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1. Introduction

In this paper, we continue the research regarding the properties of the viscosity
solutions of some nonlinear PDEs started in [7,8]. In those papers we studied
the case of non-divergence nonlinear equations modelled on vector fields in the
Heisenberg group. We proved there that bounded uniformly continuous functions
that are also viscosity solutions of some nonlinear degenerate uniformly elliptic
equations in all the Heisenberg group H

1 are also Hölder continuous in the classical
sense.

In the cited papers we did not need to prove Harnack inequality in advance, as
it is customary to do in order to prove Hölder continuity.

Our main goal is now to deal with a larger class of operators, intrinsically
uniformly elliptic with respect to square matrices, of order less or equal to the
dimension of the Euclidean given space, obtained by considering some smooth vec-
tor fields. Even if these operators are not elliptic in the classical sense defined in
[3], we obtain similar regularity results to the ones proved in [7,8] without making
use of a Harnack inequality.

This research has been inspired by reading [12]. In that paper the author applied
the theorem on sums, see [4], to elliptic linear operators having quite sufficiently
smooth coefficients.

The key point that we explore in our approach is based on the existence of square
root matrices, sufficiently smooth and of the symmetric matrix associated with the
second order term of the equation, the so-called leading term.
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Since in this paper we consider many different families of operators in non-
divergence form, we prove that our approach works even in those cases in which,
instead of considering the classical square root matrix, there exist rectangular
square roots matrices σ such that σT σ represents, possibly, the degenerate square
matrix associated with the second order term of the equation. A typical application
of this case appears in Carnot groups, but many other examples exist.

In order to better explain the result, we introduce the classes of operators that
we deal with. In the sequel, we denote with Sm the set of m × m square symmetric
matrices, m ∈ N, m � 1.

Definition 1.1. Let 0 < λ � Λ be given real numbers and let 0 < m � n be two
positive integers. Let σ be a m × n matrix, with Lipschitz continuous coefficients
defined in Ω ⊆ R

n. Let G : Sm → R be a given function such that for every A,B ∈
Sm, if B � A then

λTr(A − B) � G(A) − G(B) � ΛTr(A − B).

We define the function F : Sn × Ω → R in such a way that, for every M ∈ Sn

and for every x ∈ Ω

F (M,x) = G(σ(x)Mσ(x)T ).

We sometime denote for every x ∈ Ω, the n × n matrix P (x) = σ(x)T σ(x).

We postpone to § 2 some comments about the novelty of this family of operators
and we state immediately our main result.

Theorem 1.2. Let f, c ∈ C(Rn) be continuous functions and let Lc, Lf , β, β′ be
positive real numbers such that β, β′ ∈ (0, 1] and for every x, y ∈ R

n, |c(x) − c(y)| �
Lc|x − y|β, |f(x) − f(y)| � Lc|x − y|β′

. Let us suppose infx∈Rn c(x) := c0 > 0. Let
F be an operator satisfying definition 1.1 where σ is Lipschitz continuous in R

n and
P = σT σ. Assume that there exists a positive constant c̄, c0 � c̄ > 0. If u ∈ C(Rn)
is a bounded uniformly continuous viscosity solution of the equation

F (D2u(x), x) − c(x)u(x) = f(x), R
n,

and

lim sup
|x|→∞

(
Tr(P (x))

|x|2 − c0

2Λ

)
� 0, (1.1)

then there exist 0 < α := α(c0, c̄, Lc, Lf ,Λ) ∈ (0, 1], α � min{β, β′}, and L :=
L(c0, c̄, Lc, Lf ,Λ) > 0 such that for every x, y ∈ R

n

|u(x) − u(y)| � L|x − y|α.

We point out that in our presentation we do not distinguish the operators by
considering their possible degeneracy since the approach that we introduce applies
independently to the fact that the operator is degenerate elliptic or it is not.

In fact, it is well known that viscosity theory existence is independent to the
lack of strict ellipticity. Namely, the construction of Perron solutions can be done
independently to the possible degenerate nature of the equation.
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As a consequence, even when we deal with PDEs in Carnot groups, we state our
results always with respect to the classical notions of regularity. For instance, in
our main result, we obtain a Hölder modulus of continuity in the classical sense of
the viscosity solutions.

We point out this aspect since there exists also a wide literature in which the
obtained results are introduced by using an intrinsic notion of regularity, see for
example, [16]. In particular, those results are stated by exploiting the intrinsic
notions of distance and differentiability associated with the geometry of the oper-
ator. From this point of view, we recall that the intrinsic distance associated with
degenerate PDEs in non-commutative groups, usually, is not equivalent to the
Euclidean one. For the reader’s convenience, we shall come back at the end of
§ 2 to this remark.

After this introduction, the paper is organized as follows: in § 2, we list some
cases to which our result applies and we introduce the main tools we need to; in
§ 3, we show the proof of theorem 1.2 and in § 4, we discuss some final remarks
and conclusions. Concerning the recent literature about this subject, in addition to
[1,7,8,23], we would like to cite also, [18,19].

2. Examples and preliminary tools

We begin this section by listing some examples of the operators belonging to the
family introduced in definition 1.1. All the fully nonlinear operators F, that are
uniformly elliptic, see [3], belong to our class when P ≡ I. In this case, σ = I ∈ Sn

and m = n.
In addition, in order to give an explicit nontrivial example belonging to the class

of fully nonlinear operator studied in [3], we consider in R
3 the matrix

PH1(x) =

⎡
⎢⎣

1, 0, 2x2

0, 1, −2x1

2x2, −2x1, 4(x2
1 + x2

2)

⎤
⎥⎦ .

For every point x ∈ H
1, the det(P (x)) = 0, rank(P (x)) = 2 and P (0) � 0.

Nevertheless,

√
PH1(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
2+

x2
1√

1+4(x2
1+x2

2)

x2
1+x2

2
,

x1x2

(
1− 1√

1+4(x2
1+x2

2)

)

x2
1+x2

2
, 2x2√

1+4(x2
1+x2

2)

x1x2

(
1− 1√

1+4(x2
1+x2

2)

)

x2
1+x2

2
,

x2
1+

x2
2√

1+4(x2
1+x2

2)

x2
1+x2

2
, − 2x1√

1+4(x2
1+x2

2)

2x2√
1+4(x2

1+x2
2)

, − 2x1√
1+4(x2

1+x2
2)

,
4(x2

1+x2
2)√

1+4(x2
1+x2

2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the class of our operators we find the following ones:

P+
H1(M,x) = max

A∈Aλ,Λ
Tr(A

√
P (x)M

√
P (x))
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and

P−
H1(M,x) = min

A∈Aλ,Λ
Tr(A

√
P (x)M

√
P (x)),

where

Aλ,Λ = {A ∈ S3 : λ|ξ|2 � 〈Aξ, ξ〉 � Λ|ξ|2}.

They are the analogous ones of the Pucci’s extremal operators belonging to the
class of fully nonlinear uniformly elliptic operators, see [3].

In this framework, also the particular case given by the sublaplacian in the
Heisenberg group

ΔH1u(x) ≡ Tr(PH1(x)D2u(x)) = G(D2u(x)) = F (D2u(x), x),

where

G(M) = Tr(
√

PH1(x)M
√

PH1(x)),

belongs to the same class.
Indeed

λΔH1u(x) � G(σH1(x)D2u(x)σ(x)T
H1) � ΛΔH1u.

Thus, we conclude that these operators are not uniformly elliptic in the classical
sense described in [3].

It is worth to say that we can also consider those operators F obtained coher-
ently with our definition by remarking that if σ is not a squared matrix, but it is
simply a rectangular matrix, we can construct, at least apparently, another family
of operators.

For example, one more time considering for simplicity the Heisenberg group H
1,

that is the simplest case of a nontrivial Carnot group, we have:
PH1(x) = σT (x)σ(x) where:

σH1(x) =

[
1, 0, 2x2

0, 1,−2x1

]
.

As a consequence for every M ∈ S3×3

F (M,x) = G(σH1(x)MσH1(x)T ).

This approach can be extended to every Carnot group by considering the matrix
σG whose rows are given by the coefficients that determine the vector fields of the
first stratum of the Lie algebra in a Carnot group G. Namely, we construct the
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matrix

σT
G (x) =

⎡
⎢⎢⎢⎢⎣

X1(x)
X2(x)
...
Xm(x)

⎤
⎥⎥⎥⎥⎦ ,

where

g1 = span{X1, . . . , Xm},

g2 = [g1, g1], gk+1 = [g1, gk], k � p − 1,

p⊕
j=1

gj = g,

g is the Lie algebra of the group G and p is its step. We refer to [2] for further
details.

It is important to point out that, by considering different Carnot groups to the
Heisenberg one, our definition

λTr(σ(x)Mσ(x)T ) � F (M,x) = G(σ(x)Mσ(x)T ) � ΛTr(σ(x)Mσ(x)T )

does not necessarily translate into the following equivalent condition

λΔGu(x) � F (D2u(x), x) = G(σ(x)D2u(x)σ(x)T ) � ΛΔGu(x),

as in the Heisenberg group. Indeed, it is well known that there exist Carnot groups
such that

Tr(σG(x)Mσ(x)T
G) 	= ΔGu(x),

assuming, by definition, ΔGu(x) :=
∑m

j=1 X2
j u(x), and {X1 . . . , Xm} endowed with

the first stratum of the Lie algebra of the Carnot group.
For instance, let us consider the Engel group E

1 ≡ R
4, endowed by the non-

commutative inner product law,

x · y =
(

x1 + y1, x2 + y2, x3 + y3 − y1x2, x4 + y4 +
1
2
y2
1x2 − y1x3

)
, (2.1)

where the Jacobian basis, see [2], is

X1 = ∂1 − x2∂3 − x3∂4 X2 = ∂2

X3 = ∂3 X4 = ∂4.

The matrix σE1 becomes

σE1(x) =

[
1, 0, −x2, −x3

0, 1, 0, 0

]

and

Tr(σE1(x)D2u(x)σ(x)T
E1) = X2

1u + X2
2u − x2

∂u

∂x4
.
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In this case, the class of operators that we have defined does not contain explicitly
the intrinsic sublaplacian on the Engel group given by ΔE1u = X2

1u + X2
2u. Never-

theless, Tr(σE1(x)D2u(x)σ(x)T
E1) is still a degenerate operator, having the smallest

eigenvalue always 0 in all of R
4, see lemma 2.2 in the next subsection.

We spend some words making a digression about the intrinsic notion of distance
in Carnot groups. It is well known that in the framework of this non-commutative
structure, it is defined as a natural distance associated with the geometry of the
group. In literature it is called the Carnot-Charathéodoty distance. This distance
can be constructed in many ways. For instance, we briefly describe the following
approach. If

g1(P ) = span{X1(P ), . . . , Xm(P )},
for every P ∈ G and the set {X1(P ), . . . , Xm(P )} is braking generating all the space
R

n ≡ G, then for every function φ : [0, 1] → G ≡ R
n parametrizing a path γ ⊂ G

such that for every t ∈ [0, 1], φ′(t) ∈ g1(φ(t)), we define the length of γ by

l(γ) =
∫ 1

0

√√√√ m∑
k=1

〈φ′(t),X(φ(t))〉2 dt.

Then for every P0, P1 ∈ G we call:

dG

CC(P0, P1)

= inf{l(γP0,P1) : γP0,P1 , is horizontal path connecting P0, with P1}
(2.2)

the Carnot-Charathéodory distance between P0, with P1.
This distance is not equivalent to the Euclidean distance since it holds only that

if K ⊂ G is bounded, then there exist C1, C2 > 0 such that, for every P1, P2 ∈ K

C1|P1 − P2|E � dCC(P1, P2) � C2|P1 − P2|1/p
E ,

where p denotes the step of the Carnot group. For instance, in the Heisenberg group
p = 2, in the Engel group p = 4. Further details and a complete list of references
about these topics can be found in [2]. Thus, as we pointed out in the Introduction,
we remark that in the statement of theorem 1.2 we make use only of the usual
Euclidean distance and the classical Hölder modulus of continuity of the viscosity
solutions.

Thus all the results that we state in this paper have to be understood in the clas-
sical usual sense since we do not use explicitly the Carnot-Charathéodory distance
(2.2).

2.1. Preliminary tools

In this subsection, we list some useful key tools concerning the eigenvalues of
matrices obtained as the product of rectangular matrices, and the statement of the
theorem on sums, see [4]. For the notation, the definition of viscosity solution and
other symbols like sub/super jets J2,±u(x), we refer, one more time, to [4] and [6].

Lemma 2.1. Let A be a symmetric n × n matrix such that for every i = 1, . . . , n,
aii > 0 then all the eigenvalues of A are strictly positive.
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We omit the trivial proof. The following result is known in literature even if I do
not know a specific citation of it in this form. Thus, coherently, we also show a
direct proof.

Lemma 2.2. Let σ be a m × n matrix m � n such that rank(σ) = m then σσT is
an m × m strictly positive matrix while if m < n, then σT σ is a degenerate matrix
whose eigenvalues different to 0 are the same of σσT and if m = n then σT σ is
invertible and its eigenvalues are the same of σσT .

Proof. Let λ be an eigenvalue of σσT and v one of its eigenvectors. Then

σσT v = λv,

so that 〈σσT v, v〉 = λ||v||2, so that 〈σT v, σT v〉 = λ||v||2 implies that λ > 0 when-
ever v 	∈ KerσT . Indeed v 	∈ KerσT because by hypothesis rank(σ) = m. Thus, we
conclude that σσT is an m × m strictly positive, in particular also invertible, matrix.
Consider now an eigenvalue λ of the matrix σσT . If λ 	= 0 and v ∈ Ker(σσT − λI)
then

σσT v = λv.

Thus σT σ(σT v) = λσT v, that is λ is also an eigenvalue of σT σ. This proves that
all the nonzero eigenvalues of σσT are eigenvalues of σT σ. On the other hand, if
γ > 0 is an eigenvalue of σT σ then

σT σw = γw,

w ∈ Ker(σT σ − γI), then

(σσT )σw = γ(σw),

then γ is also an eigenvector of σσT , because σw 	= (0) since rank(σ) = m. As a con-
sequence, the nonzero eigenvalues of σσT are only the strictly positive eigenvalues
of σT σ. The case m = n is now trivial. �

The following result is an obvious consequence of the definition of trace of a matrix.

Lemma 2.3. Let A,B ∈ Sn be given. For every m × n matrices σ1, σ2 then

Tr(σT
1 σ1A − σT

2 σ2B) = Tr(σ1AσT
1 − σ2BσT

2 ).

We recall now the maximum principle for semiconvex functions, sometimes also
named theorem on the sum, see [4].

Theorem 2.4 (Crandall-Ishii-Lions). Let Ω ⊆ R
n be an open set and u ∈ USC(Ω̄)

and v ∈ LSC(Ω̄). Let φ ∈ C2(W ) where W is open and Ω × Ω ⊂ W ⊆ R
n × R

n. If
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there exists (x̂, ŷ) ∈ Ω such that

u(x̂) − v(ŷ) − φ(x̂, ŷ) = max
(x,y)∈Ω×Ω

(u(x) − v(y) − φ(x, y)), (2.3)

then for each μ > 0, there exist A = A(μ) and B = B(μ) such that

(Dxφ(x̂, ŷ), A) ∈ J
2,+

u(x̂), (−Dyφ(x̂, ŷ), B) ∈ J
2,−

u(ŷ), and

−(μ + ||D2φ(x̂, ŷ)||)
[
I, 0
0, I

]
�
[
A, 0
0, −B

]

� D2φ(x̂, ŷ) +
1
μ

(D2φ(x̂, ŷ))2.

Where:

D2φ(x̂, ŷ) =

[
D2

xxφ(x̂, ŷ), D2
yxφ(x̂, ŷ)

D2
xyφ(x̂, ŷ), D2

yyφ(x̂, ŷ)

]

and ||M || is the norm given by the maximum, in absolute value, of the eigenvalues
of the symmetric matrix M ∈ S2n.

Lemma 2.5. Let φ(x, y) = |x − y|α. If x 	= y then

D2φ(x, y) =

[
M, −M

−M, M

]
, (2.4)

where

M = Lα|x − y|α−2

(
(α − 2)

x − y

|x − y| ⊗
x − y

|x − y| + I

)
,

(D2φ(x, y))2 = 2

[
M2, −M2

−M2, M2

]
, (2.5)

and

M2 = α2L2|x − y|2(α−2)

(
α(α − 2)

x − y

|x − y| ⊗
x − y

|x − y| + I

)
. (2.6)

Proof. The proof follows by straightforward calculation. �

It is well known, at least since [13], that viscosity solutions of the equation

F (D2u(x)) = f(x), Ω,

F uniformly elliptic, in the usual sense (see [3]), homogeneous of degree one, are
C0,α in every ball B ⊂ 4B ⊂⊂ Ω, whenever f ∈ C(Ω).

We want to adapt the previous result to the case of degenerate elliptic operators
that we are dealing with in this paper. Before doing this, we recall in the next
subsection this approach.
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2.2. Cα regularity for uniformly elliptic operators without Harnack
inequality

It is possible to prove Cα regularity of viscosity solutions without proving first
the Harnack inequality. Indeed it is sufficient to reduce the problem to a ball of
radius 1 for a non-constant function 0 < u < 1. The scheme of the proof, see for
example, the idea in [17] or in [10] for a slightly different but equivalent approach,
is the following one:

Let w(x, y) = u(x) − u(y) − L|x − y|α − 2|x − z|2, for every z ∈ B1/4 and denote
φ(x, y) = L|x − y|α so that w(x, y) = u(x) − u(y) − φ(x, y) − 2|x − z|2, Let

max
B1(0)×B1(0)

w(x, y) = w(x̂, ŷ) := θ.

Assume by contradiction that θ > 0. Then x̂ 	= ŷ. Thanks to the localization term
2|x − z|2, then (x̂, ŷ) ∈ B1/4(0).

By the theorem of the sums, for every μ > 0, there exist A = A(μ) and B = B(μ)
such that

(Dxφ(x̂, ŷ), A) ∈ J
2,+

u(x̂), (−Dyφ(x̂, ŷ), B) ∈ J
2,−

u(ŷ), and[
A, 0
0, −B

]
� D2φ(x̂, ŷ) +

1
μ

(D2φ(x̂, ŷ))2.

In particular, this implies[
A, 0
0, −B

]
�
[

M, −M

−M, M

]
+

2
μ

[
M2, −M2

−M2, M2

]
,

so that for every ξ ∈ R
n

〈(A − B)ξ, ξ〉 � 0.

In addition, we conclude that for every ξ ∈ R
n

〈(A − B)ξ, ξ〉 � 2〈
(

M +
2
μ

M2

)
ξ, ξ〉.

Moreover, taking ξ̄ = (x − y)/|x − y| and choosing μ in the right way, we conclude
that:

〈(A − B)ξ̄, ξ̄〉 � Lα(α − 1)|x̂ − ŷ|α−2 < 0.

In this way taking L sufficiently large we obtain a contradiction concluding that
θ � 0. Indeed

− 2||f ||L∞ � f(x̂) − f(ŷ) � F (A + 2I) − F (B) � ΛTr(A − B) + nΛ

� Lα(α − 1)|x̂ − ŷ|α−2 + nΛ → −∞,

as L → +∞.
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So that by choosing z = x̂ ∈ B1/4(0) we get that for every x ∈ B1/4(0) :

u(x) − u(y) � L|x − y|α.

This proof can be, in a sense, partially adapted to our operators. Nevertheless,
see for instance, even the subelliptic Laplace operator in Heinseberg group, we did
not manage to prove that θ < 0 following the previous proof.

Nevertheless, in a paper by Ishii, [12], see also [5,11,14], there is a proof that
in some sense works for some, possibly degenerate, linear operators. We remind in
the subsection below the main result, from our point of view, contained in [12].

2.3. A result for linear elliptic operators

In the paper [12] it was proven the following result.
If

Lu(x) = Tr(H(x)D2u(x)) + 〈b(x),Du(x)〉 − c(x)u(x),

where HT = H ∈ C1,1(Rn, R2n), b, c, f ∈ C0,1(Rn), and there exist a matrix σ and
a positive number Λ > 0 such that H � 0, σT σ = H, and

H � Λ. (2.7)

Moreover, denoting by

λ0 = sup
x�=y

{
Tr(σ(x) − σ(y))2 + 〈(b(x) − b(y)), x − y〉

|x − y|2
}

and

c0 = inf
Rn

c.

Then, see [12], we get the following result.

Theorem 2.6 (Ishii). Let c0 � 0 and assume that c, f ∈ C0,1(Rn). Let u ∈ C(Rn) ∩
L∞(Rn) be a viscosity solution of Lu = f that is also uniformly continuous in R

n.
If c0 > λ0 then u ∈ C0,1(Rn) and

|Du|L∞(Rn) � 1
c0 − λ0

(|Df |L∞(Rn) + |Dc|L∞(Rn)|u|L∞(Rn)

)
.

Remark 2.7. If H(x) = I, then λ0 � Lb, where Lb denotes the Lipschitz constant
associated with b. Moreover, if H(x) = P (x), and b = 0, that is in the case of the
Heisenberg group, then Tr(P (x)D2u(x)) = ΔH1u. Nevertheless, condition (2.7) is
not satisfied because P (x) � 1 + 4(x2

1 + x2
2). Anyhow the approach seems useful to

get the first result in the direction we desire as we shall prove in the next § 3.

We are now in a position to give the proof of our main result.
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3. Proof of theorem 1.2

Let

Φ(x, y) = u(x) − u(y) − L|x − y|α − δ|x|2 − ε.

We claim that there exists L0(c, ||u||L∞ , ||f ||L∞) such that for every ε, δ > 0, if
L � L0 then

sup
Rn×Rn

Φ(x, y) � 0.

Indeed, arguing by contradiction, if there exist ε0 > 0 and δ0 > 0 such that for
δ � δ0, ε � ε0

sup
Rn×Rn

{u(x) − u(y) − L|x − y|α − δ|x|2 − ε} = θ > 0,

then invoking theorem of the sums, see theorem 2.4 in this paper, and denoting
φ = L|x − y|α, we get that there exist A = A(μ) and B = B(μ) such that

(Dxφ(x̂, ŷ), A + 2δI) ∈ J
2,+

u(x̂), (−Dyφ(x̂, ŷ), B) ∈ J
2,−

u(ŷ),

and the following estimate holds:[
A, 0
0, −B

]
� D2φ(x̂, ŷ) +

1
μ

(D2φ(x̂, ŷ))2.

We remark that denoting

M := αL|x − y|α−2

(
(α − 2)

x − y

|x − y| ⊗
x − y

|x − y| + I

)
,

then, keeping in mind also lemma 2.5,

M � αL|x − y|α−2I

and

M2 � α2L2|x − y|2(α−2)I.

Thus

D2φ(x̂, ŷ) +
1
μ

(D2φ(x̂, ŷ))2

=

[
M, −M

−M, M

]
+

2
μ

[
M2, −M2

−M2, M2

]

=

[
I, −I

−I, I

][
M, 0
0, M

]

+
2
μ

[
I, −I

−I, I

][
M2, 0
0, M2

]

� αL|x − y|α−2

(
1 +

αL

μ
|x − y|α−2

)[
I, −I

−I, I

]
,
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that is

≡ Lα|x − y|α−2η

[
I, −I

−I, I

]
.

Here η > 1 and η → 1 possibly taking μ larger and larger.
On the other hand, we have to adapt our inequality to the degenerate part of

our operator encoded in the coefficients of the matrix in the second order operator.
Thus from [

A, 0
0, −B

]
� Lα|x − y|α−2η

[
I, −I

−I, I

]
,

it follows that

Tr

(
[σ(x̂), σ(ŷ)]

[
A, 0
0, −B

][
σ(x̂)T

σ(ŷ)T

])

� Lα|x − y|α−2ηTr

(
[σ(x̂), σ(ŷ)]

[
I, −I

−I, I

][
σ(x̂)T

σ(ŷ)T

])
.

Performing the computation for both sides of previous inequality we get

Tr(σ(x̂)Aσ(x̂)T − σ(ŷ)Bσ(x̂)T ) = Tr(σ(x̂)T σ(x̂)A)) − Tr(σ(ŷ)Bσ(x̂)T )

� Lα|x − y|α−2ηTr(σ(x̂)σ(x̂)T − σ(x̂)σ(ŷ)T − σ(ŷ)σ(x̂)T + σ(ŷ)σ(ŷ)T )

= Lα|x − y|α−2η(σ(x̂) − σ(ŷ))(σ(x̂) − σ(ŷ))T

= Lα|x − y|α−2η(σ(x̂) − σ(ŷ))2.

(3.1)

We can now exploit some information contained in the fact that u is a viscosity
solution of the equation. Indeed recalling that θ > 0 we get

L|x̂ − ŷ|α + δc0|x|2 � u(x̂) − u(ŷ)

and

Lc0|x̂ − ŷ|α + δc0|x|2 � c0(u(x̂) − u(ŷ)) � c(x̂)(u(x̂) − u(ŷ))

= c(x̂)u(x̂) − c(ŷ)u(ŷ) + u(ŷ)(c(ŷ) − c(x̂)).

By the theorem of the sums and the definition of viscosity subsolution/supersolution
we get

Lc0|x̂ − ŷ|α + δc0|x|2 � c0(u(x̂) − u(ŷ)) � c(x̂)(u(x̂) − u(ŷ))

= c(x̂)u(x̂) − c(ŷ)u(ŷ) + u(ŷ)(c(ŷ) − c(x̂))

� F (A + 2δI, x̂) − F (B, ŷ)

+ f(ŷ) − f(x̂) + u(ŷ)(c(ŷ) − c(x̂))

= G(σ(x̂)T (A + 2δI)σ(x̂)) − G(σ(ŷ)T Bσ(ŷ))

+ f(ŷ) − f(x̂) + u(ŷ)(c(ŷ) − c(x̂)).
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Now, if σ(x̂)(A + 2δI)σ(x̂)T � σ(ŷ)Bσ(ŷ)T we conclude by the elliptic degenerate
property that

Lc0|x̂ − ŷ|α + δc0|x|2 � f(ŷ) − f(x̂) + u(ŷ)(c(ŷ) − c(x̂))

because G(σ(x̂)(A + 2δI)σ(x̂)T ) − G(σ(ŷ)Bσ(ŷ)T ) � 0.
On the contrary, if

σ(x̂)(A + 2δI)σ(x̂)T > σ(ŷ)Bσ(ŷ)T

then

Lc0|x̂ − ŷ|α + δc0|x̂|2 � ΛTr(σ(x̂)(A + 2δI)σ(x̂)T − σ(ŷ)Bσ(ŷ)T )

+ f(ŷ) − f(x̂) + u(ŷ)(c(ŷ) − c(x̂))

= ΛTr(σ(x̂)Aσ(x̂)T − σ(ŷ)Bσ(ŷ)T ) + 2ΛδTr(P (x̂))

+ f(ŷ) − f(x̂) + u(ŷ)(c(ŷ) − c(x̂))

Thus

Lc0|x̂ − ŷ|α � ΛTr(σ(x̂)Aσ(x̂)T − σ(ŷ)Bσ(ŷ)T )

+ 2δΛ|x̂|2
(

Tr(P (x̂))
|x̂|2 − c0

2Λ

)
+ f(ŷ) − f(x̂) + u(ŷ) (c(ŷ) − c(x̂))

� ΛTr(σ(x̂)Aσ(x̂)T − σ(ŷ)Bσ(ŷ)T )

+ 2δΛ|x̂|2
(

Tr(P (x̂))
|x̂|2 − c0

2Λ

)
+ Lf |ŷ − x̂|β + Lc|u|L∞ |ŷ − x̂|β′

(3.2)

If |x̂| is bounded as δ → 0, then

2δΛ|x̂|2
(

Tr(P (x̂))
|x̂|2 − c0

2Λ

)
→ 0.

If |x̂| were unbounded as δ → 0, then 2δΛ|x̂|2(Tr(P (x̂))/|x̂|2 − c0/2Λ) � 0 whenever

lim sup
|x|→∞

Tr(P (x))
|x|2 <

c0

2Λ
.

It remains to evaluate Tr(σ(x̂)Aσ(x̂)T − σ(ŷ)Bσ(ŷ)T ). Indeed by recalling
inequality (3.1) we get

Tr(σ(x̂)Aσ(x̂)T − σ(ŷ)Bσ(ŷ)T )

� ηαL|x̂ − ŷ|α−2Tr(σ(x̂) − σ(ŷ))2 � C̄ηαL|x̂ − ŷ|α−2|x̂ − ŷ|2
� CαL|x̂ − ŷ|α

(3.3)

thanks to our hypothesis on σ, where C̄ and C are bounded and independent to x̂
and ŷ.
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Summarizing, we have got that

Lc0|x̂ − ŷ|α � CαΛL|x̂ − ŷ|α + Lf |ŷ − x̂|β + Lc|u|L∞ |ŷ − x̂|β′
,

that is

c0 � CαΛ +
Lf

L
|ŷ − x̂|β−α +

Lc

L
|u|L∞ |ŷ − x̂|β′−α.

So that by taking L sufficiently large and α sufficiently small (α < c0/CΛ), we get
a contradiction. Indeed, since

L � 1
c0 − CΛα

(
Lf |ŷ − x̂|β−α + Lc|u|L∞ |ŷ − x̂|β′−α

)

� 1
c0 − CΛα

(
Lf

( |u|L∞

L

)β−α

+ Lc|u|L∞

( |u|L∞

L

)β′−α
)

so that keeping in mind that |x̂ − ŷ| � |u|L∞/L, and for instance, if β � β′, then

L1+β′−α � 1
c0 − CΛα

(
Lβ−β′

[f ]Cβ |u|β−α
L∞ + [c]Cβ′ |u|L∞ |u|β′−α

L∞

)
getting a contradiction fixing

L >

{
1

c0 − CΛα

(
[f ]Cβ |u|β−α

L∞ + [c]Cβ′ |u|1+β′−α
L∞

)}1/(1+β′−α)

.

Thus

u(x) − u(y) � L|x − y|α + δ|x|2 + ε

and letting δ and ε go to 0 we conclude that

u(x) − u(y) � L|x − y|α.

4. Conclusions and remarks

4.1. Square root matrices and rectangular matrices

In case P was a sufficiently smooth square matrix, so that σ =
√

P , we have the
required regularity of σ simply by invoking the result contained in [15] or [12] that
reduces to [22]. In that case, we deduce that

√
P is Lipschitz continuous whenever

P is C1,1. See also [20] for a different type of remark about the properties of the
square root matrices.

In case P was obtained as the product of two rectangular matrices, the proof
of the Lipschitz continuity it follows straightforwardly from the regularity of the
coefficients of σ themselves. In that case, we have to assume that σ has to be at
least Lipschitz continuous. In fact, in the case of the Heisenberg group, we start
from analytic coefficients! See for instance, the Heisenberg case discussed in the
introduction.
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4.2. A little gain

Recalling the notation used in the proof of theorem 1.2, if we know that
δ(ΛTr(P (x̂) − c0|x̂|) → 0 as δ → 0, then we could improve the result simply
requiring that

L >
[f ]Cβ + [c]Cβ′

c0 − CΛα
.

In the case of the Heisenberg group H
1, for instance, concerning the sublaplacian,

we have that the result is true if

4 � c0

2Λ
,

because Tr(P (x̂)) = 2 + 4(x2
1 + x2

2).

4.3. The Carnot groups case

More in general, in Carnot groups, it results, in the nontrivial case, that σ(x) =
σ(x′) where x′ denotes the variables that do not contain the ones that are identified
with the last stratum of the Lie algebra of the group, see for instance, remark 1.4.4,
remark 1.4.5, remark 1.4.6 in [2]. Thus:

|σ(x) − σ(y)| � C|x′ − y′|.

As a consequence, recalling the inequality (3.2) in the proof of theorem 1.2, or the
quantity (1.1) entering in the statement of the theorem 1.2, we remark that:

2δΛ|x̂|2
(

Tr(P (x̂))
|x̂|2 − c0

2Λ

)

= 2δΛ
(
Tr(P (x̂)) − c0

2Λ
|x̂|2
)

= 2δΛ
(
Tr(P (x̂′)) − c0

2Λ
|x̂|2
)

= 2δΛ
(
Tr(σ(x̂′)σ(x̂′)T ) − c0

2Λ
|x̂|2
)

� 2δΛ
(
(c + φ(|x̂′|)) − c0

2Λ
|x̂|2
)

= 2δΛc + 2Λδ|x̂|2−ε

(
φ(|x̂′|))
|x̂|2−ε

− c0

2Λ
|x̂|ε
)

,

for a suitable positive number ε.
Here φ is a polynomial function depending only on |x′| whose degree depends on

the step of the group. In general, if the step of the group is p, then the degree is
less or equal 2(p − 1).

In this case, if φ does not grow up too much the result is true without restriction
on the size of c0/2Λ. For example, if φ(r) ∼ r1+ν as r → ∞ for some ν ∈ [0, 1).
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4.4. Simple examples

It is easy to construct some examples. In very low dimension, n = 2, we are
considering:

σ =
[
1, 0

]
.

Then

σT σ =

[
1, 0
0, 0

]
,

so that for every operator like

F (D2u(x), x) := G

(
∂2u(x, y)

∂x2

)
,

where G : R → R is monotone increasing and vanishing at 0, c, f Lipschitz con-
tinuous infR2 c = c0 > 0, we deduce from theorem 1.2 that bounded uniformly
continuous functions satisfying

F (D2u(x, y), x, y) − cu = f, R
2

in a viscosity sense are Lipschitz continuous in R
2.

Let

σ =
[

x

1 + x2
, 0

]
.

Then

σT σ =

⎡
⎣ x2

(1 + x2)2
, 0

0, 0

⎤
⎦ .

so that for every operator like

F (D2u(x), x) := G

(
x2

(1 + x2)2
∂2u(x, y)

∂x2

)
,

where G : R → R is uniformly elliptic, c, f are Lipschitz continuous, infR2 c =
c0 > 0,we deduce from theorem 1.2 that bounded uniformly continuous functions
satisfying

F (D2u(x, y), x, y) − cu = f, R
2

in a viscosity sense are Lipschitz continuous in R
2. Other examples can be easily

constructed for degenerate structures without group structure. The first embrional
approach in this direction can be found in [21] for a Grushin operator.
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4.5. Limits to this approach

We are not able to improve our result assuming lower regularity on the coeffi-
cients. Indeed if in (3.3) we assume that |σ(x) − σ(y)| � C|x − y|γ , γ ∈ (0, 1] then
we conclude that

Tr(σ(x̂)Aσ(x̂)T − σ(ŷ)Bσ(ŷ)T )

� ηαL|x̂ − ŷ|α−2Tr(σ(x̂) − σ(ŷ))2 � C̄ηαL|x̂ − ŷ|α−2|x̂ − ŷ|2γ

� CαL|x̂ − ŷ|α−2+2γ

(4.1)

but in order to get a contradiction we need to ask also that α − 2 + 2γ � α and
this happens only if γ � 1.

4.6. Conclusions

It is possible to deduce the Hölder regularity of viscosity solutions without know-
ing the Harnack inequality, under the hypotheses of theorem 1.2, even for degenerate
nonlinear operators. Concerning the remark discussed in § 4.2, we cannot deduce
that for linear operators like the sublaplacian in the Heisenberg group the result
[12] applies, see also [7,8], since P (x̂) might behave like |x̂|2 and δ|x̂|2 is only
bounded by 2|u|L∞ . As a consequence, our result seems new, even in the linear
case. It is worth to say, even it is well known in literature, that considering opera-
tors in divergence form, by recalling Hörmander approach, see [9], it is possible to
prove, as it is well known, much more significative regularity results.
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