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We study the decay of compressible magnetohydrodynamic (MHD) turbulence,
emphasizing exchanges of energy between compressive and incompressive kinetic
energies, magnetic energy, and thermal energy. A recently developed high order finite
difference code is employed for compressible runs with a Mach number up to 2. Varying
the nature of the initial conditions (magnitudes of velocity and magnetic fluctuations), and
initial Mach numbers permits examination of various dynamical regimes characterized
here by the changes between different energy reservoirs. Acoustic waves are responsible
for the oscillatory exchange between compressive kinetic and thermal energy through the
pressure dilatation term. The results indicate that exchange between kinetic and magnetic
energy is dominated by interactions involving the solenoidal velocity. Several systematic
rapid adjustments are found to be reproducible with simple scalings derived from the
empirical data.

Key words: MHD turbulence, compressible turbulence, turbulence theory

1. Introduction

A basic feature of compressible magnetohydrodynamic (MHD) turbulence is the
coexistence and interaction of several fields, that participate to varying degrees in different
fundamental dynamic processes. For example, the compressive processes are related to
acoustic waves, the shearing processes to vortical motions, the thermodynamic processes
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to the pressure, density and temperature, while the magnetic field will, in general, influence
all other dynamics. These have inherently led to questions regarding the degree to which
compressible MHD deviates from the incompressible case, and what role the magnetic
field plays on the fluid motion, in contrast to purely hydrodynamic turbulence. The
preponderance of work in turbulence has placed a great emphasis on either hydrodynamic
turbulence or incompressible turbulence, with the advantages of simplification of
the complicated physics underlying turbulence. However, compressible, magnetized
turbulence plays an important role in many astrophysical processes (Elmegreen & Scalo
2004; Brandenburg & Lazarian 2013). Less has been accomplished in MHD turbulence
research, and in particular, in research on compressible MHD turbulence, compared with
research on incompressible hydrodynamic turbulence.

The first point that stands out in compressible MHD turbulence is the introduction of
a magnetic field. In the usual way, the straightforward way to develop MHD turbulence
theory is to generalize the formalism developed for hydrodynamic turbulence. For
example, a standard MHD turbulence scenario inherited from hydrodynamics considers
an energy cascade process over the inertial range. By applying considerations to MHD
turbulence, in analogy with Kolmogorov’s phenomenological theory, a third-order law
in terms of Elsasser field increments has been proposed (Politano & Pouquet 1998;
Carbone et al. 2009; Podesta 2008; Banerjee & Galtier 2013; Andrés et al. 2018; Hellinger
et al. 2018). However, caution is required in doing this, since MHD flows differ from
neutral fluids in many ways. There is a growing evidence – theoretical, observational and
numerical – that universality might break down in MHD (Pouquet et al. 2010), including
aspects of the energy spectrum (Kolmogorov 1941; Iroshnikov 1964; Kraichnan 1965) and
of the local and nonlocal energy transfers (Aluie & Eyink 2010; Mininni 2011; Yang et al.
2016a; Grete et al. 2017) in MHD. At the same time, there are several processes in MHD
turbulence that have no hydrodynamic counterpart, such as magnetic reconnection (Parker
1957), magnetic dynamo (Moffatt 1978) and several distinctive relaxation processes
(Taylor 1974; Montgomery, Turner & Vahala 1978), to name a few. Therefore, intensive
studies are necessary to understand new features specific to MHD turbulence.

The second point that stands out in compressible MHD turbulence is, of course, the
effect of compressibility. In most treatises on turbulence theory, turbulence is assumed
incompressible. For example, a k−5/3 spectrum of density fluctuations has been reported in
solar wind observations (Goldstein & Siscoe 1972) and interstellar remote sensing studies
(Armstrong, Cordes & Rickett 1981), which was explained that density should act in part
passively, supporting a pressure that, in effect, imposed a constraint (Montgomery, Brown
& Matthaeus 1987; Shebalin & Montgomery 1988). This is suggestive that turbulence in
the solar wind dominated by incompressible fluctuations, but compressibility remains an
essential characteristic, both of interplanetary and interstellar plasmas (Spangler & Spitler
2004; Hnat, Chapman & Rowlands 2005; Federrath et al. 2010; Chen et al. 2012; Banerjee
et al. 2016a; Chen 2016; Roberts et al. 2017; Shoda et al. 2019). Evidently one must appeal
to a compressible MHD model. Compressible MHD turbulence, in the presence of waves
or shocks, is expected to admit features beyond what has been seen in the incompressible
case, such as the energy cascade process incorporating compressibility effects (Banerjee
et al. 2016b; Hadid, Sahraoui & Galtier 2017; Hadid et al. 2018; Andrés et al. 2019).
In the nonlinear regime, different scaling relations emerge (Lithwick & Goldreich 2001;
Beresnyak, Lazarian & Cho 2005; Kowal & Lazarian 2007; Benzi et al. 2008; Schmidt,
Federrath & Klessen 2008; Lemaster & Stone 2009; Kritsuk, Wagner & Norman 2013;
Wang, Gotoh & Watanabe 2017; Yang et al. 2017) due to the influence of shocks. The
shock is usually identified by a very rapid increase in the field (cliff) followed by a more
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gradual or smooth decrease (ramp), ramp-cliff structure for scalar turbulence (Sreenivasan
1991; Celani et al. 2000, 2001). Carbone et al. (2018) applied the arbitrary-order Hilbert
spectral analysis (Huang et al. 2010), to extract scaling information for solar wind proton
density fluctuations measured by the BMSW instrument on the Spektr-R spacecraft. By
minimizing the effect of the ramp–cliff structures, the resulting scaling exponents in the
inertial range were close to those for velocity fluctuations obtained through the structure
functions in hydrodynamic turbulence. Another related aspect which could arise from
shocks is the k−2 (Roberts & Goldstein 1987; Burlaga, Mish & Roberts 1989; Bec &
Khanin 2007; Wang et al. 2013; Bruno et al. 2014; Yang et al. 2016a) or shallower than k−2

(Siscoe et al. 1968; Borovsky 2010) spectrum. The compressibility can be controlled by
virtue of varying kinetic energy injection (Kida & Orszag 1990; Federrath et al. 2010; Yang
et al. 2016a; Cerretani & Dmitruk 2019), e.g. from divergence-free to curl-free, which plays
an important role in amplification of the magnetic field (Federrath et al. 2011).

The pioneering work by Klainerman & Majda (1981, 1982) has provided a firm
mathematical basis for understanding how, in specific circumstances, solutions to
compressible flow equations approach, at low Mach numbers, solutions to incompressible
flow equations. This is extended to spatially homogeneous MHD in a formalism
usually called ‘nearly incompressible’ (NI) theory (Matthaeus & Brown 1988; Zank &
Matthaeus 1990, 1993) and subsequently to inhomogeneous MHD (Bhattacharjee, Ng
& Spangler 1998; Bhattacharjee et al. 1999; Hunana & Zank 2010). One immediate
consequence arising from NI theory is the close similarity in physics of compressible
and incompressible systems, such as the dominance of vorticity. In these formalisms, the
solution to compressible flow equations is expanded in powers of Mach number (Mt).
In the NI regime, the density variation is of order O(M2

t ), and the ratio of compressible
velocity fluctuations uL to incompressible velocity fluctuations uT is of order O(Mt). (Note
that the requirement that uL/uT = O(Mt) is the formal condition found for NI behaviour in
hydrodynamics (Klainerman & Majda 1981) and in high beta MHD (Matthaeus & Brown
1988). However the more restrictive scaling uL/uT = O(M2

t ) has also been examined
in some numerical studies (Ghosh & Matthaeus 1992; Cerretani & Dmitruk 2019).)
As the strength of acoustic waves becomes comparable to the vortical motions, i.e.
the ratio of compressible to incompressible velocity fluctuations is of order O(1), the
nearly incompressible asymptotic expansion breaks down and the flow enters a modally
equipartitioned compressible (MEC) state. This situation has been addresses by Kraichnan
(1955) which permits strong waves and the density variation is of order O(Mt). Another
possibility was less considered to date is the compressible wave (CW) state, i.e. pure
acoustic waves. One physically plausible feature in this model is the dominance of acoustic
waves over vortical motions, as suggested by Ghosh & Matthaeus (1992) and Cerretani &
Dmitruk (2019), but there is no theoretical basis on the scaling for velocity fluctuations
nor for density variations.

The richness of results in compressible MHD turbulence, there being some apparently
conflicting tendencies, adds considerably to the motivation for finding systematically
repeatable behaviours. A decomposition of the turbulent field is frequently implemented to
study different compressible MHD turbulence processes. For example, characteristics for
three separate propagating linear eigenmodes – the Alfvén mode, the slow magnetosonic
mode and the fast magnetosonic mode have been studied using numerical simulations
(Cho & Lazarian 2002; Kowal & Lazarian 2010; Yang et al. 2018; Makwana & Yan 2020)
and observations (Yao et al. 2011; Howes et al. 2012; Klein et al. 2012). In this work, we
decompose the velocity field into solenoidal and compressive parts following Helmholtz
decomposition as used in Kida & Orszag (1990, 1992), Miura & Kida (1995), Pan &
Johnsen (2017), Wang et al. (2019). The decay of energy in a turbulent MHD system is both
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an interesting academic problem and also an important practical one. A number of studies
have been devoted to trying to understand aspects of this process, such as the energy decay
law (Hossain et al. 1995; Kinney, McWilliams & Tajima 1995; Galtier, Politano & Pouquet
1997; Mac Low et al. 1998; Stone, Ostriker & Gammie 1998; Mac Low 1999; Padoan &
Nordlund 1999; Biskamp & Müller 1999; Bigot, Galtier & Politano 2008; Brandenburg
& Kahniashvili 2017), the selective decay and dynamic alignment relaxation theories
(Taylor 1974; Montgomery et al. 1978; Stribling & Matthaeus 1991; Ghosh & Matthaeus
1990), and the similarity decay (Wan et al. 2012; Bandyopadhyay et al. 2019). To get a
further insight into the decaying MHD system, here we inquire how different types of
energy (including solenoidal kinetic, compressive kinetic, magnetic and thermal energies)
interact, which was also investigated in turbulent magnetohydrodynamic jets recently in
Praturi & Girimaji (2020) and in the evolution of the Kelvin–Helmholtz instability in
Salvesen et al. (2014). Similar analysis in compressible hydrodynamic turbulence can be
found in Kida & Orszag (1990, 1992), Miura & Kida (1995) and Pan & Johnsen (2017).

In this paper, we commence with the simplest case, having no external imposed
magnetic field, no forcing, unit magnetic Prandtl number and vanishing cross helicity,
and report results from a series of numerical simulations. We study the energy
budget in decaying compressible MHD turbulence, paying particular attention to the
interaction and exchange between the differing components and its dependence on initial
configurations. The equations and the definition of the decomposed energies are given in
§ 2. Details of the simulations are given in § 3. The exchange between solenoidal kinetic,
compressive kinetic, magnetic and thermal energy are discussed in §§ 4 and 5. In § 6,
we present three short-time energy amplification processes, and in § 7 a brief discussion
of the behaviour of plasma β. Conclusions and discussion of the results are given
in § 8.

2. Formulation

2.1. MHD equations
Compressible MHD equations are

∂tρ + ∇ · (ρu) = 0, (2.1)

∂t (ρu) + ∇ ·
[
ρuu + pI + 1

2

(
b2

)
I − bb

]
= ∇ · σ , (2.2)

∂tb + ∇ · (ub − bu) = η∇2b, (2.3)

∂tE + ∇ ·
[(
E + p + 1

2 b2
)

u − (bb) · u
]

= ∇ · (κ∇T) + ∇ · (σ · u) + ∇ · [b × (η∇ × b)] , (2.4)

where ρ, u, p, T , b and E = ρu · u/2 + p/(γ − 1) + b · b/2 = Ek + Eth + Eb denote
density, velocity, pressure, temperature, magnetic field and total (kinetic, thermal and
magnetic) energy. γ is the adiabatic index with a value, γ = 1.4; I is the unity tensor;
σij = μ(∂iuj + ∂jui) − 2(μ(∇ · u)δij)/3 is the viscous stress tensor; μ is the dynamic
viscosity; η is the magnetic diffusivity; and κ is the thermal conductivity. The MHD
equations are closed with the equation of state of an ideal gas. This set of compressible
MHD equations is expected to be valid in a conducting ideal gas such as a hydrogen
plasma when collisions are dominant and the medium is isotropic so that the dissipation
coefficients are scalars.
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The MHD equations are non-dimensionalized by introducing several reference scales.
For example, length is normalized to L0, velocity to U0, density to ρ0, magnetic field to B0,
temperature to T0, viscosity to μ0, magnetic diffusivity to η0 and thermal conductivity to
κ0. Then the system is control by several dimensionless parameters, such as the Reynolds
number Re = ρ0U0L0/μ0, the magnetic Reynolds number Rem = U0L0/η0 and the Mach
number M = U0/cs,0, where cs,0 = √

γ RT0 is the reference sound speed and R is the
universal gas constant. The dimensionless μ, κ and η (here we use the same symbols as
dimensional ones without confusion) are assumed to be described by the Sutherland’s law
as used by Yang et al. (2016b), μ = κ = η = 1.4042T3/2/(T + 0.4042).

2.2. Helmholtz decomposition
To clarify the interchange among differing components, the Helmholtz decomposition is
employed (as used in Kida & Orszag 1992; Miura & Kida 1995; Pan & Johnsen 2017) to
separate compressible and incompressible motions of the velocity field. It can be applied
to the Fourier transform v̂(k) of any vector field v(x) of zero mean, which decomposes v̂
into components along and normal to k

v̂ = v̂c + v̂s, (2.5)

where v̂c = k(k · v̂)/k2 is the compressive (longitudinal) part and v̂s = −(k × (k × v̂)/k2)
is the solenoidal (transverse) part. After accomplishing this separation, it is straightforward
to reassemble the velocity in real space (or Fourier-space) into incompressible and
compressible parts. For flows that are potentially strongly compressive, it is convenient
to gauge the relative amplitudes of these motions with a density weighting. We introduce
a variable w = √

ρu. The r.m.s. value of the compressive part of w will be written as the
longitudinal part uL, while the r.m.s. value of the solenoidal part of w is designated as the
transverse part uT . In general this differs slightly from the decomposition of the velocity
itself into transverse and longitudinal parts, as has been customary in the theory of nearly
incompressible flows (Klainerman & Majda 1982; Matthaeus & Brown 1988; Ghosh &
Matthaeus 1992). However in the limit of low Mach number and incompressibility the two
approaches coincide. With these definitions, the kinetic energy can be decomposed into
compressive and solenoidal parts as follows.

From (2.1) and (2.2), we have

∂tw = A + P + M + D, (2.6)

where

A = −
[
(u · ∇)w + 1

2 w∇ · u
]
, (2.7)

P = − ∇p√
ρ

, (2.8)

M = (∇ × b) × b√
ρ

= −∇(b2/2)√
ρ

+ (b · ∇)b√
ρ

, (2.9)

D = ∇ · σ√
ρ

. (2.10)

Note that the Lorentz force M is composed of magnetic pressure term, M1 =
−∇(b2/2)/

√
ρ and remaining stress term M2 = (b · ∇)b/

√
ρ. Accordingly, the evolution
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of the decomposed kinetic energy spectra can be derived from (2.6) as

∂tEk,α(k, t) = Aα(k, t) + Pα(k, t) + Mα(k, t) + Dα(k, t), (2.11)

where the subscript α = c, s represents compressive and solenoidal parts, respectively.

Ek,α(k, t) =
∑

k−0.5�|k|<k+0.5

1
2 ŵα(k, t) · ŵ∗

α(k, t), (2.12)

Aα(k, t) =
∑

k−0.5�|k|<k+0.5

ŵ∗
α(k, t) · Âα(k, t), (2.13)

Pα(k, t) =
∑

k−0.5�|k|<k+0.5

ŵ∗
α(k, t) · P̂α(k, t), (2.14)

Mα(k, t) =
∑

k−0.5�|k|<k+0.5

ŵ∗
α(k, t) · M̂α(k, t), (2.15)

Dα(k, t) =
∑

k−0.5�|k|<k+0.5

ŵ∗
α(k, t) · D̂α(k, t). (2.16)

Summing (2.11) over all shells yields the evolution of spatially averaged kinetic
energy, 〈Ek,α〉(t) = ∑

k Ek,α(k, t), with spatial averages of the quantities in (2.12)–(2.16)
analogously defined,

∂t〈Ek,α〉 = 〈Aα〉 + 〈Pα〉 + 〈Mα〉 + 〈Dα〉. (2.17)

In this equation we identify the various terms as

(i) 〈Aα〉 is the advection term that exchanges kinetic energy between compressive and
solenoidal types. 〈Ac〉 + 〈As〉=0 for periodic boundary condition.

(ii) 〈Pα〉 is the pressure-dilatation term that exchange energy between type α kinetic and
thermal components.

(iii) 〈Mα〉 is the Lorentz force term that represents the exchange of type α kinetic and
magnetic energy.

(iv) 〈Dα〉 is the viscous dissipation term of kinetic energy of type α.

In summary, we focus on four types of energy: solenoidal kinetic energy 〈Ek,s〉,
compressive kinetic energy 〈Ek,c〉 (as defined in (2.17)), magnetic energy 〈Eb〉 = 〈b · b/2〉
and thermal energy 〈Eth〉 = 〈p/(γ − 1)〉, and the channels in (2.17) concerning their
exchange.

3. Simulation details

We solve the compressible MHD equation via a hybrid scheme (Yang et al. 2016b; Yang
2019), which couples a sixth-order compact finite difference scheme for smooth regions
and a fifth-order weighted essentially non-oscillatory (WENO) scheme for shock regions.
The fields are advanced in time by a third-order Runge–Kutta method. All runs discussed
here are freely decaying initial value problems conducted in periodic (2π)3 geometry
with 5123 grid points. The magnetic Prandtl number is Pm = 1, and we do not impose
an external magnetic field. All runs have initially uniform density and temperature. The
velocity and magnetic fields are initialized at Fourier modes 1 � |k| � 8 with random
phases, and with modal spectra proportional to 1/[1 + (k/kc)

8/3] with kc = 3. The initial
cross helicity, Hc = 2〈u · b〉/〈u2 + b2〉, though not exactly zero, is very small.
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To study the energy transfer among solenoidal kinetic 〈Ek,s〉, compressive kinetic 〈Ek,c〉,
magnetic 〈Eb〉 and thermal energy 〈Eth〉, we initialize our system with a range of Mach
numbers and a variety of initial velocity and magnetic fluctuations. These runs are grouped
into four series that respectively emphasize time variations of these four types of energy.
We briefly summarize these runs in the following, and more details are listed for each
run in table 1. Note that the Taylor-scale Reynolds number Reλ, which is always used to
compare the turbulence between different flows, is defined as

Reλ = Re
urmsλρ

μ
, (3.1)

where urms = √〈u · u〉/3 is the r.m.s velocity, λ = urms/ωrms is the Taylor microscale and
ωrms is the r.m.s. value of vorticity ω = ∇ × u. The turbulent Mach number Mt, related to
compressibility in some sense, is defined as

Mt = M
√〈u · u〉√

T
, (3.2)

where T is the temperature. Varying velocity field could result in different Reλ and Mt as
listed in table 1. The large-eddy turnover times for the runs are different and vary with
time (initial large-eddy turnover time ∼2.0), so the time throughout the paper will be in
code units.

The first series of runs, listed as Type T in table 1, emphasizes energy interchange
between compressive kinetic energy and thermal components, here commencing with
equal amplitude of compressive velocity field energy and magnetic energy, 〈Ek,c〉0 =
〈Eb〉0 = 0.5 and an absence of a solenoidal kinetic energy component. Three values of
initial turbulent Mach number Mt = 0.1, 0.5, 1.0 are used.

The second series of runs, Type S, are similar to the first series of type T runs in that only
the compressive kinetic and magnetic components are excited, but with varying amplitudes
ranging from 0.0 to 0.5. These runs are intended to clarify which energy reservoir is the
main contributor to supplying solenoidal kinetic energy.

The third series of runs have varying turbulent Mach numbers and amplitudes of
solenoidal kinetic and magnetic energy. This series of runs is devised to study the growth
of compressive kinetic energy and its dependence on Mach number, which are referred to
as type C.

Runs in the fourth series are initialized with a mixture of solenoidal and compressive
kinetic components. Note that the compressible MHD with quite a small initial magnetic
energy behaves like compressible hydrodynamics, e.g. S09 and C04, since the magnetic
energy tends to dissipate out of the system rapidly, without substantially interacting with
the kinetic part. Therefore, a small amount of magnetic energy is introduced in the
beginning to avoid reducing immediately to hydrodynamic-like dynamics and, at the same
time, to address questions concerning magnetic field amplification (dynamo). We refer to
this set of runs as type B.

To quantify the contribution from solenoidal kinetic energy to magnetic energy, we
make a specific comparison to type B runs by introducing a series of incompressible
runs labelled as type I. We numerically solve the incompressible MHD equations (see
appendix A) in periodic (2π)3 geometry using the standard pseudo-spectral method with
de-aliasing by the two-thirds rule. The fields are advanced in time by a second-order
Adam–Bashforth scheme. All other parameters are set up in the same way as the
compressible runs. In table 1 we show the initial kinetic energy at changing its amplitude
from 0.15 to 0.5. We do not conduct a corresponding incompressible run to B05 since its
initial state is nearly uniform and still.
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Run N3 Mt Reλ 〈Ek,s〉0 〈Ek,c〉0 〈Eb〉0

T01 5123 0.1 356 0.00 0.50 0.50
T02 5123 0.5 356 0.00 0.50 0.50
T03 5123 1.0 356 0.00 0.50 0.50

S01 5123 0.0 0.0 0.00 0.00 0.50
S02 5123 0.55 195 0.00 0.15 0.50
S03 5123 0.71 252 0.00 0.25 0.50
S04 5123 0.84 298 0.00 0.35 0.50
S05 5123 1.0 356 0.00 0.50 0.50
S06 5123 1.0 356 0.00 0.50 0.35
S07 5123 1.0 356 0.00 0.50 0.25
S08 5123 1.0 267 0.00 0.50 0.15
S09 5123 1.0 267 0.00 0.50 1.00 × 10−4

C01 5123 0.1 623 0.50 0.00 0.50
C02 5123 1.0 623 0.50 0.00 0.50
C03 5123 2.0 623 0.50 0.00 0.50
C04 5123 1.0 623 0.50 0.00 1.00 × 10−4

B01 5123 1.0 623 0.50 0.00 0.025
B02 5123 1.0 491 0.35 0.15 0.025
B03 5123 1.0 438 0.25 0.25 0.025
B04 5123 1.0 399 0.15 0.35 0.025
B05 5123 1.0 213 0.00 0.50 0.025

I01 5123 — 611 0.50 — 0.025
I02 5123 — 511 0.35 — 0.025
I03 5123 — 432 0.25 — 0.025
I04 5123 — 335 0.15 — 0.025

Table 1. Simulation parameters: grid size N3, initial turbulent Mach number Mt = M(
√〈u · u〉/√T) where

T is the temperature, initial Taylor-scale Reynolds number Reλ = Re(urmsλρ/μ) where urms is the r.m.s.
velocity and λ is the Taylor microscale, initial solenoidal kinetic, compressive kinetic and magnetic energy
〈Ek,s〉0, 〈Ek,c〉0, 〈Eb〉0. Note that T03 and S05 runs are the same.

4. Acoustic energy exchange

Here, we consider the energy exchange between compressive kinetic and thermal
components. Based on (2.17), it is clear that the pressure dilatation and the viscous
dissipation are two alternatives that can couple kinetic and thermal energy. But unlike the
viscous dissipation, the point-wise pressure dilatation is not positive definite. We expect
that the pressure dilatation exchanges energy between solenoidal kinetic and thermal forms
at a significantly diminished level, since this term arises mainly from compressibility
effects. Therefore, we focus on type T runs in this section, which are initialized with purely
compressible motion to generate as strongly compressed flows as possible.

We proceed with the T01 run at low initial turbulent Mach number Mt = 0.1. The
time histories of solenoidal kinetic, compressive kinetic, magnetic and thermal energy
are shown in figure 1. The total (kinetic, thermal and magnetic) energy is conserved. The
thermal energy 〈Eth〉 keeps increasing on average partially due to the energy supply from
kinetic and magnetic energy through viscous and resistive dissipation. Also noteworthy, is
the regular oscillation in compressive kinetic and thermal energy, while solenoidal kinetic
and magnetic energy varies with time smoothly. It is widely recognized that compressive
velocity field is inherently wave-like and thus associated with oscillatory characters.
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Figure 1. Time histories of solenoidal kinetic 〈Ek,s〉, compressive kinetic 〈Ek,c〉, magnetic 〈Eb〉 and thermal
energy 〈Eth〉 for T01 run. The change in thermal energy from its initial value Δ〈Eth〉 is plotted. The total energy
(sum of the four energies in the plot) 〈Etot〉 is conserved.

2 〈Ps〉
〈Pc〉
0
t〈Pc〉 dt1

0

–1

–2

0 5 10

t
15 20

Figure 2. Time evolutions of solenoidal 〈Ps〉 and compressive parts 〈Pc〉 of pressure dilatation and its time
integral for T01 run.

Similar oscillations have been reported in compressible hydrodynamic turbulence
(Kida & Orszag 1992; Sarkar 1992; Miura & Kida 1995; Ristorcelli 1997; Lee, Yu
& Girimaji 2006; Pan & Johnsen 2017; Praturi & Girimaji 2019), which is attributed
to the pressure-dilatation term 〈Pc〉. It is natural to expect that this reasoning is still
applicable to our cases, even though both pressure and dilatation might be affected by
the magnetic field. One may recall that the interference of linear Alfvén waves could
lead to oscillatory exchanges between kinetic and magnetic energies (Pouquet, Sulem &
Meneguzzi 1988). The Alfvén speed is much smaller than the sound speed here, thus
merely introducing minor effects on the wavelike character. We show the time history of
pressure dilatation in figure 2. The solenoidal part of pressure dilatation 〈Ps〉 is negligible,
while the compressive part 〈Pc〉 evidently exhibits oscillations. Although the time history
of the pressure dilatation is not sign-definite, as energy may be transferred into or out of
thermal energy, its time integral indicates net transfer into thermal energy.

The results at higher Mach number are shown in figure 3, where one can see slight
evolutionary differences in magnetic and solenoidal kinetic energy, while compressive
kinetic and thermal energy oscillate with distinct periods. A higher Mach number leads
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Figure 3. Time histories of magnetic 〈Eb〉, solenoidal kinetic 〈Ek,s〉, compressive kinetic 〈Ek,c〉 and thermal
energy 〈Eth〉 in type T runs with initial turbulent Mach number Mt = 0.1, 0.5, 1.0. The change in thermal
energy from its initial value Δ〈Eth〉 is plotted.

Run Mt cs τ τlinear

T01 0.1 10.0 0.3 0.3
T02 0.5 2.1 1.4 1.5
T03 1.0 1.2 2.5 2.6

Table 2. Initial turbulent Mach number Mt, time averaged sound speed cs,a period of oscillations τ and
period of oscillations estimated from linear theory τlinear = π/cs.

aThe sound speed increases slightly with time in these simulations.

to longer periods of the oscillation; this is quantitatively listed in table 2. Also listed is an
estimated period from linear theory τlinear = π/cs (cs is the sound speed), which agrees
well with the period from the simulation τ . This suggests that acoustic waves take part in
the compressible kinetic-thermal energy exchange channel. The procedure for estimating
the period is detailed in the following.

We consider the simplest case of homogeneous compressible MHD described by ρ0, p0,
u0 and b0. The initial uniform state is ρ0 = 1, u0 = 0 and b0 = 0. For sufficiently small
perturbations, ρ′, p′, u′ and b′, we can linearize the MHD equations (2.2) and (2.4) as

∂tu′ = −∇p′, (4.1)

∂tp′ = −γ p0∇ · u′, (4.2)
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Figure 4. Time history of compressive kinetic energy at different wavenumbers for T03 run.

neglecting diffusive processes for simplicity. These equations can be reduced to a single
one for p′:

∂2p′

∂t2
= c2

s ∇2p′, (4.3)

which can be written in Fourier space as

∂2p̂′(k, t)
∂t2

= −c2
s k2p̂′(k, t). (4.4)

The solution to this wave equation is a combination of wave functions,

p̂′(k, t) = A e−icskt + B eicskt, (4.5)

where complex numbers A, B depend on initial and boundary conditions. Velocity
fluctuation u′ is obtained by substituting (4.5) for p′ in (4.1). Then the pressure dilatation
term is

P(k, t) =
∑

1−0.5�|k|<1+0.5

2k
cs

Im(A∗B e2icskt). (4.6)

A similar expression has been obtained by Miura & Kida (1995).
The period of oscillation is different at different wave numbers, but that of compressive

kinetic energy is determined by the smallest wavenumber (k = 1), which is the dominant
mode in our cases, as shown in figure 4. At the smallest wavenumber (k = 1),

P(k = 1, t) =
∑

1−0.5�|k|<1+0.5

2
cs

Im(A∗B e2icst). (4.7)

The period of oscillation estimated from the linear theory is τlinear = π/cs.

5. Energy transfer among kinetic and magnetic components

We consider the energy interchange among solenoidal kinetic, compressive kinetic and
magnetic components through the advection term 〈Aα〉 and the Lorentz force term 〈Mα〉,
where again, α = c or s indicates compressive or solenoidal contributions respectively.
Figure 5 shows Run S05 as an example. One can see that these terms vary at early
times and approach zero asymptotically. This indicates that global exchange between
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Figure 5. Time variations of the solenoidal part of the advection term 〈As〉 and the solenoidal and
compressive part of the Lorentz force term 〈Ms〉 and〈Mc〉 in Run S05 as an example.
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Figure 6. Time integrals (from t = 0 to the end of runs) of the advection term 〈As〉 and the solenoidal and
compressive parts of the Lorentz force term 〈Ms〉 and 〈Mc〉 for all type S, C and B runs.

kinetic and magnetic energy is negligible after adjustments that occur during the first few
characteristic times.

Figure 6 shows the time integrals of the advection term and the solenoidal and
compressive parts of the Lorentz force term for all the examined runs. Note that the
integral, denoted by

∫ · dt, is taken from t = 0 to the end of runs, i.e. t = 10.0 in our
code unit. For most of the runs, a prominent feature is the dominance of the solenoidal
part of the Lorentz force term

∫ 〈Ms〉 dt, accounting for the energy exchange between
solenoidal kinetic and magnetic components. One can see that values of the advection term∫ 〈As〉 dt, and the compressive part of the Lorentz force term

∫ 〈Mc〉 dt, mainly reside in
the range [−0.05, 0.05], while the magnitude of the solenoidal part

∫ 〈Ms〉 dt is primarily
larger than 0.05. To clarify this point quantitatively, we list these values for some runs in
table 3. For example, in Run S01,

∫ 〈Ms〉 dt = 0.16 and
∫ 〈Mc〉 dt = 0.033 indicates that a

larger fraction of released magnetic energy is converted into solenoidal kinetic energy,
as opposed to compressive kinetic energy. Similarly in Run B01,

∫ 〈As〉 dt = −0.049
and

∫ 〈Ms〉 dt = −0.26 indicates that solenoidal kinetic energy is mainly converted into
magnetic energy, while less is converted into compressive kinetic energy. In Run S05,
magnetic energy is the main contributor to solenoidal kinetic energy. Conversely, run
B03 indicates that solenoidal kinetic energy is the main contributor to magnetic energy.
Taken together these runs also support the aforementioned conjecture, that conversion
between magnetic energy and flow kinetic energy occurs more readily through couplings
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Energy budget in decaying compressible MHD turbulence

Run 〈Ek,s〉0 〈Ek,c〉0 〈Eb〉0
∫ 〈As〉 dt

∫ 〈Ms〉 dt
∫ 〈Mc〉 dt

S01 0.00 0.00 0.50 −0.0018 0.16 0.033
B01 0.50 0.00 0.025 −0.049 −0.26 0.0068
S05 0.00 0.50 0.50 0.049 0.22 −0.13
B03 0.25 0.25 0.025 −0.016 −0.12 −0.014
B05 0.00 0.50 0.025 0.015 −0.0022 −0.012
C02 0.50 0.00 0.50 −0.034 −0.088 0.044

Table 3. Selected Runs discussed in Section V. Initial solenoidal kinetic, compressive kinetic and magnetic
energy 〈Ek,s〉0, 〈Ek,c〉0, 〈Eb〉0 and time integrals of the solenoidal part of the advection term

∫ 〈As〉 dt and the
solenoidal and compressive parts of the Lorentz force term

∫ 〈Ms〉 dt and
∫ 〈Mc〉 dt.

that involve the solenoidal part of the flow. There is no clear trend of the relative strength
of the compressible kinetic-magnetic exchange

∫ 〈Mc〉 dt and the solenoidal-compressive
kinetic exchange

∫ 〈As〉 dt, as shown in figure 6; see also Runs B05 and C02 in table 3.
The outliers are marked by crosses in figure 6, which may seem at first to be in conflict

with the point above. But it is maybe not so surprising as we look into these simulations.
We take Run B05 as an example, whose

∫ 〈Ms〉 dt is rather small. Note that neither
solenoidal kinetic energy nor a large amount of magnetic energy was introduced initially
in Run B05, for which it is reasonable to expect that the interaction between solenoidal
kinetic and magnetic components through

∫ 〈Ms〉 dt is negligible. With these specific
cases in mind, we can make the point that the solenoidal kinetic-magnetic exchange is
more efficient than two other available channels, i.e. the solenoidal-compressive kinetic
exchange and the compressive kinetic-magnetic exchange. Evidently the interactions
of the magnetic field with the compressive flows are mainly oscillatory, in the sense
of magnetosonic modes, and tend to rapidly average to small values. The stronger,
more secular changes in the energy balance with the magnetic field are mediated more
effectively by the solenoidal flow.

6. Short-time energy amplification

While energy decay has been previously studied in the context of hydrodynamic and
magnetohydrodynamic turbulence, a common feature among many of these studies is
the focus on long time asymptotic behaviours. In this section, we instead describe global
turbulent processes operating on short time scales. Point-wise relaxation at short time
scales has been discussed in Servidio, Matthaeus & Dmitruk (2008).

6.1. Solenoidal kinetic energy amplification
Note that no solenoidal kinetic energy is initially excited in the series of Type S runs.
One may anticipate that a certain amount of solenoidal kinetic energy may be developed
at some later time. Indeed, it is reported in Stribling & Matthaeus (1991) that the
incompressible MHD system in which kinetic and magnetic energies are initially of greatly
different magnitudes can evolve rapidly towards near-equipartition of kinetic and magnetic
energies. This tendency towards order-one equipartition is sometimes called the ‘Alfvén
effect’ (Fyfe, Montgomery & Joyce 1977) and is widely invoked in astrophysics. For the
compressible MHD system presented here, figure 7 shows the time evolution of solenoidal
kinetic energy. One can see that the solenoidal kinetic energy 〈Ek,s〉 grows rapidly in each
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Figure 7. Time variation of solenoidal kinetic energy in type S runs, which initially lack solenoidal flows.

Run 〈Ek,s〉0 〈Ek,c〉0 〈Eb〉0 tmax 〈Ek,s〉tmax 〈Ek,c〉tmax 〈Eb〉tmax

S01 0.00 0.00 0.50 1.1 0.122 0.0202 0.289
S02 0.00 0.15 0.50 1.0 0.139 0.0574 0.315
S03 0.00 0.25 0.50 1.0 0.149 0.0758 0.327
S04 0.00 0.35 0.50 0.9 0.158 0.103 0.345
S05 0.00 0.50 0.50 0.9 0.173 0.125 0.361
S06 0.00 0.50 0.35 1.0 0.130 0.118 0.268
S07 0.00 0.50 0.25 1.1 0.0997 0.112 0.201
S08 0.00 0.50 0.15 1.1 0.0648 0.118 0.131
S09 0.00 0.50 1.00 × 10−4 0.9 0.0248 0.145 1.65 × 10−4

Table 4. Runs discussed in § 6.1. Initial solenoidal kinetic, compressive kinetic and magnetic energy
〈Ek,s〉0, 〈Ek,c〉0, 〈Eb〉0, time for 〈Ek,s〉 to reach maximum tmax, and solenoidal kinetic, compressive kinetic and
magnetic energy at tmax.

type S run, even though it is absent initially, and reaches its maximum at different levels
before decay begins.

The time for 〈Ek,s〉 to reach maximum, tmax, is listed in table 4. For each of the
runs, tmax ∼ 1, which is smaller than initial large-eddy turnover time. The maxima of
solenoidal kinetic energy are plotted in figure 8 as a function of initial compressive kinetic
or magnetic energies for all type S runs. Two branches appear, one (top branch) with
fixed 〈Eb〉0 = 0.5 and varying 〈Ek,c〉0 from 0.0 to 0.5, and the other (bottom branch) with
fixed 〈Ek,c〉0 = 0.5 and varying 〈Eb〉0 from 0.0 to 0.5. There are at least three points
that we can make based on the behaviour shown in figure 8. First, and consistent with
intuition, increasing compressive kinetic or magnetic energy can drive more solenoidal
kinetic energy. Second, the bottom branch is much steeper than the top branch, while
the maximum solenoidal kinetic energy in the top one is always higher than that in
the bottom one, suggesting that solenoidal kinetic energy is more efficiently excited by
magnetic energy. This recalls the dominance of the solenoidal part of the Lorentz force
term

∫ 〈Ms〉 dt discussed in § 5. Finally, and perhaps most surprisingly, both branches
exhibit nearly linear fits. The linear least-squares fit of top branch yields

〈Ek,s〉tmax = 0.101〈Ek,c〉0 + 0.123, (6.1)

and bottom branch yields

〈Ek,s〉tmax = 0.300〈Eb〉0 + 0.0234. (6.2)

916 A4-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

19
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.199


Energy budget in decaying compressible MHD turbulence

+

+

+

+

0.25

0.20

0.15

0.10

0.05

0
0 0.2 0.4

〈Eb〉0 = 0.5

〈Ek,c〉0 = 0 → 0.5

〈Ek,c〉0 = 0.5

〈E
k,

s〉 t m
ax

〈Eb〉0 = 0 → 0.5

〈Ek,c〉0  or 〈Eb〉0

Figure 8. Maximum of solenoidal kinetic energy 〈Ek,s〉tmax as a function of initial compressive kinetic 〈Ek,c〉0
(diamonds) and magnetic energy 〈Eb〉0 (crosses) for type S runs. The arrows indicate increasing initial
compressive kinetic and magnetic energy.

We make no claims of universality of the parameters in the linear fits, since only a limited
range of initial conditions and parameters are simulated here. For example, Mt � 1.0 in
all type S runs, but the Mach number inevitably has impact on the exchange between
solenoidal and compressive kinetic energy. Meanwhile, we defer to a future work to
explore in detail the reasons for which these linear variations fit well.

6.1.1. Transition to MEC state
Recall that the set of type S runs was initiated with pure longitudinal velocity, i.e.
compressive wave (CW) state. In such cases, vorticity can be generated via non-baroclinic
effects, viscous interactions and the Lorentz force. The S09 run has the smallest solenoidal
kinetic energy excited initially and maintains the domination of waves over vortical
motions for all times. As shown in figure 9, the ratio of longitudinal velocity (uL)
to transverse velocity (uT ) is about 2, which clearly lies outside the realm of the NI
theory. Also shown is the density variation δρ =

√
〈(ρ − 〈ρ〉)2〉 scaling as Mt, suggesting

a modally equipartitioned compressive (MEC) density scaling. This is confirmed even
more clearly in S05 run, that δρ/Mt = O(1) and uL/uT = O(1) since a larger amount
of solenoidal kinetic energy is received from magnetic energy. Other type S runs (not
shown here) support the conjecture as well that the nearly incompressible state can never
be approached in these cases, and the breakdown of CW turbulence leads to a state
describable by MEC turbulence.

6.2. Magnetic energy amplification
The turbulent dynamo is an important process to amplify dynamically the magnetic energy
over short time scales. The series B runs have initial magnetic energies of small magnitude
and ratios of solenoidal to compressive kinetic energy that range from 0.0 to 1.0. These
runs exhibit a rapid amplification of magnetic energy as illustrated in figure 10. We
immediately observe that these runs reach maximum values over time at different levels.
One can reason in the same way as solenoidal kinetic energy amplification in § 6.1: the
solenoidal kinetic-magnetic energy exchange channel via the Lorentz force term

∫ 〈Ms〉 dt
is more efficient than the compressive-magnetic exchange, thus facilitating the growth of
magnetic energy with an increasing solenoidal kinetic energy component.
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Figure 9. Time histories of δρ/Mt, δρ/M2
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t for S05 and S09 runs.
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Figure 10. Time variation of magnetic energy in type B runs.

To quantify the contribution to magnetic field amplification from different velocity
components, a series of incompressible runs labelled as type I are introduced as listed
in table 5. This is quantitatively shown in figure 11, where we plot the maxima of
magnetic energy as a function of initial solenoidal kinetic energy for all type B and
type I runs. Both compressible and incompressible runs show a strong dependence of
the growth rate on the intensity of the initial solenoidal velocity component. The small
discrepancy between the maxima of magnetic energy in the compressible simulations
and the incompressible simulations is suggestive of the central role of the solenoidal
component, namely magnetic energy derives most of its growth from solenoidal kinetic
energy as compared with compressive kinetic energy. The result shown here reconciles
with the conclusion in Federrath et al. (2011) that strong magnetic fields are generated
even in purely compressively driven turbulence, but solenoidal turbulence drives more
efficient dynamos, due to the higher level of vorticity generation. Proceeding as in § 6.1,
the solid lines in figure 11 are fits with

〈Eb〉tmax = 0.146〈Ek,s〉0 + 0.0359 (6.3)

for the compressible runs and

〈Eb〉tmax = 0.209〈Ek,s〉0 + 0.0320 (6.4)

for the incompressible runs. We emphasize that the fits do not necessarily reflect a
universal behaviour. More cases with different Mach numbers and initial configurations
have to be investigated.
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Run 〈Ek,s〉0 〈Ek,c〉0 〈Eb〉0 tmax 〈Ek,s〉tmax 〈Ek,c〉tmax 〈Eb〉tmax

B01 0.50 0.00 0.025 1.7 0.246 0.0168 0.106
B02 0.35 0.15 0.025 1.5 0.187 0.0447 0.0882
B03 0.25 0.25 0.025 1.5 0.139 0.0609 0.0752
B04 0.15 0.35 0.025 1.5 0.0929 0.0765 0.0599
B05 0.00 0.50 0.025 0.3 0.0151 0.224 0.0327

I01 0.50 — 0.025 1.6 0.273 — 0.135
I02 0.35 — 0.025 1.7 0.196 — 0.107
I03 0.25 — 0.025 1.8 0.143 — 0.0856
I04 0.15 — 0.025 2.1 0.0853 — 0.0618

Table 5. Description of runs discussed in § 6.2. Initial solenoidal kinetic, compressive kinetic and magnetic
energy 〈Ek,s〉0, 〈Ek,c〉0, 〈Eb〉0, time for 〈Eb〉 to reach maximum tmax, solenoidal, compressive kinetic and
magnetic energy at tmax.
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Figure 11. Maximum of magnetic energy 〈Eb〉tmax as a function of initial solenoidal kinetic energy 〈Ek,s〉0 for
type B compressible runs (circles) and type I incompressible runs (triangles). The arrows indicate increasing
initial solenoidal kinetic energy.

6.3. Compressive kinetic energy amplification
The type C runs, described in table 6, were begun from purely solenoidal velocity, and
with turbulent Mach numbers ranging from 0.1 to 2.0. Figure 12 illustrates the time
evolution of the compressive kinetic energy for these cases. For run C01, with a low initial
turbulent Mach number Mt = 0.1, the compressive component remains negligible. With
higher initial turbulent Mach number, larger growth is observed, i.e. for runs C02 and
C03. No magnetic energy was introduced initially in run C04. So the smaller magnitude
of compressive kinetic energy in run C04 relative to run C02 is due to the fact that there is
no additional reservoir of energy other than the solenoidal kinetic energy. One observable
feature is that this process is faster than the other two (solenoidal kinetic and magnetic)
amplification processes described in the previous two sub-sections.

6.3.1. Longevity of NI state
A main point of interest is to examine the manner in which the flow eventually departs
from the orderings expected in nearly incompressible (NI) theory. One might anticipate
that the case C01 with Mt = 0.1 is nearly incompressible since vanishing compressive
velocity is excited initially. However, the NI picture suggested by the low Mach number
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Run Mt 〈Ek,s〉0 〈Ek,c〉0 〈Eb〉0 tmax 〈Ek,s〉tmax 〈Ek,c〉tmax 〈Eb〉tmax

C01 0.1 0.50 0.00 0.50 1.2 0.346 7.27 × 10−4 0.507
C02 1.0 0.50 0.00 0.50 0.4 0.407 0.0416 0.469
C03 2.0 0.50 0.00 0.50 0.2 0.453 0.0624 0.458
C04 1.0 0.50 0.00 1.00 × 10−4 1.2 0.390 0.0236 8.41 × 10−4

Table 6. Details of Runs discussed in § 6.3. Initial turbulent Mach number Mt, initial solenoidal kinetic,
compressive kinetic and magnetic energy 〈Ek,s〉0, 〈Ek,c〉0, 〈Eb〉0, time for 〈Ek,c〉 to reach maximum tmax,
solenoidal kinetic, compressive kinetic and magnetic energy at tmax.

0.08

0.06

0.04

0.02

0 0.5 1.0 1.5 2.0 2.5 3.0

C01 Mt = 0.1

C02 Mt = 1.0

C03 Mt = 2.0

C04 Mt = 1.0

t

〈Ek,c〉

Figure 12. Time variation of compressive kinetic energy in type C runs with varying turbulent Mach
numbers.

asymptotic theory of Klainerman & Majda (1981, 1982) cannot remain valid all the
time, even in our low Mach number simulations. Although the density fluctuations δρ

are of order M2
t at early time, shown in figure 13, the values of δρ/M2

t increase above
unity quickly, suggesting a trend towards the breakdown of NI picture, as anticipated by
Klainerman & Majda (1981, 1982). The ratio of longitudinal to transverse velocity uL/uT
in figure 13 remains as well roughly consistent with O(Mt) at early time for run C01. For
run C02, at higher Mach number, low values of uL/uT at early times suggest a transient
period of NI behaviour, which gives way to more MEC-like behaviour at later times
as this ratio approaches unity. For example, at t = 15 in run C02, uL/uT = 0.484 while
Mt = 0.15. Although compressive modes are excited by solenoidal kinetic and magnetic
components, they are not strong enough to break down NI scaling which can persist for
a few characteristic times. Thereafter the system evolves towards MEC characteristics
in the presence of non-negligible compressive effects. We recall that, as suggested in
Ghosh & Matthaeus (1992), a constant density initial condition is actually a composite
state composed of pseudo-sound density fluctuations and identical out-of-phase acoustic
fluctuations. Therefore, the presence of acoustic waves in the initial data eventually
drive the system away from the NI picture. This occurs more quickly for larger Mach
number cases as well, as expected from the formal theory of nearly incompressible flows
(Klainerman & Majda 1982).

6.3.2. Comparison with results from spacecraft observations
The interpretation that the present results, for low Mach number cases, show a dynamical
evolution from a δρ = O(M2

t ) ordering to a noisier δρ = O(Mt) ordering at later times is
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δρ/Mt C02
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Figure 13. Time histories of δρ/Mt, δρ/M2
t , uL/uT and Mt for C01 and C02 runs. The C03 and C04 runs give

rise to behaviour very similar to the C02 run.

generally consistent with the Klainerman & Majda (1982) picture, but we emphasize that
this cannot be viewed as a firm conclusion based on the limited available evidence we have
in hand. A complementary, and completely independent, direction where one might find
guidance is in the voluminous spacecraft observations of density fluctuations and related
quantities in the solar wind (see, e.g. Tu & Marsch (1995), Bruno & Carbone (2013) for a
review.)

Joint distributions (scatter plots) of turbulent Mach number and density fluctuations
of Voyager observations between 1 and 5 AU heliocentric distances were examined in
Matthaeus et al. (1991). These results, like the present simulations, supported either O(Mt)
or O(M2

t ) scaling, and scaling close to the latter nearly incompressible case for very
small density fluctuations δρ/ρ < 0.01. Similar analyses were carried out using Helios
spacecraft. Grappin, Velli & Mangeney (1991) found δρ/ρ 	 M2

t in low-speed wind and
δρ/ρ 	 0.1M2

t in high-speed wind. Tu & Marsch (1994) used more than 3000 one hour
samples in the distance range 0.29 AU to 1.0 AU. Results were again that observed scalings
were ambiguous in their support both for O(Mt) and O(M2

t ) scalings of density. This study
delved further into the subject by examining several different formulations of the Mach
number, and by also considering an alternative formulation of the NI theory in terms of
pressure fluctuations. Klein et al. (1993) and Bavassano & Bruno (1995) concluded that
there was not strong support for NI theory, or perhaps more accurately, that the theory that
predicts O(M2

t ) scaling cannot be unambiguously distinguished from the acoustic wave
dominated case. Cited for potential explanation is the variability of external parameters
other than Mach number, and in particular the variation of values of plasma β (see
following section.) Klein et al. (1993), Bavassano, Bruno & Klein (1995) and Bavassano,
Pietropaolo & Bruno (2004) provided still another look at this problem, now taking into
account further subtleties in the MHD approach to near-incompressibility including the
possibility of approximate pressure balance due to density-temperature anticorrelations
(Zank, Matthaeus & Klein 1990).

Without regard for density fluctuations, compressive fluctuations are often characterized
in terms of the ratio of magnetic power in fluctuations perpendicular to the mean magnetic
field to that parallel to the mean magnetic field (the so-called variance anisotropy or
magnetic compressibility). Smith, Vasquez & Hamilton (2006) and Pine et al. (2020)
using Voyager and Advanced Composition Explorer (ACE) data show that the variance
anisotropy is strongly correlated to the proton beta, which was recast into a form inferring
a turbulence Mach number dependence. This may be consistent with the predictions of
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Figure 14. Time histories of β.

theory and simulation, but we lack a mean guide magnetic field in our simulations to
make a reliable comparison.

In this, and for all such solar wind studies that we have found, we see no clear
evidence for any single scaling of density with turbulent Mach number. One may recall
that the nearly incompressible theory (Zank & Matthaeus 1992) has been formulated
in homogeneous background. However, complexities of solar wind could introduce
significant complications in the nearly incompressible description of turbulence. For
example, the density fluctuations were shown to be of the order of the turbulence Mach
number in the presence of a large-scale inhomogeneous background, such as a spatially
varying magnetic field (Bhattacharjee et al. 1998) and a radially symmetric (magnetic
field, velocity and density) background (Hunana & Zank 2010). Recently, Adhikari
et al. (2020) evaluated the O(Mt) scaling of density fluctuations observed by PSP using
SWEAP data during slow solar wind encounters. We return to this topic in the discussion
section.

7. Behaviour of β

In the context of MHD the parameter β

β = 2p
B2 ∼ c2

s

V2
A

(7.1)

plays a role in regulating details of the approach to incompressibility, and the nature of the
anisotropy that appears dynamically in the presence of a large scale uniform magnetic field
(Zank & Matthaeus 1990, 1992). Note that in (7.1), VA = B/

√
4πρ is the Alfvén speed.

In MHD, β also controls activity such as parametric instability of Alfvén waves (Fu et al.
2018). The same parameter β is of particular importance in plasma descriptions that go
beyond a simple fluid closure. A familiar example is the control that plasma β exerts over
regimes of various plasma instabilities in the solar wind such as firehose, cyclotron and
mirror mode instabilities (Gary et al. 2001; Maruca et al. 2013). We do not investigate
such instabilities here, but simply document that typical behaviour of β as the turbulence
decays in a selected set of our runs.

The time dependence of β for selected runs is shown in figure 14. Here we note that
the expected behaviour for a large variety of parameters in Type T, S and C runs is that
β gradually increases with time, as run S05 shown in figure 14. This follows from the
increase of pressure, as turbulence decay progressively increases the internal energy, while

916 A4-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

19
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.199


Energy budget in decaying compressible MHD turbulence

at the same time the decrease of fluctuation energy is usually accompanied by decrease in
average magnetic pressure. The only exceptions are runs S09, C04 and Type B, which are
initiated with very low levels of magnetic energy. In these cases the initial stretching of
magnetic field lines and associated magnification of magnetic energy overcomes the initial
increase of pressure. In general this type of behaviour would not be expected in cases with
significant levels of magnetic energy. For special circumstances plasma β might decrease
at longer times, for example if a mechanism for cooling is included (see e.g. Yang et al.
2016a), or if the parameters (such as magnetic helicity) are chosen so that during decay
there is appreciable dynamo action.

8. Conclusions and discussions

Most classical turbulence theory treats the incompressible case in particular, and this
emphasis has carried over to the development of principles and simulations of turbulence
in the magnetohydrodynamic case. In gas dynamics there have been great strides in
understanding additional effects associated with compressibility, as seen for example in
seminal works on low Mach number, weakly compressible flows (Klainerman & Majda
1981, 1982), as well as high Mach number strongly compressive flows. There has also been
substantial and growing interest in compressible MHD turbulence, often in the context
of dynamo theory and astrophysical flows (Mac Low & Klessen 2004; Brandenburg &
Subramanian 2005; Federrath et al. 2014).

In the present paper we have concentrated on a basic issue in the physics of compressible
MHD turbulence, namely the exchange of energy between different forms during energy
decay. In particular our goal has been to refine the understanding of energy exchanges
between solenoidal velocity, irrotational velocity, magnetic field fluctuations and thermal
energy. Our studies have arrived at several clear conclusions. First, acoustic waves are
responsible to the oscillatory exchange between compressive kinetic and thermal energy
through the pressure dilatation term; second, Energy exchange between solenoidal kinetic
energy and magnetic energy usually dominates over other channels. Finally, the energy
amplification rate of different components systematically depends on the initial energy
budget. These results afford a certain degree of predictive power, even though the flow
could be initialized with highly varied energy configurations. For example, short-time
dynamical fate of an arbitrary set of initial data is controlled, to a great extent, by
the interchange between solenoidal kinetic and magnetic energy. In order to drive more
solenoidal kinetic energy or magnetic energy, the strategy of choice is to initialize with
more magnetic energy or solenoidal kinetic energy, instead of adding more compressive
kinetic energy.

This paper has maintained a focus on conversion between energy types in decaying
compressible MHD turbulence, and as such we have not delved into subjects that are
related to various aspects of our study. There are, of course, numerous studies of
compressible hydrodynamics that examine turbulence cascade properties; many of these
are numerical, as in recent examples by Wang et al. (2013, 2019); in total these are
far too numerous to review here, and we refer the reader to our reference list and the
bibliographies contained therein. The present study of energy balance and conversion
between incompressive energy reservoirs and compressive energy reservoirs in MHD is
necessarily a richer subject than the numerous analogous studies in hydrodynamics (Kida
& Orszag 1990, 1992; Miura & Kida 1995; Pan & Johnsen 2017). The major difference
of course is the presence of a dynamically relevant magnetic field in MHD and several
new parameters associated with it. In particular the ratio of energy in flows and magnetic
fields becomes important, in supplementing the ratio of incompressive and compressive

916 A4-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

19
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.199


Y. Yang, M. Wan, W.H. Matthaeus and S. Chen

flows energy which is important in both hydrodynamics and MHD. Additionally the
plasma β or ratio of thermal pressure to magnetic pressure provides another measure
of energy content that influences MHD evolution. All of these factors in principle can
influence energy conversion into compressive modes and into thermal energy in ways
not present in hydrodynamics. One may note that the oscillatory exchanges between
compressive kinetic and thermal energies are attributed to acoustic waves as explained
in § 4, which does not differ from hydrodynamics in this sense. However, the actual mode
underlying this process is magnetosonic wave. The Alfvén speed is much smaller than
the sound speed in our cases, thus merely introducing minor effects on the wavelike
character. We anticipate that a stronger magnetic field should allow this point to be
distinguished.

Another major issue that we studied here is the relationship of the compressive and
incompressive degrees of freedom in MHD. One aspect of that relationship is the approach
of the compressible MHD system to the incompressible state, a subject that can be studied
using more or less rigorous theoretical approaches that are valid at different values of
plasma β (Matthaeus & Brown 1988; Zank & Matthaeus 1993; Bhattacharjee et al. 1998;
Hunana & Zank 2010). Rather than pursue a formal evaluation of theory we opted for
a more heuristic study, emphasizing the relationship of the computations to solar wind
observations. Our main finding in this regard is that the predicted scaling of density with
turbulent Mach number varies between δρ = O(M2

t ) and δρ = O(Mt), apparently as a
function of time in these initial values problems. The transition is not sharp. Consequently,
one may argue that the main theoretical expectations are observed, approximately, but
distinguishing between them in a given case may be an imprecise exercise. We then
presented a short summary of observations in the solar wind that had the same goals
of distinguishing these scalings. And similar to our results, the solar wind studies also
conclude that the data are most often consistent with both O(Mt) and O(M2

t ) scalings,
while some find no clear relationship between the density fluctuations and the turbulent
Mach number.

We should point out that the methods of identification in the present numerical
experiments and the solar wind observational cases are rather different. The computations
are controlled initial value problems and we see a ‘soft’ transition between these scalings.
In the solar wind observations it is not possible to follow a parcel of plasma as its dynamics
unfold, and therefore all results of this type are purely statistical. The dynamical age of
such solar wind parcels can be only crudely estimated. Meanwhile, our simulations have
many limitations and might fail to reproduce any particular event. Nevertheless, the two
types of studies show a similar level of ambiguity in determining the degree to which the
nearly incompressible theoretical description is relevant in general for low Mach number
compressible magnetofluids. In this regard we note that it may be possible to establish
approximate validity of a ‘noisier’ version of nearly incompressible theory (see Majda &
Embid 1998) which accounts for the utility of concepts from incompressible theory in
low Mach number MHD, even if the formal O(M2

t ) scaling of density fluctuations is not
strictly valid. Such a theory has not been fully developed as far as we are aware; however
see Aluie, Li & Li (2012).

We have only touched the surface of spacecraft observation of compressive turbulence,
given that this goes well beyond the studies of nearly-incompressible MHD in the
solar wind that we discussed above. An observational study of particular relevance and
importance in this regard is that of Zank, Nakanotani & Webb (2019), a study that is
closely related to the present one in its goals but vastly dissimilar in its approach. The
subject is energy conversion in the local interstellar medium examined using direct in situ
observations by Voyager. This study employs the available data (density and magnetic
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field) to assess conversion between compressive and incompressive motions based on a
framework of mode conversion in linear MHD theory. Analysis of solar wind fluctuations
in terms of incompressive and compressive wave modes has also been presented (Howes
et al. 2012; Klein et al. 2012).

A recent relatively complete survey of solar wind fluctuations and related quantities
in different types of solar wind streams has been given by Borovsky, Denton & Smith
(2019). Some of solar wind turbulence studies examine its properties in terms of spectra
and higher order scalings related to multifractal theory (e.g. Bruno et al. 2014; Riazantseva
et al. 2015; Carbone et al. 2018) and the fluctuations of density, velocity and magnetic
field and their possible correlations (e.g. Reid & Kontar 2010; Yao et al. 2011; Wicks et al.
2013). A review of related effects in compressible plasma turbulence as observed in the
solar wind is given in Chen (2016). In such studies density fluctuations and compressive
behaviour is often associated in observations with polarization anisotropy, i.e. the ratio of
variance parallel and perpendicular to the large scale magnetic field (Smith et al. 2006;
Pine et al. 2020), or with the variance of the magnitude of the magnetic field, including its
fluctuations. Both of these are considered indicators of compressive activity, in accordance
with properties of Alfvén wave solutions either at small or large amplitude (see Barnes
1979). While such studies are of immense value, they are necessarily statistical, as
they cannot follow dynamics of specific parcels of plasma and so conversion cannot be
explicitly followed as we have done here. Another direction in observational studies of
compressive solar wind turbulence follows the development of extensions of the third order
cascade law (Politano & Pouquet 1998) to the compressive case (Podesta 2008; Carbone
et al. 2009; Banerjee & Galtier 2013; Andrés et al. 2018). The studies by Banerjee et al.
(2016b), Hadid et al. (2017, 2018) and Andrés et al. (2019) employ the cascade model and
evaluate contributions to the total cascade rate due to both compressive and incompressive
channels. While these theories are of great interest, the experimental implementation
is hampered by inability of measuring all quantities involved with single spacecraft, as
well as limitation of applicability due to the additional approximations adopted (such as
constant plasma beta).

Future studies will likely be motivated to examine the effects of a mean guide
(DC) magnetic field B0 of varying strength. The effects of such an externally applied
field are relatively well understood in the incompressible case. One major influence
in that case is the development of spectral anisotropy, and effect induced by the
interplay of processes operating at the nonlinear timescales with processes associated with
Alfvén propagation. The relatively enhanced propensity to develop strong perpendicular
gradients has been well established (Shebalin, Matthaeus & Montgomery 1983; Cho &
Lazarian 2003; Oughton et al. 2015). However so far the global conversion between
different energy reservoirs, as we have done in the present paper, appears not to have
been fully addressed with a varying strength guide field. We will take this up in a
future study.
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Appendix A

The incompressible MHD equations we solve are,

∂u
∂t

+ (u · ∇) u = −∇pM + (b · ∇) b + ν�u, (A1)

∂b
∂t

+ (u · ∇) b = (b · ∇) u + η�b, (A2)

∇ · u = 0, ∇ · b = 0, (A3a,b)

where pM = p + |b|2/2, ν and η denote the total pressure, the kinematic viscosity and the
magnetic diffusivity, respectively.
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