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This article is the third one in a series of papers by the authors on vanishing-viscosity

solutions to rate-independent damage systems. While in the first two papers (Knees, D. et al.

2013 Math. Models Methods Appl. Sci. 23(4), 565–616; Knees, D. et al. 2015 Nonlinear Anal.

Real World Appl. 24, 126–162) the assumptions on the spatial domain Ω were kept as general

as possible (i.e., non-smooth domain with mixed boundary conditions), we assume here that

∂Ω is smooth and that the type of boundary conditions does not change. This smoother

setting allows us to derive enhanced regularity spatial properties both for the displacement

and damage fields. Thus, we are in a position to work with a stronger solution notion at

the level of the viscous approximating system. The vanishing-viscosity analysis then leads us

to obtain the existence of a stronger solution concept for the rate-independent limit system.

Furthermore, in comparison to [18, 19], in our vanishing-viscosity analysis we do not switch

to an artificial arc-length parameterization of the trajectories but we stay with the true

physical time. The resulting concept of Balanced Viscosity solution to the rate-independent

damage system thus encodes a more explicit characterization of the system behaviour at time

discontinuities of the solution.

Key words: Rate-independent damage system, vanishing-viscosity approximation, Balanced

Viscosity solutions

1 Introduction

We consider in a three-dimensional spatial domain Ω the rate-independent system for

damage evolution

− div
(
g(z)�ε(u+uD)

)
= � in Ω × (0, T ), (1.1a)

∂R1(zt) + Aqz + f′(z) + 1
2
g′(z)�ε(u + uD) : ε(u + uD) � 0 in Ω × (0, T ), (1.1b)

with q > 3,
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Aq the q-Laplacian type operator

Aqz = −div((1 + |∇z|2)(q/2)−1∇z) ,

and the one-homogeneous dissipation potential

R1(v) =

∫
Ω

R1(v) dx with R1(v) =

{
|v| if v � 0,

∞ otherwise.

Here, u : [0, T ] × Ω → �3 denotes the displacement field and z : [0, T ] × Ω → �
characterizes the time and space-dependent damage state in the body Ω ⊂ �3. The

natural state spaces for u and z are U = H1
0 (Ω; �3) and Z = W 1,q(Ω). The energy

potential is of the form

E(t, u, z) =

∫
Ω

g(z)
1

2
�(x)ε(u + uD(t)) : ε(u + uD(t)) + f(z) +

1

q
(1 + |∇z|2) q

2 dx− 〈�(t), u〉,

where ε(w) = 1
2
(∇w + ∇wT ) (w ∈ U) is the strain tensor and uD denotes the Dirichlet

datum. Since the underlying energy E(t, ·, ·) in general is non-convex and since R1 is

of linear growth, solutions to (1.1) might be discontinuous in time. In order to select

reasonable jump discontinuities, we adopt here the vanishing-viscosity approach to the

weak solvability of the rate-independent systems. This approach was pioneered in [11]

and developed both for abstract rate-independent systems, cf. e.g., [20, 22, 25], and for

applied problems in fracture and plasticity, see for instance [5, 9, 10, 16]. In the context of

damage, in addition to the previously mentioned [18,19], we quote the recent [8,27]. Let us

stress that in all of these papers the vanishing-viscosity analysis is performed by suitably

adapting the original reparameterization technique of [11]. In [17], a time-incremental

alternate minimization scheme for a damage model of Ambrosio–Tortorelli type without

viscous regularization was investigated. It turned out that in the time-continuous limit

this procedure results in a class of solutions that is closely related but not identical to

those obtained by vanishing viscosity limits. Also here, the reparameterization technique

of [11] was applied.

Hence, we approximate the rate-independent flow rule for the damage parameter by its

viscous regularization, and thus address the rate-dependent system

− div(g(z)�ε(u+uD)) = � in Ω × (0, T ), (1.2a)

∂R1(zt) + εzt + Aqz + f′(z) + 1
2
g′(z)�ε(u + uD) : ε(u + uD) � 0 in Ω × (0, T ), (1.2b)

where the underlying regularized dissipation potential is given by

Rε : L2(Ω) → [0,+∞] given by Rε(v) := R1(v) +
ε

2
‖v‖2

L2(Ω) , (1.3)

and ε > 0 is the viscosity parameter. The goal is to perform the limit passage as ε ↓ 0

from (1.2) to (1.1), without switching to an artificial arc-length reparameterization of the

trajectories, but staying with the true physical time. The basics for this approach to the

construction of the resulting concept of Balanced Viscosity (BV) solutions to the limit
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rate-independent system were set in [22,25] for abstract rate-independent systems in finite-

dimensional and infinite-dimensional Banach spaces, respectively. A notable feature of

this vanishing-viscosity technique is that it allows for a direct limit passage from the time-

discrete version of (1.2) to (1.1), as the viscosity parameter ε and the time discretization

step τ simultaneously tend to zero with ε
τ
→ ∞. This provides a constructive approach to

BV solutions of system (1.1), which could also be further advanced from a numerical

viewpoint.

While the techniques applied here have been developed in an abstract context in [25],

let us emphasize that the existence and convergence results therein, (in particular [25,

Theorems. 3.11 and 3.12]), are not directly applicable to the present damage system. The

main point is that, in contrast to [25] in our setting, the dissipation potential R1 may

take the value +∞ to enforce the unidirectionality of the damaging process. This causes

additional technical difficulties for the derivation of uniform a priori bounds. Moreover,

the definition of BV solution has to be carefully tailored to accommodate this irreversibility

constraint. Further, analytical difficulties occur due to the presence of the quadratic term

on the left-hand side of the differential inclusion (1.1b), which at a first glance belongs

to L1(Ω), only. This necessitates a careful study of the spatial regularity properties of the

displacement and the damage fields, which was already initiated in [18, 19].

The main results of this paper are the following:

Regularity: Thanks to the assumed smoothness of ∂Ω (made precise in Section 2.1) and the

assumption q > 3 on the q-Laplacian regularization in (1.1b), solutions u = u(t, z)

of (1.1a) belong to H2(Ω; �d) ∩W 1,p(Ω; �d), for every p � 1 if the external data

�, uD are smooth enough. Here, we exploit that W 1,q(Ω) embeds into the space of

Hölder continuous functions, which in turn ensures enough spatial regularity for

the coefficient g(z) of the elasticity operator in (1.1a). We derive explicit bounds

for the corresponding norms of u in terms of z by adapting arguments from [6]

to our situation. These results improve the integrability properties of the quadratic

term in (1.1b) and in (1.2b) and allow us to test a regularized version of (1.2b)

by ∂tAqz, which ultimately guarantees that DzE(t, u(t, z), z) ∈ L2(Ω), again with

uniform bounds, see Section 3.1. Let us mention that, in the case of the standard

Laplacian regularization (i.e., q = 2), this regularity estimate was first proposed

in [4] for doubly non-linear differential inclusions in phase transition modelling.

Based on the improved integrability property of DzE(t, u(t, z), z), we may consider

sub-differentials and convex conjugate functions of the dissipation potentials with

respect to the L2(Ω) duality, instead of the Z −Z∗ duality. Furthermore, based on

these results, we derive a generalized λ-convexity property of the energy functional,

cf. Corollary 2.14, and a chain rule identity, cf. Lemma 2.17. The latter is essential

for the existence proof of BV solutions for the damage system.

This chain rule identity was not available in the earlier [19], which still addressed

the case of a q-Laplacian regularization in the damage flow rule, whereas in [18]

some technical difficulties were smeared out by taking as regularizing operator

a fractional Laplacian. Hence, in [19], we had to deal with a weaker notion of

vanishing-viscosity solution compared to the present paper. In particular, in [19],

it could be shown that the vanishing-viscosity limits satisfied an energy-dissipation
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(hereafter, we will use the abbreviation ED) inequality but, due to the lack of an

appropriate chain rule, this could not be improved to an ED identity.

Existence and approximation of BV solutions: The concept of BV solution to the rate-

independent system (1.1) consists of a local stability condition and of an ED balance

that encodes the possible onset of viscous behaviour in the jump regime. More

precisely, let u(t, z) ∈ U be the unique solution of (1.1a) and I(t, z) := E(t, u(t, z), z)

the reduced energy. We call a curve z ∈ L∞(0, T ;Z) ∩ BV([0, T ];L2(Ω)) with

DzI(·, z(·)) ∈ L∞(0, T ;L2(Ω)) a BV solution to (1.1) if z satisfies the local stability

(Sloc) and the ED balance

−DzI(t, z(t)) ∈ ∂R1(0) for all t ∈ [0, T ]\Jz , (Sloc)

Varf(z; [0, t]) + I(t, z(t)) = I(0, z(0)) +

∫ t

0

∂tI(r, z(r)) dr for all t ∈ [0, T ], (ED)

where Jz denotes the countable jump set of z. The quantity Varf(·; [0, t]) is a

total variation functional that encompasses both the dissipation with respect to

the one-homogeneous potential R1 in continuous parts of the solution, as well

as the dissipation at jump discontinuities. At jump discontinuities, it reflects the

viscous regularization term from (1.2b). While referring to Section 5.1 for its precise

definition and to [25] for more comments on it, we may mention here its structure

at a jump from z− to z+ for t ∈ Jz . Indeed, the jump contribution Δf(t; z−, z+) to

Varf(z; [0, t]) is given by

Δf(t; z−, z+) := inf
ϑ∈T 


t (z− ,z+)

∫ 1

0

ft(ϑ(r), ϑ′(r)) dr , (1.4)

ft(ϑ, ϑ
′) = R1(ϑ

′) + ‖ϑ′‖L2(Ω) inf
ξ∈∂R1(0)

‖ − DzI(t, ϑ) − ξ‖L2(Ω) , (1.5)

where T 

t (z−, z+) denotes the set of admissible transition curves connecting z− with

z+ and satisfying certain properties.

The appearance of the term from (1.4) in the vanishing-viscosity limit of (1.2)

can be motivated by a comparison with the ED balance that is valid for solutions

of the viscous system (1.2). In fact, we will show in Theorem 4.1 that solutions to

(1.2) exist and that they satisfy for all t ∈ [0, T ] the relation∫ t

0

Rε(żε) + R∗
ε (−DzI(r, zε(r))) dr + I(t, zε(t)) = I(0, z(0)) +

∫ t

0

∂tI(r, zε(r)) dr

(1.6)

with R∗
ε (η) = 1

2ε
infξ∈∂R1(0) ‖η − ξ‖2

L2(Ω) provided that η ∈ L2(Ω). It turns out that

ft(t, z, v) = inf
ε>0

(
Rε(v) + R∗

ε (−DzI(t, z))
)
.

The challenge here is to perform a sharp limit analysis for ε → 0 in order to show

that the dissipation integral in (1.6) tends to Varf(z; [0, t]) as ε → 0.
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The main result of this paper, Theorem 5.7, states the existence of BV solutions

to the damage system (1.1) under suitable assumptions on the data z0, uD and �.

They are obtained from a vanishing-viscosity analysis of the time discretized version

of the viscous system (1.2) as the time step size τ, the viscosity parameter ε and

the ratio τ/ε tend to zero. The convergence of discrete solutions of corresponding

numerical schemes to BV solutions is an immediate consequence. Let us stress that

with the techniques from [25], we could prove the existence of BV solutions also

by taking the vanishing-viscosity analysis of the time-continuous system in (1.2), as

standardly done in works on the vanishing-viscosity approach to rate-independent

systems. Here, we have opted for this simultaneous limit passage to highlight the

constructive character of this approach.

The paper is organized as follows: In Section 2, we collect and prove the basic regularity

and differentiability properties of the reduced energy I and prove the chain rule identity.

Some of the arguments are taken from the earlier paper [19] but are adapted to the

enhanced smoothness assumptions on the boundary ∂Ω. In Section 3, we study a time-

discrete version of the viscous damage system (1.2), derive the necessary a priori estimates

and provide an ED inequality for suitable interpolants of the time incremental solutions.

The main part of Section 3 is devoted to proving that Aqzk ∈ L2(Ω) for time incremental

solutions zk . In Section 4, we shortly address the existence of viscous solutions to the system

(1.2). The main focus of the paper lies on the analysis of the vanishing-viscosity limit as

both the viscosity parameter and the time step size tend to zero simultaneously (Sections 5

and 6). The notion of BV solutions is introduced and explained at length in Section 5,

where also the main existence theorem is formulated and where further properties of

BV solutions are discussed. The corresponding proofs are collected in Section 6. A short

Appendix collects some elliptic regularity results that are key for our analysis.

We conclude by fixing some notation that will be used throughout the paper.

Notation 1.1 Throughout the paper, for a given Banach space X, we will by ‖ · ‖X denote

its norm. In the case of product spaces X× · · ·×X, we will mostly write ‖ · ‖X in place of

‖ · ‖X×···×X , still allowing for some exceptions: for instance, we will keep both notations

‖ε(u)‖Lp(Ω) and ‖ε(u)‖Lp(Ω;�3×3). We will denote by 〈·, ·〉X the duality pairing between X∗

and X, using the symbol (·, ·)X for the scalar product in X, if X is a Hilbert space.

We will denote most of the positive constants occurring in the calculations, and

depending on known quantities, by the symbols c, c′, C, C ′, . . ., whose meaning may vary

even within the same line. Furthermore, the symbols Ii, i = 0, 1, . . . , will be used as

abbreviations for several integral terms appearing in the various estimates: we warn the

reader that we will not be self-consistent with the numbering, so that, for instance, I1 will

appear several times with different meanings.

2 Preliminaries and properties of the reduced energy

We start by collecting our standing assumptions on the reference domain Ω and on the

energy functional E in Section 2.1. Combining these requirements, in Section 2.2, we
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will obtain two regularity results for the Euler–Lagrange equation associated with the

minimization of the elastic energy. In Section 2.3, such results will have a pivotal role

in deriving a series of properties of the reduced energy I , at the core of our subsequent

analysis.

2.1 Setup

Throughout the paper, we shall suppose that

Assumption 2.1 (Regularity of the domain) Ω ⊂ �3 is a bounded C1,1-domain with Dirich-

let boundary ΓD = ∂Ω.

From now on, we shall denote the state spaces for the variables u and z by

U := H1
0 (Ω; �3), Z := W 1,q(Ω) with q > 3.

We will denote by

W−1,p(Ω) the dual space of W 1,p′

0 (Ω) with
1

p
+

1

p′
= 1.

For later use, we recall here two crucial properties of the elliptic operator Aq holding for

all z1, z2, w ∈ Z:

〈Aqz1 − Aqz2, z1 − z2〉Z � cq

∫
Ω

(1 + |∇z1|2 + |∇z2|2)
q−2

2 |∇(z1 − z2)|2 dx, (2.1)

| 〈Aqz1 − Aqz2, w〉Z | � c′q

∫
Ω

(1 + |∇z1|2 + |∇z2|2)(q−2)/2|∇(z1 − z2)||∇w| dx. (2.2)

These inequalities rely on the corresponding estimates for the function Gq : �3 → �
defined by Gq(A) := 1

q
(1+|A|2)q/2 and its gradient. In particular the following monotonicity

estimate is valid

(∇Gq(A)−∇Gq(B)) · (A−B) � cq(1+|A|2+|B|2)(q−2)/2|A−B|2 for all A, B ∈ �3 (2.3)

with the constant cq > 0 as in (2.1). This is a consequence of the estimates provided

in [12, Lemma 8.3].

The energy functional E : [0, T ] × U × Z → � consists of two contributions. The first

one, I1, only depends on the damage variable. The second one, E2 = E2(t, u, z), is given by

the sum of an elastic energy of the type
∫
Ω
g(z)W (ε(x, u + uD(t))) dx with uD a Dirichlet

datum, and of the external loading term.

Assumption 2.2 (The energy functional) We consider

I1 : Z → � defined by I1(z) := Iq(z) +

∫
Ω

f(z) dx with

Iq(z) :=
1

q

∫
Ω

(1 + |∇z|2) q
2 dx, q > 3,
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and f fulfilling

f ∈ C2(�) and ∃K1, K2 > 0 ∀ x ∈ � : f(x) � K1|x| −K2. (2.4)

As for E2, linearly elastic materials are considered with an elastic energy density

W (x, η) =
1

2
�(x)η : η for η ∈ �3×3

sym and almost every x ∈ Ω.

Hereafter, we shall suppose for the elasticity tensor that

� ∈ C0
lip(Ω; Lin(�3×3

sym ,�3×3
sym )) with �(x)ξ1 : ξ2 = �(x)ξ2 : ξ1 for all x ∈ Ω, ξi ∈ �3×3

sym ,

(2.5a)

∃ γ0 > 0 for all ξ ∈ �3×3
sym and almost all x ∈ Ω : �(x)ξ : ξ � γ0|ξ|2. (2.5b)

Let g : � → � be a further constitutive function such that

g ∈ C2(�) with g′, g′′ ∈ L∞(�), and ∃ γ1, γ2 > 0 ∀ z ∈ � : γ1 � g(z) � γ2. (2.6)

Then, we take the elastic energy

E2 : [0, T ] × U × Z → � defined by

E2(t, u, z) :=

∫
Ω

g(z)W (x, ε(u + uD(t))) dx− 〈�(t), u〉U ,

where ε(u) = 1
2
(∇u + ∇uT ) is the symmetrized strain tensor and � ∈ C0([0, T ],U∗) an

external loading. Further requirements on � and uD will be specified in Assumption 2.9

ahead. For u ∈ U and z ∈ Z , the stored energy is then defined by

E(t, u, z) := I1(z) + E2(t, u, z). (2.7)

Minimizing the functional E with respect to the displacements we obtain the reduced

energy

I : [0, T ] ×Z → � given by I(t, z) := I1(z) + I2(t, z) with

I2(t, z) := inf{E2(t, v, z) : v ∈ U}. (2.8)

Remark 2.3 With the choice g : � → � defined by g(z) = z2 + η for z ∈ [−1, 1], with

η > 0 a fixed parameter, and by a suitable smooth extension to � \ [−1, 1] in such a

way that (2.6) holds, and with f(z) = μ(z − 1)2, and q = 2, one obtains an energy of

Ambrosio-Tortorelli-type [3].
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2.2 Preliminary regularity results

We focus on the regularity properties of the operator Lg(z) : H1
0 (Ω; �3) → W−1,2(Ω; �3)

associated with the following bilinear form describing linear elasticity, i.e.,

〈Lg(z)u, v〉 :=

∫
Ω

g(z)�ε(u) : ε(v) dx for all u, v ∈ H1
0 (Ω; �3), (2.9)

where � is from (2.5), g from (2.6) and z is a fixed element in Z = W 1,q(Ω), with q > 3.

Our first result extends [19, Lemma 2.3] to a wider range of exponents, cf. Remark 2.5

below.

Lemma 2.4 Under Assumption 2.1, let � and g comply with (2.5) and (2.6), respectively.

Then, there holds

(a) For every p > 1 and z ∈ W 1,q(Ω) the operator Lg(z) : W
1,p
0 (Ω) → W−1,p(Ω) is a

topological isomorphism.

(b) Uniform estimate: For every p∗ > 2 there exists a constant cq,p∗ > 0 such that for all

z ∈ W 1,q(Ω) and p ∈ [p′∗, p∗] it holds

‖L−1
g(z)‖W−1,p(Ω;�3)→W

1,p
0 (Ω;�3) � cq,p∗ (1 + ‖∇z‖Lq(Ω))

k̂∗
p∗|p−2|
p(p∗−2) , (2.10)

where k̂∗ ∈ � is the smallest integer with k̂∗ > 3q
2(q−3)

.

Proof For every z ∈ W 1,q(Ω) the coefficients of the elliptic operator Lg(z) are continuous

and bounded. Since by Assumption 2.1 the boundary of Ω is continuous as well, we

may apply [31, Theorem 3], see also [21, Theorem 7.1], to obtain claim (a). The uniform

estimate follows along the same lines as in the proof of [19, Lemma 2.3], relying on a

recursion argument originally developed in [6]. �

Remark 2.5 Lemma 2.4 enhances [19, Lemma 2.3] thanks to the stronger regularity

condition on the reference domain Ω, which in [19] was only required to fulfill these

properties:

(i) The spaces W
1,p
ΓD

(Ω; �d) = {u ∈ W 1,p(Ω; �d) : u|ΓD
= 0}, p ∈ (1,∞) (and ΓD with

positive Hausdorff measure, but possibly ΓD � ∂Ω, was allowed in [19]), form an

interpolation scale.

(ii) There exists p∗ > 3 such that for all p ∈ [2, p∗] the operator L : W
1,p
ΓD

(Ω; �d) →
W

−1,p
ΓD

(Ω; �d) is an isomorphism.

It was for such p∗ > 3, in fact, that the isomorphism property (a) and the uniform estimate

(2.10) were obtained in [19, Lemma 2.3]. Let us highlight that, instead, in Lemma 2.4

property (a) is guaranteed for all p > 1, and (2.10) is shown for every p∗ > 2.
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The most relevant consequence of Assumption 2.1 for our analysis, though, is given by

the following enhanced elliptic regularity result. Lemma 2.6 extends [6, Lemma A.1] to

our situation.

Lemma 2.6 Under Assumption 2.1, let � and g comply with (2.5) and (2.6), respectively.

Then, for all z ∈ W 1,q(Ω) the operator Lg(z) : U → U∗ fulfills

L−1
g(z)(h) ∈ H2(Ω; �3) for all h ∈ L2(Ω; �3),

and there exists c0 > 0 such that for all z ∈ W 1,q(Ω) and all h ∈ L2(Ω; �3)

‖u‖H2(Ω) � c0(1 + ‖∇z‖Lq(Ω))
α(‖h‖L2(Ω) + ‖u‖H1(Ω)), (2.11)

where u = L−1
g(z)(h) and α � 2 is the smallest integer bigger than or equal to q/(q − 3).

Proof The proof of [6, Lemma A.1] can be directly transferred to our situation having in

mind that for every p ∈ (1,∞) the operator

L� = Lg(1) : W 1,p
0 (Ω) ∩W 2,p(Ω) → Lp(Ω), u �→ −div�ε(u)

is a continuous isomorphism, cf. Theorem A.3. �

Remark 2.7 Observe that supp∈[p′∗ ,p∗]
p∗|p−2|
p(p∗−2)

� 1. Hence, we can estimate from above the

right-hand side of (2.10) by (1 + ‖∇z‖Lq(Ω))
k̂∗ . Therefore, whenever applying estimates

(2.10) and (2.11), possibly with two different elements z1, z2 ∈ Z , we will simply use the

quantity

P (z1, z2) := (1 + ‖∇z1‖Lq(Ω) + ‖∇z2‖Lq(Ω))
k∗ , (2.12)

where k∗ := max{k̂∗, α} + 1 with k̂∗ from Lemma 2.4 and α from (2.11). With this, (2.11)

can be rewritten in terms of the quantity P as

‖u‖H2(Ω) � c0P (z, 0)(‖h‖L2(Ω) + ‖u‖H1(Ω)).

In the sequel, we will frequently use the following regularity result from [29, Theorem

2 & Remark 3.5] for solutions of the q-Laplace equation:

Proposition 2.8 For every q > 2, there exists a constant Cq > 0 such that for all f ∈ Lq′ (Ω)

it holds: If z ∈ W 1,q(Ω) satisfies 〈Aqz, z̃〉 = 〈f, z̃〉 for all z̃ ∈ W 1,q(Ω), then for all σ ∈ (0, 1
q
)

the function z belongs to W 1+σ,q(Ω) and

‖z‖W 1+σ,q(Ω) � Cq(‖f‖Lq′ (Ω) + ‖z‖Lq(Ω)). (2.13)

Note that on the right-hand side of (2.13) the Lq-norm of z appears since Aq is not

bijective on W 1,q(Ω).
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2.3 Properties of the reduced energy

Relying on Lemmas 2.4 and 2.6, we will show that the reduced energy functional I enjoys

a series of differentiability properties, which in fact improve those obtained in [19, Section

2.3], under the additional

Assumption 2.9 (The external loadings) From now on, we will suppose that � and uD comply

with the following requirements

� ∈ L∞(0, T ;L2(Ω; �3)) ∩ C1,1([0, T ];W−1,3(Ω; �3)),

uD ∈ L∞(0, T ;H2(Ω; �3)) ∩ C1,1([0, T ];W 1,3(Ω; �3)).
(2.14)

The starting point is the following result, which improves [19, Lemmas 2.6, 2.7].

Lemma 2.10 (Existence of minimizers for E(t, ·, z) & their continuous dependence on

the data) Under Assumptions 2.1, 2.2 and 2.9, for every (t, z) ∈ [0, T ] × Z there ex-

ists a unique minimizer umin(t, z) ∈ U for the stored energy E(t, ·, z) (2.7). In fact,

umin(t, z) ∈ H2(Ω; �3). Moreover, there exist positive constants c1 and c2 such that for

all (t, z), (t1, z1), (t2, z2) ∈ [0, T ] ×Z and for all p∗ > 2

‖umin(t, z)‖H2(Ω) � c1P (z, 0)
(
‖�(t)‖L2(Ω) + ‖uD(t)‖H2(Ω)

)
; (2.15)

‖umin(t1, z1)−umin(t2, z2)‖W 1,p(Ω)

� c2P (z1, z2)
2
(
|t1−t2| + ‖z1−z2‖L6p/(6−p)(Ω)

) (
‖�‖C1([0,T ];W−1,p(Ω)) + ‖uD(t)‖C1([0,T ];W 1,p(Ω))

)
(2.16)

for all p ∈ [p′∗,min{p∗, 3}], with P (·, ·) defined by (2.12). In particular, there holds

‖umin(t1, z1)−umin(t2, z2)‖W 1,3(Ω)

� c2P (z1, z2)
2
(
|t1−t2| + ‖z1−z2‖L6(Ω)

) (
‖�‖C1([0,T ];W−1,3(Ω)) + ‖uD(t)‖C1([0,T ];W 1,3(Ω))

)
,

(2.17)

Finally, the reduced energy I from (2.8) is bounded from below and in particular satisfies

the following coercivity estimate:

∃ c3, c4 > 0 ∀ (t, z) ∈ [0, T ] ×Z :

I(t, z) � c3

(
‖∇z‖qLq(Ω) + ‖z‖L1(Ω) + ‖umin(t, z)‖2

H1(Ω;�3)

)
− c4. (2.18)

Proof We refer to [18, Lemma 2.1] for the proof of the existence and uniqueness

of umin(t, z), as well as for estimate (2.18). Clearly, umin(t, z) satisfies Lg(z)umin(t, z) =

−Lg(z)uD(t) − �(t). Observe that Lg(z)uD(t) ∈ L2(Ω). Indeed, by the assumptions on

g, � and since uD(t) ∈ H2(Ω), we have g(z)div(�ε(uD(t)) ∈ L2(Ω). On the other

hand, �ε(uD(t))∇xg(z) = g′(z)�ε(uD(t))∇z ∈ L2(Ω), which follows by Hölder’s inequal-

ity taking into account that H1(Ω) ⊂ L6(Ω) and that q > 3. Moreover, it holds

‖Lg(z)uD(t)‖L2(Ω) � c(1 + ‖∇z‖Lq(Ω))‖uD(t)‖H2(Ω). Hence, it follows from (2.11), Remark
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2.7 and (2.10) with p = 2 that

‖umin(t, z)‖H2(Ω) � c0(1 + ‖∇z‖Lq(Ω))
α(‖�(t)‖L2(Ω) + ‖div(g(z)�ε(uD(t))‖L2(Ω)

+ ‖umin(t, z)‖H1(Ω))

� c(1 + ‖∇z‖Lq(Ω))
α
(
‖�(t)‖L2(Ω) + (1 + ‖∇z‖Lq(Ω))‖uD(t)‖H2(Ω)

)
� c1P (z, 0)

(
‖�(t)‖L2(Ω) + ‖uD(t)‖H2(Ω)

)
.

All in all, we conclude (2.15).

Finally, in order to show (2.16), we mimic the argument from the proofs of [18, Lemma

2.2] and [19, Lemma 2.7]. Namely, for i = 1, 2, let ui := umin(ti, zi) ∈ H2(Ω; �3). From the

corresponding Euler–Lagrange equations, we obtain that u1 − u2 satisfies for all v ∈ U

∫
Ω

g(z1)�ε(u1 − u2) : ε(v) dx =

∫
Ω

(
g(z2) − g(z1)

)
�ε(u2) : ε(v) dx

−
∫
Ω

(
g(z1)�ε(uD(t1)) − g(z2)�ε(uD(t2))

)
: ε(v) dx +

∫
Ω

(�(t1)−�(t2)) v dx.

(2.19)

Observe that (2.19) extends to test functions v ∈ W
1,6/5
0 (Ω; �3). This can be seen as

follows: Since g is bounded, cf. (2.6), and since uj ∈ H2(Ω; �3), for i, j ∈ {1, 2} the

product g(zi)ε(uj) belongs to L6(Ω; �3×3). Thanks to Assumption 2.9, the same is true

for the terms involving the data uD and �. Since 6′ = 6/5, we conclude via a density

argument. Hence, u1 − u2 fulfills for all v ∈ W
1,6/5
0 (Ω; �3) the relation

∫
Ω

g(z1)�ε(u1 − u2) : ε(v) dx = 〈�̃1,2, v〉W 1,6/5
0 (Ω;�3)

,

where �̃1,2 ∈ W−1,6(Ω; �3) subsumes the terms on the right-hand side of (2.19). We

now fix an arbitrary p∗ > 2 and apply estimate (2.10) with p ∈ [p′∗,min{p∗, 3}]. Note

that the restriction p � 3 is in view of conditions (2.14) on � and uD . We thus obtain

‖u1 − u2‖W 1,p(Ω;�3) � cq,p∗P (z1, 0)‖�̃1,2‖W−1,p(Ω;�3). Hence,

‖u1 − u2‖W 1,p(Ω;�3) � cp∗ ,qP (z1, 0)
(
‖�(t1) − �(t2)‖W−1,p(Ω;�3)

+‖(g(z1) − g(z2))�ε(u2)‖Lp(Ω;�3×3)

+‖g(z1)�ε(uD(t1)) − g(z2)�ε(uD(t2))‖Lp(Ω;�3×3)

)
.

(2.20)

Now, the Lipschitz continuity of g (with the Lipschitz constant Cg) and Hölder’s inequality

imply that

‖(g(z1) − g(z2))�ε(u2)‖Lp(Ω;�3×3) � Cg‖z1 − z2‖L6p/(6−p)(Ω)‖ε(u2)‖L6(Ω;�3×3)

� CP (z2, 0)
(
‖�(t)‖L2(Ω)+‖uD(t)‖H2(Ω)

)
‖z1 − z2‖L6p/(6−p)(Ω),

(2.21)
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where the second estimate follows from (2.15) and from the fact that ‖ε(u2)‖L6(Ω;�3×3) �
C‖u2‖H2(Ω;�3) by the Sobolev embeddings. Moreover,

‖g(z1)�ε(uD(t1)) − g(z2)�ε(uD(t2))‖Lp(Ω)

� ‖g(z1)(�ε(uD(t1)) − �ε(uD(t2)))‖Lp(Ω) + ‖(g(z1) − g(z2))�ε(uD(t2))‖Lp(Ω)

� γ2|t1 − t2|‖uD(t)‖C1([0,T ];W 1,p(Ω)) + C‖uD‖L∞(0,T ;H2(Ω))‖z1 − z2‖L6p/(6−p)(Ω),

where the last estimate follows from the fact that ‖g(z1)‖L∞(Ω) � γ2 by (2.6), and the fact

that for p � 6, we have ‖ε(uD(t2))‖Lp(Ω) � C‖uD‖L∞(0,T ;H2(Ω)). All in all, we conclude (2.16),

whence (2.17) observing that, for p = 3 one has 6p
6−p

= 6. �

Concerning the differentiability in time, we have the following analogue of [19, Lemma

2.9], [18, Lemma 2.3]:

Lemma 2.11 Under Assumptions 2.1, 2.2 and 2.9, for every z ∈ Z the map t �→ I(t, z) is in

C1([0, T ]; �) with

∂tI(t, z) =

∫
Ω

g(z)�ε(umin(t, z) + uD(t)) : ε(u̇D(t)) dx− 〈�̇(t), umin(t, z)〉H1
0 (Ω;�3). (2.22)

Moreover, there exists a constant c5 > 0 such that for all t ∈ [0, T ], z ∈ Z we have

|∂tI(t, z)| � c5

(
‖uD‖2

C1([0,T ];H1(Ω;�3)) + ‖�‖2
C1([0,T ];W−1,2(Ω;�3))

)
. (2.23)

Finally, there exists a constant c6 > 0 depending on ‖�‖C1,1([0,T ];W−1,3(Ω;�3)) and

‖uD‖C1,1([0,T ];W 1,3(Ω)) such that for all ti ∈ [0, T ] and zi ∈ Z we have

|∂tI(t1, z1) − ∂tI(t2, z2)| � c6P (z1, z2)
2
(
|t1 − t2| + ‖z1 − z2‖L2(Ω)

)
. (2.24)

Let us stress that the quantity on the right-hand side of estimate (2.23) is independent

of z ∈ Z .

Proof Relation (2.22) follows from direct calculations, while estimate (2.23) is a direct

consequence of Hölder’s inequality in combination with the uniform estimate (2.10) for

p = 2. For the proof of (2.24), we start from

∂tI(t1, z1) − ∂tI(t2, z2)

=

∫
Ω

(g(z1)−g(z2))�(ε(umin(t1, z1) + uD(t1))) : ε(u̇D(t1)) dx

+

∫
Ω

g(z2)�(ε(umin(t1, z1) + uD(t1))−ε(umin(t2, z2) + uD(t2))) : ε(u̇D(t1)) dx

+

∫
Ω

g(z2)�(ε(umin(t2, z2) + uD(t2))) : (ε(u̇D(t1))−ε(u̇D(t2))) dx

− 〈�̇(t1)−�̇(t2), umin(t1, z1)〉 + 〈�̇(t2), umin(t2, z2)−umin(t1, z1)〉 .
= I1 + I2 + I3 + I4 + I5.
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To estimate I1 and I3, we apply Hölder’s inequality and exploit the regularity of the

data stated in (2.14), that g is bounded and Lipschitz-continuous and that umin belongs

to H2(Ω), cf. (2.15). To estimate I2, we additionally apply estimate (2.16) with p = 3/2

(which yields 6p/(6 − p) = 2) and obtain

I2 � c‖ε(umin(t1, z1) + uD(t1))−ε(umin(t2, z2) + uD(t2))‖L3/2(Ω)‖ε(u̇D(t1))‖L3(Ω)

� cP (z1, z2)
2
(
|t1−t2| + ‖z1−z2‖L2(Ω)

) (
‖�‖C1([0,T ];W−1,3/2(Ω)) + ‖uD(t)‖C1([0,T ];W 1,3/2(Ω))

)
.

By (2.14) and (2.16), we also estimate I4 and I5. �

We now discuss the differentiability of I with respect to z. Let DzI(t, ·) : Z → Z∗

denote the Gâteaux-differential of the functional I(t, ·). For the proof of the following

result, we refer to [19, Lemma 2.10], [18, Lemma 2.4].

Lemma 2.12 Under Assumptions 2.1, 2.2 and 2.9, for all t ∈ [0, T ] the functional I(t, ·) :

Z → � is Gâteaux-differentiable at all z ∈ Z , and for all η ∈ Z we have

〈DzI(t, z), η〉Z = 〈Aqz, η〉Z +

∫
Ω

f′(z)η dx +

∫
Ω

g′(z)W̃ (t,∇umin(t, z))η dx, (2.25)

where we use the abbreviation W̃ (t,∇v) = W (x, ε(v + uD(t))) = 1
2
�ε(v + uD(t)):ε(v + uD(t)).

In particular, the following estimate holds with a constant c7 that depends on the data �, uD ,

but is independent of t and z:

∀ (t, z) ∈ [0, T ] ×Z : ‖DzI(t, z)‖Z∗ � c7

(
‖z‖q−1

Z + ‖f′(z)‖L∞(Ω) + 1
)
. (2.26)

Hereafter, we will use the short-hand notation

Ĩ(t, z) := I2(t, z) +

∫
Ω

f(z) dx for all (t, z) ∈ [0, T ] ×Z (2.27)

with I2 from (2.8) as the part of the reduced energy collecting all lower order terms.

Accordingly, DzI from (2.25) decomposes as

DzI(t, z) = Aqz + DzĨ(t, z) for all (t, z) ∈ [0, T ] ×Z . (2.28)

In view of (2.25) and taking into account the H2(Ω; �3)-regularity of umin from Lemma

2.6, the term DzĨ(t, z) can be identified with an element of L2(Ω). In Lemma 2.13, below

we will even show that the map (t, z) �→ DzĨ(t, z) is Lipschitz continuous w.r.t. a suitable

Lebesgue norm. Therefore, with the symbol DzĨ , we shall denote both the derivative of

Ĩ as an operator, and the corresponding density in L2(Ω). Accordingly, we shall write

for a given v ∈ L2(Ω)

∫
Ω

DzĨ(t, z)v dx in place of 〈DzĨ(t, z), v〉L2(Ω). (2.29)

For h ∈ C0(�) and z1, z2 ∈ Z let

Ch(z1, z2) = max{ |h(s)| : |s| � ‖z1‖L∞(Ω) + ‖z2‖L∞(Ω) }. (2.30)
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This notation will be used along the proof of the following lemma.

Lemma 2.13 Under Assumptions 2.1, 2.2 and 2.9, there exists a constant c8 > 0 that depends

on the norms ‖�‖C1,1([0,T ];W−1,3(Ω;�3)) and ‖uD‖C1([0,T ];W 1,3(Ω;�3)) such that for all ti ∈ [0, T ]

and all zi ∈ Z it holds∣∣∣Ĩ(t1, z1) − Ĩ(t2, z2)
∣∣∣ � c8(1 + Cf′ (z1, z2) + P (z1, z2)

3)
(
|t1 − t2| + ‖z1 − z2‖L3(Ω)

)
, (2.31)

with Cf′ (z1, z2) as in (2.30), corresponding to h = f′. Further, now with h = f′′ in (2.30),

‖DzĨ(t1, z1) − DzĨ(t2, z2)‖L2(Ω)

� c8

(
1 + Cf′′ (z1, z2) + P (z1, z2)

3
)(
|t1 − t2| + ‖z1 − z2‖L6(Ω)

)
,

(2.32)

‖DzĨ(t1, z1) − DzĨ(t2, z2)‖L4/3(Ω)

� c8

(
1 + Cf′′ (z1, z2) + P (z1, z2)

3
)(
|t1 − t2| + ‖z1 − z2‖L4(Ω)

)
,

(2.33)

and

‖DzĨ(t, z)‖L2(Ω) � c8(1 + ‖f′(z)‖L∞(Ω) + P (z, 0)2) for all (t, z) ∈ [0, T ] ×Z . (2.34)

Proof Although the proof follows the same lines as that of [19, Lemma 2.12], let us briefly

see how the improved estimates (2.15) and (2.17) lead to (2.31), (2.32) and (2.33), while

we will omit the calculations for (2.34). As for (2.31), we observe that∣∣∣Ĩ(t1, z1) − Ĩ(t2, z2)
∣∣∣ �

∫
Ω

|f(z1) − f(z2)| dx +

∫
Ω

|g(z1) − g(z2)||W̃ (t1,∇u1)| dx

+

∫
Ω

|g(z2)||W̃ (t1,∇u1) − W̃ (t2,∇u2)| dx + | 〈�(t1) − �(t2), u1〉U |

+ | 〈�(t2), u1 − u2〉U | .
= I1 + I2 + I3 + I4 + I5,

where ui := umin(ti, zi) ∈ H2(Ω; �3) and, as above, W̃ (ti,∇ui) = 1
2
�ε(ui+uD(ti)):ε(ui+uD(ti))

for i = 1, 2. We observe that (cf. Notation (2.30))

I1 � Cf′ (z1, z2)‖z1 − z2‖L1(Ω),

I2 � C‖z1 − z2‖L2(Ω)‖ε(u1 + uD(t1))‖L3(Ω)‖ε(u1 + uD(t1))‖L6(Ω)

� C ′P (z1, 0)2‖z1 − z2‖L2(Ω),

I3 � C‖ε(u1 + uD(t1)) + ε(u2 + uD(t2))‖L2(Ω)‖ε(u1 + uD(t1)) − ε(u2 + uD(t2))‖L2(Ω)

� CP (z1, z2)P (z1, z2)
2(|t1 − t2| + ‖z1 − z2‖L3(Ω)),

I4 � C|t1 − t2|‖u1‖H1(Ω) � C ′|t1 − t2|,
I5 � C‖u1 − u2‖H1(Ω) � CP (z1, z2)

2(|t1 − t2| + ‖z1 − z2‖L3(Ω)) ,

where, in the estimate for I2 we have exploited (2.15), while in the estimates for I3 and I5
we have also resorted to (2.16) with p = 2. The estimate for I4 follows from (2.14). All in

all, we conclude (2.31).
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As for (2.32), we have that

‖DzĨ(t1, z1) − DzĨ(t2, z2)‖L2(Ω) � ‖f′(z1) − f′(z2)‖L2(Ω) + ‖(g′(z1)−g′(z2))W̃ (t1,∇u1)‖L2(Ω)

+ ‖g′(z2)(W̃ (t1,∇u1)−W̃ (t2,∇u2))‖L2(Ω)
.
= I6 + I7 + I8 .

We observe that I6 � Cf′′ (z1, z2)‖z1 − z2‖L2(Ω), while

I7 � C‖z1 − z2‖L3(Ω)‖ε(u1 + uD(t1))‖L6(Ω) � C ′‖z1 − z2‖L3(Ω)P (z1, 0),

I8 � C‖ε(u1 + uD(t1)) + ε(u2 + uD(t2))‖L6(Ω)‖ε(u1 + uD(t1)) − ε(u2 + uD(t2))‖L3(Ω)

� C ′P (z1, z2)
3(|t1 − t2| + ‖z1 − z2‖L6(Ω)) .

thanks to estimates (2.15) and (2.17) and the fact that g′, g′′ ∈ L∞(�). The proof

of (2.33) follows the very same lines: we estimate ‖f′(z1) − f′(z2)‖L4/3(Ω) by means of

Cf′′ (z1, z2)‖z1 − z2‖L4/3(Ω), while we have with Hölder’s inequality

‖(g′(z1)−g′(z2))W̃ (t1,∇u1)‖L4/3(Ω) � C‖z1 − z2‖L4(Ω)‖ε(u1 + uD(t1))‖2
L4(Ω)

� C ′‖z1 − z2‖L4(Ω),

where in the last estimate we applied (2.10) with p = 4 to the term ‖ε(u1)‖L4(Ω). Finally,

‖g′(z2)(W̃ (t1,∇u1)−W̃ (t2,∇u2))‖L4/3(Ω)

� C‖ε(u1 + uD(t1)) + ε(u2 + uD(t2))‖L4(Ω)‖ε(u1 + uD(t1)) − ε(u2 + uD(t2))‖L2(Ω)

� C ′P (z1, z2)
3(|t1 − t2| + ‖z1 − z2‖L3(Ω)).

This concludes the proof. �

From all of the above results, and in particular from Lemma 2.13, we now draw a series

of consequences on which our subsequent analysis will rely. First of all, we observe the

Fréchet differentiability of the functional z ∈ Z �→ I(t, z). This is due to the continuity of

the mapping z ∈ Z �→ DzI(t, z) ∈ Z∗, which relies on the continuity of z �→ Aqz and of

z �→ DzĨ(t, z). If restricted to bounded sets in Z , the latter mapping is even continuous

with values in L2(Ω) w.r.t. to L6(Ω)-convergence for z, cf. (2.32). The restriction of the

power functional ∂tI is continuous w.r.t. L2(Ω)-convergence for z. Taking into account

that Z � L6(Ω), we may then claim the continuity of DzĨ and ∂tI w.r.t. weak convergence

in Z .

Corollary 2.14 (Fréchet differentiability of I) Under Assumptions 2.1, 2.2 and 2.9, the func-

tional I is Fréchet differentiable on [0, T ] ×Z and

tn → t and zn → z strongly in Z implies DzI(tn, zn) → DzI(t, z) strongly in Z∗. (2.35)
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Furthermore,

tn → t and zn ⇀ z in Z implies

lim inf
n→∞

I(tn, zn) � I(t, z), Ĩ(tn, zn) → Ĩ(t, z), ∂tI(tn, zn) → ∂tI(t, z),

DzĨ(tn, zn) → DzĨ(t, z) strongly in L2(Ω).

(2.36)

We now derive a generalized λ-convexity property for I(t, ·) involving the H1(Ω) and

the L1(Ω)-norm, see (2.38) below. This estimate is valid on bounded sets in Z . Indeed,

note that the constant modulating the L1(Ω)-norm in (2.38) depends on the radius of a

Z-ball.

Corollary 2.15 (λ-convexity of I) Under Assumptions 2.1, 2.2 and 2.9, there exists a con-

stant β > 0 and for every M > 0 there exists ΛM > 0 such that for every t ∈ [0, T ],

z1, z2 ∈ Z with ‖z1‖Z + ‖z2‖Z � M and for every θ ∈ [0, 1] the functional L with

L(t, z) := I(t, z) +
1

2
‖z‖2

L2(Ω) (2.37)

complies with

L(t, (1−θ)z1 + θz2) �(1−θ)L(t, z1) + θL(t, z2)

− θ(1−θ)(β‖z1−z2‖2
H1(Ω) − ΛM‖z1−z2‖2

L1(Ω)).
(2.38)

Proof From (2.3) it follows that the mapping A ∈ �3 �→ Gq(A) − cq
2
|A|2 is convex. This

entails that A �→ Gq(A) is cq-convex, i.e., there holds Gq((1−θ)A1 + θA2) � (1−θ)Gq(A1) +

θGq(A2) − cq
2
θ(1−θ)|A1−A2|2 for every A1, A2 ∈ �3 and θ ∈ [0, 1]. As a consequence, we

have that

Iq((1−θ)z1 + θz2) � (1−θ)Iq(z1) + θIq(z2) −
cq

2
θ(1−θ)

∫
Ω

|∇(z1−z2)|2 dx . (2.39)

As for Ĩ , with trivial calculations, we have that

Ĩ(t, (1−θ)z1 + θz2) − (1−θ)Ĩ(t, z1) − θĨ(t, z2)

= (1−θ)
(
Ĩ(t, (1−θ)z1 + θz2) − Ĩ(t, z1)

)
+ θ

(
Ĩ(t, (1−θ)z1 + θz2) − Ĩ(t, z2)

)
.
= I1 + I2.

There holds

I1 = (1−θ)

∫ 1

0

∫
Ω

DzĨ(t, (1−s)z1 + s((1−θ)z1 + θz2))θ(z2−z1) dx ds

= (1 − θ)θ

∫ 1

0

∫
Ω

(
DzĨ(t, (1−s)z1 + s((1−θ)z1 + θz2))−DzĨ(t, z1)

)
(z2−z1) dx ds

− (1 − θ)θ

∫
Ω

DzĨ(t, z1)(z1−z2) dx
.
= I1,1 + I1,2 .
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We now estimate I1,1 by using Hölder’s inequality and inequality (2.33), taking into account

that (1−s)z1 + s((1−θ)z1 + θz2) − z1 = sθ(z2−z1). Therefore,

|I1,1| � c8θ(1−θ)

∫ 1

0

(1 + Cf′ (z1, ζ1,2) + P (z1, ζ1,2)
3)‖sθ(z2−z1)‖L4(Ω)‖z2−z1‖L4(Ω) ds

� C̃1(M)(1 − θ)θ‖z2−z1‖2
L4(Ω),

where we have used the place-holder ζ1,2 := (1−s)z1 + s((1−θ)z1 + θz2), and where

C̃1(M) > 0 depends on the constant M that bounds ‖z1‖Z and ‖z1‖Z . With analogous

calculations one has that

I2 � C̃1(M)(1 − θ)θ‖z2−z1‖2
L4(Ω) + (1 − θ)θ

∫
Ω

DzĨ(t, z2)(z1−z2) dx︸ ︷︷ ︸
I2,2

.

Therefore, estimating I1,2 + I2,2 � C̃2(M)(1 − θ)θ‖z2−z1‖2
L4(Ω) with the same arguments as

above, we conclude that

Ĩ(t, (1−θ)z1 + θz2) � (1−θ)Ĩ(t, z1) + θĨ(t, z2) +
C̃(M)

2
(1 − θ)θ‖z2−z1‖2

L4(Ω) (2.40)

for some C̃(M) > 0. We now combine (2.39) with (2.40). Adding to this the trivial identity

1

2
‖(1−θ)z1 + θz2‖2

L2(Ω) =
(1−θ)

2
‖z1‖2

L2(Ω) +
θ

2
‖z2‖2

L2(Ω) −
(1−θ)θ

2
‖z1−z2‖2

L2(Ω),

and using Ehrling’s Lemma, cf. e.g., [28, Theorem 7.30], to estimate ‖η‖2
L4(Ω) � δ‖η‖2

H1(Ω) +

C(δ)‖η‖2
L1(Ω) for arbitrary δ > 0, finally results in (2.38). �

A slight generalization of property (2.38) was proposed in [25, Section 3.4, (3.63)] as a

sufficient condition for a sort of “uniform differentiability” condition for I(t, ·), cf. (2.41)

ahead, which was in turn introduced in [25, Section 2.1, (E.3)]. As we will see, (2.41) is at

the core of key chain rule properties for viscous solutions to (1.2) and for BV solutions

to (1.1), cf. Lemma 2.17 and Theorem 5.8 ahead. As a trivial consequence of (2.41), we

have a monotonicity property for the Fréchet subdifferential DzI , which will allow us to

prove the uniqueness of solutions for the time-incremental problems giving rise to discrete

solutions. The uniqueness is crucial for our analysis.

Corollary 2.16 Under Assumptions 2.1, 2.2 and 2.9, for every M > 0 there exist constants

c9, c10(M) > 0 such that for all t ∈ [0, T ], zi ∈ Z , i = 1, 2, with ‖z1‖Z + ‖z2‖Z � M, we

have for L from (2.37)

L(t, z2) − L(t, z1) � 〈DzL(t, z1), z2−z1〉Z +β‖z1 − z2‖2
H1(Ω) − ΛM‖z1 − z2‖2

L1(Ω) . (2.41)

As a consequence, there holds

‖z1−z2‖2
L2(Ω) + 〈DzI(t, z1)−DzI(t, z2), z1−z2〉Z � c9‖z1−z2‖2

H1(Ω) − c10(M)‖z1−z2‖2
L2(Ω) .

(2.42)
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Note that, in accordance with (2.38) and (2.41), only the constant c10 depends on M.

Proof Estimate (2.41) can be deduced from (2.38) by the very same calculations as in

the proof of [25, Lemma 3.26], while (2.42) can be obtained by adding (2.41) with

the estimate obtained exchanging z1 with z2, and observing that −‖z1 − z2‖2
L1(Ω) �

−C‖z1 − z2‖2
L2(Ω). �

The validity of the chain rule identity

d

dt
I(t, z(t)) − ∂tI(t, z(t)) = 〈DzI(t, z(t)), z′(t)〉L2(Ω) for a.a. t ∈ (0, T ), (2.43)

along solution curves z : [0, T ] → Z with DzI(t, z(t)) ∈ L2(Ω) is a key ingredient for the

proof of energy identities in the context of solutions to the viscous damage system (1.2)

(cf. Section 4), and of BV solutions to the rate-independent (1.1) (cf. Section 5). In fact,

a chain rule inequality would suffice. Since I ∈ C1([0, T ] × Z), the validity of (2.43) with

the duality pairing 〈·, ·〉Z is guaranteed along any curve z ∈ AC([0, T ];Z). The following

result extends (2.43) to curves z with weaker regularity and summability properties. We

will use the chain rule under assumption (2.44a) in the analysis of the viscous system

(1.2) (cf. the proof of Theorem 4.1), and under assumption (2.44b) in the analysis of BV

solutions to the rate-independent system (1.1) (cf. the proof of Proposition 5.8).

Lemma 2.17 (Chain rule for I in L2(Ω)) Under Assumptions 2.1, 2.2 and 2.9, let a curve z

fulfill

either z ∈ L∞(0, T ;Z) ∩H1(0, T ;L2(Ω)), with Aqz ∈ L2(0, T ;L2(Ω)), (2.44a)

or z ∈ L∞(0, T ;Z) ∩W 1,1(0, T ;L2(Ω)), with Aqz ∈ L∞(0, T ;L2(Ω)). (2.44b)

Then, the map t �→ I(t, z(t)) is absolutely continuous on [0, T ], and (2.43) holds.

Proof We will prove this result assuming (2.44a), as the argument under the alternative

condition is perfectly analogous. Preliminarily, let us observe that, due to estimate (2.34)

for DzĨ with Ĩ from (2.27), it follows from (2.44a) that the function t �→ DzĨ(t, z(t))

belongs to L2(0, T ;L2(Ω)). Therefore, DzI(t, z(t)) = Aq(z(t)) + DzĨ(t, z(t)) belongs to

L2(0, T ;L2(Ω)), as well and the integral on the R.H.S. of (2.43) is well defined for almost

all t ∈ (0, T ).

First of all, we show the absolute continuity of t �→ I(t, z(t)). We will in fact show

that t �→ L(t, z(t)) is absolutely continuous, with L from (2.37). With this aim, for every

0 � s � t � T , we estimate

L(t, z(t)) − L(s, z(s)) = L(t, z(t)) − L(s, z(t)) + L(s, z(t)) − L(s, z(s))
.
= I1 + I2 .

Since ∂tL = ∂tI , we have

|I1| �

∫ t

s

∂tI(r, z(t)) dr
(1)

� C(t− s) (2.45)
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with (1) due to (2.23). As for I2, from the uniform differentiability property (2.41), we

deduce that

I2 �

∫
Ω

DzL(t, z(s))(z(t)−z(s)) dx + α‖z(t) − z(s)‖2
H1(Ω) − ΛM‖z(t) − z(s)‖2

L1(Ω), (2.46)

cf. notation (2.29). Here, we have used that by (2.44a) and estimate (2.34) for DzĨ the

function s �→ DzI(s, z(s)) belongs to L2(0, T ;L2(Ω)). This extends to s �→ DzL(t, z(s)) due

to (2.32). All in all we arrive at

|L(s, z(s)) − L(t, z(t))| � 2ΛM‖z(t) − z(s)‖2
L1(Ω) + 2c|t− s|

+
(
‖DzL(t, z(t))‖L2(Ω) + ‖DzL(s, z(s))‖L2(Ω)

)
‖z(t) − z(s)‖L2(Ω).

(2.47)

Up to a suitable reparameterization, cf. [2, Lemma 1.1.4], we can suppose that z ∈
W 1,∞(0, T̃ ;L2(Ω)) with Lipschitz constant 1. With [2, Lemma 1.2.6], we finally conclude

from (2.47) the absolute continuity of t �→ L(t, z(t)), which gives the same property for

t �→ I(t, z(t)).

For the proof of identity (2.43), we may repeat the very same argument as in the proof

of [24, Proposition 2.4]. �

3 A priori estimates for the time-discrete solutions

We construct time-discrete solutions to the Cauchy problem for the viscous damage system

(1.2) by solving the following time incremental minimization problems: for fixed ε > 0,

we consider a uniform partition {0 = tτ0 < . . . < tτN = T} of the time interval [0, T ] with

fineness τ = tτk+1−tτk = T/N. The elements (zτk)0�k�N are determined through zτ0 := z0 ∈ Z
and

zτk+1 ∈ Argmin
{
I(tτk+1, z) + τRε

(
z − zτk

τ

)
: z ∈ Z

}
, k ∈ {0, . . . , N − 1}. (3.1)

Our first result, Proposition 3.1 below, states the existence of minimizers for problem

(3.1), which is an immediate outcome of classical variational arguments, as well as the

uniqueness of solutions to the associated Euler–Lagrange equation (3.2) below. This will

be a key ingredient in the proof of the main result of this section, Proposition 3.2 ahead.

Indeed, in order to obtain some of the a priori estimates stated therein, we shall have

to perform calculations on an approximate version of (3.2). Then, the above mentioned

uniqueness property will ensure that the a priori estimates also hold for the solutions to

(3.2), i.e., for the minimizers from (3.1).

Proposition 3.1 Under Assumptions 2.1, 2.2 and 2.9, for every ε, τ > 0 and for every

k ∈ {1, . . . , N − 1} the minimum problem (3.1) admits a solution zτk+1 satisfying the Euler–

Lagrange equation

ω + ε
z − zτk

τ
+ DzI(tτk+1, z) = 0 in Z∗, with ω ∈ ∂Z ,Z∗R1

(
z − zτk

τ

)
, (3.2)
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where ∂Z ,Z∗R1 : Z � Z∗ is the convex analysis subdifferential of R1. Moreover, for every

ε > 0 and for every M > 0, there exists τ(ε,M) > 0 such that for all 0 < τ � τ(ε,M) the

Euler–Lagrange equation (3.2) admits at most one solution in the closed ball BM(0) in Z .

Suppose in addition that f and g comply with the following condition:

f(0) � f(z), g(0) � g(z) for all z � 0, (3.3)

and that the initial datum z0 fulfills z0(x) ∈ [0, 1] for all x ∈ Ω. Then, the minimizer zτk+1

from (3.1) also fulfills zτk+1(x) ∈ [0, 1] for all x ∈ Ω and all k ∈ {0, . . . , N − 1}.

Proof The existence of minimizers can be checked via the direct method in the calculus of

variations. Observe that every minimizer fulfills (3.2), where we have used that the convex

analysis subdifferential ∂Z ,Z∗Rε : Z � Z∗ is given by ∂Z ,Z∗Rε(η) = ∂Z ,Z∗R1(η) + εη for

every η ∈ Z . Here and in what follows, for notational simplicity we write η in place of

J(η), with J : Z → Z∗ the Riesz isomorphism.

In order to check that the Euler–Lagrange equation (3.2) has a unique solution, let

M > 0 and z1, z2 ∈ Z be solutions to (3.2) such that ‖z1‖Z + ‖z2‖Z � M. Subtracting the

equation for z2 from that for z1 and testing the obtained relation by z1 − z2, we find

0 = 〈ω1 − ω2, z1 − z2〉Z +
ε

τ
‖z1−z2‖2

L2(Ω) + 〈DzI(tτk+1, z1)−DzI(tτk+1, z2), z1−z2〉Z

�
(ε

τ
− c10(M) − 1

)
‖z1−z2‖2

L2(Ω) + c9‖z1−z2‖2
H1(Ω) ,

where ωi ∈ ∂R1

(
zi−zτk

τ

)
for i = 1, 2, and the second inequality follows from the

monotonicity estimate (2.42). Hence, for τ � τ(ε,M) := ε
(c10(M)+1)

, we conclude that

‖z1−z2‖2
H1(Ω) � 0, whence z1 = z2.

For the proof of the property zτk ∈ [0, 1] in Ω under (3.3), we refer to [18, Proposition

4.5]. �

The following piecewise constant and piecewise linear interpolation functions will be

used:

zτ(t) = zτk+1 for t ∈ (tτk, t
τ
k+1], zτ(t) = zτk for t ∈ [tτk, t

τ
k+1),

ẑτ(t) = zτk +
t− tτk
τ

(zτk+1 − zτk) for t ∈ [tτk, t
τ
k+1].

Furthermore, we shall use the notation

τ(r) = τ for r ∈ (tτk, t
τ
k+1),

tτ(r) = tτk+1 for r ∈ (tτk, t
τ
k+1],

tτ(r) = tτk for r ∈ [tτk, t
τ
k+1),

uτ(r) = umin(tτ(r), zτ(r)) for r ∈ (tτk, t
τ
k+1],

uτ(r) = umin(tτ(r), zτ(r)) for r ∈ [tτk, t
τ
k+1),

ûτ(r) = uτ(r) +
r−tτ(r)

τ
(uτ(r) − uτ(r)) for r ∈ [tτk, t

τ
k+1].
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Clearly,

tτ(t), tτ(t) → t as τ → 0 for all t ∈ (0, T ), and tτ(0) = 0, tτ(T ) = T . (3.4)

We will also denote by �τ and uD,τ the (left-continuous) piecewise constant interpolants

of the values (�τk := �(tτk))
N
k=0, (uτD,k := uD(tτk))

N
k=0 and, for a given N-uple {vkτ}Nk=0, use the

short-hand notation

�τ
k(v) := vτk+1 − vτk.

In view of (3.2) and of formula (2.28) for DzI , the above interpolants fulfill for almost

all t ∈ (0, T )

ωτ(t)+εẑ′τ(t)+Aqzτ(t)+DzĨ(tτ(t), zτ(t)) = 0 in Z∗, with ωτ(t) ∈ ∂Z ,Z∗R1

(
ẑ′τ(t)

)
. (3.5)

The following result collects all the a priori estimates on the functions (zτ, ẑτ, uτ, ûτ)τ,

uniform w.r.t. the parameters ε, τ > 0. These estimates are at the core of the existence

of solutions of the viscous system, cf. Theorem 4.1 ahead, and of its vanishing-viscosity

analysis developed in Section 5. Let us mention that the estimates for (uτ, ûτ)τ have to

be understood as side results, while the really relevant bounds for the limit passage are

those for (zτ, ẑτ). We also prove that the Euler–Lagrange equation (3.5) holds in L2(Ω),

with ∂Z ,Z∗R1 replaced by the subdifferential operator ∂L2(Ω)R1 : L2(Ω) � L2(Ω). From

now on, we will denote the latter operator by ∂R1.

Proposition 3.2 Under Assumptions 2.1, 2.2 and 2.9, suppose that the initial datum z0 ∈ Z
fulfills in addition

Aqz0 ∈ L2(Ω). (3.6)

Then, for every ε > 0 there exists τ̄ε > 0, only depending on ε and on the problem data (cf.

(3.14) ahead), such that for every τ ∈ (0, τ̄ε) there holds

Aqzτ ∈ L∞(0, T ;L2(Ω)) and ωτ ∈ L∞(0, T ;L2(Ω)), (3.7)

with ωτ a selection in ∂Z ,Z∗R1(ẑ
′
τ) which fulfills (3.5). Therefore, the functions (tτ, zτ, ẑτ)

satisfy

∂R1(ẑ
′
τ(t)) + εẑ′τ(t) + DzI(tτ(t), zτ(t)) � 0 in L2(Ω) for a.a. t ∈ (0, T ). (3.8)
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Furthermore, there exist constants C, C(ε), C(σ) > 0, with C(ε) ↑ +∞ as ε ↓ 0, such that

for all ε > 0 and τ ∈ (0, τ̄ε) the following estimates hold:

sup
t∈[0,T ]

|I(tτ(t), zτ(t))| � C, (3.9a)

‖zτ‖L∞(0,T ;W 1,q(Ω)) + ‖ẑτ‖L∞(0,T ;W 1,q(Ω)) � C, (3.9b)

‖zτ‖L∞(0,T ;W 1+σ,q(Ω)) � C(σ) for all 0 < σ < 1
q
, (3.9c)

‖ẑ′τ‖L2(0,T ;H1(Ω)) + ‖ẑ′τ‖L∞(0,T ;L2(Ω)) � C(ε), (3.9d )

‖ẑτ‖W 1,1(0,T ;H1(Ω)) � C, (3.9e)

‖Aq(zτ)‖L∞(0,T ;L2(Ω)) � C, (3.9f )

‖ωτ‖L∞(0,T ;L2(Ω)) � C (3.9g)

‖uτ‖L∞(0,T ;H2(Ω)) � C, (3.9h)

‖û′τ‖L2(0,T ;W 1,3(Ω)) � C(ε), (3.9i )

‖ûτ‖W 1,1(0,T ;W 1,3(Ω)) � C, (3.9j )

‖DzI(tτ, zτ)‖L∞(0,T ;L2(Ω)) � C. (3.9k )

Based on Proposition 3.2, we derive a discrete energy inequality, cf. (3.11) below,

involving the Fenchel–Moreau conjugate of the functional Rε w.r.t. the scalar product in

L2(Ω), namely the functional

R∗
ε : L2(Ω) → [0,+∞) defined by R∗

ε (ξ) :=
1

2ε
min

η∈∂R1(0)
‖ξ − η‖2

L2(Ω) . (3.10)

Observe that we are in a position to work with this Legendre transform of Rε, and not

with the one w.r.t. the (Z ,Z∗)-duality, relying on the fact that DzI(tτ(t), zτ(t)) ∈ L2(Ω) for

almost all t ∈ (0, T ), thanks to (3.7).

Corollary 3.3 Under Assumptions 2.1, 2.2 and 2.9, suppose that the initial datum z0 fulfills

(3.6).

Then, there exists C > 0 such that for every ε > 0 and τ ∈ (0, τ̄ε) the functions zτ, ẑτ
comply with the discrete ED inequality for every 0 � s � t � T∫ tτ(t)

tτ(s)

(
Rε(ẑ

′
τ(r)) + R∗

ε (−DzI(tτ(r), zτ(r)))
)

dr + I(t, ẑτ(t))

� I(s, ẑτ(s)) +

∫ tτ(t)

tτ(s)

∂tI(r, ẑτ(r)) dr

+ C sup
t∈[0,T ]

‖zτ(t) − ẑτ(t)‖L2(Ω)

∫ tτ(t)

tτ(s)

(|tτ(r) − r| + ‖zτ(r) − ẑτ(r)‖L6(Ω)) dr.

(3.11)

Therefore, there exists a constant C > 0 such that for every ε > 0 and τ ∈ (0, τ̄ε)

sup
t∈[0,T ]

|I(t, ẑτ(t))| � C, (3.12a)∫ T

0

(
Rε(ẑ

′
τ(r)) + R∗

ε (−DzI(tτ(r), zτ(r)))
)

dr � C . (3.12b)
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Let us mention that (3.11) will be the starting point of the vanishing-viscosity analysis

developed in Section 6. We postpone the proof of Corollary 3.3 to the end of this section.

Let us now comment on the proof of Proposition 3.2: The enhanced spatial regularity

(3.7) leads to (3.8) as a subdifferential inclusion in L2(Ω). Estimates (3.9) and (3.7) will be

proved by performing on equation (3.5) the following a priori estimates (the last of which

can be carried out only formally):

Energy estimate based on the ED inequality

I(tτ(t), zτ(t)) +

∫ tτ(t)

0

Rε(ẑ
′
τ(s)) ds � I(0, z0) +

∫ tτ(t)

0

∂tI(s, zτ(s)) ds (3.13)

for every t ∈ [0, T ], it leads to the uniform bounds (3.9a)–(3.9b). Observe that the

proof of (3.13) works for every τ > 0.

We then choose

τ̄ε := τ(ε,M) according to Proposition 3.1, with M � sup
τ>0

‖zτ‖L∞(0,T ;W 1,q(Ω)) . (3.14)

First regularity estimate: In view of estimate (2.15), from the estimate for zτ in

L∞(0, T ;W 1,q(Ω)), we deduce (3.9h).

Enhanced energy estimate: It consists in differentiating (3.5) w.r.t. time (on the time-

discrete level), and testing it by ẑ′τ. In view of the coercivity property (2.1) of the

elliptic operator Aq , this gives estimates (3.9d) & (3.9e) for ẑ′τ.

Second regularity estimate: Estimates (3.9i) and (3.9j) for û′τ derive from (3.9d) and (3.9e),

respectively, via the continuous dependence estimate (2.17).

Third regularity estimate: It consists in testing (3.5) by (the formally written term) ∂tAqzτ.

This gives rise to estimate (3.9f), which induces the spatial regularity (3.9c) by

applying Proposition 2.8, and it induces (3.9g) by a comparison argument in (3.5).

We will carry out the proof of the above mentioned a priori estimates in Lemmas 3.4 and

3.5 ahead. More precisely,

(1) The energy and the enhanced energy estimates (3.9a)–(3.9b), (3.9d)–(3.9e) and (3.9h)–

(3.9j) will be proved in Lemma 3.4.

These estimates can be rendered rigorously on the discrete equation (3.5). In their

proof, we shall revisit the calculations developed in [19, Section 5], relying on the

novel estimates provided by Lemmas 2.11 and 2.13.

(2) The third regularity estimate (3.9f), along with its consequences (3.9c), (3.9g) and

(3.9k), will be proved in Lemma 3.5.

Observe that it cannot be performed directly on (3.5). In fact, it would involve testing

the subdifferential inclusion (3.5), set in Z∗, by the difference 1
τ
(Aqzτ(t)−Aqzτ(t)), which

then should belong to Z . This cannot be rigorous, since Aqzτ(t) is in general an element

of Z∗, only. Therefore, in the proof of Lemma 3.5, we shall perform all the calculations

on an approximate version of (3.5), featuring a regularized version of the dissipation

potential R1, cf. (3.28) ahead.
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Lemma 3.4 Under Assumptions 2.1, 2.2 and 2.9, and the condition that the initial datum

z0 ∈ Z fulfills (3.6), estimates (3.9a)–(3.9b), (3.9d)–(3.9e) and (3.9h)–(3.9j) hold true for

every τ > 0.

Proof The discrete ED inequality (3.13) can be derived by choosing the competitor z = zτk
in the minimum problem (3.1), which leads to

I(tτk+1, z
τ
k+1) + τRε

(
zτk+1 − zτk

τ

)
� I(tτk+1, z

τ
k) = I(tτk, z

τ
k) +

∫ tτk+1

tτk

∂tI(s, zτk) ds.

Then, (3.13) follows upon summing over the index k. In view of estimate (2.23), on the

power functional ∂tI , and Assumption 2.9, the right-hand side of (3.13) is uniformly

bounded. Since the second term on its L.H.S. is non-negative, we immediately conclude

estimate (3.9a). Then, the coercivity property (2.18), combined with Poincaré’s inequal-

ity, gives (3.9b) for zτ. The bound for ẑτ then trivially follows. From the bound for∫ T

0
Rε(ẑ

′
τ(t)) dt, we also infer that ε1/2‖ẑ′τ‖L2(0,T ;L2(Ω)) � C .

Thanks to (2.15), we have that

‖uτ‖L∞(0,T ;H2(Ω)) � c1 sup
t∈(0,T )

P (0, zτ(t))
(
‖�τ‖L∞(0,T ;L2(Ω)) + ‖uD,τ‖L∞(0,T ;H2(Ω))

)
� C ′,

where we have used estimate (3.9b), as well as Assumption 2.9. Then, (3.9h) follows.

In order to derive estimates (3.9d) and (3.9e), we follow the proof of [19, Lemma 5.3]

and observe that, by the one-homogeneity of R1, (3.5) rewrites as

{
〈hτ(ρ), ẑ′τ(ρ)〉Z = R1(ẑ

′
τ(ρ)) for all ρ ∈ (tτk, t

τ
k+1)

〈hτ(r), ẑ′τ(ρ)〉Z � R1(ẑ
′
τ(ρ)) for all r ∈ [0, T ] \ {tτ0, . . . , tτN},

where we have used the place-holder hτ(ρ) := −(εẑ′τ(ρ) + Aqzτ(ρ) + DzĨ(tτ(ρ), zτ(ρ))).

Subtracting the second relation from the first one gives τ−1 〈hτ(ρ) − hτ(r), ẑ
′
τ(ρ)〉Z � 0 for

ρ ∈ (tτk, t
τ
k+1) and r ∈ (tτk−1, t

τ
k). Hence, we get

ετ−1

∫
Ω

(ẑ′τ(ρ)−ẑ′τ(r))ẑ
′
τ(ρ) dx︸ ︷︷ ︸

= I1

+ τ−1 〈Aqzτ(ρ) − Aqzτ(r), ẑ
′
τ(ρ)〉Z︸ ︷︷ ︸

= I2

� −τ−1

∫
Ω

(DzĨ(tτ(ρ), zτ(ρ))−DzĨ(tτ(r), zτ(r)))ẑ
′
τ(ρ) dx︸ ︷︷ ︸

= I3

.

(3.15)
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Observe that I1 � 1
2

∫
Ω
(|ẑ′τ(ρ)|2−|ẑ′τ(r)|2) dx, whereas it follows from estimate (2.1) that

I2 � cq

∫
Ω

(
1+|∇zτ(ρ)|2+|∇zτ(r)|2

)(q−2)/2 |∇ẑ′τ(ρ)|2 dx

� Cq

∫
Ω

(
1+|∇ẑτ(ρ)|2

)(q−2)/2 |∇ẑ′τ(ρ)|2 dx (3.16)

for some positive constant Cq , where we have used that |∇ẑτ(ρ)|2 � 2(|∇zτ(ρ)|2+|∇zτ(r)|2).
As for I3, by the Hölder inequality

|I3| � Cτ−1‖DzĨ(tτ(ρ), zτ(ρ))−DzĨ(tτ(r), zτ(r))‖L2(Ω)‖ẑ′τ(ρ)‖L2(Ω) .

Relying on (2.32), we then find

|I3| � C(1 + ‖ẑ′τ(ρ)‖L6(Ω))‖ẑ′τ(ρ)‖L2(Ω) , (3.17)

where we have also used that supt∈[0,T ] Cf′′ (zτ(ρ), zτ(r)) + P (zτ(ρ), zτ(r))) � C thanks to

Assumption 2.2 and the previously proved estimate (3.9b). Hence, multiplying (3.15) by τ,

we infer

ε

2
‖ẑ′τ(ρ)‖2

L2(Ω) + Cqτ

∫
Ω

(
1+|∇ẑτ(ρ)|2

)(q−2)/2 |∇ẑ′τ(ρ)|2 dx

�
ε

2
‖ẑ′τ(r)‖2

L2(Ω) + τC(1 + ‖ẑ′τ(ρ)‖L6(Ω))‖ẑ′τ(ρ)‖L2(Ω) ,

(3.18)

which leads, upon summation, to the following estimate on the time interval (t0, t), with

t0 ∈ (0, tτ1) and t ∈ (tτk, t
τ
k+1):

ε

2
‖ẑ′τ(t)‖2

L2(Ω) + Cq

∫ tτ(t)

tτ1

∫
Ω

(
1 + |∇ẑτ(ρ)|2

)(q−2)/2|∇ẑ′τ(ρ)|2 dx dρ

�
ε

2
‖ẑ′τ(t0)‖2

L2(Ω) +
Cq

4

∫ tτ(t)

tτ1

(1 + ‖ẑ′τ(ρ)‖2
H1(Ω)) dρ + C

∫ tτ(t)

tτ1

‖ẑ′τ(ρ)‖2
L2(Ω) dρ,

(3.19)

where we have used Young’s inequality, and the continuous embedding H1(Ω) ⊂ L6(Ω),

to handle the last term on the R.H.S. of (3.18). For the first time step with t0 ∈ (0, tτ1),

following the very same calculations as in the proof of [19, Lemma 5.3], we obtain

ε‖ẑ′τ(t0)‖2
L2(Ω) + Cqτ

∫
Ω

(1 + |∇ẑτ(t0)|2)(q−2)/2|∇ẑ′τ(t0)|2 dx

�
ε

2
‖ẑ′τ(t0)‖2

L2(Ω) + ε−1‖DzI(0, z0)‖2
L2(Ω) +

Cqτ

4
(1 + ‖ẑ′τ(t0)‖2

H1(Ω)) + Cτ‖ẑ′τ(t0)‖2
L2(Ω) .

(3.20)
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Summing (3.19) with (3.20), and adding the term
Cqτ

2

∫ tτ(t)

0
‖ẑ′τ(ρ)‖2

L2(Ω) dρ to both sides,

we thus end up with the following estimate:

ε

2
‖ẑ′τ(t)‖2

L2(Ω) + Cq

∫ tτ(t)

0

‖ẑ′τ(ρ)‖2
H1(Ω) dρ

� C + ε−1‖DzI(0, z0)‖2
L2(Ω) +

Cq

4

∫ tτ(t)

0

‖ẑ′τ(ρ)‖2
H1(Ω) dρ + C

∫ tτ(t)

0

‖ẑ′τ(ρ)‖2
L2(Ω) dρ .

(3.21)

Applying the discrete Gronwall Lemma (cf., e.g., [14, Chap. 2.2] or even [7, Lemme A.5]),

we get estimate (3.9d).

In order to prove (3.9e), which is uniform w.r.t. ε, we follow the proof of [19, Lemma

5.5]. Since ẑ′τ is not defined in the points tτk , we write (3.15) for ρ = mk and r = mk−1, with

mk := 1
2
(tτk−1 + tτk), k ∈ {2, . . . , N}, and set ẑ′τ(m0) := 0. Following the lines in the proof

of [19, Lemma 5.5], where also the first time step is discussed in detail, we arrive at the

following estimate (cf. [19, Formula (5.26)]): For all k ∈ {1, . . . , N}

ε

τ

∫
Ω

(
ẑ′τ(mk)−ẑ′τ(mk−1)

)
ẑ′τ(mk) dx + τ−1〈Aqzτ(mk) − Aqzτ(mk), ẑ

′
τ(mk)〉Z + ‖ẑ′τ(mk)‖2

L2(Ω)

� −1

τ

∫
Ω

(
DzĨ(tτk, zτ(mk))−DzĨ(tτk−1, zτ(mk))

)
ẑ′τ(mk) dx + ‖ẑ′τ(mk)‖2

L2(Ω)

+
δ1,k

τ

∣∣∣∣∫
Ω

DzI(0, z0)ẑ
′
τ(m1) dx

∣∣∣∣ ,
(3.22)

with the Kronecker symbol δi,j . Arguing as in the proof of [19, Lemma 5.5], by estimate

(2.1) and the fact that |∇ẑτ(mk)|2 � 2|∇zτ(mk)|2 + 2|∇zτ(mk−1)|2, it follows that the

left-hand side of (3.22) can be bounded from below by

L.H.S. �
ε

2τ
‖ẑ′τ(mk)‖L2(Ω)

(
‖ẑ′τ(mk)‖L2(Ω) − ‖ẑ′τ(mk−1)‖L2(Ω)

)
+ M2

k, (3.23)

with the abbreviation

M2
k := Cq

∫
Ω

(1 + |∇ẑτ(mk)|2)
q−2

2 |∇ẑ′τ(mk)|2 dx + ‖ẑ′τ(mk)‖2
L2(Ω)

and Cq from (3.16). As for the first term of the right-hand side of (3.22), in place of

estimate (3.17), we shall use that∣∣∣∣1τ
∫
Ω

(
DzĨ(tτk, zτ(mk))−DzĨ(tτk−1, zτ(mk−1))

)
ẑ′τ(mk) dx

∣∣∣∣ � C(1+‖ẑ′τ(mk)‖L4(Ω))‖ẑ′τ(mk)‖L4(Ω),

(3.24)

which derives from estimate (2.33) for ‖DzĨ(tτk, zτ(mk))−DzĨ(tτk−1, zτ(mk−1))‖L4/3(Ω). We

then continue (3.24) by using the trivial estimate C(1 + ‖ẑ′τ(mk)‖L4(Ω))‖ẑ′τ(mk)‖L4(Ω) �
C‖ẑ′τ(mk)‖2

L4(Ω) + C , and then applying the Gagliardo–Nirenberg estimate ‖ζ‖2
L4(Ω) �
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c‖ζ‖2(1−θ)
L1(Ω)

‖ζ‖2θ
H1(Ω), with θ = 9/10, and Young’s inequality, so that

∣∣∣∣1τ
∫
Ω

(
DzĨ(tτk, zτ(mk))−DzĨ(tτk−1, zτ(mk−1))

)
ẑ′τ(mk) dx

∣∣∣∣
�

1

2
min{Cq, 1}‖ẑ′τ(mk)‖2

H1(Ω) + C‖ẑ′τ(mk)‖L1(Ω)R1(ẑ
′
τ(mk)) + C ,

where we have also used that ‖ẑ′τ(mk)‖2
L1(Ω) � ‖ẑ′τ(mk)‖L1(Ω)R1(ẑ

′
τ(mk)). Therefore, the

right-hand side of (3.22) can be bounded as follows:

R.H.S. �
1

2
M2

k + C
(
1 + ‖ẑ′τ(mk)‖L2(Ω)R1(ẑ

′
τ(mk)) + δ1,kτ

−1|〈DzI(0, z0), ẑ
′
τ(m1)〉Z |

)
. (3.25)

From (3.23) and (3.25), after some algebra it results that (cf. [19, (5.28)])

2‖ẑ′τ(mk)‖L2(Ω)

(
‖ẑ′τ(mk)‖L2(Ω) − ‖ẑ′τ(mk−1)‖L2(Ω)

)
+

τ

ε
‖z′τ(mk)‖2

L2(Ω) +
τ

ε
M2

k

�
4Cτ

ε
+

4Cτ

ε
‖ẑ′τ(mk)‖L1(Ω)R1(ẑ

′
τ(mk)) + 4C

δ1,k

ετ

∣∣∣∣∫
Ω

DzI(0, z0)ẑ
′
τ(m1) dx

∣∣∣∣ . (3.26)

At this point, we apply a new version of Gronwall Lemma, exactly tailored to estimate

(3.26), cf. [19, Lemma B.1]. We then perform the very same calculations as in the proof

of [19, Lemma 5.5]. Thus, we obtain (3.9e).

Finally, we use (2.17) and deduce that for almost all t ∈ (0, T ) there holds

‖û′τ(t)‖W 1,3(Ω) =
1

τ
‖uτk+1 − uτk‖W 1,3(Ω)

�
c2

τ
P (zkτ , z

k+1
τ )2

(
τ + ‖zτk+1−zτk‖L6(Ω)

) (
‖�‖C1([0,T ];W−1,3(Ω)) + ‖uD(t)‖C1([0,T ];W 1,3(Ω))

)
� C(1 + ‖ẑ′τ(t)‖L6(Ω)),

where the second inequality follows from (3.9b) and Assumption 2.9. Hence, estimates

(3.9d) and (3.9e) imply (3.9i) and (3.9j), respectively. �

We postpone to Section 3.1 the proof of the forthcoming Lemma 3.5.

Lemma 3.5 Under Assumptions 2.1, 2.2 and 2.9, and, in addition, (3.6) on the initial datum

z0, for every τ ∈ (0, τ̄ε) the enhanced regularity (3.7) and estimates (3.9f)–(3.9g) hold true,

whence (3.9c) (3.9k). Furthermore, the subdifferential inclusion (3.8) is satisfied in L2(Ω).

The proof of Proposition 3.2 now follows from combining Lemmas 3.4 and 3.5.

Let us finally give the proof of Corollary 3.3: the very same calculations as in the proof

of [19, Lemma 6.1] (cf. also the proof of Theorem 4.1 ahead), show that the interpolants
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zτ, ẑτ fulfill at every 0 � s � t � T∫ tτ(t)

tτ(s)

(
Rε(ẑ

′
τ)(r) + R∗

ε (−DzI(tτ(r), zτ(r)))
)

dr + I(t, ẑτ(t))

= I(s, ẑτ(s)) +

∫ tτ(t)

tτ(s)

∂tI(r, ẑτ(r)) dr

−
∫ tτ(t)

tτ(s)

∫
Ω

(
Aqzτ(r)−Aqẑτ(r)

)
ẑ′τ(r) dr︸ ︷︷ ︸

F1

−
∫ tτ(t)

tτ(s)

∫
Ω

(
DzĨ(tτ(r), zτ(r)) − DzĨ(r, ẑτ(r))

)
ẑ′τ(r) dr︸ ︷︷ ︸

F2

.

Observe that the terms F1 and F2 feature integrals, instead of duality pairings between

Z∗ and Z , thanks to (2.34) and (3.7). By monotonicity, we have F1 � 0, whereas, the very

same argument leading to (3.17) yields

|F2| � C
∫ tτ(t)

tτ(s)
(|(tτ(r) − r| + ‖zτ(r) − ẑτ(r)‖L6(Ω))‖zτ(r) − ẑτ(r)‖L2(Ω) dr

� C supt∈[0,T ] ‖zτ(t) − ẑτ(t)‖L2(Ω)

∫ tτ(t)

tτ(s)
(|(tτ(r) − r| + ‖zτ(r) − ẑτ(r)‖L6(Ω)) dr,

whence (3.11).

It follows from (3.11) and (2.23) that∫ tτ(t)

0

(
Rε(ẑ

′
τ(r)) + R∗

ε (−DzI(tτ(r), zτ(r)))
)

dr + I(t, ẑτ(t)) � I(0, z0) + C

+ C
(
‖zτ‖L∞(0,T ;L2(Ω)) + ‖ẑτ‖L∞(0,T ;L2(Ω))

) (
1 +

∫ tτ(t)

0

‖zτ(r) − ẑτ(r)‖L6(Ω) dr

)
� C ,

where the very last estimate ensues from (3.9b) and (3.9e). Recalling that I is bounded

from below (cf. (2.18)), we thus infer that supt∈[0,T ] |I(t, ẑτ(t))| � C , i.e., (3.12a), as well as

(3.12b).

3.1 Proof of Lemma 3.5

Observe that, once estimate (3.9f) is proved, (3.9k) then follows by observing that DzĨ(tτ, zτ)

is bounded in L∞(0, T ;L2(Ω)) in view of estimate (2.34) for DzĨ , combined with the

previously obtained (3.9b).

Hence, let us now turn to the proof of (3.9f), which is a consequence of the Third

regularity estimate. In order to render it on the time-discrete level, we need to work

on an approximate version of the discrete equation (3.5), where the dissipation metric

R1 inducing R1 is replaced, for technical reasons that will be apparent in the proof of

Lemma 3.6 below, by a twice-differentiable function. Observe that the standard Yosida
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approximation of R1, namely the function

R1,ν : � → � defined by R1,ν(r) := min
y∈�

(
|y − r|2

2ν
+ R1(y)

)
=

{
1
2ν
r2 if r > −νκ

−κr − νκ2

2
if r � −νκ

(3.27)

with ν > 0 fixed, does not enjoy this regularity, as it is only differentiable on �, cf. [7].

We will thus resort to a regularization of R1 devised in [13] and defined in this way.

Let 
 ∈ C∞(�) satisfy supp(
) ⊂ [−1, 1] and ‖
‖L1(�) = 1. We then define

R1,ν(r) :=

∫ r

0

∫ ν2

−ν2

R′
1,ν(σ − s)
ν(s) ds dσ (3.28)

where 
ν(s) = ν−2
(s/ν2). In [13], it has been proved that

R1,ν ∈ C∞(�) is convex and satisfies − ν|r| � R1,ν(r) � R1(r) + ν|r| for all r ∈ �.

(3.29a)

Of course, for r > 0 the latter estimate is trivially satisfied, since in that case, R1(r) = ∞.

Inequality (3.29a) in fact derives from the estimate

|R′
1,ν(r) − R′

1,ν(r)| � ν for all r ∈ �. (3.29b)

Since R′
1,ν is Lipschitz, from (3.29b), we in fact deduce that R1,ν grows at most quadratically

on �. The function R1,ν induces an integral functional

R1,ν : L2(Ω) → � defined by R1,ν(η) :=

∫
Ω

R1,ν(η(x)) dx for all η ∈ L2(Ω).

(3.29c)

Observe that R1,ν is Gâteaux-differentiable on L2(Ω), with derivative DR1,ν(η) defined

by DR1,ν(η)(x) := R
′
1,ν(η(x)) for almost all x ∈ Ω. In fact, R

′
1,ν(η) ∈ L2(Ω) by the

linear growth of R
′
1,ν . Indeed, as soon as η ∈ Z , DR1,ν(η) coincides with the Gâteaux

derivative DZ ,Z∗R1,ν(η). For our purposes, the following closedness property relating

DR1,ν : L2(Ω) → L2(Ω) to the convex subdifferential ∂R1 : L2(Ω) � L2(Ω) will have a

prominent role: for any (t0, t1) ⊂ (0, T ) and all sequences (ην)ν , η, ξ ∈ L2(t0, t1;L
2(Ω))

there holds⎧⎪⎪⎨⎪⎪⎩
ην ⇀ η as ν ↓ 0 in L2(t0, t1;L

2(Ω)),

DR1,ν(ην) ⇀ ξ as ν ↓ 0 in L2(t0, t1;L
2(Ω)),

lim supν↓0

∫ t1
t0

∫
Ω

DR1,ν(ην)ην dx dt �
∫ t1
t0

∫
Ω
ξη dx dt

⇒ ξ(t) ∈ ∂R1(η(t)) for almost all t ∈ (t0, t1).
(3.29d )

We refer to [13, Proposition 3.1] for the proof of (3.29d).

For a fixed time step τ > 0, given a partition {0 = tτ0 < . . . < tτN = T} of [0, T ], we

now incrementally solve the minimum problems featuring the regularized functionals R1,ν .
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Namely, starting from z
τ,ν
0 := z0, we set

z
τ,ν
k+1 ∈ Argmin

{
I(tτk+1, z) + τR1,ν

(
z − zτk

τ

)
+

ε

τ

∥∥∥∥z − zτk
τ

∥∥∥∥2

L2(Ω)

: z ∈ Z
}
,

k ∈ {1, . . . , N − 1}. (3.30)

The analogue of Proposition 3.1 holds. In particular, the (left- and right-continuous)

piecewise constant and linear interpolants zτ,ν , zτ,ν and ẑτ,ν of the elements (zτ,νk )Nk=0 satisfy

the following approximate version of (3.8):

DR1,ν(ẑ
′
τ,ν(t)) + εẑ′τ,ν(t) + Aqzτ,ν(t) + DzĨ(tτ(t), zτ,ν(t)) = 0 in L2(Ω) for a.a. t ∈ (0, T ),

(3.31)

where we have in fact used that DZ ,Z∗R1,ν(ẑ
′
τ,ν) = DR1,ν(ẑ

′
τ,ν). In particular, observe that,

by comparison in (3.31), there holds

Aqzτ,ν(t) ∈ L2(Ω) for almost all t ∈ (0, T ). (3.32)

For the functions (zτ,ν , ẑτ,ν , uτ,ν , ûτ,ν)τ,ν , where uτ,ν , ûτ,ν are the interpolants of the elements

umin(t
k
τ , z

τ,ν
k ), we are now able to derive only some of estimates (3.9) (in fact, (3.9a, 3.9b,

3.9h)) uniformly w.r.t. all parameters ε, τ and ν. The remaining estimates will be proved

only with a constant blowing up with ε > 0, cf. also Remark 3.7 later on. However, this

will be sufficient for our purposes. On the one hand, passing to the limit with ν ↓ 0 we

will derive from estimates (3.33f) and (3.33g) that the discrete solutions of (3.5) enjoy

the additional properties Aq(zτ) ∈ L∞(0, T ;L2(Ω)), ωτ ∈ L∞(0, T ;L2(Ω)) for a selection

ωτ ∈ ∂Z ,Z∗ (R1(ẑ
′
τ)), and thus we will conclude that (3.5) in fact holds as subdifferential

inclusion in L2(Ω). On the other hand, estimate (3.34) below will be the starting point for

deriving estimate (3.9f) for Aq(zτ) with constant uniform w.r.t. ε, relying on the previously

proved estimate (3.9e) for ẑτ.

Lemma 3.6 Under Assumptions 2.1, 2.2 and 2.9, and under condition (3.6) on the initial

datum z0, there exist constants C ′, C ′(ε), C ′(ε, σ) > 0, with C ′(ε), C ′(ε, σ) ↑ +∞ as ε ↓ 0,

such that for all ε > 0, τ ∈ (0, τ̄ε), and ν > 0 the following estimates hold:

sup
t∈[0,T ]

|I(tτ(t), zτ,ν(t))| � C, (3.33a)

‖zτ,ν‖L∞(0,T ;W 1,q(Ω)) + ‖ẑτ,ν‖L∞(0,T ;W 1,q(Ω)) � C, (3.33b)

‖zτ,ν‖L∞(0,T ;W 1+σ,q(Ω)) � C(ε, σ) for all 0 < σ < 1
q
, (3.33c)

‖ẑτ,ν‖W 1,2(0,T ;H1(Ω)) + ‖ẑ′τ,ν‖L∞(0,T ;L2(Ω)) � C(ε), (3.33d )

‖ẑτ,ν‖W 1,1(0,T ;H1(Ω)) � C(ε), (3.33e)

‖Aq(zτ,ν)‖L∞(0,T ;L2(Ω)) � C(ε), (3.33f )

‖ωτ,ν‖L∞(0,T ;L2(Ω)) � C(ε), (3.33g)

‖uτ,ν‖L∞(0,T ;H2(Ω)) � C, (3.33h)

‖ûτ,ν‖W 1,2(0,T ;W 1,3(Ω)) � C(ε), (3.33i )
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with ωτ,ν := DR1,ν(ẑ
′
τ,ν). Furthermore, there exists a constant C > 0 such that for all ε,

τ ∈ (0, τ̄ε), and ν > 0 there holds

‖Aqzτ,ν(t)‖L2(Ω) � C

(
1 +

∫ tτ(t)

0

‖ẑ′τ,ν(ρ)‖L6(Ω) dρ

)
for all t ∈ [0, T ]. (3.34)

Proof Estimates (3.33a)–(3.33b) (and, consequently, (3.33h) for uτ,ν) can be derived

by the very same arguments as in the proof of Lemma 3.4. Let us point out that

we may suppose that supτ,ν ‖zτ,ν‖L∞(0,T ;W 1,q(Ω)) � M, with M the same constant as

in (3.14).

Instead, the calculations for (3.33d) have to be slightly modified in comparison to the

proof of Lemma 3.4. Indeed, the calculations therein rely on the one-homogeneity of R1,

whereas R1,ν no longer has this property. Therefore, we argue in this way: keeping the

short-hand notation ĥτ,ν(t) := −(εẑ′τ,ν(t) +Aqzτ,ν(t) + DzĨ(tτ(t), zτ,ν(t))), and writing ωτ,ν(t)

in place of DR1,ν(ẑ
′
τ,ν(t)), (3.31) rephrases as ωτ,ν(t) = ĥτ,ν(t). We subtract (3.31) at time

r ∈ (tτk−1, t
τ
k) from (3.31) at time t ∈ (tτk, t

τ
k+1) and test the resulting relation by ẑ′τ,ν(t).

Therefore, we obtain

R∗
1,ν(ωτ,ν(t)) −R∗

1,ν(ωτ,ν(r)) �

∫
Ω

(
ωτ,ν(t)−ωτ,ν(r)

)
ẑ′τ,ν(t) dx

=

∫
Ω

(
ĥτ,ν(t)−ĥτ,ν(r)

)
ẑ′τ,ν(t) dx, (3.35)

where R∗
1,ν denotes the Fenchel–Moreau convex conjugate of R1,ν , and we have used that

ẑ′τ,ν(t) ∈ ∂R∗
1,ν(ωτ,ν(t)) for all t ∈ (tτk, t

τ
k+1) and for all k = 0, . . . , N − 1. (3.36)

From (3.35), we then obtain the analogue of (3.15), namely

1
τ
R∗

1,ν(ωτ,ν(t)) + ε
τ

∫
Ω
(ẑ′τ,ν(t)−ẑ′τ,ν(r))ẑ

′
τ,ν(t) dx + 1

τ

∫
Ω
(Aqzτ,ν(t)−Aqzτ,ν(r))ẑ

′
τ,ν(t) dx

� 1
τ
R∗

1,ν(ωτ,ν(r)) − 1
τ

∫
Ω
(DzĨ(tτ(t), zτ,ν(t))−DzĨ(tτ(r), zτ,ν(r)))ẑ

′
τ,ν(t) dx. (3.37)

Observe that (3.37) contains the same terms as in (3.15), but with the additional contribu-

tion coming from R∗
1,ν . Following the lines of the proof of Lemma 3.4 (see also [19, Lemma

5.3]) we ‘integrate’ over the time interval (t0, t) with t0 ∈ (0, tτ1) and t ∈ (tτk, t
τ
k+1) and get

R∗
1,ν(ωτ,ν(t)) +

ε

2
‖ẑ′τ,ν(t)‖2

L2(Ω) + Cq

∫ tτ(t)

tτ1

∫
Ω

(
1 + |∇ẑτ,ν(ρ)|2

)(q−2)/2|∇ẑ′τ,ν(ρ)|2 dx dρ

� R∗
1,ν(ωτ,ν(t0)) +

ε

2
‖ẑ′τ,ν(t0)‖2

L2(Ω) + C

∫ tτ(t)

tτ1

(1 + ‖ẑ′τ,ν(ρ)‖L6(Ω))‖ẑ′τ,ν(ρ)‖L2(Ω) dρ,

(3.38)

with Cq from (3.16). We observe that R∗
1,ν(ωτ,ν(t)) � 0, and therefore on the left-hand side

we get the exact analogue of the left-hand side of (3.19). For the right-hand side, we have
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to deal with the ‘extra’-term R∗
1,ν(ωτ,ν(t0)). For this, we observe that

R∗
1,ν(ωτ,ν(t0)) = R∗

1,ν(ωτ,ν(t0)) −R∗
1,ν(0) �

∫
Ω

(
z
τ,ν
1 − z0

τ

)
ωτ,ν(t0) dx

=

∫
Ω

(zτ,ν1 − z0)

τ

(
−ε

z
τ,ν
1 − z0

τ
− DzI(tτ1, z

τ,ν
1 )

)
dx

= −ε‖ẑ′τ,ν(t0)‖2
L2(Ω) −

∫
Ω

DzI(tτ1, z
τ,ν
1 )ẑ′τ,ν(t0) dx

(3.39)

and therefore, the right-hand side of (3.38) can be bounded as follows:

R.H.S. � −
∫
Ω

DzI(tτ1, z
τ,ν
1 )ẑ′τ,ν(t0) dx− ε

2
‖ẑ′τ,ν(t0)‖2

L2(Ω)

+C

∫ tτ(t)

tτ1

(1 + ‖ẑ′τ,ν(ρ)‖L6(Ω))‖ẑ′τ,ν(ρ)‖L2(Ω) dρ. (3.40)

Writing DzI(tτ1, z
τ,ν
1 ) = Aq(z

τ,ν
1 ) − Aq(z0) + DzĨ(tτ1, z

τ,ν
1 ) − DzĨ(0, z0) + DzI(0, z0) and per-

forming calculations analogous to those developed in the proof of Lemma 3.4, we obtain

−
∫
Ω

DzI(tτ1, z
τ,ν
1 )ẑ′τ,ν(t0) dx � −Cqτ

∫
Ω

(1+|∇ẑτ,ν(t0)|2)(q−2)/2|∇ẑ′τ,ν(t0)|2 dx +
ε

2
‖ẑ′τ,ν(t0)‖2

L2(Ω)

+ ε−1‖DzI(0, z0)‖2
L2(Ω) + cτ(1 + ‖ẑ′τ,ν(t0)‖L6(Ω))‖ẑ′τ,ν(t0)‖L2(Ω) .

Combining this with (3.40), summing the resulting inequality with (3.38), and adding

Cq

∫ tτ(t)

0
‖ẑ′τ,ν(ρ)‖2

L2(Ω) dρ to both terms of the resulting estimate, we obtain

ε

2
‖ẑ′τ,ν(t)‖2

L2(Ω) + Cq

∫ tτ(t)

0

‖ẑ′τ,ν(ρ)‖2
L2(Ω) dρ

+ Cq

∫ tτ(t)

0

∫
Ω

(
1 + |∇ẑτ,ν(ρ)|2

)(q−2)/2|∇ẑ′τ,ν(ρ)|2 dx dρ

� ε−1‖DzI(0, z0)‖2
L2(Ω) + Cq

∫ tτ(t)

0

‖ẑ′τ,ν(ρ)‖2
L2(Ω) dρ

+ C

∫ tτ(t)

0

(1 + ‖ẑ′τ,ν(ρ)‖L6(Ω))‖ẑ′τ,ν(ρ)‖L2(Ω) dρ

� C + ε−1‖DzI(0, z0)‖2
L2(Ω) + C

∫ tτ(t)

0

‖ẑ′τ,ν(ρ)‖2
L2(Ω) dρ +

Cq

4

∫ tτ(t)

0

‖ẑ′τ,ν(ρ)‖2
H1(Ω) dρ,

(3.41)

where in the last inequality we have used Young’s inequality, and the continuous embed-

ding H1(Ω) ⊂ L6(Ω), for the last term in the R.H.S. of (3.40) exactly as in the proof of

Lemma 3.4. Absorbing
∫ tτ(t)

0
‖ẑ′τ(ρ)‖2

H1(Ω) dρ, into the left-hand side, we conclude estimate

(3.33d) for ẑ′τ,ν , uniformly with respect to τ and ν (but not w.r.t. ε), and therefore also the

bound (3.33i) for û′τ,ν .

We are now in a position to carry out the time-discrete analogue of the Third reg-

ularity estimate. We multiply (3.31), written at time ρ ∈ (tτk, t
τ
k+1), by the difference
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(Aqzτ,ν(ρ)−Aqzτ,ν(r)), with r ∈ (tτk−1, t
τ
k), and integrate in space. Observe that this is now a

legal test, in view of (3.32). We thus obtain∫
Ω

DR1,ν(ẑ
′
τ,ν(ρ))(Aqzτ,ν(ρ)−Aqzτ,ν(r)) dx︸ ︷︷ ︸

I1

+ ε

∫
Ω

ẑ′τ,ν(ρ)(Aqzτ,ν(ρ)−Aqzτ,ν(r)) dx︸ ︷︷ ︸
I2

+

∫
Ω

Aqzτ,ν(ρ)(Aqzτ,ν(ρ)−Aqzτ,ν(r)) dx︸ ︷︷ ︸
I3

= −
∫
Ω

DĨ(tτ(ρ), zτ,ν(ρ))(Aqzτ,ν(ρ)−Aqzτ,ν(r)) dx︸ ︷︷ ︸
I4

.

(3.42)

Now, we have that

I1 =

∫
Ω

∇
(
R′

1,ν(ẑ
′
τ,ν(ρ))

)
·
(
(1 + |∇zτ,ν(ρ)|2)q/2−1∇zτ,ν(ρ)−(1 + |∇zτ,ν(r)|2)q/2−1∇zτ,ν(r)

)
dx

=

∫
Ω

R′′
1,ν(ẑ

′
τ,ν(ρ))∇ẑ′τ,ν(ρ)

×
(
(1 + |∇zτ,ν(ρ)|2)q/2−1∇zτ,ν(ρ)−(1 + |∇zτ,ν(r)|2)q/2−1∇zτ,ν(r)

)
dx

(1)

� 0,

where for the first equality we have used that DR1,ν(ẑ
′
τ,ν(ρ)) = R′

1,ν(ẑ
′
τ,ν(ρ)) is an element

in W 1,q(Ω): indeed, ẑ′τ,ν(ρ) ∈ W 1,q(Ω) ⊂ C0(Ω), so that there exists a constant M > 0

with |ẑ′τ,ν(ρ)| � M a.e. in Ω; on the other hand R′
1,ν ∈ C∞(�), hence its restriction to the

ball BM(0) is Lipschitz, and the composition of a Lipschitz function with an element in

W 1,q(Ω) belongs to W 1,q(Ω). Estimate (1) follows from the fact that R′′
1,ν � 0 on �, and

from the convexity inequality

(A− B) ·
(
(1 + |A|2)q/2−1A−(1 + |B)|2)q/2−1B

)
� 0 for all A, B ∈ �3,

applied with A = ∇zτ,ν(ρ) and B = ∇zτ,ν(r). Analogously, we have

I2 =

∫
Ω

∇ẑ′τ,ν(ρ) ·
(
(1 + |∇zτ,ν(ρ)|2)q/2−1∇zτ,ν(ρ)−(1 + |∇zτ,ν(r)|2)q/2−1∇zτ,ν(r)

)
dx � 0.

We have

I3 �
1

2
‖Aqzτ,ν(ρ)‖2

L2(Ω) −
1

2
‖Aqzτ,ν(r)‖2

L2(Ω) .

Finally,

I4 =

∫
Ω

DĨ(tτ(ρ), zτ,ν(ρ))Aqzτ,ν(ρ) dx−
∫
Ω

DĨ(tτ(r), zτ,ν(r))Aqzτ,ν(r) dx

−
∫
Ω

(
DĨ(tτ(ρ), zτ,ν(ρ))−DĨ(tτ(r), zτ,ν(r))

)
Aqzτ,ν(r) dx .
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Summing with respect to the index k, we thus obtain for any t ∈ (tτ1, T ) and for σ ∈ (0, tτ1)

(remember that zτ,ν(r) = zτ,ν(ρ) and tτ(r) = tτ(ρ) for r ∈ (tτk−1, t
τ
k] and ρ ∈ [tτk, t

τ
k+1))

1

2
‖Aqzτ,ν(t)‖2

L2(Ω) �
1

2
‖Aqzτ,ν(σ)‖2

L2(Ω) +

∫
Ω

DĨ(tτ(σ), zτ,ν(σ))Aqzτ,ν(σ) dx

−
∫
Ω

DĨ(tτ(t), zτ,ν(t))Aqzτ,ν(t) dx

+

∫ tτ(t)

tτ1

∫
Ω

1

τ

(
DĨ(tτ(ρ), zτ,ν(ρ))−DĨ(tτ(ρ), zτ,ν(ρ))

)
Aqzτ,ν(ρ) dx dρ

.
=I5 + I6 + I7 + I8.

We estimate via Hölder’s and Young’s inequalities

|I6| � ‖DĨ(tτ(σ), zτ,ν(σ))‖2
L2(Ω) +

1

4
‖Aqzτ,ν(σ)‖2

L2(Ω)

(2)

� C +
1

4
‖Aqzτ,ν(σ)‖2

L2(Ω),

|I7| � ‖DĨ(tτ(t), zτ,ν(t))‖2
L2(Ω) +

1

4
‖Aqzτ,ν(t)‖2

L2(Ω)

(1)

� C +
1

4
‖Aqzτ,ν(t)‖2

L2(Ω),

|I8| �

∫ tτ(t)

0

1

τ
‖DĨ(tτ(ρ), zτ,ν(ρ))−DĨ(tτ(ρ), zτ,ν(ρ))‖L2(Ω)‖Aqzτ,ν(ρ)‖L2(Ω) dρ

(3)

� C

∫ tτ(t)

0

1

τ
‖zτ,ν(ρ)−zτ,ν(ρ)‖L6(Ω)‖Aqzτ,ν(ρ)‖L2(Ω) dρ.

Here, (1) and (2) follow from (2.34) and from the bound ‖f′(zτ,ν(t))‖L∞(Ω)+P (zτ,ν(t), 0) � C ,

for a constant uniform w.r.t. t ∈ [0, T ], thanks to estimate (3.33b) for (zτ,ν)τ,ν; in-

stead, (3) is due to (2.32), again taking into account that supρ∈[0,T ](Cf′′ (zτ,ν(ρ), zτ,ν(ρ)) +

P (zτ,ν(ρ), zτ,ν(ρ))3) � C due to the bound (3.33b). All in all, we conclude

1

4
‖Aqzτ,ν(t)‖2

L2(Ω) �
3

4
‖Aqzτ,ν(σ)‖2

L2(Ω) + C

(
1 +

∫ tτ(t)

0

‖ẑ′τ,ν(ρ)‖L6(Ω)‖Aqzτ,ν(ρ)‖L2(Ω) dρ

)
,

and, with the discrete version of Gronwall’s Lemma from [14], we conclude that

‖Aqzτ,ν(t)‖L2(Ω) � C

(
1 + ‖Aqzτ,ν(σ)‖L2(Ω) +

∫ tτ(t)

0

‖ẑ′τ,ν(ρ)‖L6(Ω) dρ

)
. (3.43)

It now remains to estimate ‖Aqzτ,ν(σ)‖L2(Ω) = ‖Aqz
τ,ν
1 ‖L2(Ω). For this, we use the Euler–

Lagrange equation

DR1,ν

(
z
τ,ν
1 − z0

τ

)
+ ε

z
τ,ν
1 − z0

τ
+ Aqz

τ,ν
1 + DzĨ(tτ,ν1 , z

τ,ν
1 ) = 0

and test it by Aqz
τ,ν
1 − Aqz0. We repeat the same calculations as above and arrive at

1

2
‖Aqz

τ,ν
1 ‖2

L2(Ω) �
1

2
‖Aqz0‖2

L2(Ω) +

∫
Ω

DĨ(0, z0)Aqz0 dx−
∫
Ω

DĨ(tτ,ν1 , z
τ,ν
1 )Aqz

τ,ν
1 dx

+

∫
Ω

(
DĨ(tτ,ν1 , z

τ,ν
1 )−DĨ(0, z0)

)
Aqz0 dx,
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whence

‖Aqz
τ,ν
1 ‖2

L2(Ω) � C
(
1 + ‖Aqz0‖2

L2(Ω) + ‖zτ,ν1 − z0‖2
L6(Ω)

)
� C, (3.44)

the last inequality due to (3.6) and bound (3.33b). Observe that the constant C in (3.44) is

also uniform w.r.t. ε. Combining (3.44) with (3.43), we infer (3.34). Then, estimate (3.33f)

follows in view of the previously proved bound (3.33d) for ẑ′τ,ν .

Estimate (3.33g) for ωτ,ν = DR1,ν(ẑ
′
τ,ν) follows from a comparison argument in

(3.31), in view of estimate (3.33d), and the previously used bound for DĨ(tτ(·), zτ,ν(·))
in L∞(0, T ;L2(Ω)) due to (2.34) and (3.33b). Finally, we obtain (3.33c) from Pro-

position 2.8 combined with (3.33b), (3.33f) and (3.33g), while (3.33e) is a consequence

of (3.33d). �

Remark 3.7 It remains an open problem to prove the analogue of the BV estimate (3.9e)

for the functions ẑτ,ν (and, consequently, (3.9j) for ûτ,ν), with a constant uniform w.r.t.

ε. The reason is that, mimicking the calculations from the proof of Lemma 3.4 one

obtains the analogue of (3.26) featuring additional terms with R∗
1,ν , just like these terms

appeared in (3.38). Such terms did not pop up in the calculations for Lemma 3.4 as R∗
1

is an indicator function. In fact, they prevent us from applying the Gronwall-type result

from [19, Lemma B.1] and to conclude (3.9e), uniformly w.r.t. ε, for ẑτ,ν .

Thanks to Lemma 3.6 we are now in a position to conclude the proof of Lemma 3.5:

For fixed positive τ and ε, let (zτ,ν , ẑτ,ν)ν be a family of solutions to (3.31). The bound

(3.33c) implies that also the sequence (ẑτ,ν)ν is bounded in that space. Therefore, applying

the Aubin–Lions type compactness results from [30] to (ẑτ,ν)ν , we infer that there exists

a function ẑ such that, along a (not relabelled) subsequence, as ν ↓ 0 the following

convergences hold:

ẑτ,ν ⇀
∗ ẑ in L∞(0, T ;W 1+σ,q(Ω)) ∩H1(0, T ;H1(Ω))

∩W 1,∞(0, T ;L2(Ω)) for all 0 < σ <
1

q
,

ẑτ,ν → ẑ in C0([0, T ];Z),

(3.45a)

where the last convergence follows from the compact embedding W 1+σ,q(Ω) � Z for all

σ ∈ (0, 1
q
). From the estimate for (ẑ′τ,ν)ν in L1(0, T ;H1(Ω)), we gather that

‖zτ,ν‖BV([0,T ];H1(Ω)) � C

for a constant independent of ν (and τ). Therefore, thanks to an infinite-dimensional

version of Helly’s Theorem, see e.g., [26, Theorem 6.1], we conclude that there exists z ∈
BV([0, T ];H1(Ω)) such that, up to the further extraction of a subsequence, zτ,ν(t) ⇀ z(t)

in H1(Ω), as ν ↓ 0 for every t ∈ [0, T ]. Since (zτ,ν)ν is bounded in L∞(0, T ;W 1+σ,q(Ω)), we

ultimately conclude that zτ,ν(t) ⇀ z(t) in W 1+σ,q(Ω) for every t ∈ [0, T ]. Thus, we infer

zτ,ν(t) → z(t) in Z for every t ∈ [0, T ], (3.45b)
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and thus

zτ,ν(t) = z(t− τ) → z(t− τ) =: z(t) in Z for every t ∈ [τ, T ], (3.45c)

(observe that zτ,ν(t) = z0 and thus we may define z(t) ≡ z0 for t ∈ [0, τ)). Then, a fortiori

one has that

zτ,ν ⇀
∗ z in L∞(0, T ;Z), zτ,ν → z in Lp(0, T ;Z) for every 1 � p < ∞, (3.45d )

and we have the analogous convergences of (zτ,ν)ν to z. Finally, there exists ω ∈
L∞(0, T ;L2(Ω)) such that, up to a further extraction,

ωτ,ν ⇀
∗ ω in L∞(0, T ;L2(Ω)). (3.45e)

It follows from (3.45b), combined with the bound (3.33e), that

Aqzτ,ν(t) ⇀ Aqz(t) in L2(Ω) for every t ∈ [0, T ]. (3.46)

Also in view of (3.45b), it is not difficult to deduce that

Aqzτ,ν ⇀
∗ Aqz in L∞(0, T ;L2(Ω)).

Furthermore, combining estimate (2.32) with (3.33b) and convergence (3.45b), we find that

for every t ∈ [0, T ]

‖DĨ(tτ(t), zτ,ν(t))−DĨ(tτ(t), z(t))‖L2(Ω)� C
(
C ′
f(zτ,ν(t),z(t))+P (zτ,ν(t), z(t))

3
)
‖zτ,ν(t)−z(t)‖L6(Ω)

� C‖zτ,ν(t) − z(t)‖L6(Ω) → 0

as ν ↓ 0. Since (DĨ(tτ, zτ,ν))ν is bounded in L∞(0, T ;L2(Ω)) by (2.34) and (3.9b), we also

have

DĨ(tτ, zτ,ν) ⇀
∗ DĨ(tτ, z) in L∞(0, T ;L2(Ω)),

DĨ(tτ, zτ,ν) → DĨ(tτ, z) in Lp(0, T ;L2(Ω)) for every 1 � p < ∞.

Therefore, also on account of convergences (3.45a) and (3.45e), we can pass to the limit as

ν ↓ 0 in an integrated-in-time version of (3.31) and, with a standard argument, conclude

that the triple (z, ẑ, ω) satisfies

ω(t) + εẑ′(t) + Aqz(t) + DĨ(tτ(t), z(t)) = 0 in L2(Ω) for a.a. t ∈ (tτk, t
τ
k+1) (3.47)

and for every k ∈ {0, . . . , N − 1}. We can also prove that

lim sup
ν↓0

∫ tτk+1

tτk

∫
Ω

ωτ,ν ẑ
′
τ,ν dx dt �

∫ tτk+1

tτk

∫
Ω

ωẑ′ dx dt .

This follows from multiplying (3.31) by ẑ′τ,ν and taking the limit in each of the terms, on

account of the convergences proved so far.
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Therefore, thanks to (3.29d), we infer that ω(t) ∈ ∂R1(ẑ
′(t)) for almost all t ∈ (tτk, t

τ
k+1).

All in all, the pair (z, ẑ) fulfills the differential inclusion

∂R1(ẑ
′(t)) + εẑ′(t) + Aqz(t) + DĨ(tτ(t), z(t)) � 0 in L2(Ω)

for a.a. t ∈ (tτk, t
τ
k+1) ∀ k ∈ {0, . . . , N − 1} . (3.48)

A fortiori, since ∂R1(ẑ
′(t)) ⊂ ∂Z ,Z∗R1(ẑ

′(t)), we conclude that (z, ẑ) fulfill

∂Z ,Z∗R1(ẑ
′(t)) + εẑ′(t) + Aqz(t) + DĨ(tτ(t), z(t)) � 0 in Z∗

for a.a. t ∈ (tτk, t
τ
k+1) ∀ k ∈ {0, . . . , N − 1} .

Since the latter has a unique solution in the closed ball BM(0) of Z for τ < τ̄ε (cf.

Proposition 3.1), and since z and zτ take value in that ball, we obtain that

z(t) = zτ(t), z(t) = zτ(t), ẑ′(t) = ẑ′τ(t) for a.a. t ∈ (tτk, t
τ
k+1) ∀ k ∈ {0, . . . , N − 1} ,

and, therefore, a.e. in (0, T ). Here, we have also used the fact that ẑ is piecewise affine, z̄ is

piecewise constant on (tτk, t
τ
k+1) and that ẑ(tτk) = z̄(tτk) for all k. In particular, we find that

Aqzτ ∈ L∞(0, T ;L2(Ω)). In view of convergences (3.45d) and recalling that ẑ′τ,ν =
zτ,ν−zτ,ν

τ

a.e. in (0, T ), we ultimately have

ẑ′τ,ν → ẑ′τ in Lp(0, T ;Z) for every 1 � p < ∞.

Therefore, also on account of the pointwise convergence (3.46), we are in a position to

pass to the limit in estimate (3.34) and deduce that

‖Aqzτ(t)‖L2(Ω) � C

(
1 +

∫ tτ(t)

0

‖ẑ′τ(ρ)‖L6(Ω) dρ

)
for all t ∈ [0, T ]. (3.49)

Combining (3.49) with the, uniform w.r.t. ε, estimate (3.9e) for ẑ′τ, we ultimately conclude

‖Aqzτ‖L∞(0,T ;L2(Ω)) � C,

for a constant independent of ε and τ < τ̄ε. A comparison in (3.47) also yields

‖ω‖L∞(0,T ;L2(Ω)) � C.

Therefore, we set ωτ := ω and ultimately conclude (3.7) as well as (3.9f) and (3.9g).

Finally, from (3.48) we gather the validity of (3.8). This concludes the proof of Lemma

3.5.

4 Existence of viscous solutions

In this section, we briefly comment on the existence of solutions to the viscous system

(1.2).
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By passing to the limit with ε > 0 fixed in the time-discrete scheme (3.5), we are able

to prove the existence of a solution to (1.2), formulated as a subdifferential inclusion in

L2(Ω), namely

ω(t) + εz′(t) + Aq(z(t)) + DzĨ(t, z(t)) � 0 in L2(Ω) for a.a. t ∈ (0, T ), (4.1)

with ω(·) a selection in the subdifferential ∂R1(z
′(·)) ⊂ L2(Ω). Furthermore, along

the footsteps of [24], we obtain an ED balance featuring the conjugate R∗
ε of Rε,

cf. (3.10).

Theorem 4.1 Let ε > 0 be fixed. Under Assumptions 2.1, 2.2 and 2.9, and under condition

(3.6) on the initial datum z0, there exist

z ∈ L∞(0, T ;W 1+σ,q(Ω)) ∩H1(0, T ;H1(Ω)) ∩W 1,∞(0, T ;L2(Ω)) for every σ ∈ (0, 1
q
),

with Aqz ∈ L∞(0, T ;L2(Ω))
(4.2)

and ω ∈ L∞(0, T ;L2(Ω)) fulfilling the subdifferential inclusion (4.1) and the Cauchy condi-

tion z(0) = z0.

Furthermore, z complies with the ED balance

∫ t

s

Rε(z
′(r)) dr +

∫ t

s

R∗
ε (−Aq(z(r))−DzĨ(r, z(r))) dr + I(t, z(t))

= I(s, z(s)) +

∫ t

s

∂tI(r, z(r)) dr (4.3)

for every 0 � s � t � T .

Proof Let (τj)j be a null sequence of time steps, and let (zτj )j , (ẑτj )j be the approximate

solutions to the viscous subdifferential inclusion (1.2) constructed in Section 3. For

them, estimates (3.9) hold with a constant uniform w.r.t. j ∈ � (recall that ε > 0 is

fixed).

Adapting the arguments from the proof of [19, Proposition 6.2], combining (3.9) with

Aubin–Lions type compactness results (cf., e.g., [30, Theorem 5, Corollary 4]) and arguing

in the same way as in the proof of Lemma 3.5, cf. also Lemma 6.2 ahead, we may show

that there exist a (not relabelled) subsequence and a curve z as in (4.2) such that the

following convergences hold

zτj , ẑτj → z in L∞(0, T ;Z),

ẑτj ⇀
∗ z in H1(0, T ;H1(Ω)) ∩W 1,∞(0, T ;L2(Ω)),

I(tτj (t), zτj (t)), I(t, ẑτj (t)) → I(t, z(t)) for all t ∈ [0, T ],

DzI(tτj (t), zτj (t)) ⇀
∗ DzI(t, z(t)) in L∞(0, T ;L2(Ω)),

DzI(tτj (t), zτj (t)) → DzI(t, z(t)) in L∞(0, T ;Z∗).
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With the limit passage arguments from [19, Theorem 3.5] we deduce that z complies

with the variational inequality

Rε(w) −Rε(z
′(t)) � 〈−Aqz(t), w〉Z +

∫
Ω

(1 + |∇z(t)|2) q−2
2 ∇z(t) · ∇z′(t) dx

−
∫
Ω

DzĨ(t, z(t))(w − z′(t)) dx for all w ∈ Z for a.a. t ∈ (0, T ) ,

(4.4)

which in fact defined the concept of weak solution to the viscous system considered in [19].

We now enhance (4.4) by relying on the information that Aqz ∈ L∞(0, T ;L2(Ω)). Due

to this,
∫
Ω
(1 + |∇z(t)|2) q−2

2 ∇z(t) · ∇z′(t) dx =
∫
Ω
Aq(z(t))z

′(t) dx, so that (4.4) reads for

almost all t ∈ (0, T )

Rε(w) −Rε(z
′(t)) � −

∫
Ω

Aqz(t)(w − z′(t)) dx−
∫
Ω

DzĨ(t, z(t))(w − z′(t)) dx

for all w ∈ Z .

This extends to all w ∈ L2(Ω) by a density argument, and therefore we conclude that

−Aqz(t) − DzĨ(t, z(t)) ∈ ∂Rε(z
′(t)) in L2(Ω) (4.5)

for almost all t ∈ (0, T ), namely the validity of (4.1).

The ED balance (4.3) ensues from integrating on the generic interval (s, t) ⊂ (0, T ) the

following chain of identities

Rε(z
′(r)) + R∗

ε (−Aqz(r)−DzĨ(r, z(r)))
(1)
=

∫
Ω

(
−Aqz(r)−DzĨ(r, z(r))

)
z′(t) dx

(2)
= − d

dt
I(r, z(r)) + ∂tI(r, z(r)) for a.a. r ∈ (0, T ),

where (1) is a reformulation of (4.5), while (2) follows from the chain rule (2.43). �

5 Balanced viscosity solutions to the rate-independent damage system

The main result of this section, Theorem 5.7 ahead, states the convergence of the sequences

(zτ,ε)τ,ε, (ẑτ,ε)τ,ε (5.1)

of discrete solutions constructed in Section 3 to a BV solution of the rate-independent

damage system (1.1), as ε and τ simultaneously tend to zero. That is why we stress the

dependence on the parameter ε in the notation (5.1). The proof of Theorem 5.7 will be

carried out in Section 6.

In Section 5.1, we provide a precise definition of this solution concept, after revisiting

and suitably modifying all the preliminary definitions and notions given in [25, Section

3.1]. Indeed, the latter paper addressed the case of a non-smooth energy functional

driving the abstract gradient system under consideration, and developed the vanishing-

viscosity analysis solely relying on the basic energy estimates for viscous solutions, cf. the

discussion prior to Lemma 3.4. In the present context, on one hand, we will work with
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simpler definitions that are tailored to the smoothness properties of I and to the enhanced

estimates holding for our own damage system. On the other hand, our definitions shall

reflect the fact that the dissipation potential R1 takes the value +∞, whereas the analysis

in [25] is confined to the case of a continuous potential R1.

In Section 5.2 , we gain further insight into to the properties of BV solutions and again

revisit and adapt a series of results given in [25, Sections 3.2, 3.3, 3.4].

5.1 The notion of Balanced Viscosity solution

In order to define the notion of BV solution for the damage system (1.1),

we start by introducing the vanishing-viscosity contact potential p induced by the viscous

dissipation potentials Rε from (1.3). This functional will enter into the Finsler cost

describing the energy dissipated at jumps. We define p : L2(Ω) × L2(Ω) → [0,+∞] via

p(v, ξ) := inf
ε>0

(
Rε(v) + R∗

ε (ξ)
)

= R1(v) + ‖v‖L2(Ω) inf
z∈∂R1(0)

‖ξ − z‖L2(Ω) .

From this, one defines the dissipation functional f : [0, T ] ×Z × L2(Ω) → [0,+∞] via

ft(z, v) := p(v,−DzI(t, z)) = R1(v) + ‖v‖L2(Ω) min
ζ∈∂R1(0)

‖ − DzI(t, z) − ζ‖L2(Ω) ,

where v plays the role of z′. Observe that for all z ∈ Z , v ∈ L2(Ω), we have

ft(z, v) � 〈−DzI(t, z), v〉L2(Ω) ,

provided that DzI(t, z) ∈ L2(Ω). We are now in a position to define the Finsler cost

associated with f, obtained by minimizing suitable integral quantities along admissible

curves. Let us mention in advance that our definition of the class of admissible curves

reflects the enhanced estimates available in the present setting for the discrete viscous

solutions, cf. Remark 5.2 below for more details.

Definition 5.1 Let t ∈ [0, T ] and z0, z1 ∈ Z be fixed.

(1) We call a curve ϑ : [r0, r1] → Z , for some r0 < r1, an admissible transition curve

between z0 and z1, at the time t ∈ [0, T ], if

(a) ϑ ∈ L∞(r0, r1;Z) ∩ AC([r0, r1];L
2(Ω));

(b) DzI(t, ϑ(·)) ∈ L∞(r0, r1;L
2(Ω)).

We denote by Tt(z0, z1) the set of admissible curves connecting z0 and z1.

(2) The (possibly asymmetric) Finsler cost induced by ft at the time t is given by

Δf(t; z0, z1) := inf
ϑ∈Tt(z0 ,z1)

∫ r1

r0

ft(ϑ(r), ϑ′(r)) dr (5.2)

with the usual convention of setting Δf(t; u0, u1) = +∞ if the set Tt(z0, z1) of admissible

curves connecting z0 and z1 is empty.
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As in the proof of Lemma 2.17, we observe that, since ϑ ∈ L∞(r0, r1;Z), requiring

DzI(t, ϑ(·)) ∈ L∞(r0, r1;L
2(Ω)) is equivalent to asking for Aq(ϑ(·)) ∈ L∞(r0, r1;L

2(Ω)).

We trivially have

Δf(t; z0, z1) � R1(z1−z0) for every t ∈ [0, T ] and z0, z1 ∈ Z . (5.3)

Furthermore, observe that, for a given admissible transition curve,
∫ r1
r0

ft(ϑ(r), ϑ′(r)) dr < ∞
implies that ϑ′ � 0 a.e. in (r0, r1). Therefore,

Δf(t; z0, z1) < ∞ implies that z1(x) � z0(x) for all x ∈ Ω .

Hereafter, upon writing Δf(t; z0, z1) and Tt(z0, z1) we will, most often implicitly, assume

that z1 � z0 in Ω.

Up to a reparameterization, due to the positive homogeneity of the Finsler metric

ft(z, ·), we can suppose that the admissible transition curves are defined on [0, 1]. For later

use, we also introduce, for a fixed 
 > 0 and z0, z1 ∈ Z with z1 � z0 in Ω, the set of

admissible transition curves lying in a suitable ball of radius 
, i.e.,

T 

t (z0, z1) := {ϑ ∈ Tt(z0, z1) : ‖ϑ‖L∞(0,1;Z) + ‖ϑ′‖L1(0,1;L2(Ω)) + ‖DzI(t, ϑ(·))‖L∞(0,1;L2(Ω)) � 
}

(5.4a)

and, accordingly,

Δ


f
(t; z0, z1) := inf

ϑ∈T 

t (z0 ,z1)

∫ r1

r0

ft(ϑ(r), ϑ′(r)) dr . (5.4b)

Since for every 
 > 0 there holds T 

t (z0, z1) ⊂ Tt(z0, z1), one has Δf(t; z0, z1) � Δ



f
(t; z0, z1).

Indeed,

Δf(t; z0, z1) = inf

>0

Δ


f
(t; z0, z1) for every t ∈ [0, T ] and z0, z1 ∈ Z . (5.5)

For later use, we also record the following monotonicity property

Δ

̄
f
(t; z0, z1)= inf

0<
<
̄
Δ


f
(t; z0, z1) = sup


>
̄
Δ


f
(t; z0, z1) for every t ∈ [0, T ], z0, z1 ∈ Z and 
̄ > 0,

(5.6)

since T 

t (z0, z1) ⊂ T 
̄

t (z0, z1) for every 0 < 
 < 
̄. Observe that, for every fixed 
 > 0, the inf

in definition (5.4b) is attained, cf. Proposition 6.1 ahead, whereas it need not be attained

in the definition of Δf, cf. (5.2). In fact, the dissipation functional f does not control the

norms of the spaces where we look for admissible transition curves.

Remark 5.2 The most striking difference between the present definition of admissible

curve and the one given in [25, Definition 3.4] resides in the fact that, in contrast with

conditions (a) & (b) from Definition 5.1, in [25] it was only required

ϑ|Gt[ϑ] ∈ AC(Gt[ϑ];L2(Ω)) with the open set

Gt[ϑ] := {r ∈ [r0, r1] : min
ζ∈∂R1(0)

‖ − DzI(t, z) − ζ‖L2(Ω) > 0} . (5.7)
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The stronger condition ϑ ∈ AC([r0.r1];L
2(Ω)) reflects the fact that the discrete viscous

solutions (zτ)τ enjoy an estimate in BV([0, T ];L2(Ω)) uniformly w.r.t. both parameters ε

and τ. In fact this estimate is even valid in BV([0, T ];H1(Ω)), cf. (3.9e). Instead, in the

general framework considered in [25] only the basic energy estimate

∫ T

0

p(ẑ′τ(t),−DzI(tτ(t), zτ(t))) dt �

∫ T

0

(
Rε(ẑ

′
τ(t))+R∗

ε (−DzI(tτ(t), zτ(t)))
)

dt � C

was available. In accordance with that, only (5.7) was required on admissible curves.

Condition (b) in Definition 5.1 reflects the enhanced estimate (3.9k). It is also a

peculiarity of the present framework, and in particular it is motivated by the fact that we

impose unidirectionality of damage evolution, thus allowing R1 to take the value +∞.

In order to explain this, let us observe that, in the setting considered in [25], it was not

necessary to specify the summability properties of DzI(t, ϑ(·)) within the definition of

admissible curve. Indeed, outside the set Gt[ϑ] one had DzI(t, ϑ(·)) ∈ ∂R1(0), a bounded

subset of L2(Ω) since the dissipation potential R1 was everywhere continuous. Instead, on

the set Gt[ϑ] an estimate for the quantity minζ∈∂R1(0) ‖−DzI(t, z)− ζ‖L2(Ω) would morally

provide a bound for −DzI(t, z), as well, by comparison arguments, again thanks to the

boundedness ∂R1(0). Instead, in the present setting, since the set ∂R1(0) is unbounded, it

is necessary to encompass a suitable summability condition on DzI(t, ϑ(·)) in the definition

of admissible curve.

We are now ready to introduce the jump variation induced by f, accounting for the

energy dissipated at the jumps of a given curve z ∈ BV([0, T ];L1(Ω)), with countable

jump set

Jz := {t ∈ [0, T ] : z(t−) �= z(t) or z(t+) �= z(t)}

and z(t±) the right/left limits of z at t ∈ [0, T ]. Based on the jump variation associated

with f in (5.11) ahead, we introduce a novel notion of total variation for the curve z,

alternative to the total variation induced by the dissipation potential R1. Then, for a given

[a, b] ⊂ [0, T ], the R1-variation of z on [a, b] is defined by

VarR1
(z; [a, b]) := sup{

M∑
m=1

R1(z(tm)−z(tm−1)) : a = t0 < t1 < . . . < tM−1 < tM = b}.

(5.8)

In particular, the contribution at the jumps induced by R1 is

JumpR1
(z; [a, b]) := R1(z(a+)−z(a)) + R1(z(b)−z(b−))

+
∑

t∈Jz∩(a,b)

R1(z(t+)−z(t)) + R1(z(t)−z(t−)).

Clearly, VarR1
(z; [a, b]) < ∞ guarantees that t �→ z(t) is decreasing on [a, b], i.e.,

for all a � t1 � t2 � b, for almost all x ∈ Ω z(t2, x) � z(t1, x). (5.9)
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For later convenience, we also introduce the scalar function

V (t) :=

⎧⎪⎪⎨⎪⎪⎩
0 if t � 0,

VarR1
(z; [0, t]) if t ∈ (0, T ),

VarR1
(z; [0, T ]) if t � T

with distributional derivative μ =
d

dt
V .

(5.10)

Recall that μ is a finite Borel measure supported on [0, T ], and it can be decomposed as

μ = μd + μJ, with μJ the jump part, concentrated on the countable jump set Jz , and μd

the diffuse part, given by the sum of the absolutely continuous and of the Cantor parts,

so that μd({t}) = 0 for every t ∈ �.

We are now in a position to give the notion of total variation induced by f. Let us

mention in advance that it is obtained by replacing the JumpR1
-contribution to the total

variation VarR1
, with the f-jump variation, cf. (5.12) below.

Definition 5.3 (Jump and total variation induced by f) Let z in BV([0, T ];L1(Ω)), with

z(t) ∈ Z for all t ∈ [0, T ], be a given curve with jump set Jz . Let [a, b] ⊂ [0, T ]:

(1) The jump variation of z on [a, b] induced by f is

Jumpf(z; [a, b]) := Δf(a; z(a), z(a+)) + Δf(b; z(b−), z(b))

+
∑

t∈Jz∩(a,b)

(
Δf(t; z(t−), z(t)) + Δf(t; z(t), z(t+))

)
. (5.11)

(2) The total variation of z on [a, b] induced by f is

Varf(z; [a, b]) := VarR1
(z; [a, b]) − JumpR1

(z; [a, b]) + Jumpf(z; [a, b]) (5.12)

= μd([a, b]) + Jumpf(z; [a, b]) . (5.13)

For a given 
 > 0, we use the symbols Jump

f
(z; [a, b]) and Var


f
for the total variation

induced by the cost Δ

f
.

Again, Varf(z; [a, b]) < ∞ ensures that the curve z fulfills the monotonicity property

(5.9). As already pointed out in [23, Rmk. 3.5], Varf is not a standard total variational

functional: it is neither induced by any distance on L1(Ω), nor it is lower semi-continuous

w.r.t. pointwise convergence in L1(Ω). Yet, it enjoys the additivity property.

We are finally in a position to give our definition of BV solution to the rate-independent

damage system. Again, we will consider a slightly stronger version than that given

in [25, Definition 3.10], where z ∈ BV([0, T ];L1(Ω)) was only required. Instead, here we

will consider curves z in BV([0, T ];L2(Ω)) and, for technical reasons that will be apparent

in the proof of the BV-chain rule from Proposition 5.8 ahead, we will also restrict to

curves z such that DzI(·, z(·)) ∈ L∞(0, T ;L2(Ω)). Furthermore, unlike what was done

in [25], we will claim an energy balance involving a total variation Var

f
(z; [0, t]) with a

threshold 
 > 0 such that


 � ‖z‖L∞(0,T ;Z)∩BV([0,T ];L2(Ω)) + ‖DzI(·, z(·))‖L∞(0,T ;L2(Ω)) . (5.14)
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Definition 5.4 A curve z in L∞(0, T ;Z) ∩ BV([0, T ];L2(Ω)), monotonically decreasing in

the sense of (5.9), with

z(t) ∈ Z and DzI(t, z(t)) ∈ L2(Ω) for all t ∈ [0, T ] (5.15)

and DzI(·, z(·)) ∈ L∞(0, T ;L2(Ω)), is a BV solution of the rate-independent damage system

(1.1) if the local stability (Sloc) and the (Ef)-energy balance hold:

−DzI(t, z(t)) ∈ ∂R1(0) for all t ∈ [0, T ] \ Jz , (Sloc)

Var

f
(z; [0, t]) + I(t, z(t)) = I(0, z(0)) +

∫ t

0

∂tI(s, z(s)) ds for all t ∈ (0, T ]. (Ef)

with 
 > 0 fulfilling (5.14).

Remark 5.5 The requirement z ∈ L∞(0, T ;Z) in Definition 5.4 is redundant and has been

added only for the sake of clarity. Indeed, since I(0, z(0)) � C as z(0) ∈ Z (cf. (2.15)),

and taking into account that t �→ ∂tI(t, z(t)) is in L∞(0, T ) thanks to (2.23), from (Ef),

we deduce that |I(t, z(t))| � C . Recall that I is bounded from below thanks to (2.18). In

turn, this gives z ∈ L∞(0, T ;Z).

On the other hand, combining the information z ∈ L∞(0, T ;Z) with estimate (2.34)

for DzĨ , we conclude that DzĨ(·, z(·)) ∈ L∞(0, T ;L2(Ω)). Therefore, what we are really

requiring in Definition 5.4 is that Aqz ∈ L∞(0, T ;L2(Ω)), which enhances the regularity

of z to the space L∞(0, T ;W 1+σ,q(Ω)) for every 0 < σ < 1
q

by Proposition 2.8.

Prior to stating the main result of the paper, Theorem 5.7 below, we need to give the

following definition, where z− and z+ are place-holders for the left and right limits of a

curve z at a jump point.

Definition 5.6 Let 
 > 0, t ∈ [0, T ], and z−, z+ ∈ Z with z+ � z− in Ω be such that

−DzI(t, z−) ∈ ∂R1(0) and − DzI(t, z+) ∈ ∂R1(0) . (5.16)

We say that an admissible transition curve ϑ ∈ T 

t (z−, z+) is an optimal transition between

z− and z+ if

I(t, z−)−I(t, z+) = Δ


f
(t; z−, z+) =

∫ 1

0

ft(ϑ(r), ϑ′(r)) dr = ft(ϑ(r), ϑ′(r)) for a.a. r ∈ (0, 1).

(5.17)

We will denote by O

t (z−, z+) the collection of such transitions.

A few comments are in order. First of all, with (5.16) we are imposing that the points

z− and z+ to be connected and to fulfill the local stability condition. It is not difficult

to check that this is satisfied whenever z− and z+ are the left and right limits at a jump

point of a BV solution. Second, let us gain further insight into (5.17): with the second

equality, we are asking that ϑ (which we may always supposed to be defined on [0, 1]) is a
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minimizer in the definition of Δ

f
(t; z−, z+); with the third one, we ask that ϑ has constant

‘ft-velocity’, which can be obtained by a rescaling argument. The first equality relates to

the jump conditions verified along any BV solution, cf. (5.27) ahead.

We are now in a position to give Theorem 5.7 , stating the convergence of the discrete

solutions of the viscous damage system to a BV solution of the rate-independent damage

system, as the parameters ε and τ tend to zero simultaneously, with ε
τ
↑ ∞. In fact, we will

retrieve a BV solution z with enhanced properties:

(i) we have that z ∈ BV([0, T ];H1(Ω)), which reflects the enhanced discrete BV-estimate

(3.9e);

(ii) at all jump points t of z, the left and right limits z(t−) and z(t+) can be connected by

an optimal jump transition in the sense of Definition 5.6, so that the set O

t (z(t−), z(t+))

is non-empty. Additionally, such transition has finite H1(Ω)-length. Furthermore, the

total H1(Ω)-length of the connecting paths is finite.

Observe that property (ii) is not encoded in Definition 5.4, which gives Varf(z; [0, T ]) < ∞,

since Varf(z; [0, T ]) only controls the ‘f-length’ of the optimal jump paths.

This enhanced concept of BV solution was already introduced in the general setting

of [25], cf. Section 3.4 therein. Along the footsteps of [25], we will refer to these solutions

as H1(Ω)-parameterizable BV solutions.

Theorem 5.7 Under Assumptions 2.1, 2.2 and 2.9, let z0 ∈ Z , fulfilling (3.6), be approxim-

ated by discrete initial data (z0
τ,ε)τ,ε such that

z0
τ,ε → z0 in Z , I(0, z0

τ,ε) → I(0, z0), DzI(0, z0
τ,ε) ⇀ DzI(0, z0) in L2(Ω), (5.18)

and let (zτ,ε)τ,ε, (ẑτ,ε)τ,ε be the discrete solutions to the viscous damage system (1.2) starting

from the data (z0
τ,ε)τ,ε.

Then, there exists 
̄ > 0, only depending on the problem data (cf. (6.2) below) such that

for all sequences (τk, εk)k satisfying

lim
k→∞

εk = 0 and lim
k→∞

τk

εk
= 0, (5.19)

there exist a (not relabelled) subsequence, and a BV solution z to the rate-independent

damage system (1.1), fulfilling the initial condition z(0) = z0, condition (5.14), the energy

balance (Ef) with

Var
̄
f
(z; [0, t]) = sup


�
̄
Var


f
(z; [0, t]) = inf


�
̄
Var


f
(z; [0, t]) for every t ∈ [0, T ] (5.20)

and such that the following convergences hold as k → ∞, at every t ∈ [0, T ]:

zτk,εk (t), ẑτk ,εk (t) → z(t) in Z , (5.21a)

I(t, zτk,εk (t)), I(t, ẑτk ,εk (t)) → I(t, z(t)), (5.21b)∫ tτ(t)

0

(
Rε(ẑ

′
τ(r)) + R∗

ε (−DzI(tτ(r), zτ(r)))
)

dr → Var
̄
f
(z; [0, t]) . (5.21c)
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Furthermore, z is a H1(Ω)-parameterizable BV solution, namely z ∈ BV([0, T ];H1(Ω)),

and

(1) ∀ t ∈ Jz ∃ ϑt ∈ O
̄
t (z(t−), z(t+)) s.t. ϑt ∈ AC([0, 1];H1(Ω)); (5.22a)

(2)
∑
t∈Jz

∫ 1

0

‖ϑ′t(r)‖H1(Ω) dr < ∞. (5.22b)

Observe that (5.20) is an additional property, cf. (5.6). This, as well as the constant 
̄

will be specified along the proof of Theorem 5.7, postponed to Section 6. Instead, in the

forthcoming Section 5.2, we gain further insight into the notion of BV solution for our

damage system, in particular focusing on the description of the behaviour of the system

at jumps.

5.2 Properties of balanced viscosity solutions

One of the cornerstones of the proof of Theorem 5.7 is a characterization of BV solutions

in terms of the local stability condition (Sloc), combined with the upper energy estimate in

(Ef). The proof of this characterization relies on a chain-rule inequality for E , evaluated

along a locally stable curve with the regularity and summability properties specified in

Definition 5.4. This inequality involves the non-standard total variation functional Varf.

Proposition 5.8 (BV-chain rule inequality) Under Assumptions 2.1, 2.2 and 2.9, let z ∈
L∞(0, T ;Z) ∩ BV([0, T ];L2(Ω)), with DzI(·, z(·)) ∈ L∞(0, T ;L2(Ω)), also fulfill (5.15).

Let 
 fulfill (5.14). Suppose that z satisfies the local stability condition (Sloc), with

Var

f
(z; [0, T ]) < ∞. Then, the map t �→ I(t, u(t)) belongs to BV([0, T ]) and satisfies the

chain rule inequality∣∣∣∣I(t1, u(t1))−I(t0, u(t0))−
∫ t1

t0

∂tI(t, z(t)) dt

∣∣∣∣ � Var

f
(z; [t0, t1]) for all 0 � t0 � t1 � T .

(5.23)

We postpone its proof to Section 6. We now characterize BV solutions in terms of the

local stability (Sloc), joint with the upper energy estimate in (Ef), which is sufficient to be

given on the whole time interval [0, T ]. Namely we have

Corollary 5.9 Under Assumptions 2.1, 2.2 and 2.9, a curve z ∈ BV([0, T ];L2(Ω)) is a BV

solution of the rate-independent damage system (1.1) (in the sense of Definition 5.4) if and

only if it satisfies (Sloc) and

Var

f
(z; [0, T ]) + I(T , z(T )) � I(0, z(0)) +

∫ T

0

∂tI(s, z(s)) ds (5.24)

for some 
 fulfilling (5.14).
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For the proof, we refer the reader to the argument for [25, Corollary 3.14]. Corollary

5.9 will play a crucial role in the proof of Theorem 5.7, for it will allow us to focus on

the proof of (Sloc) and of the energy inequality (5.24), only, in place of the balance (Ef).

In turn, (5.24) will be achieved by means of careful lower semi-continuity arguments.

The second outcome of the characterization provided by Corollary 5.9 is the following

Proposition 5.10, which was proved in the abstract setting in [25, Theorem 3.15]. It shows

that a locally stable curve is a BV solution of the rate-independent system if and only if

it fulfills

(i) an ED inequality only featuring the R1-total variation functional from (5.8), cf. (5.26)

below, and

(ii) at each jump point, the jump conditions (5.27) featuring the Finsler cost Δf induced

by f.

Concerning (i), let us also mention that it is possible to show (cf. [25, Theorem 3.16]) that

any BV solution also satisfies the subdifferential inclusion

∂R1(z
′(t)) + DzI(t, z(t)) � 0 in L2(Ω) (5.25)

at every t ∈ (0, T ) that is not a jump point, hence for almost all t ∈ (0, T ). The system

behaviour at jump points is instead described by the jump conditions (5.27) below. This

further characterization of the BV concept in terms of (i) and (ii) highlights how it differs

in comparison to the standard Global Energetic notion. The latter can be characterized in

terms of the global stability condition, the ED inequality (5.26), and the analogues of the

jump conditions (5.27), with the cost Δf(t; ·, ·) replaced by R1. Conditions (5.27) highlight

that the viscous approximation, from which BV solutions originate, enters into play in

the description of the energetic behaviour of the system at jumps.

Proposition 5.10 A curve z ∈ BV([0, T ];L2(Ω)) is a BV solution of the rate-independent

damage system (1.1) if and only if it satisfies (Sloc), the (R1)-ED inequality

VarR1
(z; [s, t]) + I(t, z(t)) � I(s, z(s)) +

∫ t

s

∂tI(s, z(s)) ds for all 0 � s � t � T , (5.26)

and the jump conditions

I(t, z(t)) − I(t, z(t−)) = −Δ


f
(t; z(t−), z(t)),

I(t, z(t+)) − I(t, z(t)) = −Δ


f
(t; z(t), z(t+)),

I(t, z(t+)) − I(t, z(t−)) = −Δ


f
(t; z(t−), z(t+))

= −
(
Δ


f
(t; z(t−), z(t)) + Δ



f
(t; z(t), z(t+))

) (5.27)

at every t ∈ Jz , for some 
 fulfilling (5.14).

The proof follows the very same lines as the argument for [25, Theorem 3.15].
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We conclude this section by shedding further light into the fine properties of optimal

jump transitions. Following [25, Section 3.4], we say that an optimal transition ϑ ∈
O


t (z−, z+) is of

• sliding type if −DzI(t, ϑ(r)) ∈ R1(0) for every r ∈ [0, 1];

• viscous type if −DzI(t, ϑ(r)) � R1(0) for every r ∈ [0, 1].

The forthcoming result on sliding and viscous optimal transitions follows from the very

same argument as in the proof of [25, Proposition 3.19].

Proposition 5.11 Let 
 > 0, t ∈ [0, T ], and z−, z+ ∈ Z fulfilling (5.16) be given. Let

ϑ ∈ O

t (z−, z+). Then,

(1) ϑ is of sliding type if and only if it satisfies

∂R1(ϑ
′(r)) + DzI(t, ϑ(r)) � 0 in L2(Ω) for a.a. r ∈ (0, 1);

(2) ϑ is of viscous type if and only if there exists a map ε : (0, 1) → (0,+∞) such that ϑ

and ε satisfy

∂R1(ϑ
′(r)) + ε(r)ϑ′(r) + DzI(t, ϑ(r)) � 0 in L2(Ω) for a.a. r ∈ (0, 1);

(3) Every optimal transition ϑ can be decomposed in a canonical way into an (at most)

countable collection of optimal sliding and viscous transitions.

6 Proofs

The main focus of this Section is on the proof of Theorem 5.7. Prior to carrying it out,

we

(1) collect the main properties of the Finsler cost Δf in Proposition 6.1;

(2) prove the chain rule from Proposition 5.8, which is an essential ingredient for Theorem

5.7.

On the other hand,

(3) the proof of Theorem 5.7 is itself split in various steps, in which we prove intermediate

results.

Proposition 6.1, which is the counterpart to [25, Theorem 3.7]. Nonetheless, a com-

parison between the latter result and Proposition 6.1 below reflects the major differences

between the present context and that of [25]: The transition curves by means of which the

Finsler cost Δf from (5.2) is defined have better properties than their analogues in [25],

cf. also Remark 5.2. This is also apparent from item (3) of the ensuing statement, yielding

the existence of a transition path ϑ in the space W 1,∞(0, 1;H1(Ω)), even, in accordance

with the uniform bound (3.9e) for the discrete solutions.
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Proposition 6.1 Let t ∈ [0, T ] and z0, z1 ∈ Z be fixed with z1 � z0 in Ω. Then,

(1) For every 
 > 0 such that maxi=0,1(‖zi‖Z +‖DzI(t, zi)‖L2(Ω)) � 
 and Δ


f
(t; z0, z1) < +∞,

there exists an optimal transition path ϑ ∈ T 

t (z0, z1) attaining the inf in the definition

of Δ

f
(t; z0, z1), cf. (5.4);

(2) Let (zn0)n, (zn1)n ⊂ Z fulfill

zn0 → z0, zn1 → z1 in Z .

Then,

lim inf
n→∞

Δ


f
(t; zn0 , z

n
1) � Δ



f
(t; z0, z1) (6.1)

for every 
 � supi=1,2,n∈�(‖zi‖Z + ‖DzI(t, zi)‖L2(Ω)).

(3) Let the sequences (αk)k, (βk)k ⊂ [0, T ], (ẑk)k ⊂ L∞(αk, βk;Z) ∩ AC([αk, βk];H
1(Ω)),

(zk)k ⊂ L∞(αk, βk;Z), fulfill

lim
k→∞

αk = t = lim
k→∞

βk, zk(αk) → z0 in Z , zk(βk) → z1 in Z ,

lim
k→∞

sup
r∈[αk,βk]

‖zk(r) − ẑk(r)‖H1(Ω) = 0,

∃ 
̄ > 0 ∀ k ∈ � :

‖ẑk‖L∞(αk,βk;Z)∩W 1,1(αk,βk;H1(Ω)) + ‖zk‖L∞(αk,βk;Z) + ‖DzI(tτk , zk)‖L∞(αk,βk;L2(Ω)) � 
̄ .

(6.2)

Then, there exists a (not relabelled) increasing subsequence of (k), increasing and sur-

jective time rescalings tk ∈ AC([0, 1]; [αk, βk]) and an admissible transition ϑ ∈ T 
̄
t (z0, z1)

such that

lim
k→∞

sup
s∈[0,1]

‖zk ◦ tk(s)−ϑ(s)‖H1(Ω) = lim
k→∞

sup
s∈[0,1]

‖ẑk ◦ tk(s)−ϑ(s)‖H1(Ω) = 0, (6.3a)

in addition, ϑ is in W 1,∞(0, 1;H1(Ω)), and (6.3b)

Δ

̄
f
(t; z0, z1) �

∫ 1

0

ft[ϑ(s), ϑ′(s)] ds � lim inf
k→∞

∫ βk

αk

(
Rεk (ẑ

′
k(r))+R∗

εk
(−DzI(tτk (r), zk(r)))

)
dr .

(6.3c)

Proof We start by addressing the proof of (2): Along the footsteps of the proof of [25,

Theorem 3.7], we consider a sequence of admissible transitions ϑn ∈ T 

t (zn0 , z

n
1) such that∫ 1

0

ft(ϑn(r), ϑ
′
n(r)) dr � Δ



f
(t; zn0 , z

n
1) + ηn with ηn � 0 and lim

n→∞
ηn = η � 0 .

We perform the change of variable

sn(r) := cn

(
r+

∫ r

0

‖ϑ′n(σ)‖L2(Ω) dσ

)
, rn := s−1

n : [0,S] → [0, 1], θn := ϑn ◦ rn : [0,S] → Z ,

(6.4)
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with cn a normalization constant such that S = sn(1) is independent of n ∈ �. In view of

the estimate ‖ϑ′n‖L1(0,1;L2(Ω)) � 
 encoded in the definition of Δ

f
, we have that cn � c̄ > 0

for all n ∈ �. The curves (rn, θn)n fulfill the normalization condition

r′n(s) + ‖θ′n(s)‖L2(Ω) =
1

cn
�

1

c̄
for a.a. s ∈ (0,S) (6.5a)

and, moreover,

‖θn‖L∞(0,S;Z) + ‖θ′n‖L1(0,S;L2(Ω)) + ‖DzI(t, θn(·))‖L∞(0,S;L2(Ω)) � 
. (6.5b)

It follows from the first bound in (6.5b) and from (2.34) that ‖DzĨ(t, θn(·))‖L∞(0,S;L2(Ω)) � C .

Therefore, we deduce that ‖Aq(θn)‖L∞(0,S;L2(Ω)) � C , which yields, in view of the aforemen-

tioned regularity results from Proposition 2.8, a bound for (θn)n in L∞(0,S;W 1+σ,q(Ω)))

for all 0 < σ < 1
q
. In view of (6.5a), there exists r ∈ W 1,∞(0,S) such that, up to a not re-

labelled subsequence, rn → r uniformly in [0,S] and weakly∗ in W 1,∞(0,S). Furthermore,

by Aubin–Lions type compactness results (cf., e.g., [30, Theorem 5, Cor. 4]), there exists a

curve θ ∈ L∞(0,S;W 1+σ,q(Ω)) ∩ C0([0,S];Z) ∩W 1,∞(0,S;L2(Ω)) for all 0 < σ < 1
q
, with

DzI(t, θ(·)) ∈ L∞(0,S;L2(Ω)), such that

θn ⇀
∗ θ in L∞(0,S;W 1+σ,q(Ω)) ∩W 1,∞(0,S;L2(Ω)) for all 0 < σ <

1

q
,

θn → θ in C0([0,S];Z) ,

DzI(t, θn) ⇀
∗ DzI(t, θ) in L∞(0,S;L2(Ω)) .

(6.6)

The latter convergence property follows from the fact that DzI(t, θn) = Aq(θn)+DzĨ(t, θn)

converges strongly to DzI(t, θ) in L∞(0,S;Z∗) in view of the second of (6.6), combined

with (2.36). Therefore,

‖θ‖L∞(0,S;Z) + ‖θ′‖L1(0,S;L2(Ω)) + ‖DzI(t, θ(·))‖L∞(0,S;L2(Ω)) � 
.

We thus conclude that θ ∈ T 

t (z0, z1); up to a reparameterization, we may suppose θ

to be defined on [0, 1]. Arguing in the very same way as in the proof of [18, Theorem

5.1], [19, Theorem 7.4], we see that

η + lim inf
n→∞

Δ


f
(t; zn0 , z

n
1) � lim inf

n→∞

∫ 1

0

ft(ϑn(r), ϑ
′
n(r)) dr = lim inf

n→∞

∫ S

0

ft(θn(s), θ
′
n(s)) ds

�

∫ S

0

ft(θ(s), θ
′(s)) ds � Δ



f
(t; z0, z1) .

Observe that the last inequality follows from the fact that θ is an admissible curve between

z0 and z1. Since η � 0 is arbitrary, this concludes the proof of (2); a slight modification

of this argument yields (1), as well.

In order to prove (3), we can confine the discussion to the case z0 �= z1. Up to the

extraction of a (not relabelled) subsequence, we may suppose that the lim inf in (6.3c) is
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in fact a limit, so that

lim
k→∞

∫ βk

αk

(
Rεk (ẑ

′
k(r))+R∗

εk
(−DzI(tτk (r), zk(r)))

)
dr =: L � R1(z1−z0) > 0 .

In analogy with (6.4), but taking now into account that (ẑk)k is bounded in

W 1,1(αk, βk;H
1(Ω)) by (6.2), we define

sk(r) := ck

(
r+

∫ r

0

‖ẑ′k(σ)‖H1(Ω) dσ

)
for all r ∈ [αk, βk] ,

where the normalization constant ck is now chosen in such a way as to have sk(βk−αk) = 1.

Thus, we set

tk := s−1
k : [0, 1] → [αk, βk], zk := zk ◦ tk, ẑk := ẑk ◦ tk : [0, 1] → Z ,

and observe that the following estimates hold

‖tk‖W 1,∞(0,1) + ‖ẑk‖W 1,∞(0,1;H1(Ω)) � C, (6.7a)

‖zk‖L∞(0,1;Z) + ‖ẑk‖L∞(0,1;Z) + ‖ẑ′k‖L1(0,1;H1(Ω)) + ‖DzI(tτk ◦ tk, zk)‖L∞(0,1;L2(Ω)) � 
̄ , (6.7b)

where (6.7a) is due to the analogue of the normalization condition (6.5a), while (6.7b)

derives from (6.2). From the bound for ‖DzI(tτk ◦ tk, zk)‖L∞(0,1;L2(Ω)), taking into account

that ‖DzĨ(tτk ◦ tk, zk)‖L∞(0,1;L2(Ω)) � C in view of (2.34) and the estimate ‖zk‖L∞(0,1;Z) � C ,

we also deduce

‖Aq(zk)‖L∞(0,1;L2(Ω)) � C . (6.7c)

Combining estimates (6.7) with the compactness results [30, Theorem 5, Corollary 4], and

taking into account that (zk) and (ẑk)k converge to the same limit in view of the second of

(6.2), with the very same arguments as in the proof of (2), we conclude that there exists

ϑ such that

ẑk ⇀
∗ ϑ in L∞(0, 1;Z) ∩W 1,∞(0, 1;H1(Ω)), (6.8a)

zk ⇀
∗ ϑ in L∞(0, 1;W 1+σ,q(Ω)) for all 0 < σ <

1

q
, (6.8b)

zk → ϑ in L∞(0, 1;Z), (6.8c)

ẑk → ϑ in C0([0, 1], H1(Ω)) , (6.8d )

whence (6.3a) and (6.3b). Furthermore, observe that Aq(zk) ⇀
∗ Aq(ϑ) in L∞(0, 1;L2(Ω))

and that, as k → ∞,

‖DzĨ(tτk ◦ tk, zk) − DzĨ(t, ϑ)‖L∞(0,1;L2(Ω))

(1)

� C sup
s∈[0,1]

(
|tτk (tk(s)) − t| + ‖zk(s) − ϑ(s)‖L6(Ω)

) (2)→ 0
(6.8e)

with (1) due to (2.32). Convergence (2) is due to (6.8c) and the fact that sups∈[0,1] |tk(s) −
t| → 0, since tk takes values in the interval [αk, βk] that shrinks to {t}. All in all,
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DzI(tτk ◦ tk, zk) ⇀∗ DzI(t, ϑ) in L∞(0, 1;L2(Ω)). It follows from estimates (6.7b) and

convergences (6.8) that ϑ ∈ T 
̄
t (z0, z1). It remains to conclude (6.3c). For this limit passage,

we rely on convergences (6.8) and refer the reader to the proof of [25, Proposition 7.1],

cf. also [18, Theorem 5.1], [19, Theorem 7.4].

This finishes the proof of Proposition 6.1. �

We continue this section by carrying out the proof of Proposition 5.8, by suitably

adapting the argument for the chain-rule result [25, Theorem 3.13]. From now on, we will

suppose that t0 = 0 and t1 = T for the sake of simplicity. Let 
 > 0 fulfill (5.14).

First of all, for any z ∈ BV([0, T ];L2(Ω)) fulfilling the conditions of the statement

we construct a parameterized curve (t, z) : [0,S] → [0, T ] × Z with the following

properties:

z(t) ∈ {z(s) : t(s) = t}
and

- t is non-decreasing, surjective, Lipschitz,

- z ∈ L∞(0,S;Z) ∩ AC([0,S];L2(Ω)) and DzI(·, z(·)) ∈ L∞(0,S;L2(Ω)).

The integrability and regularity requirements on z coincide with those on admissible

transition curves, cf. Definition 5.1. Hence, we will call (t, z) admissible parameterized

curve. We borrow the construction of (t, z), starting from the BV-curve z, from the proof

of [25, Proposition 4.7]: first, we introduce the parameterization

s(t) := t + VarL2(Ω)(z; [0, t]), S := s(T ).

We define

t := s−1 : [0,S] \ I → [0, T ], z := z ◦ t,

where the set I is given by I = ∪nIn, with In = (s(tn−), s(tn+)) and the points (tn)n
constitute the countable jump set of z, which in fact coincides with the jump set of s. We

extend t and z to I by setting

t(s) := tn, z(s) := ϑn(rn(s)) if s ∈ In,

with rn : In → [0, 1] the unique affine and strictly increasing function from In to [0, 1] and

ϑn ∈ T 

tn
(z(tn−), z(tn+)) an admissible transition curve satisfying ϑn(rn(s(tn))) = z(tn) and

the optimality condition∫ 1

0

ftn(ϑn(r), ϑ
′
n(r)) dr = Δ



f
(tn; z(tn−), z(tn)) + Δ



f
(tn; z(tn), z(tn+)) .

The existence of such an optimal transition follows from Proposition 6.1(1). Indeed, let

t∗ ∈ Jz . Observe that in (t∗, z(t∗±)) the assumptions of the proposition are satisfied, which

can be seen as follows. First of all, Δ

f
(t∗; z(t∗−), z(t∗)) < ∞ and Δ



f
(t∗; z(t∗), z(t∗+)) < ∞

since Var

f
(z; [0, T ]) < +∞. Moreover, choose a sequence sk → t∗− for k → ∞ such

that the assumptions of Proposition 6.1(1) are satisfied along this sequence and such that

z(sk) ⇀ z(t∗−) in Z . Consequently, by Corollary 2.14, DzĨ(sk, z(sk)) → DzĨ(t∗, z(t∗−))

and ‖Aq(z(sk))‖L2(Ω) � C , which translates into a uniform bound of the sequence
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(z(sk))k in W 1+σ,q(Ω) for 0 < σ < 1
q
, cf. Proposition 2.8. Thus, we finally conclude

that DzI(t∗, z(t∗−)) ∈ L2(Ω) and that ‖z(t∗−)‖Z + ‖DzI(t∗, z(t∗−))‖L2(Ω) � 
. A similar

argument applies to t∗+.

By construction, z ∈ W 1,∞(0, S;L2(Ω)). Indeed, let s1 < s2 ∈ [0, S] and σi := t(si).

Hence, si = σi + VarL2(Ω)(z; [0, σi]). This implies that

‖z(s1) − z(s2)‖L2(Ω) � |σ2 + VarL2(Ω)(z; [0, σ2]) − (σ1 + VarL2(Ω)(z; [0, σ1]))| = |s2 − s1| .

Hence, altogether (t, z) is an admissible parameterized curve.

By repeating the very same calculations as in the proof of [25, Proposition 4.7], we may

show that

Var

f
(z; [0, T ]) =

∫ S

0

ft(s)(z(s), z
′(s)) ds . (6.9)

Second, we observe that the chain rule from Lemma 2.17 extends to the admissible

parameterized curve (t, z), yielding

d

ds
I(t(s), z(s)) − ∂tI(t(s), z(s))t′(s) =

∫
Ω

DzI(t(s), z(s))z′(s) dx for a.a. s ∈ (0,S) .

Therefore, with a simple calculation (cf. also the proof of [25, Theorem 4.4]) we infer that∣∣∣∣ d

ds
I(t(s), z(s)) − ∂tI(t(s), z(s))t′(s)

∣∣∣∣ � ft(s)(z(s), z
′(s)) for a.a. s ∈ (0,S) . (6.10)

Combining (6.9) and (6.10), we obtain the desired chain-rule inequality (5.23).

We are now in a position to give the proof of Theorem 5.7. We will split the proof in

several steps and give some intermediate results. Let us mention in advance that, in their

statements, we will always tacitly suppose that Assumptions 2.1, 2.2 and 2.9, as well as

condition (5.18), from Theorem 5.7 hold. More precisely,

- we start by fixing the compactness properties of the sequences (zτk,εk )k, (ẑτk ,εk )k in Lemma

6.2 below.

- Throughout Steps 1–3, we show that any limit curve z of (zτk,εk )k, (ẑτk ,εk )k complies with

the local stability (Sloc) and with the ED inequality (5.24), obtained by passing to the

limit in its discrete counterpart (3.11). By virtue of Corollary 5.9, we thus conclude that

z is a BV solution to the rate-independent system (1.1).

- Steps 4 and 5 are devoted to finalizing the proof of convergences (5.21), and to showing

that z is a H1(Ω)-parameterizable solution, cf. (5.22).

Step 0: Compactness.

We prove the following

Lemma 6.2 Let (τk, εk)k be null sequences. There holds

∃C > 0 ∀ k ∈ � : sup
t∈[0,T ]

‖zτk,εk (t)−ẑτk ,εk (t)‖H1(Ω) � C

(
τk

εk

)1/2

. (6.11)
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Suppose in addition (5.19). Then, there exists a curve z ∈ L∞(0, T ;Z) ∩ BV([0, T ];H1(Ω))

such that, up to a (not relabelled) subsequence, the following convergences hold:

zτk,εk , ẑτk ,εk ⇀
∗ z in L∞(0, T ;Z), (6.12a)

zτk,εk (t), ẑτk ,εk (t) → z(t) in Z for all t ∈ [0, T ], (6.12b)

DzI(tτk (t), zτk ,εk (t)) ⇀ DzI(t, z(t)) in L2(Ω) for all t ∈ [0, T ]. (6.12c)

Proof The first estimate follows from observing that for every t ∈ (0, T )

‖zτk,εk (t)−ẑτk ,εk (t)‖H1(Ω) �

∫ tτ(t)

tτ(t)

‖ẑ′τk ,εk (r)‖H1(Ω) dr � τ
1/2
k ‖ẑ′τk ,εk‖L2(tτ(t),tτ(t);H

1(Ω)),

and then (6.11) is a consequence of the a priori estimate (3.9d).

Convergences (6.12a) follow from estimate (3.9b): observe that the sequences

(zτk,εk )k, (ẑτk ,εk )k converge to the same limit, weakly star in L∞(0, T ;Z), in view of the fact

that

‖zτk,εk−ẑτk ,εk‖L∞(0,T ;H1(Ω)) → 0 (6.13)

as k → ∞ by (6.11) combined with condition (5.19) on the sequences (τk, εk)k .

It follows from estimate (3.9e) that the sequences (zτk,εk )k, (ẑτk ,εk )k are bounded in

BV([0, T ];H1(Ω)). Due to the previously mentioned [26, Theorem 6.1], up to a sub-

sequence they pointwise converge on [0, T ] w.r.t. the weak H1(Ω)-topology to the same

function z̃, c.f. (6.13). Now, by the additional estimate (3.9f), (zτk,εk )k is bounded in

L∞(0, T ;W 1+σ,q(Ω)) for every 0 < σ < 1
q
, cf. Proposition 2.8, and so is (ẑτk ,εk )k . Therefore,

by compactness the above pointwise convergence to z̃ improves to a strong convergence

in Z . But then, zτk,εk , ẑτk ,εk → z̃ in Lp(0, T ;Z) for every 1 � p < ∞, which allows us to

conclude that z̃ = z. All in all, we have obtained convergence (6.12b).

Finally, we address (6.12c): Observe that Aq(zτk,εk (t)) → Aq(z(t)) in Z∗ as a consequence

of the strong convergence (6.12b). A fortiori, by the L∞(0, T ;L2(Ω))-bound on (Aq(zτk,εk ))k ,

we find that Aq(zτk,εk (t)) ⇀ Aq(z(t)) in L2(Ω). We combine this with (2.36), giving that

DzĨ(tτk (t), zτk ,εk (t)) ⇀ DzĨ(t, z(t)) in L2(Ω), and arrive at (6.12c). �

Step 1: the local stability (Sloc).

On one hand, the very same argument leading to the proof of estimate (3.12a) in Corollary

3.3 also shows that

sup
k

∫ T

0

R∗
εk

(−DzI(tτk (r), zτk ,εk (r))) dr � C . (6.14)

On the other hand, R∗
ε Mosco-converges, w.r.t. the L2(Ω)-topology, to the indicator

functional

I∂R1(0) : L2(Ω) → [0,+∞] defined by I∂R1(0)(v) :=

{
0 if v ∈ ∂R1(0),

+∞ else.
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Hence, we have in view of (6.12c) that

lim inf
k→∞

R∗
εk

(−DzI(tτk (t), zτk ,εk (t))) � I∂R1(0)(−DzI(t, z(t))) for every t ∈ [0, T ]. (6.15)

Therefore, from (6.14) and (6.15) via the Fatou Lemma we infer that∫ T

0

I∂R1(0)(−DzI(t, z(t))) dt < +∞ , whence I∂R1(0)(−DzI(t, z(t))) = 0 for a.a. t ∈ (0, T ).

From this we conclude with an approximation argument −DzI(t, z(t)) ∈ ∂R1(0) for every

t ∈ [0, T ] \ Jz , and that −DzI(t, z(t±)) ∈ ∂R1(0) for every t ∈ Jz , i.e., (Sloc).

Step 2: the key lower semi-continuity inequality.

We aim to prove the following

Lemma 6.3 For every 0 � s � t � T there holds

lim inf
k→∞

∫ tτk (t)

tτk
(s)

Rεk (ẑ
′
τk ,εk

(r)) dr + R∗
εk

(−DzI(tτk (r), zτk ,εk (r))) dr � Var
̄
f
(z; [s, t]) (6.16)

with 
̄ given by


̄ := sup
k

( ∫ T

0

(
Rεk (ẑ

′
k(r))+R∗

εk
(−DzI(tτk (r), zk(r)))

)
dr + ‖ẑk‖L∞(0,T ;Z)∩W 1,1(0,T ;H1(Ω))

+ ‖zk‖L∞(0,T ;Z) + ‖DzI(tτk , zk))‖L∞(0,T ;L2(Ω))

)

Proof Along the footsteps of the [25, proof of Theorem 7.3], we introduce the non-negative

Borel measures on [0, T ]

νk :=
(
Rεk (ẑ

′
τk ,εk

) + R∗
εk

(−DzI(tτk , zτk ,εk ))
)
L 1,

with L 1 the one-dimensional Lebesgue measure. It follows from estimate (3.12b) that the

sequence (νk)k is bounded in the space of Radon measures, hence there exists a positive

measure ν such that νk ⇀
∗ ν as k → ∞. Like in the proof of [25, Theorem 7.3], we observe

that for every interval [a, b] ⊂ [0, T ]

ν([a, b]) � lim sup
k→∞

νk([a, b]) � lim sup
k→∞

∫ b

a

(
Rεk (ẑ

′
τk ,εk

(r)) + R∗
εk

(−DzI(tτk (r), zτk ,εk (r)))
)

dr

� lim inf
k→∞

∫ b

a

Rεk (ẑ
′
τk ,εk

(r)) dr

� lim inf
k→∞

VarR1
(zτk,εk ; [a, b])

(1)

� VarR1
(z; [a, b])

(2)

� μd([a, b]),

where (1) follows from the pointwise convergence (6.12b) and the lower semi-continuity

of the variation functional VarR1
, and (2) from the definition (5.10) of the measure μ. We
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thus conclude that

ν � μd. (6.17)

We now check

ν({t}) � Δ

̄
f
(t; z(t−), z(t)) + Δ


̄
f
(t; z(t), z(t+)) � μJ({t}) for every t ∈ Jz . (6.18)

With this aim, for fixed t ∈ Jz let us fix two sequences αk ↑ t and βk ↓ t such that{
zτk,εk (αk) → z(t−),

zτk ,εk (βk) → z(t+)
in Z as k → ∞.

Thus, we have

lim sup
k→∞

νk([αk, βk]) � lim inf
k→∞

∫ βk

αk

(
Rεk (ẑ

′
τk ,εk

(r)) + R∗
εk

(−DzI(tτk (r), zτk ,εk (r)))
)

dr

(1)

� Δ

̄
f
(t; z(t−), z(t+)) ,

where (1) ensues from Proposition 6.1 by applying (6.3) with the choices zk := zτk,εk ,

ẑk := ẑτk ,εk . With analogous arguments we check that

lim inf
k→∞

νk([αk, t]) � Δ

̄
f
(t; z(t−), z(t)), lim inf

k→∞
νk([t, βk]) � Δ


̄
f
(t; z(t), z(t+)) . (6.19)

All in all, we have

ν({t})
(1)

� lim sup
k→∞

νk([αk, βk]) � lim inf
k→∞

νk([αk, t]) + lim inf
k→∞

νk([t, βk])

� Δ

̄
f
(t; z(t−), z(t)) + Δ


̄
f
(t; z(t), z(t+))

(2)

� μJ({t}),

where (1) is a property of the weak∗-convergence of measures and (2) ensues from (5.3).

Hence, inequality (6.18) is proved.

Combining (6.17)–(6.19) and repeating the very same calculations as in the proof

of [25, Theorem 7.3], we ultimately conclude (6.16). �

Step 3: the energy-dissipation inequality (5.24).

We now pass to the limit in the discrete ED inequality (3.11), written for s = 0 and

t = T . For the first term on the left-hand side, we resort to the lower semi-continuity

inequality (6.16) from Step 2. It follows from the pointwise convergence (6.12b) and the

lower semi-continuity (2.36) of I that

lim inf
k→∞

I(T , ẑτk ,εk (T )) � I(T , z(T )),

whereas by hypothesis (5.18), we have that I(0, ẑτk ,εk (0)) → I(0, z0). Furthermore, it follows

from (2.23), (2.24) and the Lebesgue Theorem that

lim
k→∞

∫ T

0

∂tI(t, ẑτk ,εk (t)) dt =

∫ T

0

∂tI(t, z(t)) dt .
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Finally, observe that the very last term on the right-hand side of (3.11) converges to zero

by virtue of estimates (3.9) and convergence (6.13).

Thus, (5.24) is proven with Var
̄
f
(z; [0, T ]) and, by virtue of Corollary 5.9, we deduce

that z is a BV solution to the rate-independent damage system (1.1).

Finally, (5.20) follows from the following chain of inequalities (which in fact holds for

every t ∈ [0, T ])

sup

�
̄

Var

f
(z; [0, T ])

(1)
= Var
̄

f
(z; [0, T ])

(2)
= I(0, z(0)) − I(T , z(T )) +

∫ T

0

∂tI(s, z(s)) ds

(3)

� inf

�
̄

Var

f
(z; [0, T ]),

with (1) due to (5.6), (2) to (Ef) involving the total variation functional Var
̄
f
(z; [0, T ]),

and (3) from the chain-rule inequality (5.23) (observe that 
 therein is arbitrary, provided

it fulfills (5.14)).

Step 4: convergences (5.21).

The convergences of the energies (I(t, zτk,εk (t)))k follows from the pointwise convergence

(6.12a) of (zτk,εk (t))k . In order to prove the convergence of (I(t, ẑτk ,εk (t)))k and of the

dissipation integrals in (5.21c), we repeat the very same arguments as in the proof

of [25, Theorem 3.11].

Step 5: (5.22).

We may repeat the proof of [25, Theorem 3.22], to which we refer the reader, relying on

Proposition 6.1(3).

This concludes the proof of Theorem 5.7.
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cesses (Ch. 3). In: L. Ambrosio & G. Savaré (editors), Nonlinear PDEs and Applications.

C.I.M.E. Summer School, Cetraro, Italy 2008, Springer, Heidelberg, pp. 87–170.

[21] Maz’ya, V. G. & Rossmann, J. (2003) Weighted Lp estimates of solutions to boundary value

problems for second order elliptic systems in polyhedral domains. Z. Angew. Math. Mech.

83(7), 435–467.
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Appendix A Some references on elliptic regularity

For d � 2 let Ω ⊂ �d be a bounded C1,1-domain with Dirichlet boundary ∂Ω. Let further

� satisfy (2.5).

Reference [31, Theorem 3], see also [21, Theorem 7.1], yields

Theorem A.1 For every p ∈ (1,∞) the operator L� : W 1,p
0 (Ω) → W−1,p(Ω) is a continuous

isomorphism.

Moreover, Theorem 10.5 from [1] (there it is assumed that the domain has a C2-boundary,

but the coefficients need to be continuous, only, instead of Lipschitz continuous) provides

the following a priori estimate:

Theorem A.2 For every p ∈ (1,∞) there exist constants cp, c̃p > 0 such that for every

u ∈ W 2,p(Ω) ∩W
1,p
0 (Ω) it holds

‖u‖W 2,p(Ω) � cp
(
‖L�u‖Lp(Ω) + c̃p‖u‖Lp(Ω)

)
. (A 1)

Thanks to Theorem A.1, for every p ∈ (1,∞) the operator

L� : W 2,p(Ω) ∩W
1,p
0 (Ω) → Lp(Ω), u �→ −div(�ε(u)) (A 2)

is injective, which implies that estimate (A 1) is valid with c̃p = 0 and that L� has a closed

range. By [15, Chapter 3.5.5], one finally concludes that the operator L� from (A 2) is

surjective for every p ∈ (1,∞). This finally results in

Theorem A.3 For every p ∈ (1,∞) the operator in (A 2) is a continuous isomorphism.
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