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We present an asymptotic theory that includes in a perturbative expansion the coupling effects

between the director dynamics and the velocity field in a nematic liquid crystal. Backflow

effects are most significant in the presence of defect motion, since in this case the presence of

a velocity field may strongly reduce the total energy dissipation and thus increase the defect

velocity. As an example, we illustrate how backflow influences the speeds of opposite-charged

defects.
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1 Introduction

Liquid crystals were first wrongly recognised as such from the dramatic patterns, which

appeared when they were observed in a microscope between crossed polarizers. In the

case of nematic liquid crystals, the defining feature of these patterns was a set of points

and associated dark lines that were invariant with respect to rotation of the polarizers.

The pattern has now come to be known as the Schlieren texture, after the German word

for stain. Some time later, it was the lines which prompted Friedel [1] to name the phase

nematic, after the Greek word for thread.

The length scale of the Schlieren texture is, of course, not fine enough to observe the

microscopic structure of the anisotropic nematic phase. But texture does probe topological

singularities in the order parameter field, or more specifically, the mapping between real

space R3 and the equilibrium nematic order parameter manifold RP2. By using homotopy

groups, the topological theory of defects in condensed matter systems develops relations

between the topology of the equilibrium order parameter manifold and the allowed order

parameter defect structures [2–5]. The task of connecting liquid crystal textures with the

underlying molecular structures originally required Herculean intellectual strength. But

modern mathematics has reduced this to a straightforward computational procedure.

Although the evidence of the defects in the director field dominates our macroscopic

view of nematic liquid crystals, initial theoretical progress in treating both the statics

and dynamics neglected the defect structure. Both Oseen [6] and Frank [7] in their

pioneering works display elaborate diagrams of what Frank called disinclinations (later

renamed as disclinations by a somewhat mysterious historical process). But their seminal
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works develop free energies of weakly inhomogeneous nematics, from which all hints of

singularities in the director field have been been excised. Likewise, Ericksen [8–10], and

later Leslie [11], in their development of a consistent nematodynamics, suppose that the

director is everywhere well defined, and develop stress tensor descriptions in terms of rates

of change and inhomogeneities in the director and velocity fields.

It was only later, after the theoretical structure of disclination-free nematics had been

well understood, that defect problems once again became a primary focus of research.

Key questions are, firstly, what is the molecular organisation in the core of a disclination

line, and secondly, how does a disclination line (or assembly of lines) move in a nematic

fluid. A subsidiary question, still open at the time of writing, concerns the extent to which

details of the internal structure are important in determining defect motion.

There are two basic strategies that have been adopted in order to understand defect

motion and structure. On the one hand one can follow what elsewhere in material

science is known as the phase field strategy. A phase field in the context of crystallization

dynamics involves the introduction of an artificial order parameter describing the degree of

crystallization. In so doing, one turns a difficult free boundary problem into a (relatively!)

easy differential problem. In the context of nematic liquid crystals, the idea is to embed

the Oseen–Frank–Leslie–Ericksen director picture minimally into a more general-order

parameter picture. The relevant free energy was first written down by de Gennes [12] in

terms of what was then known as the Saupe ordering matrix, but which is now known

as the Q-tensor [13–15]. However, it is important to note that here the Q-tensor is a

phase field with a real molecular meaning, unlike some phase fields used elsewhere. Under

suitable conditions, the Q-tensor defines a single vector n ≡ −n, and then the macroscopic

theories are valid. But in the core of the defect, it is no longer possible to define the

director n. This was the strategy adopted by Schopohl and one of the authors long

ago [16] when discussing the disclination core structure.

An alternative route to dealing with defect cores in a domain where the director can

otherwise be regularly defined is simply to excise it. The region surrounding the core

is then treated as a (possibly moving!) surface of the dynamic problem. This kind of

method goes back to Volterra’s pioneering attempts to understand stresses and strains

in non-simply connected domains [17]. This work motivated Volterra to introduce what

he called distorsioni (later relabelled in English by Love as dislocations [18]). These ideas

were later taken up, rather imaginatively, by Burgers [19] when he treated microscopic

irregularities in crystal structures. The moving surfaces surrounding the disclinations

are now incorporated in a dynamical structure using the usual kind of force balance

arguments. The practical downside of this type of procedure is that now it is required to

solve a difficult free boundary problem. A more theoretical drawback involves defining

precise criteria for the location of the excising surface, and knowing that there is a precise

analytical process, which ensures the existence of correct and sensible limits in cases when,

for example, the defects are moving at some speed.

At this stage, there is no consensus in the liquid crystal community as to which of these

procedures is more fruitful or easier. Indeed, it is not even clear whether they are different

routes to the same truth, or rather represent non-trivially different approaches. In this

paper, we use the cut-off strategy to gain some insight into the motion of disclination lines,

and the consequent motion of the nematic itself, in a two-dimensional nematic, which
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means that the nematic director lies in a plane, and that the space is regarded as being

homogeneous in a direction parallel to the direction of the defect lines. We compare our

results with the results of simulations adopting the Q-tensor approach. The fact that there

is some qualitative resemblance between the results of calculations using rather different

philosophies may be regarded as circumstantial evidence that the many-roads-to-the-truth

picture is correct.

The analogy between topological defects in broken-symmetry condensed matter systems

and charges in electromagnetism has been very seductive. In electromagnetism, charges

are conserved, apparently by divine intervention, and can either be considered to interact

at a distance or to interact with fields whose sources are other charges, subject to specific

boundary conditions. The charges then move in the force fields of other charges.

In broken-symmetry condensed matter systems too, topological charges are (more-

or-less!) rigidly conserved. But now, of course, the basis for the conservation law can

be readily understood in terms of the topological properties of the underlying order

parameter field. There is a strong temptation to try to construct theories in which the

topological charges (in our case, the strength of nematic disclination lines) also interact

at a distance, or through fields whose sources are the other defect lines. In this picture

the actual director structure, the core of the normal continuum nematic theory, could

somehow be integrated out of the problem. In this way, for example, one could calculate

the force field on a disclination line, presumably by looking at the inhomogeneous director

structure in the absence of the disclination line in question. The motion would then be

determined, omitting inertial effects, by calculating the drag force on a moving defect

line, and balancing it with the external force. This kind of approach has been adopted by

Ryskin and Kremenetsky [20–22].

A particular complication of the moving nematic defect problem is that the defect line

is a structure, rather than an object. In the simplest toy models of nematodynamics, there

is no interaction between the orientational degrees of freedom and dynamics degrees

of freedom. Orientational relaxation takes place through the time-dependent Ginzburg–

Landau (TDGL) equation (equivalently, a balance between orientational dissipation and

energy loss), and there is no necessary fluid motion associated with the relaxation. But

even in this approach, defect motion (and mutual defect annihilation) can occur. But, in

fact, the TDGL approach is inadequate for describing director relaxation. A system out

of orientational equilibrium sustains an unbalanced stress tensor, causing fluid motion as

well as rotation, a phenomenon which has come to be known as backflow [23].

The general problem of moving defects attracts the interest of fundamental theorists

who want to build theories in which orientational degrees of freedom are coupled to

charge-like positionally restricted defects. Some analogies have been drawn with defects

in gauge theories of elementary particles with applications, for example, to cosmic strings

in the early universe [24]. But a more mundane motivation in the context of liquid

crystals concerns the ubiquity of disclination lines in nematic textures, and the importance

of understanding the motion of these lines, for example in switching in bistable devices

[25].

In this paper we take the latter approach, which requires us to study some specific well-

defined problems. These problems are as follows: (a) The motion of a single disclination

line, and the consequent fluid motion (backflow), in the presence of an electric or magnetic
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field (problem A), and (b) the mutual motion of a pair of disclination lines (problem B).

The latter sometimes involves initial attraction, and subsequent mutual annihilation. In

this discussion we shall confine our interest to line defects, which are ubiquitous in nematic

liquid crystals, and two-dimensional objects. The analogous three-dimensional objects –

point defects or the so-called hedgehogs, with somewhat analogous properties [24, 26–29] –

are rarer, perhaps for profound topological reasons [30].

There has been previous work on problems A and B. Richardson [31] studied a model

disclination in which the disclination motion induces fluid motion, but not vice versa. In a

previous paper [32] we have discussed both problems A and B, using a cut-off approach. In

the case when splay and bend elasticities were equal, both the unzipping of a disclination

line in a field (problem A) and the time to mutual annihilation (problem B) were independ-

ent of the topological sign of defects. But extensive numerical studies of Q-tensor model

dynamics, using both the Lattice Boltzmann approach [33–35], and a more conventional

hydrodynamic algorithm [36] give rise to a similar picture. But a key question in disclina-

tion dynamics concerns the qualitative effect of backflow on the disclination motion. Both

groups find that backflow influences the annihilation time of mutually attracting defects

(problem B), causing it to depend on the topological signature of the defects. In addi-

tion, Svenšek and Žumer [36] also find (problem A) that the unzipping speed depends on

topological signature, a general picture which has also been confirmed experimentally [37].

However, these studies are numerical. In the general case, it seems that detailed predic-

tion in these complex systems requires a good deal of computation [38–44]. Sonnet and

Virga [45], by contrast, have written down general equations of motion for dislocation

motion, although at the time of writing, this approach has not yet been used to study any

practical cases. But the precise manner in which backflow affects the disclination motion

should be susceptible to more than just a computational approach.

This paper addresses specifically problem A, building on our previous paper [32],

within an approach which includes backflow, and a special limiting case, the no-backflow

case considered in [32]. Nevertheless, it turns out that some of the outcomes provide

an explanation for the difference in speeds observed when studying problem B. In order

to carry through this program, we build a theory in which the backflow interactions

are turned on perturbatively in a controlled fashion. In our approach the perturbation

parameter is essentially a dimensionless inverse density, the ratio between the Leslie

and Newtonian viscosities. Thus, in the limit ε → 0, orientational relaxation fails to

excite any fluid motions. By contrast with the computational studies discussed above, our

calculations do not seek an accurate numerical solution for problems A and B. Rather

we aim to illuminate the specific role of backflow in distinguishing between the motion

of disclinations of opposite topological signature. Also by contrast with these approaches

we do not use the Q-tensor theory, but rather the cut-off Ericksen–Leslie approach, in

which the core of the defect line plays an insignificant role. Qualitative agreement with

the more precise numerical solutions validates our approach ex post facto.

Despite the simplifications introduced by the perturbative expansion we perform, the

Ericksen–Leslie equations remain far too complex to allow for an analytical solution. As

an alternative strategy, we turn to a theorem by Leonov [46], which proves that the actual

velocity field minimises the dissipation functional D at fixed director field. The variational

principle represents a quite powerful tool, because it allows us to approximate the exact
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solution of the Ericksen–Leslie equations by finding the best guess in suitable classes of

velocity fields.

The plan of the paper is as follows. In the next section we briefly review the general

equations of motion of nematic liquid crystals. In Sections 3 and 4 we set up the

perturbative expansion and the variational principle that allow to gain insight into

the backflow field induced by the motion of a stationary pattern. In Section 5 we apply

the methods developed above to the planar motion of a nematic disclination. A concluding

section reviews the main results and sets up the bases for future related work.

2 Nematic liquid crystals: dynamic equations

In this section we briefly review the Ericksen–Leslie theory for the dynamics of nematic

liquid crystals. This summary is intended to introduce the equations of motion that will

be discussed in the following. Let n and u denote the director and the velocity fields. Then

n is, as usual, a unit vector field, possibly singular at the defect points, while u will be

assumed to be continuous everywhere, and differentiable almost everywhere.

The Ericksen–Leslie dynamic equations will be introduced following the classical nota-

tion. For their derivation the reader may refer, e.g. to the classical book by de Gennes

and Prost [47]. The balance of linear momentum dictates

ρ u̇ = div T, (2.1)

where ρ is the fluid density. The stress tensor T can be decomposed as T = T(E) + T(i),

where the Ericksen stress T(E) and the irreversible stress T(i) are defined as

T(E) := −p I + σ I − (∇n)T
∂σ

∂∇n
and

T(i) := α1 (n · Dn) n ⊗ n + α2 N ⊗ n + α3 n ⊗ N + α4 D (2.2)

+ α5 Dn ⊗ n + α6 n ⊗ Dn.

In the above decomposition, σ = σF + σH is the free energy density, which includes the

Frank elastic energy density σF and the external field energy density σH . Furthermore, p

is the hydrodynamic pressure, I is the identity tensor, D is the rate of strain tensor and

{α1, . . . , α6} are the Leslie viscosities. Finally, N := ṅ − ω ∧ n is the rate of change of the

director with respect to the background fluid, since ω = 1
2
curl u.

On the other hand, the balance of angular momentum sets

γ1 N + γ2 Dn = div
∂σ

∂∇n
− ∂σ

∂n
+ µ n =: h, (2.3)

where γ1 and γ2 are defined in term of Leslie’s coefficients as

γ1 := α3 − α2, γ2 := α2 + α3 = α6 − α5, (2.4)

h is the molecular field and µ is the Lagrange multiplier that keeps |n| fixed. We remark

that the second equation in (2.4) assumes the validity of the Onsager–Parodi relation [48].

If we make use of (2.3), the divergence of the Ericksen stress tensor can be given the
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following form:

div T(E) = −∇p + (∇n)T
(

∂σ

∂n
− div

∂σ

∂∇n

)
= −∇p − (∇n)T (γ1 N + γ2 Dn) ,

where the µ-term has been dropped because (∇n)Tn = 0 .

Equations (2.1) and (2.3), together with the incompressibility condition

div u = 0 (2.5)

and the boundary/initial conditions allow us in principle to determine the unknown fields

n, u and p.

In the present paper we will analyse a planar problem. We will thus assume that both n

and u are everywhere orthogonal to a fixed direction ez , and that all dynamic fields depend

only on the planar coordinates (x, y). Consistently, we identify the director through a tilt

angle φ, defined such as n = cosφ ex + sinφ ey .

We look for stationarily travelling solutions, and assume that there exists v (to be

determined) such that

f(x, t) = f(x − vt, 0) for all x and t, (2.6)

where v is the pattern velocity and f may be any component of n or u, or the pressure

field p. In particular

ḟ = −v · ∇f and (∇f). = −(∇2f)v.

We adopt the one-constant approximation for the Frank elastic energy density, so

that

σF(n, ∇n) = 1
2
K |∇n|2,

and consider a constant external magnetic field such that

σH (n) = − 1
2
χa (n · H)2,

where χa > 0 is the diamagnetic anisotropy. We fix the x-direction to be parallel to the

external field H and, by making reference to the similar geometry as analysed in [32], we

expect the velocity of the stationary pattern to be parallel to the external field: v = v ex.

When this is the case, we have

∇n = n⊥ ⊗ ∇φ, where n⊥ := − sinφ ex + cosφ ey,

(∇n)T
∂σF

∂∇n
= K(∇n)T∇n = K ∇φ ⊗ ∇φ, and

T(E) =

(
K

2
|∇φ|2 − 1

2
χa (n · H)2 − p

)
I − K ∇φ ⊗ ∇φ.
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3 A perturbative backflow expansion

The dynamic equations (2.1), (2.3) and (2.5) have been thoroughly studied in the no-

backflow approximation. Such an approximation amounts to neglecting the coupling

terms between the nematic director and the velocity fields. Much less is known in the

general case, since solving the complete system is a formidable task, and can be typically

attacked only through numerical simulations and/or in very simple geometries [23]. The

main purpose of the present section is to derive an expansion that permits the inclusion

of backflow effects in a perturbative way. Such an expansion highlights the coupling terms

that first influence the nematic field. It also permits the derivation of a simplified set of

dynamic equations, which, at least in the stationary case, eventually provides analytical

insight into the structure of the velocity field induced by the director orientation.

The no-backflow approximation amounts to neglecting all the Leslie coefficients, which

couple n and u: α1, α2, α3, α5, α6. We remark that the macroscopic viscosity α4 is not

included in this list, since it represents the Newtonian viscosity and is not related to the

anisotropic character of nematic liquid crystals.

From the mathematical point of view, the no-backflow approximation can be derived

as the zero-th order solution of the following perturbative problem. We introduce a small,

dimensionless parameter ε in order to emphasize that α4 (and, consequently, the density

ρ) are much greater than the remaining αis:

ρ =
ρ̃

ε
α4 = ρν =

α̃4

ε
, (3.1)

where ν is the kinematic viscosity. The scaled density and the Newtonian viscosity ρ̃

and α̃4 are then assumed to be of the same order for the remaining αis. Before we

explicitly start using (3.1), it is worthwhile to remark that a formal definition of the

small parameter ε can be obtained by setting ε := max{|α1|, |α2|, |α3|, |α5|, |α6|}/α4, and

then defining α̃4 = εα4, and ρ̃ = ερ. We remark that in practical situations it is definitely

not always true that the Newtonian viscosity α4 is much larger than all the remaining

nematic viscosities (see, e.g. [49], p. 330). When this is the case, backflow effects must

be expected to be consistent. Consequently, the perturbative expansion that we are

introducing will only be able to catch the first correction to be introduced, though not

the precise features of the solution. There is, however, a case in which our approximation

is always valid. When the temperature approaches to nematic–isotropic transition, the

nematic viscosities are strongly reduced and become all much smaller than the Newtonian

viscosity.

In order to implement the perturbative expansion, we expand all relevant fields as

u = ε u1 + o(ε), n = n0 + ε n1 + o(ε), p = p0 + ε p1 + o(ε), as ε → 0. (3.2)

The O(1) terms from equation (2.5), and the O(ε−1) terms from equation (2.1) (which

arise by virtue of (3.1)) are identically satisfied because u0 ≡ 0. In order to analyse

equation (2.3) we notice that

N = ṅ + O(ε) = −(∇n0)v0 + O(ε) =: N0 + O(ε),
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where v0 = v0 ex is the leading contribution to the pattern velocity. If we project out the

µ-term by performing a vector multiplication by n0, then we obtain

K ∆φ0 + γ1 v0φ0,x + χa H
2 sinφ0 cosφ0 = 0. (3.3)

Equation (3.3) has been analytically studied, e.g. in [32] to obtain the no-backflow

approximation to the speed of a disclination moving in an external magnetic field. It was

shown that the speed v0 can be found by solving a suitable eigenvalue problem, which,

in physical terms, ensures that the motion is sustained without any energy flux from the

infinity.

The leading order of the velocity field follows from the O(1)-terms of equation (2.1)

and the O(ε)-term of equation (2.5), which yield

ρ̃ u̇1 = −ρ̃ v0 u1,x = −∇p0 − (α3 − α2) (∇n0)
TN0

+ div(α2 N0 ⊗ n0 + α3 n0 ⊗ N0 + α̃4 sym ∇u1), (3.4)

div u1 = 0. (3.5)

By using (3.5), equation (3.4) can be rewritten as

1
2
α̃4∆u1 + ρ̃ v0 u1,x = ∇p0 + 2α2 (∇φ0 · v0) ∇φ0 + α2((∇2φ0)v0 · n0)n⊥0

− 2γ2 (∇φ0 · v0) (∇φ0 · n0)n0 + α3((∇2φ0)v0 · n⊥0)n0. (3.6)

In order to get rid of the pressure term, we can take the curl of equation (3.6) and obtain

an equation of the form

∆(curl u1) +
2ρ̃ v0

α̃4
curl u1,x = U(x, y),

where the source term U can be written in terms of the zero-th order expressions for the

director and the pattern velocity. As a result, we obtain a linear elliptic PDE for curl u1

that, in principle, can be solved by using the same Fourier-transform methods described

in [32]. Were we able to solve it explicitly, we would end up with the system

curl u1(x, y) = Ω(x, y) ez , div u1(x, y) = 0. (3.7)

In turn, equation (3.7) can be analytically solved by using the vorticity-stream formulation

for 2D flows (see, e.g. [50], §2.1). One obtains

u1(x) = u1∞ +
1

2π

∫
R

2

Ω(x′)

|x − x′|2 ez ∧ (x − x′) dx′.

Though, in principle, all the above steps are affordable, a glance to equation (3.6)

suffices to convince ourselves that the result is still far from being easy to interpret. That

is why in Section 4 we will combine the perturbative expansion just introduced with a

suitable variational argument to identify an optimisation problem, which will eventually

provide the physical information we aim at extracting from the dynamic equations.
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3.0.1 Perturbation of the director

Let us now analyse the O(ε) term in equation (2.3). At first order

N = ṅ − ω ∧ n = −(∇n)v − ω ∧ n

= −(∇n0)v0 − ε(∇n1)v0 − ε(∇n0)v1 − εω1 ∧ n0 + o(ε).

Moreover,

div
∂σ

∂∇n
− ∂σ

∂n
= K∆n0 + χa(n0 · H)H + εK∆n1 + εχa(n1 · H)H + o(ε),

so that the O(ε) contribution to equation (2.3) requires

− γ1n0 ∧ (∇n1)v0 − γ1n0 ∧ (∇n0)v1 − γ1n0 ∧ (ω1 ∧ n0) − γ1n1 ∧ (∇n0)v0

+ γ2 n0 ∧ Dn0 = Kn1 ∧ ∆n0 + χa(n0 · H)n1 ∧ H + Kn0 ∧ ∆n1 + χa(n1 · H)n0 ∧ H,

where the pattern velocity has been expanded as well: v = v0 + εv1 + o(ε). If we further

expand also the tilt angle φ, long but straightforward calculations provide

K∆φ1 − γ1v0 φ1,x − χaH
2φ1 cos 2φ0 = γ1v1 φ0,x − γ1ω1 + γ2 n⊥0 · Dn0.

4 Variational dissipation principle

In this section we make use of the Dissipation Principle, postulated by Leonov in 2005.

In [46], he proved that the Euler equations for the minimisers of an extended dissipative

functional coincide with the Stokes equations for the Leslie–Ericksen dynamic theory

of nematic liquid crystals. The dissipation functional to be minimised differs from the

classical dissipation functional of nematic liquid crystals by a term proportional to the

divergence of the velocity field, and the validity of the proof rests upon the hypothesis

that the flows occur at low Reynolds number. This latter hypothesis was already present

in the derivation of the no-backflow results in [32]: it is crucial for the very existence of

a stationarily moving pattern. A corollary of the above principle allows us to explicitly

construct approximate solutions for the velocity field.

Variational principle. Consider a pattern {n, u, p}, moving stationarily along the x-direction

in the sense of equation (2.6). Assume further that it exists u0 such that u(x) → u0 as

|x| → +∞. Then, the actual velocity field u minimises D (the dissipation functional)

at fixed director field. In particular, δD = 0 for any infinitesimal perturbation δu of the

backflow field, which preserves the boundary conditions at infinity, and satisfies div δu = 0.

The dissipation function of a nematic liquid crystal is given by

D = TṠ =

∫
R2

(D · T(i) + h · N)da,

where D is the rate of strain tensor, and T(i), N and h are defined in equations (2.2)–(2.3). If

we now make use of the perturbative expansion (3.1)–(3.2), we obtain D = D0+εD1+o(ε),
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with

D0 = γ1

∫
R2

N0 · N0 da = γ1

∫
R2

(∇φ0 · v0)
2 da, and

D1 =

∫
R2

(α̃4 |D1|2 + 2γ2 D1N0 · n0 + 2γ1 N0 · N1)da,

where D1 = sym ∇u1, and

N1 = ṅ1 − ω1 ∧ n0 = −(∇n1)v0 − (∇n0)v1 − ω1 ∧ n0.

Thus,

D1 =

∫
R2

(α̃4 |D1|2 − 2γ2 D1(∇n0)v0 · n0 + 2γ1 (∇n0)v0 · ω1 ∧ n0

+ 2γ1 (∇n0)v0 · (∇n1)v0 + 2γ1 (∇n0)v0 · (∇n0)v1)da,

=

∫
R2

(α̃4 |D1|2 − 2γ2v0φ0,x D1n0⊥ · n0 + 2γ1v0φ0,xω1)da

+ terms depending on field and velocity corrections. (4.1)

The presence, in equation (4.1), of terms linear in the velocity field is already sufficient to

show that the backflow may be able to reduce the dissipation.

5 Velocity field around a disclination

In this section we will apply the methods introduced above to a particular example: the

backflow field around a moving disclination. The problem, in the absence of backflow, has

been already studied in [32], in which the present authors have obtained a solution of the

stationary equation (3.3) which represents a ± 1
2

moving disclination, placed at the origin

of the co-moving reference frame. In order to cover both disclination signs, we introduce

a parameter η = ± 1
2
. Then the director field around a disclination with tolopogical charge

η is explicitly given by

φ0(x, y) =
ηπ

2
e− y

ξ − η

∫ +∞

0

Im eiqx−kqy
dq

q
if y � 0,

φ0(x, y) = −φ0(x,−y) otherwise, (5.1)

where ξ :=
√
K/(χaH2) and kq denote the positive real-part square root of the equation

k2
q = q2 + iqγ + ξ−2, with γ = γ1v0/(2K). The zero-th order approximation to the speed of

the moving disclination is determined through the self-consistency equation

∫ ξqmax

0

√
k2 + ikλ + 1 −

√
k2 − ikλ + 1

k
dk = iπ,

where λ = γξ, and a high-q cutoff is needed in order to avoid the logarithmic divergence

that the disclination induces both in the free energy and the dissipation.
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5.0.2 Planar incompressible velocity fields

We begin by expanding the velocity field u1 in Fourier series with respect to the polar

angle θ

u1(r, θ) = f 0(r) +

∞∑
n=1

(f n(r) cos nθ + gn(r) sin nθ).

The symmetry of the problem requires that the component u1x has to be even, and the

u1y has to be odd, with respect to the y coordinate. Thus,

u1(r, θ) =

(
f0(r) +

∞∑
n=1

fn(r) cos nθ

)
ex +

( ∞∑
n=1

gn(r) sin nθ

)
ey. (5.2)

In the following we will use expression (5.2) to compute D1, the first-order contribution

to the dissipation functional. The rate of strain tensor is given by

D1 = sym ∇u1 =
1

2

(
f′

0(r) +

∞∑
n=1

f′
n(r) cos nθ

)
(ex ⊗ er + er ⊗ ex)

− 1

2

( ∞∑
n=1

nfn(r)

r
sin nθ

)
(ex ⊗ eθ + eθ ⊗ ex)

+
1

2

( ∞∑
n=1

g′
n(r) sin nθ

)
(ey ⊗ er + er ⊗ ey)

+
1

2

( ∞∑
n=1

ngn(r)

r
cos nθ

)
(ey ⊗ eθ + eθ ⊗ ey).

The incompressibility condition may be directly enforced in terms of the fn and gn
components. A direct computation and the repeated use of the Werner formulae yields

div u1 = tr D1 = f′
0 cos θ +

1

2

∞∑
n=0

(
s′
n+1 +

(n + 1)sn+1

r

)
cos nθ

+
1

2

∞∑
n=2

(
d′
n−1 − (n − 1)dn−1

r

)
cos nθ,

where we have introduced the notations

sn(r) := fn(r) + gn(r), dn(r) := fn(r) − gn(r) ∀n � 1. (5.3)

Therefore, the requirement div u1 = 0 is equivalent to the following set of conditions

s′
1 +

s1

r
= 0,

s′
2 +

2s2
r

= −2f′
0, (5.4)

s′
n +

nsn

r
= −d′

n−2 +
(n − 2)dn−2

r
(∀n � 3).
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Equation (5.4)1 may be directly integrated as

s1(r) =
2E1

r
, E1 ∈ �.

The remaining equations allow to show that once the differences dn are determined, the

sums sn follow from the incompressibility constraint.

In order to compute the dissipation functional, we also determine the vorticity vector

ω1 = ω1 ez:

ω1 =
1

4

(
s′
2 +

2s2
r

− 2f′
0

)
sin θ

+
1

4

∞∑
n=2

(
s′
n+1 +

(n + 1)sn+1

r
− d′

n−1 +
(n − 1)dn−1

r

)
sin nθ

= −f′
0 sin θ − 1

2

∞∑
n=1

(
d′
n − ndn

r

)
sin(n + 1)θ,

where in the last equality we have made use of the incompressibility conditions (5.4). We

can therefore write

ω1(r, θ) =

∞∑
n=0

ω1,n(r) sin(n + 1)θ

with

ω1,0(r) = −f′
0(r), and ω1,n(r) = −1

2

(
d′
n − ndn

r

)
for n � 1.

5.0.3 Ansatz

We now introduce a simple ansatz that provides insight into the structure and the

symmetry of the velocity pattern around a moving disclination. Since the aim of the

present paper is to introduce a new perturbative computational method, we will keep

the ansatz as simple as possible. In fact, we will truncate our approximations at the first

non-trivial order, though we stress that the method can be easily generalised to produce

a more refined ansatz that eventually allows to approximate the correct solution within

any prescribed precision.

We assume that the Fourier components of the vorticity vector ω1,n are (as functions

of r) piecewise polynomials of order N. The number of different polynomials we glue,

and the order of each polynomial determine the complexity (and the precision) of the

particular ansatz. The simplest non-trivial choice consists in assuming that each ω1,n is a

piecewise constant function that assumes a constant value within a disk of radius R (that

will be called the vorticity disk ), and vanishes when r > R

ω1,n(r) =

{
Dn if r < R

0 if r > R
, (5.5)

with Dn ∈ � for all n � 0. The real parameters to be determined variationally in the

present ansatz are the radius R and the values Dn that each component assumes within the
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vorticity disk. We remark that the outcoming vorticity field is a piecewise regular function,

with a jump discontinuity at the border r = R. Once we integrate, the resulting velocity

field is continuous everywhere. Higher ansatz orders that allow for regular vorticity fields

will be presented elsewhere [51].

Once the choice (5.5) is set, all the components dn can be determined by solving the

ordinary differential equations,

f′
0 ≡ −ω1,0, d′

n − n dn

r
≡ −2ω1,n ∀n � 1,

subject to the conditions ensuring that f0 and all the dns are continuous everywhere,

and vanish at infinity. If we use the resulting dns to deduce the sns by solving (5.4), and

eventually invert the definitions (5.3), we obtain

r � R r > R,

f0(r) = D0(R − r) f0(r) = 0,

f1(r) = D1 r log
R

r
f1(r) = 0,

g1(r) = −D1 r log
R

r
g1(r) = 0,

f2(r) =
D0r

3
+

D2r(R − r)

R
f2(r) =

D0R
3

3r2
,

g2(r) =
D0r

3
− D2r(R − r)

R
g2(r) =

D0R
3

3r2
, (5.6)

. . . . . . . . . . . .

fn(r) =
Dn−2r

n + 1
+

Dnr(R
n−1 − rn−1)

(n − 1)Rn−1
fn(r) =

Dn−2R
n+1

(n + 1)rn
,

gn(r) =
Dn−2r

n + 1
− Dnr(R

n−1 − rn−1)

(n − 1)Rn−1
gn(r) =

Dn−2R
n+1

(n + 1)rn
.

. . . . . . . . . . . .

It is interesting to remark that by virtue of (5.6) the velocity field at the disclination, i.e.

in the origin, depends only on the value of D0

u1(0) = D0Rex. (5.7)

5.0.4 Reducing the dissipation

In this section we explicitly compute the terms in the dissipation functional that depend

on the velocity field. They are

D(u)
1 =

∫
R2

(α̃4 |D1|2 − 2γ2 D1(∇n0)v0 · n0 + 2γ1 (∇n0)v0 · ω1 ∧ n0)da. (5.8)

The quadratic term, proportional to |D1|2, is positively defined. The presence of this

classical viscosity term keeps the velocity field bounded. Once we make use of (5.6), it
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turns out that it can be easily computed

α̃4

∫
R2

D1 · D1 da = πR2α̃4

+∞∑
n=0

D2
n. (5.9)

The result (5.9) is not surprising from the physical point of view, because it is clear that

the overall dissipation increases if we either increase the size of the vorticity disk where

ω1 is confined, or increase the intensities of the vorticity Fourier components.

The linear γ1 and γ2 terms in (5.8) are crucial. They couple the velocity and the

director fields, and allow a reduction of the overall dissipation simply because of their

linear character. Were they absent, the quadratic term in the dissipation functional would

keep the optimal velocity field null. Moreover, since these terms are linear in u, each

Fourier component can be treated in it independently. In particular, only a few Fourier

components will have the correct symmetry that allows the integrals in (5.8) to be different

from zero. Consequently, only a few Fourier components will have a non-zero optimal

value for the variational parameters Dn.

An exact computation of the γ1 and γ2 integrals in (5.8) cannot produce interpretable

results easily because they involve integrals of the tilt field φ, which in turn is known only

through its Fourier transform. Thus, again, we resort to a physical approximation, and

postpone the complete results to a forthcoming paper [51]. The resulting predictions will

be used to check the validity of the present assumptions.

First of all, we assume that most of the dissipation reduction occurs close to the (co-

moving) origin, where the disclination stands. This assumption is due to the fact that the

dissipation is indeed concentrated at the disclination, and thus it is to be expected that the

dissipation reduction is greater where the dissipation is high. In practice, we will replace

the integrals over the whole plane B with integrals over the vorticity disk BR = {r � R}.
We stress that we perform this approximation only in the linear terms, which represent

the gain, while we take into account the whole plane when we compute the quadratic

dissipation term. Moreover, we remark that this approximation does not contribute to the

γ1-integral, since in the latter the integral is proportional to the vorticity, and ω1 vanishes

outside BR . Then we assume that R is sufficiently small so that within it the tilt field can

be replaced by its asymptotic expression, φ0 ≈ ηθ, where we remind that η = ± 1
2

is the

topological charge of the defect that we are considering.

Under the above assumptions, the γ1-linear term in (5.8) yields∫
BR

2γ1 (∇n0)v0 · ω1 ∧ n0 da = 2v0γ1

∫
BR

φ0,xω1 da = −2ηπγ1v0D0R. (5.10)

The result (5.10) deserves a remark. It shows that only the principal component ω1,0

of the vorticity possesses the correct symmetry to determine a reduction in the overall

dissipation. All other components do not contribute to the linear dissipation gain – while

they obviously still cause a dissipation increase because of the positive quadratic term. The

gain can be obtained, whatever is the sign of the topological charge of the disclination,

since defects with opposite charges will simply induce opposite velocity fields. It is to be

noticed that changing the sign of D0 induces an important effect. In view of (5.7), and

since the disclination moves with a velocity v0 = v0ex, disclinations which D0 with the
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same sign as v0 encounter a velocity field parallel to their motion. In some figurative

sense they sail before the wind. On the contrary, disclinations which induce D0 opposite

in sign as compared to v0 will sail against the backflow motion. We will return on this

point, but we remark that this is the effect for understanding the speed difference between

opposite-charged defects.

The linear γ2-term provides

−2γ2

∫
BR

D1(∇n0)v0 · n0 da = −πγ2v0R

2

(
D1 +

(
η − 1

2

)
D3

)
. (5.11)

In this case it is interesting to be noticed that the value of the topological charge η = ± 1
2

enters the result in a non-trivial way. The Fourier component represented by D1 induces a

dissipation reduction independent of η. Thus, the D1 component will have the same sign for

both positive- and negative-charged disclination. Consequently, it will not be true that the

velocity field induced by one disclination is just the opposite of the velocity field induced

by its opposite-charged counterpart. Moreover, the dissipation gain induced by the third

Fourier component D3 is proportional to the factor (η − 1
2
). As a consequence, a positive-

charged disclination will not find any convenience in switching on this component. On

the contrary, the η = − 1
2

disclination will find its way to save dissipation with a suitable

velocity field endowed with this component. This result confirms and provides an explicit

example of our physical intuition that the η = − 1
2

disclinations possess a three-fold

symmetry about the disclination axis.

In summary, the optimal values for the velocity coefficients can be found by adding the

contributions (5.9), (5.10) and (5.11), and minimising with respect to the Dns:

D0,opt =
ηγ1v0

Rα̃4
, D1,opt =

γ2v0

4Rα̃4
, D3,opt =

γ2v0(η − 1
2
)

4Rα̃4
, (5.12)

while Dn,opt = 0 for all other values of n.

Within our approximation, the components Dn always enter the dissipation gain D1

through the combination RDn. Thus, it was to be expected that their optimal values were

always proportional to R−1. Moreover, once we replace the optimal values (5.12) in D1,

we obtain a dissipation gain that does not depend on the particular value of the radius R

of the vorticity disk

D1,opt = − πv2
0

16α̃4

(
4γ2

1 + γ2
2

(
1 +

(
η − 1

2

)2))
. (5.13)

5.0.5 Backflow vortices

The approximations introduced above have yielded some non-trivial insight into the

structure of the velocity field. The positive-charged disclinations move downstream, while

the negative-charged disclinations are forced to go upstream, but we have not yet obtained

any estimate for the optimal radius of the vorticity disk. One assumption that has played

a key role in deriving the above results is that within the vorticity disk the director

field can be approximated as φ0(r, θ) ≈ ηθ, i.e. we may replace the exact director field

with its asymptotic expression valid close to the defect. In this section we will relax this
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R/ξ

D1/ v2
0γ

2
1/α̃4

1 2 3 4
0

−0.1

−0.2

−0.3

γ2 = 0

γ2 = −γ1

γ2 = γ1

Figure 1. Dissipation gain induced by the velocity flow for a positive- (continuous plots) and

negative-charged (dashed plots) disclinations as a function of the radius of the vorticity disk.

Different plots correspond to different values of the dimensionless ratio γ2/γ1. When γ2 = 0, the

continuous and dashed plots coincide.

assumption. As a result, we will be able to determine the optimal value of the radius of

the vorticity disk.

Once the expression (5.1) replaces its asymptotic approximation, the dependence on the

radius R of the vorticity disk of the dissipation gain can not be obtained analytically.

We have computed numerically for several values of R � 5ξ (with step size 0.01ξ, where

ξ is the magnetic coherence length introduced in (5.1)) and for all Fourier components

controlled by Dn (up to nmax = 50), the integrals appearing on the left-hand sides of

equations (5.10) and (5.11). From these, we have derived their optimal values Dn,opt(R).

Finally, we have added all the contributions to obtain D1,opt(R), the counterpart of

equation (5.13). Again, using the exact director field results in a non-constant D1,opt(R).

Figure 1 illustrates the result of our calculations. Once we factor out the coefficient

v2
0γ

2
1/α̃4, the optimal dissipation gain depends on the dimensionless ratios R/ξ and γ2/γ1.

The dissipation gain is greater when D1 is most negative. Thus, the main feature of all

graphs is that the dissipation gain is maximum when R is as small as possible and, in all

cases, the optimal situation corresponds to the R → 0 limit. This means that the most

effective way to reduce the dissipation is to concentrate the vorticity in a disk as small

as possible around the disclination. Incidentally, if the radius is small, the results (5.10)–

(5.13) come up again, because within a disk of infinitesimal radius the approximation

φ0 ≈ ηθ regains validity. In particular, equation (5.12) show that the non-zero Dn,opts

diverge if R → 0, while the products RDn,opt remain finite. In this limit, the vorticity disk

thus turns into the combination of two or three vortices (depending on the sign of the

topological charge of the disclination), each endowed with a different Fourier symmetry.

The analytical estimate (5.13) corresponds to the R → 0 limit of the curves in Figure 1,

which explains the fact that the plots with γ2 = ±γ1, but with the same topological charge,

converge to the same value in the small-R limit. On the contrary, it is interesting to note

that when R increases, plots with the same value of the ratio γ2/γ1, but with opposite

topological charge, tend to coalesce.

Figure 2 illustrates the qualitative features of the velocity field induced by the disclin-

ation motion. It evidences that the velocity field of the − 1
2

defect reflects the three-fold
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Figure 2. Velocity fields (left) for a +1
2

defect (upper) and a − 1
2

defect (lower). The displayed fields

have been obtained with a small though finite value of the vorticity disk (R = .1ξ). Both defects

move towards the left side. The right panels show the director field close to a ± 1
2

defect.

symmetry of the director field. The points where the velocity is greater sit in front of

the +1
2

defect, but behind the − 1
2

defect (with respect to the direction of motion). More

precisely, let us consider the apparent centres of rotation, defined as the points where the

velocity field vanishes. Let us then draw the lines from such centres to the defect itself,

and consider the negative x-axis (the π-wall) as well. In the R → 0 limit, these three lines

form three equal angles of 2
3
π. (Note that in Figure 2, the value of R is small but finite,

and therefore the symmetry is approximate.)

6 Conclusions

We have introduced a perturbative scheme aimed at taking into account the backflow

effects in the dynamics of nematic liquid crystals. The key idea in the expansion is to notice

that the no-backflow approximation is equivalent to assuming that the ratio between the
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Newtonian viscosity α4 and all other nematic viscosities is very large. As a consequence,

it turns out that the onset of backflow effects is principally governed by two of the

dissipative terms in the stress tensor (the ones proportional to α2 and α3). The resulting

equations of motion (see equations (3.4) and (3.5)) appear to be simplified as compared

to the original balance equations, though they still do not admit an analytical solution.

In Section 4, we have adapted to our problem, the variational dissipation principle

proved by Leonov [46]. In view of this theorem, the actual velocity field u is a minimiser

of the dissipation functional at fixed director field. This property allows us to determine

analytical estimates of the actual solution.

In Section 5 we applied the above results to a practical example: the velocity field

induced by a moving disclination. By means of a suitable variational ansatz, we have

restricted to velocity fields whose vorticity is bounded within a vorticity disk, whose radius

we have estimated. Though we have kept the ansatz as simple as possible, non-trivial

results already emerge. Two of these deserve particular mention. First, the velocity field

tends to form vortices, endowed with non-trivial Fourier structure. The number and

character of the vortices depend on the topological charge of the disclinations. Second,

the sign of the velocity field at the disclination depends on the sign of the charge itself.

More precisely, a moving disclination with positive charge encounters a drift coherent

with the direction of the disclination velocity, while a negative-charged disclination is

forced to overcome an opposite drift.

Since u1(0) = (ηγ1v0/α̃4) ex, we may expect that the difference in velocity speeds (noticed

both in numerical simulation and in experimental measurements) between approaching ± 1
2

defects can be estimated as ∆v1 ≈ (γ1v0)/α̃4. This result obviously needs to be confirmed

when more refined ansatzs are considered, but it explains the origin of the numerical and

experimental observations.

Our study evidences that the dissipation reduction arising from the backflow effects

emerges from the terms highlighted in equation (5.8). Even the most simple study of

their optimisation underlines the key role played by the topological charge of the moving

defect, and the symmetry of the nematic field that surrounds the singularity. The origin

of the predicted and measured different defect speeds is to be found in the fact that

defects turn out to move either downhill or uphill (with respect to the backflow motion),

depending on the sign of their topological charge.

Much work remains, however, to be done to fully understand the defect motion. A more

complete velocity ansatz would certainly evidence that the vortices we have predicted are

combined with a regular pattern, whose characteristic length must clearly depend on

the magnetic coherence length ξ. Moreover, it still remains to be understood how the

backflow perturbation of the defect speed (the parameter v1 in our notation) depends on

two effects: the dissipation reduction induced by the backflow, and the difference v0 −u(0).

Finally, a three-dimensional implementation of the program we have carried out would

result in a better understanding of the motion of point defects in a velocity field.
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