pressure and density are determined by assuming an isentropic initial flow
condition as

ρ(x)= ρ∞
[

1−
γ − 1

2
ψ2(x)

]1/(γ−1)

, p(x)= p∞

(
ρ

ρ∞

)γ
. (2.7a,b)

The free parameters σ and ε in (2.6) determine the size and strength of the vortex.
In the current work the default values are set to ε = 0.0377 and σ = 44.25, based
on which the largest vertical velocity perturbation reaches 2.5 % of the free-stream
velocity, i.e. |v|max= 0.025u∞. The size (diameter) of the vortex (LV) is approximately
1.2 times the WLE wavelength, i.e. LV = 1.2λLE estimated from the locations at which
the velocity perturbation drops down to 1 % of the maximum value, i.e. |v(x)|y=0 =

0.01|v|max. The size of the vortex is therefore of the same order of magnitude as λLE
and hLE in this paper.

The free-stream Mach number is set to M∞ = 0.24 as it was in the previous work
(Turner & Kim 2017). The initial vortex generates a clockwise circulation viewed from
the xy-plane where the vortex travels from left to right. The aerofoil’s LE faces a
downwash first followed by an upwash during the interaction with the vortex. Since
the centre of the vortex has zero offset from the aerofoil surface, the vortex is bisected
during the course of the interaction. The simulations are run for 15 non-dimensional
time units (ta∞/Lc= 15), by which time the bisected vortices arrive at a position more
than 3Lc downstream of the LE. Also, all of the acoustic waves generated from the
interaction have travelled past the observer location that is fixed at xo = (0, 5Lc, 0).

2.4. Definition of variables for statistical analysis
Data processing and analysis are carried out upon the completion of each simulation.
The main property required in this study is the power spectral density (PSD) function
of the pressure fluctuations on the aerofoil surface and at the far-field observer
location. The far-field (acoustic) pressure and the surface (wall) pressure jump are
defined as:

pa(x, t)= p(x, t)− p∞, (2.8)
1pw(x, t)= lim

y→0+
p(x, t)− lim

y→0−
p(x, t), (2.9)

where superscripts ‘y→ 0+’ and ‘y→ 0−’ indicate the upper and lower surfaces of
the zero-thickness aerofoil, respectively. Following the definitions used by Goldstein
(1976), the PSD functions of the pressure fluctuations (based on frequency and one-
sided) are then calculated as:

Sppa(x, f )= lim
T→∞

Pa(x, f , T)P∗a(x, f , T)
T

, (2.10)

Sppw(x, f )= lim
T→∞

1Pw(x, f , T)1P∗w(x, f , T)
T

. (2.11)

Here Pa and 1Pw are an approximate Fourier transform of pa and 1pw, respectively,
based on the following definition,

Pa(x, f , T)=
∫ T

−T
pa(x, t)e2πift dt, (2.12)
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1Pw(x, f , T)=
∫ T

−T
1pw(x, t)e2πift dt. (2.13)

In (2.10) and (2.11), ‘∗’ denotes a complex conjugate. The frequency-dependent noise
reduction (NR) due to a WLE relative to the SLE case is then quantified by

NR(x, f )=
Sppa(x, f )|SLE

Sppa(x, f )|WLE
. (2.14)

Also, we define a dimensionless frequency (Strouhal number) based on the peak-to-
root amplitude of WLE (2hLE) and the free-stream velocity (u∞), which is used for
the majority of the current investigations, as

StLE =
2fhLE

u∞
. (2.15)

3. Universal trends and LE-focused one-dimensional analysis
Figure 2 shows some initial results of the current simulations comparing the SLE

and WLE cases. In the figure, three different WLE aspect ratios are tested, i.e.
ARLE = 2hLE/λLE = 1/2, 1 and 3/2, where hLE/Lc = 1/30, 1/15 and 1/10 (with
λLE/Lc = 1/15 fixed). An instantaneous snapshot of the radiating sound waves is
captured in figure 2(a). The current result re-confirms the previous observations
reported in the existing literature. The overall amplitude of the radiated sound
pressure signal decreases when a larger WLE amplitude (hLE) is used (figure 2b).
The corresponding sound power spectra (figure 2c) show that the difference between
the SLE and WLE cases grows progressively with frequency whereas the difference
vanishes at low frequencies. In the meantime, seemingly the reversed trends are
observed in the source (wall pressure jump) power spectra obtained at some LE
points (figure 2d). The conflicting trends have also been reported in Turner & Kim
(2017). It is shown later in this paper that the conflicting issues are resolved when
the downstream sources are taken into account.

Figure 3 shows the relative NR (noise reduction) made by the WLEs as a function
of frequency defined in (2.14). In particular, figure 3(b) reveals a self-similarity
between the NR spectra which appears when the frequency is rescaled by using
2hLE (peak-to-root distance) and u∞ (vortex convection speed) as suggested by
Chaitanya et al. (2017). As mentioned earlier in § 1, there are two universal trends
in the NR spectra which have widely been observed in the previous literature. These
are also captured in figure 3(b). Firstly, NR vanishes as the frequency approaches
zero. Secondly, the level of NR grows consistently with frequency (apart from
the oscillatory patterns), reaching 10 dB at about StLE ≈ 1.5. However, accurate
explanations as to how the universal trends are constructed have not been achieved
although two possible scenarios were suggested by Chaitanya et al. (2017). They
demonstrated that a linearly growing trend of NR (i.e. NR = 5StLE) could be
obtained by considering either: (i) predicted phase variations of the source signal
along the WLE but no change in the magnitude; or, (ii) no phase variation but the
line-integrated source magnitude diminishing inversely with frequency (which is a
hypothesis). Clarifications to these rather conflicting theories are provided later in this
paper.

It is worth noting that the oscillatory patterns in figure 3(b) may be linked with the
source phase interference since the local maxima correspond to the case where the
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FIGURE 2. (Colour online) (a) An instantaneous contour plot of pa(xo, ta∞/Lc= 7.34)/p∞
taken at mid-span (z = 0) for the SLE case. (b) Time signals of acoustic pressure
pa(xo, t)/p∞ obtained at an observer location xo/Lc = (0, 5, 0) for SLE and three WLE
geometries with differing aspect ratios (ARLE = 2hLE/λLE). (c) The corresponding power
spectra of the former. (d) The power spectra of wall pressure jump taken at the first grid
cell aft of the LE, comparing SLE with WLE peak, hill and root, where the WLE aspect
ratio is ARLE = 1.

peak and the root emit sound waves 180◦ out of phase (StLE = n ± 1/2 where n is
an integer) and the local minima correspond to the opposite case emitting in phase
(StLE = n), in other words

2πStLE =

{
(2n± 1)π : 180◦ out of phase (destructive interference),
2nπ : in phase (constructive interference). (3.1)

This phase relationship indicates that increasing hLE forces the destructive interference
to appear at a lower frequency as shown in figure 3(a) (for fLc/a∞ < 1). Therefore,
the overall NR based on overall sound pressure level grows with hLE since most of the
acoustic energy is contained in the low frequency range. Another observation to make
in figure 3(b) is that the local maxima in the spectra decrease with increasing hLE. It
is attributed to the fact that the peak and the root have different source magnitude (as
shown in figure 2d) and the difference becomes larger as hLE increases (Kim et al.
2016; Turner & Kim 2017). The unequal source magnitude between the peak and the
root means that their destructive interference becomes less efficient at the frequencies
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FIGURE 3. (Colour online) (a) Noise-reduction spectra defined in (2.14) obtained at the
observer position shown in figure 2(a), for three different WLE aspect ratios. (b) Re-plot
of them by using a rescaled frequency (Strouhal number), StLE = 2fhLE/u∞, re-confirming
the self-similarity trend reported by Chaitanya et al. (2017): NR= 5StLE.

of StLE = n ± 1/2. Therefore the non-uniformity of source magnitude as well as the
phase interference plays an important role in the NR spectra.

Having critically reviewed the latest progress made in the study of WLEs, however,
we still have not reached conclusive answers to the two fundamental questions raised
earlier: (i) why NR vanishes at low frequencies; and, (ii) what drives the consistent
growth of NR at high frequencies. On a level below, what are the balances between
the non-uniform distribution of the source magnitude and the constructive/destructive
phase interference that we need to understand in order to answer the questions? There
is a lack of information/data made available to properly answer these questions. It
should be noted here that all of the previous studies are focused only on the LE
source distribution neglecting the downstream sources (assuming the dominance of
the LE source irrespective of frequency), which is a one-dimensional (1-D) approach.
The authors have found that the LE-focused 1-D approach fails to deliver sufficient
information and data that are necessary to answer the questions.

4. The significance of two-dimensional source distribution
In this section, the LE-focused 1-D source assumption is discarded and the

investigation is expanded into two dimensions across the entire aerofoil surface to
include the downstream sources that have been neglected in the past. It is discovered
in this section that the source distribution becomes significantly two-dimensional
(2-D) (highly non-uniform in the spanwise direction as well as streamwise) in the
WLE case. It is also found that the downstream sources are far from negligible at
high frequencies for both SLE and WLE. These new observations are leading to
profound conclusions at the end of the paper.

4.1. Acoustic source map varying with frequency
Two-dimensional distributions of the noise source (wall pressure jump) magnitude on
the aerofoil surface, represented by |1Pw(x, y= 0, z, f )|, are plotted in figures 4 and 5
for various frequencies. At the low frequencies (figure 4) it is obvious that the source
distribution is highly concentrated at the leading edge in both the SLE and WLE
cases. Also, the distribution pattern (despite the level change) seems to remain almost
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FIGURE 4. (Colour online) Contour plots of the level of wall pressure jump (source
magnitude) represented by |1Pw(x, z, f )|/pref in a logarithmic scale (pref = 10−10p∞),
at two different frequencies (in the low range): StLE = 0.1 and 0.5, for the SLE and
WLE cases, respectively. The length scales used are 2hLE = λLE = 2Lc/15 (ARLE = 1). As
indicated earlier, 1Pw(x, f ) is the Fourier transform of the wall pressure jump 1pw(x, t).

unchanged in the low frequency range, although the WLE case exhibits a moderate
change (growth) in the peak area as the frequency increases from StLE = 0.1 to 0.5.
This suggests that the LE-focused 1-D source assumption is valid at least in the low
frequency range. However, it is shown in figure 5 that the 1-D assumption is no
longer valid at high frequencies. Firstly, in both the SLE and WLE cases, the source
magnitude downstream of the LE increases significantly with frequency, and eventually
it becomes comparable to that of the LE (within certain areas of the surface) at StLE>3
as shown in figure 5(c,d). Secondly, the source distribution pattern becomes entirely
two-dimensional (highly non-uniform in the spanwise direction as well as streamwise)
in the WLE case.

A unique feature appearing in the WLE case is that a narrow streamwise strip
of strong source area is created downstream of the root at the high frequencies
(figure 5c,d). The authors suggest that it is mainly due to secondary vortical structures
induced as part of the three-dimensional vortex dynamics taking place after the
impinging vortex being bisected at the LE. In order to visualise this, a Fourier
transform of the streamwise vorticity, Ωx(x, f ) is calculated in the entire domain.
Figure 6 shows the iso-surfaces and cross-sectional contour plots of |Ωx(x, f )|2 at
StLE = 3.5 for the upper and lower parts of the aerofoil, respectively. The figure
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FIGURE 5. (Colour online) Contour plots of the level of wall pressure jump (source
magnitude) represented by |1Pw(x, z, f )|/pref in a logarithmic scale (pref = 10−10p∞), at
four different frequencies (in the high range): StLE = 2, 2.5, 3 and 3.5, for the SLE and
WLE cases, respectively. As indicated earlier, 1Pw(x, f ) is the Fourier transform of the
wall pressure jump 1pw(x, t).
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FIGURE 6. (Colour online) Iso-surfaces and contour plots of streamwise vorticity
magnitude squared at the frequency of StLE = 3.5, obtained via a Fourier transform of
the vorticity time signals. The footprints of the strong streamwise vorticity downstream of
the root correspond to the narrow strip of intensified source shown in figure 5(c,d).

shows a clear footprint of streamwise vortices downstream of the root at the high
frequency. More importantly, the streamwise vortices are stronger on the lower side
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FIGURE 7. (Colour online) Normalised distributions of piecewise-integrated acoustic
source magnitude, Apw(m, f )/Apw(0, f0) defined in (4.1), where f0 is the lowest frequency
considered here, i.e. 2f0hLE/u∞ = 0.1. The figure highlights the elevated level of source
magnitude downstream of the LE at high frequencies, comparing the SLE and WLE cases.

of the aerofoil than that on the upper, and this asymmetry results in a pressure jump
across the surface creating the narrow strip of strong source area.

In the meantime, it is worth noting that the frequency-dependent source map shown
in figure 5 reveals that the source magnitude along the WLE frontline remains fairly
uniform, i.e. insignificant differences between the peak, hill and root areas, for all
frequencies. This outcome is in fact contradictory to one of the hypotheses made
by Chaitanya et al. (2017). They previously anticipated that the source distribution
would be highly localised around the root and the effective area/length of the localised
source should decrease inversely with increasing frequency to account for the growth
of NR (noise reduction). However, the current simulation result indicates otherwise
and therefore it is suggested again that a full 2-D source distribution should be
investigated in order to properly address the NR at high frequencies.

4.2. The characteristics of downstream sources
Based on the source distribution maps obtained above, the contribution of the
downstream sources can be estimated from various streamwise locations. The
estimation is made by using the following definition:

Apw(m, f )=
∫ (1/2)λLE

−(1/2)λLE

∫ xLE(z)+(m+1)1x

xLE(z)+m1x
|1Pw(x, z, f )| dx dz, (4.1)

which is a piecewise surface integration of the source magnitude within a small
segment area of xLE + m1x 6 x 6 xLE + (m + 1)1x (where m is a positive
integer indicating the mth segment). For convenience, we use 1x = hLE where
hLE = λLE/2= Lc/15. Figure 7 shows the calculated values of Apw(m, f ) as a function
of m for various values of f , comparing the SLE and WLE cases. The curves are
normalised by the value from the LE segment (m= 0) at the lowest frequency selected
(2f0hLE/u∞ = 0.1). It is clear from the figure that, at the low-to-medium frequencies
(0.1< StLE < 2.5), the source magnitude decays exponentially and continuously as the
distance from the LE increases, in both the SLE and WLE cases. The curves also
show a good level of self-similarity between them in the low-to-medium frequency
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FIGURE 8. (Colour online) Validation of the grid resolution used in the current
simulations, in order to ensure that a sufficient level of precision is presented in figure 7
at the highest frequencies (StLE= 3.0 and 3.5). Three different levels of grid resolution are
tested for the WLE case, where the baseline and refined grids produce consistent results.
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FIGURE 9. (Colour online) Normalised profiles of acoustic source magnitude as a function
of frequency, integrated over each segment area described in (4.1), Apw(m, f )/Apw(m, f0)
where 2f0hLE/u∞= 0.1 and m= (x− xLE)/hLE. The figure re-confirms the trend of elevated
source magnitude downstream of the LE at high frequencies shown in figure 7.

range although the WLE case displays some more variations than the SLE case.
However, at the high frequencies (StLE > 2.5), the self-similarity breaks down and a
significantly elevated level of source magnitude appears downstream of the LE, as
hinted earlier in figure 5(c,d). The elevated high-frequency sources cover a large area
and therefore their contribution to the far-field noise is expected to be significant for
those frequencies. In addition, a striking feature found in figure 7 is that the source
magnitude at the LE area is no longer the greatest when the frequency reaches
StLE = 3.5 in both the SLE and WLE cases. This is a compelling evidence that the
LE-focused 1-D source assumption is invalid at high frequencies. The precision of the
current result at the high frequencies has been double checked via a grid refinement
test as shown in figure 8.

Having identified the significant variation of source magnitude downstream of the
LE at high frequencies, particularly pronounced in the WLE case, it is worth checking
the details of the frequency contents of the source contained within each segment
area – defined in (4.1) – in order to see how they change as the distance from the
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LE increases. Figure 9 shows Apw(m, f )/Apw(m, f0) (normalised by the values at the
lowest frequency, f0, i.e. 2f0hLE/u∞ = 0.1) as a function of f for various values of
m, comparing the SLE and WLE cases. In this figure, it is worth noting that the
normalisation changes with m, which is different from the normalisation used in the
previous figure. The current figure reveals a few interesting outcomes. Firstly, there is
a high level of self-similarity between the normalised frequency spectra (up to certain
frequencies) in both the SLE and WLE cases. The self-similarity is particularly strong
in the SLE case, hence almost irrespective of the downstream location of the source
segment before diverging at the high frequencies. Secondly, in the WLE case, the
self-similarity appears only amongst the downstream sources (m > 1), whereas the
source right at the LE (m = 0) behaves very differently. The WLE source at m = 0
turns out very similar to the SLE sources. The distinctive difference between the LE
and downstream sources in the WLE case is another evidence that the LE-focused 1-D
analysis fails to work for WLE noise prediction. Thirdly, there exists an elevated level
of source magnitude appearing at high frequencies downstream of the LE, commonly
in both the SLE and WLE cases, indicating again the significance of the downstream
source contribution.

5. Towards understanding the universal trends
The next step of the investigation is to quantify the contribution of the downstream

sources in terms of the estimated sound pressure level (SPL) and to compare the SLE
and WLE cases. For this purpose, we consider a quantity defined by

Bpw(m, f )=

[
m∑

j=0

Apw( j, f )

]2

, (5.1)

which is a representative estimation of SPL at the source based on a surface integral
that runs from the LE to a given downstream location x= xLE+ (m+ 1)hLE (up to the
mth segment area). It is purely based on the magnitude of the source with no phase
variation included. The ratio of Bpw(m, f ) between the SLE and WLE cases represent
the level of source reduction (SR) based on the magnitude, defined as

SRmag(m, f )=
Bpw(m, f )|SLE

Bpw(m, f )|WLE
, (5.2)

which can be compared to the far-field noise reduction (NR) defined in (2.14).

5.1. Invariant source magnitude at low frequencies
Figure 10 shows the magnitude-based SR (source reduction) spectrum for various
values of m. In figure 10(a), it is shown that the SR spectrum changes significantly
due to the downstream contributions. As more downstream sources are included,
SR increases in the medium frequency range whereas the opposite takes place in
the low and high frequency ranges. The SR spectrum including the downstream
contribution (m = 16), compared to the LE-focused case (m = 0), agrees very well
with the far-field NR (noise reduction) spectrum for frequencies up to approximately
StLE ≈ 2.5, as shown in figure 10(b). However, there is a sudden decay of SR at the
higher frequencies, which is due to the elevated level of the downstream sources in
the WLE case as observed in § 4. This means that the SR spectrum purely based on
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FIGURE 10. (Colour online) Magnitude-based SR (source reduction) spectra, SRmag(m, f )
defined in (5.2), plotted for various values of m. The SR spectra are compared with the
far-field NR (noise reduction) spectrum on the right.
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FIGURE 11. (Colour online) The convergence of source reduction, SRmag(m→∞, f→0)
→ 1.0, calculated at a low frequency (StLE = 0.1) for three different WLE profiles used.
This figure suggests that the total source energy (integrated over a large surface area) at
a low frequency remains unchanged irrespective of the LE geometry. This explains the
universal trend of NR vanishing at low frequencies.

the magnitude fails to deliver a reasonable estimation of NR at the high frequencies.
It is crucial to include phase variations in the SR spectrum in order to properly
account for the high frequency range (to follow later in this section).

In figure 10(b), it is remarkable that the SR spectrum with the downstream
contributions included (m = 16) accurately reproduces the universal trend of NR
vanishing at low frequencies. On the other hand, the LE-focused result (m = 0)
falsely predicts a significant level of NR. More details of the low-frequency
events are provided in figure 11. It is revealed in the figure that the value of
SR converges to unity at a low frequency as more downstream sources are included,
i.e. SRmag(m→∞, f → 0)→ 1.0. This is consistently true for three different WLE
profiles used. This outcome suggests that, at low frequencies, the total amount of
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FIGURE 12. (Colour online) Magnitude-and-phase-based SR (source reduction) spectra,
SRmag&phase(m, f ) defined in (5.5), plotted for various values of m. The SR spectra are
compared with the far-field NR (noise reduction) spectrum on the right.

source energy integrated over the entire surface remains preserved regardless of
geometric changes at the LE. This forms a reasonable explanation to the universal
trend of NR vanishing at low frequencies which has widely been observed to date.

5.2. Inclusion of phase variations
In the meantime, the second universal trend of NR growing consistently with
frequency (in the medium-to-high frequency range) is not captured in the magnitude-
based SR spectrum. As hinted earlier, the source phase interference is of significant
importance in order to address the high frequency range and therefore the following
quantities are defined (similarly to those used earlier) in order to include the phase
variations in the investigation,

Cpw(m, f )=
∫ (1/2)λLE

−(1/2)λLE

∫ xLE(z)+(m+1)1x

xLE(z)+m1x
1Pw(x, z, f ) dx dz, (5.3)

Dpw(m, f )=

∣∣∣∣∣
m∑

j=0

Cpw( j, f )

∣∣∣∣∣
2

. (5.4)

These are similar to Apw(m, f ) and Bpw(m, f ) in (4.1) and (5.1), respectively, except
that the real and imaginary parts of 1Pw(x, z, f ) are maintained separately in the
formula until the final value of Dpw(m, f ) is determined. This allows for the phase
interference taking place during the surface integration. This approach is actually
equivalent to the Ffowcs Williams–Hawkings (FW-H) integration of sources (Ffowcs
Williams & Hawkings 1969) without considering an observer’s retarded time. Based
on this approach, a new SR spectrum based on the magnitude and phase combined
can be defined as

SRmag&phase(m, f )=
Dpw(m, f )|SLE

Dpw(m, f )|WLE
. (5.5)

The magnitude-and-phase-based SR spectra are plotted in figure 12 for various values
of m. It is noticeable that the inclusion of the phase variations, compared to the
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FIGURE 13. (Colour online) Estimated contribution of phase interference to SR (source
reduction) spectra, SRphase(m, f ) defined in (5.6), comparing the LE-focused (m= 0) and
surface-integrated (m= 16) cases. The LE-focused semi-empirical model NR= J−2

0 (πStLE)
was proposed by Chaitanya et al. (2017). This figure indicates that the surface-integrated
source phase interference is insignificant at low-to-medium frequencies but increases
rapidly at high frequencies contributed by the downstream sources.

magnitude-only case, gives rise to the oscillatory patterns in the spectra and also to the
level of SR at the high frequencies. This result indicates that the high frequency range
is substantially contributed by the source phase interference whereas the low frequency
range is mainly governed by the source magnitude attenuation. In figure 12(a), it is
demonstrated again that the inclusion of the downstream sources makes significant
changes in estimating the level of SR. Figure 12(b) shows that the SR spectrum based
on both the magnitude and the phase obtained from a sufficiently large area (m= 16)
almost accurately reproduces the far-field NR spectrum in the entire frequency range.
However, the LE-focused estimation (m= 0) results in a large over-prediction of NR
(by up to a 10 dB) across all frequencies with the local maxima and minima shifted
to higher frequencies.

5.3. Dominance of source phase interference at high frequencies
It is now possible to estimate the contribution of the source phase variation/interference
to NR based on SRmag&phase(m, f ) and SRmag(m, f ) that are obtained above. Although
the phase interference is strongly coupled with the source magnitude distribution,
the following may be defined to indirectly estimate the contribution of the phase
interference,

SRphase(m, f )=
SRmag&phase(m, f )

SRmag(m, f )
. (5.6)

Figure 13 shows the above defined phase-based SR spectrum comparing the
LE-focused (m = 0) and surface-integrated (m = 16) cases. Firstly, it is indicated
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in the surface-integrated case that the level of source phase interference (contributing
to NR) is insignificant in the low-to-medium frequency range although there are
oscillatory patterns inherited from the LE source region. Secondly, there is a rapid
growth in the destructive phase interference at high frequencies from about StLE ≈ 2.5
where the magnitude-based SR begins to fall sharply (figure 10b). However, the
LE-focused estimation (m=0) results in an incorrectly high level of phase interference
even at low frequencies. This false prediction naturally follows the LE-focused
Bessel-function-based model, NR= J−2

0 (πStLE) derived by Chaitanya et al. (2017).
The above investigations lead to a detailed understanding of the second universal

trend of NR growing consistently in the medium-to-high frequency range. The
medium-frequency NR (0.5 < StLE < 2.5) is mainly driven by the reduced source
magnitude from both the LE and downstream sources as indicated in figure 10(b).
It appears that the source phase interference is relatively weaker in the medium
frequency range as shown in figure 13 (for m = 16). However, as the frequency
increases further (StLE > 2.5) there is a drastic changeover between the two
contributors. The source magnitude contribution falls rapidly (due to the appearance
of high-intensity source region downstream of the root in the WLE case as seen in
figure 5c,d), whereas the level of destructive phase interference rises at a faster rate
as shown in figure 13 (depicted by the curve fit). This mechanism explains how the
noise reduction keeps increasing at the high frequencies.

In order to identify the origin of the high level of destructive phase interference
appearing at the high frequencies, the real and imaginary parts of 1Pw(x, f ) are
examined separately,

Re(1Pw)= |1Pw| cos φ and Im(1Pw)= |1Pw| sin φ, (5.7a,b)

where

φ =−i ln
1Pw

|1Pw|
. (5.8)

If there are two different locations where their source magnitudes are equal, i.e.
|1Pw|1 = |1Pw|2, but if they are 180◦ out of phase, i.e. φ2 − φ1 = (2n ± 1)π,
then the values of both Re(1Pw) and Im(1Pw) at the two locations will have
opposite signs. However, they will have the same sign and value if they are in
phase, i.e. φ2 − φ1 = 2nπ. Figure 14 shows the surface contour plots of Re(1Pw)
and Im(1Pw) calculated at the frequency of StLE = 3.5, comparing the SLE and
WLE cases. It is evident in the figure that the high-intensity sources downstream
of the root (in the WLE case) are in fact self-destructive due to the almost perfect
out-of-phase relationship taking place between them. A more reasonable measure
of the destructive phase interference in the downstream sources may be obtained by
calculating SR spectra without the LE sources included. Figure 15 shows the modified
phase-based SR spectrum, S̃Rphase(m, f ), obtained by calculating contributions from
the third segment onward ( j > 2) as follows:

B̃pw(m, f )=

[
m∑

j=2

Apw( j, f )

]2

and D̃pw(m, f )=

∣∣∣∣∣
m∑

j=2

Cpw( j, f )

∣∣∣∣∣
2

. (5.9a,b)

Figure 15 proves that the rapid increase in the destructive phase interference at
the high frequencies is generated almost entirely by the downstream sources. This
self-destructive mechanism effectively nullifies the downstream source contributions
to the far-field sound and therefore allows for maintaining the consistent NR at high
frequencies.
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0

1
0
-1
(÷ 10-5)

-0.1-0.2-0.3
x/Lc

-0.4-0.5

|ÎPw| sin ƒ/p∞

1
0
-1
(÷ 10-5)

|ÎPw| cos ƒ /p∞

Im(ÎPw) at StLE = 3.5(b)

Re(ÎPw) at StLE = 3.5(a)

FIGURE 14. (Colour online) Surface contour plots of the real and imaginary parts of 1Pw
at the frequency of StLE = 3.5, comparing the SLE and WLE cases. This figure indicates
a high level of destructive phase interference taking place in the strong source region
downstream of the root in the WLE case.

6. Conclusion
An in-depth computational study is accomplished in this paper in order to achieve

a comprehensive understanding of the noise reduction mechanisms created by WLEs
in the event of AVI. One of the crucial findings in this study is that the noise
source distribution on the aerofoil surface becomes entirely two dimensional (highly
non-uniform in the spanwise direction as well as streamwise) at high frequencies
when WLEs are used. Also, it is found that the source magnitude is no longer
highest at the leading edge when the frequency reaches a certain point (StLE ≈ 3.5).
This means that the high-frequency noise generation/reduction mechanisms are
governed by the downstream sources, which has not before been predicted by using
the conventional LE-focused one-dimensional source theories. It is suggested that
the strong high-frequency sources created downstream of the WLE are related to
asymmetric development of vortical structures between the upper and lower sides of
the aerofoil, resulting in a pressure jump across the wall. The full three-dimensional
vortex dynamics involved in this process (bisected vortices and their time evolution)
has not been detailed in this paper and will be a significant research subject even
from purely fluid dynamic perspectives.

The investigation of the two-dimensional source characteristics has led to a more
complete and correct understanding of the universal trends existing in the frequency
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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m = 16 (downstream only)
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FIGURE 15. (Colour online) Phase-based SR (source reduction) spectrum obtained from
downstream sources only – integrating from the third segment onward, i.e. j> 2 indicated
in (5.9). The curve-fit function used is the same as that in figure 13. This figure
confirms that the universal trend of NR growing consistently at high frequencies is mainly
contributed by destructive phase interference in the downstream sources.

spectra of the noise reduction (NR) created by WLEs. Firstly, the negligible level
of NR persisting at the low frequencies was in fact due to the conservation of
total source energy integrated over the entire aerofoil surface. The surface-integrated
source magnitude remained unchanged at the low frequencies regardless of the
LE geometry, although locally the source magnitude around the WLE was lower
compared to the SLE case. It was found that the surface integration should cover at
least 4hLE downstream of the LE in order to properly address the low-frequency events.
Secondly, the rapid and consistent growth of NR at the medium-to-high frequencies
was contributed by both the source magnitude reduction and the destructive phase
interference but their contribution levels drastically changed with frequency. Again, the
inclusion of the downstream sources was crucial for understanding the medium-to-high
frequency NR trends. At the medium frequencies (0.5 < StLE < 2.5), the source
magnitude reduction was the main driver for NR (with relatively weaker phase
interference), contributed fairly equally from the LE and the downstream area. It was
then followed by a rapid change of events at the higher frequencies (StLE> 2.5). There
was a strong growth of the source magnitude downstream of the WLE, which was
contradictory to the NR trend at the high frequencies. This contradiction was resolved
when the source phase interference was investigated. The strong sources generated
downstream of the WLE displayed highly self-destructive phase relationships amongst
them, resulting in very weak contributions to the radiated sound. This was the
high-frequency mechanism that maintained the universal trend of noise reduction.

The current study was based on an idealised/simplified scenario, i.e. a zero-thickness
flat-plate aerofoil, a spanwise-uniform vortex with zero offset from the aerofoil and
an inviscid base flow with zero incidence angle. Therefore, there is a long list of
variational studies from the current one which may be considered in the future
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1.5 2.0 2.5 3.0 3.5
StLE
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No aerofoil
(background noise)
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FIGURE 16. (Colour online) (a) Comparison of sound power spectra obtained from the
analytical solution of Amiet (A 2) and from the current numerical solution (SLE), at the
same observer location specified in figure 2. (b) The level of numerical background noise
compared to those of the physical noise.

(apart from those that have already been conducted in the existing literature). One
of the immediate interests of the authors is to investigate the effect of viscosity on
the downstream sources dominant at the high frequencies. One may imagine that
there will be significant viscous dissipation (depending on the Reynolds number)
on the downstream sources especially at the high frequencies. On the other hand,
the highly sheared boundary-layer flow may develop additional vortical structures in
the downstream region which might even amplify the downstream sources. These
additional nonlinear effects may lead to different outcomes at the high frequencies.
Currently, the existing experimental data (that contains viscous effects) are claimed
valid up to about StLE ∼ 2 because of other types of noise sources (e.g. self-noise due
to turbulent boundary layer scattered at the trailing edge) that might have dominated
at the higher frequencies, without clear evidence to it. There is a scope of further
work to clarify the high-frequency noise sources.
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Appendix A. Miscellaneous test cases
This appendix section provides additional parametric test cases to support the

validity of the current findings, at the request of the reviewers. Firstly, a comparison
between the current simulation result (the SLE case) and the classical analytic
solution of Amiet (1975) is provided in figure 16(a). For this purpose we use a
two-dimensional version of the analytical solution derived by Blandeau et al. (2011),

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

31
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.5258/SOTON/D0912
https://doi.org/10.1017/jfm.2019.314


On the universal trends in the noise reduction due to WLEs in AVI 209

6.0 6.5 7.0 7.5 8.0 8.5 9.0
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FIGURE 17. (Colour online) Comparison of the solutions for two different strengths of
the impinging vortex: ε = ε0 and ε0/2 where ε0 = 0.0377 is the default value used (see
§ 2.3). (a) Time signals of the acoustic pressure obtained at the observer location specified
in figure 2. (b) The corresponding PSD of the former. The pressure is normalised by
max |pa|SLE, i.e. the maximum amplitude of the sound signal from the SLE case.

written as

Sppa-Amiet(kx)=
πkxM∞ρ2

∞
u2
∞

L2
c sin2 θ

8roA3(θ)
Φvv(kx)|L(kx)|

2, (A 1)

where kx=2πf /u∞; A(θ)= (1−M2
∞

sin2 θ)1/2; ro is the observer distance from the mid-
chord of the aerofoil; Φvv(kx) is the PSD of the vertical velocity fluctuations impinging
on the LE of the aerofoil; and, L(kx) describes the unsteady loading on the aerofoil –
see Blandeau et al. (2011) for full details. In this paper we apply a semi-infinite-chord
approximation (Lc→∞) to (A 1) and remove the acoustic backscattering term in L(kx)
in order to obtain the pure LE noise solution (after some algebraic manipulations) as

Sppa-Amiet-LE(kx)=
ρ2
∞

u2
∞
(1−M∞) sin2 θ

2πrokxA(θ)2[A(θ)− cos θ ]
Φvv(kx). (A 2)

Figure 16(a) shows a good agreement between the numerical and analytical solutions
across all frequencies. In addition, the numerical background noise level that is at
least four orders of magnitude lower than the physical noise level at all frequencies
is shown in figure 16(b). The background noise level is obtained when the aerofoil
(wall boundary condition) is removed from the simulation.

The second test case is on the effect of different vortex strengths used. Figure 17
shows a comparison of the simulation results obtained from two different vortex
strengths, i.e. ε = 0.0377 (default) and 0.01885 (50 % of the default). The reduced
vortex strength provides 50 % weaker induced velocity than the default, i.e. |v|max/u∞=
0.0125 (as opposed to 0.025). When the pressure values are normalised by max |pa|SLE
(the maximum amplitude of the sound signal from the SLE case), the two results
with different vortex strengths collapse onto each other almost perfectly as shown in
figure 17. This indicates that the current findings are well within a linear regime.

The third test case is with regard to the effect of different vortex sizes used. Two
additional vortex sizes are implemented here: LV/λLE = 2.4 (larger) and 0.8 (smaller)
where the default size is 1.2 as stated in § 2.3. Figure 18 shows the re-production of
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FIGURE 18. (Colour online) Re-production of figure 9(b) for two additional cases with
different vortex sizes, LV = 2LV0 and 2LV0/3 where LV0 = 1.2λLE is the default size used
(see § 2.3). Here, the dimensionless frequency (Strouhal number) is re-scaled with LV/LV0
to compensate the frequency shift due to the different vortex sizes.

figure 9(b) comparing the results from the three different vortex sizes. It is evident
from the figure that there is a high level of consistency in the source behaviours
despite the significantly different vortex sizes used. Although the larger size case
exhibits a slightly delayed appearance of the dominant downstream sources, the other
two cases display almost identical results.
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