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NASH EQUILIBRIUM IN NONZERO-SUM GAMES OF
OPTIMAL STOPPING FOR BROWNIAN MOTION
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Abstract

We present solutions to nonzero-sum games of optimal stopping for Brownian motion
in [0, 1] absorbed at either 0 or 1. The approach used is based on the double partial
superharmonic characterisation of the value functions derived in Attard (2015). In
this setting the characterisation of the value functions has a transparent geometrical
interpretation of ‘pulling two ropes’ above ‘two obstacles’ which must, however, be
constrained to pass through certain regions. This is an extension of the analogous result
derived by Peskir (2009), (2012) (semiharmonic characterisation) for the value function
in zero-sum games of optimal stopping. To derive the value functions we transform the
game into a free-boundary problem. The latter is then solved by making use of the double
smooth fit principle which was also observed in Attard (2015). Martingale arguments
based on the Itô–Tanaka formula will then be used to verify that the solution to the free-
boundary problem coincides with the value functions of the game and this will establish
the Nash equilibrium.
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1. Introduction

The purpose of this work is to derive Nash equilibrium in two-player nonzero-sum games
of optimal stopping for Brownian motion in [0, 1], absorbed at either 0 and 1. For this we shall
use the results obtained in [1], in particular, the double partial superharmonic characterisation
of the value functions of the two players and the double smooth fit principle.

This probabilistic approach for studying the value functions and the corresponding Nash
equilibrium is in line with the results derived by Peskir in [14] and [15] for zero-sum games. In
the case of absorbed Brownian motion in [0,1], the results of Peskir show that the value function
in zero-sum games is equivalent to ‘pulling a rope’ between ‘two obstacles’ (semiharmonic
characterisation) which, in turn, establishes the Nash equilibrium (by ‘pulling a rope’ between
‘two obstacles’, we mean finding the shortest path between the graphs of two functions). In
nonzero-sum games, under certain assumptions on the payoff functions, we will show that
the value functions are equivalent to ‘pulling two ropes’ above ‘two obstacles’ which must,
however, be constrained to pass through certain regions. As in the case of zero-sum games this
geometric explanation of the value function will establish the Nash equilibrium.

Literature on nonzero-sum games of optimal stopping are mainly concerned with existence
of the Nash equilibrium. Initial studies in discrete time date back to Morimoto [10] wherein
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a fixed point theorem for monotone mappings was used to derive sufficient conditions for the
existence of a Nash equilibrium point. Ohtsubo [12] derived equilibrium values via backward
induction and in [13] the same author considered nonzero-sum games with the smaller gain
processes having a monotone structure and gave sufficient conditions for a Nash equilibrium
point to exist. Shmaya and Solan [18] proved that every two player nonzero-sum game in
discrete time admits an ε-equilibrium in randomised stopping times. In continuous time,
Bensoussan and Friedman [2] showed that, for diffusions, Nash equilibrium exists if there exists
a solution to a system of quasivariational inequalities. However, the regularity and uniqueness
of the solution remain open problems. Nagai [11] studied a nonzero-sum stopping game of
symmetric Markov processes. A system of quasivariational inequalities was introduced in
terms of Dirichlet forms and the existence of extremal solutions of a system of quasivariational
inequalities was discussed. The Nash equilibrium is then established from these extremal
solutions. Cattiaux and Lepeltier [3] studied right processes and they proved the existence of
a quasi-Markov Nash equilibrium point. The authors follow Nagai’s idea but use probabilistic
tools rather than the theory of Dirichlet forms. Moreover, they completed Nagai’s result (whose
construction of the extremal solutions of the quasivariational inequalities is not complete) and
extend it to nonsymmetric processes. Huang and Li in [8] proved the existence of a Nash
equilibrium point for a class of nonzero-sum noncyclic stopping games using the martingale
approach. Laraki and Solan [9] proved that every two-player nonzero-sum Dynkin game in
continuous time admits an ε-equilibrium in randomised stopping times whereas Hamadène and
Zhang in [7] proved the existence of Nash equilibrium points using the martingale approach,
for processes with positive jumps.

The structure of this paper is as follows. In Section 2 we introduce the game and review the
double partial superharmonic characterisation (DPSC) of the value functions (see [1]) when
the underlying process is assumed to be absorbed Brownian motion in [0,1]. In Section 3 we
formulate and solve an equivalent free-boundary problem for a certain class of payoff functions.
Under additional assumptions on the payoff functions we then show that the solution is also
unique. In Section 4 we use martingale arguments based on Itô–Tanaka formula to verify
that the solution to the free-boundary problem coincides with the value functions of the game.
Finally, in Section 5, we explain how these results can be extended to one-dimensional absorbed
regular diffusions.

2. The DPSC of the value functions

Let X be Brownian motion in [0, 1], started at x ∈ [0, 1] and absorbed at either 0 or 1 and
let Gi,Hi : [0, 1] → R for i = 1, 2 be C2 functions such that Gi ≤ Hi . Assume also that
Gi(0) = Hi(0) and Gi(1) = Hi(1). Consider the nonzero-sum game of optimal stopping in
which player one wants to choose a stopping time τ∗ and player two a stopping time σ∗ such
that their total average gains, which are respectively given by

M1
x (τ, σ ) = Ex[G1(Xτ )1(τ ≤ σ)+H1(Xσ )1(σ < τ)],

M2
x (τ, σ ) = Ex[G2(Xσ )1(σ < τ)+H2(Xτ )1(τ ≤ σ)]

are maximized. For a given strategy σ chosen by player two, we shall define the value function
of player one by

V 1
σ (x) = sup

τ
M1
x (τ, σ ). (1)
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Similarly, for a given strategy τ chosen by player one, we shall define the value function of
player two by

V 2
τ (x) = sup

σ
M2
x (τ, σ ). (2)

In this context, a saddle point of stopping times is characterized via Nash equilibrium. For-
mally, a pair of stopping times (τ∗, σ∗) is a saddle point if M1

x (τ, σ∗) ≤ M1
x (τ∗, σ∗) and

M2
x (τ∗, σ ) ≤ M2

x (τ∗, σ∗) for all stopping times τ and σ and for all x ∈ [0, 1].
Under the mentioned assumptions onGi andHi , for i = 1, 2, the result on the DPSC of the

value functions of player one and player two with the underlying process X introduced above
becomes applicable (see [1]). It is well known that superharmonic/subharmonic functions ofX
are equivalent to concave/convex functions and that continuity in the fine topology is equivalent
to continuity in the familiar Euclidean topology. Thus, in this setting, the DPSC of the value
functions can be explained rigorously as finding two continuous functions u and v such that

u = inf
F∈sup1

v(G1,K1)
F and v = inf

F∈sup2
u(G2,K2)

F,

where

sup1
v(G1,K1) = {F : [0, 1] → [G1,K1] : F is continuous, F = H1 in D2,

F is concave in Dc2},
sup2

u(G2,K2) = {F : [0, 1] → [G2,K2] : F is continuous, F = H2 in D1,

F is concave in Dc1}
with D1 = {u = G1}, D2 = {v = G2}, and Ki , for i = 1, 2, is the smallest concave function
majorizing Hi . Indeed, if the boundaries ∂D1 and ∂D2 of D1 and D2 are regular for their
respective sets then the functions u and v solve the optimal stopping game, that is,

u(x) = V 1
σ∗(x) = sup

τ
M1
x (τ, σ∗) and v(x) = V 2

τ∗(x) = sup
σ
M2
x (τ∗, σ ),

where τ∗ = inf{t ≥ 0 : Xt ∈ D1} and σ∗ = inf{t ≥ 0 : Xt ∈ D2}.
We initiate this study by showing that if D1 = [m, n] ∪ {0, 1} and D2 = [r, l] ∪ {0, 1},

where 0 ≤ m ≤ n ≤ 1 and 0 ≤ r ≤ l ≤ 1, then the functions u and v are contained in the sets
sup1

v(G1,K1) and sup2
u(G2,K2), respectively. We will prove this claim for u as the result for v

follows by symmetry. Clearly, we have u(x) = H1(x) for all x ∈ D2 and that u is bounded
above by K1. By the definition of the infimum, we also have u(x) ≥ G1(x) for all x ∈ [0, 1].
Since the infimum of concave functions is concave, it follows that u is concave in Dc2 and so u
is continuous in int(Dc2), the interior of Dc2 (recall that concave functions defined on open sets
are continuous). Continuity of u inD2 follows from the continuity ofH1. So it remains to show
that u is continuous at the boundary ofD2. To prove this we shall follow the line of thought of
Ekström and Villeneuve in [5] and prove that u is lower semicontinuous at l (note that upper
semicontinuity of u holds from the fact that u is the infimum of continuous functions). For this
we shall assume, without loss of generality, that r < l < 1. So suppose for contradiction that u
is not right-lower-semicontinuous at l (note that u is left-continuous at l by continuity of H1).
This means that there exists ε̂ > 0 such that limx↓l u(x) < u(l) − ε̂. For given δ > 0, let L
be the line segment joining the points (l, u(l) − ε̂) and (l + δ, u(l + δ)). By the continuity
of L, it follows that there exists y ∈ (l, l + δ) such that L(y) > u(y). By the definition of u,
this means that there exists F ∈ sup1

v(G1,K1) such that F(y) < L(y). Since F is continuous
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in [0, 1] and concave in (l, l + δ), we have

F(l)

(
l + δ − y

δ

)
+ L(l + δ)

(
y − l

δ

)
= F(l)

(
l + δ − y

δ

)
+ u(l + δ)

(
y − l

δ

)
≤ F(l)

(
l + δ − y

δ

)
+ F(l + δ)

(
y − l

δ

)
≤ F(y)

< L(y)

= (u(l)− ε̂)

(
l + δ − y

δ

)
+ L(l + δ)

(
y − l

δ

)
.

This implies thatF(l) < u(l)− ε̂, which contradicts the fact thatF ≥ u. Thus, u is right-lower-
semicontinuous at l. Continuity of u at 0 can be proved as above by replacing l with 0. To show
that u is continuous at r and 1, we can follow the steps above and prove, by contradiction, that u
is left-lower-semicontinuous at these points. Note that (when r < l) u is right-continuous at r
by the continuity of H1.

3. Free-boundary problem

In this section we shall formulate a free-boundary problem by making use of the DPSC of the
value functions. For this we will assume that there exist thresholds a, b with 0 ≤ a < b ≤ 1,
such that

G′′
1(x) < 0 for x ∈ [0, a), G′′

1(x) = 0 for x = a, (3)

G′′
1(x) > 0 for x ∈ (a, 1], G′′

2(x) > 0 for x ∈ [0, b), (4)

G′′
2(x) = 0 for x = b, G′′

2(x) < 0 for x ∈ (b, 1]. (5)

In this setting, the DPSC of the value functions can be explained geometrically as follows.
Suppose that two ropes are pulled above two obstacles G1 and G2 with their endpoints pulled
to the ground. Let D′

1 be the region where the first rope touches the first obstacle and let D′
2

be the region where the second rope touches the second obstacle. Then on D′
2 the first rope is

constrained to pass through a certain region (this region corresponds to the value ofH1 onD′
2)

and so creates a (new) contact region with its obstacleG1, sayD′′
1 . Similarly, onD′

1 the second
rope is also constrained to pass through a certain region (as specified by the value ofH2 onD′

1)
and, thus, creates a (new) contact region with its obstacleG2, sayD′′

2 . All points of contact are
then altered until both ropes touch their respective obstacles smoothly (it may also happen that
the new regions coincide with the boundary points 0 and 1 in which case smoothness might
break down). However, this must be done in such a way that the point of contact of the first
rope with its obstacle G1 must coincide with the point of contact of the second rope with H2
and vice versa. With this intuitive explanation, we will search for a saddle point (τ∗, σ∗) of
optimal stopping times of the form

τ∗ = inf{t ≥ 0 : Xt ≤ A∗} ∧ ρ0,1, σ∗ = inf{t ≥ 0 : Xt ≥ B∗} ∧ ρ0,1,

where 0 ≤ A∗ < B∗ ≤ 1 are optimal stopping boundaries that need to be determined and
ρ0,1 = inf{t ≥ 0 : Xt ∈ {0, 1}}. Prior to formulating the free-boundary problem, we note that
if there exists such optimal stopping boundaries then we must haveA∗ ≤ a andB∗ ≥ b. This is
a consequence of the DPSC of the value functions (which requires the value function of player
one to be concave in (0, B∗) and that of player two to be concave in (A∗, 1)).
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We are now in a position to formulate the free-boundary problem for unknown points 0 ≤
A∗ ≤ a < b ≤ B∗ ≤ 1 and unknown functions u, v : [0, 1] → R, that is

u′′(x) = 0 and v′′(x) = 0 for x ∈ (A∗, B∗), (6)

u(A∗) = G1(A∗) and v(B∗) = G2(B∗), (7)

u(B∗) = H1(B∗) and v(A∗) = H2(A∗), (8)

u(x) = G1(x) for x ∈ [0, A∗) and v(x) = G2(x) for x ∈ (B∗, 1], (9)

u(x) > G1(x) and v(x) > G2(x) for x ∈ (A∗, B∗), (10)

u(x) = H1(x) for x ∈ (B∗, 1], (11)

v(x) = H2(x) for x ∈ [0, A∗). (12)

By means of straightforward calculations one can show that the solution of system (6)–(8) takes
the form

u(x) = H1(B∗)−G1(A∗)
B∗ − A∗

x +G1(A∗)− (H1(B∗)−G1(A∗))A∗
B∗ − A∗

, (13)

v(x) = H2(A∗)−G2(B∗)
A∗ − B∗

x +G2(B∗)− (H2(A∗)−G2(B∗))B∗
A∗ − B∗

(14)

for all x ∈ (A∗, B∗). In certain cases (which shall be specified below) the double smooth fit
principle (see [1]) will also be satisfied, that is

u′(A∗) = G′
1(A∗) and v′(B∗) = G′

2(B∗). (15)

If (13)–(15) hold, it follows that the optimal boundary points A∗ and B∗ must solve the system
of nonlinear equations

G′
1(A∗)(B∗ − A∗)−H1(B∗)+G1(A∗) = 0, (16)

G′
2(B∗)(A∗ − B∗)−H2(A∗)+G2(B∗) = 0. (17)

For givenA,B ∈ [0, 1], let us denote the left-hand side expressions in (16) and (17) by�(A,B)
and 	(A,B), respectively. Note that since Gi and Hi for i = 1, 2 are C2 functions, � and 	
are C1 functions on [0, 1] × [0, 1]. Now since the process will be stopped when it reaches the
absorption points 0 and 1, we will see that there can also be cases in which the double smooth
fit principle breaks down because A∗ and/or B∗ coincide with 0 and 1, respectively. More
precisely, we can obtain the following cases.

Case A. The double smooth fit principle breaks down at A∗ = 0 and we will only have
smoothness at B∗, that is u′(A∗) > G′

1(A∗) and v′(B∗) = G′
2(B∗). From (13) and (14), this

implies that
�(A∗, B∗) < 0 and 	(A∗, B∗) = 0. (18)

Case B. The double smooth fit principle breaks down at B∗ = 1 and we will only have
smoothness at A∗, that is u′(A∗) = G′

1(A∗) and v′(B∗) < G′
2(B∗). From (13) and (14), this

implies that
�(A∗, B∗) = 0 and 	(A∗, B∗) < 0. (19)

Case C. The smooth fit breaks down at A∗ = 0 and B∗ = 1 and u′(A∗) > G′
1(A∗) and

v′(B∗) < G′
2(B∗). From (13) and (14), this implies that

�(A∗, B∗) < 0 and 	(A∗, B∗) < 0. (20)
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The link between the value functions of the game and the functions u and v in the free-
boundary problem (6)–(12), where A∗ and B∗ are determined either from (16) and (17) or
from one of the conditions in (18)–(20) will be provided in the verification results in Section 4,
together with the corresponding optimal pair (τ∗, σ∗).

We are now in a position to show the existence of the free-boundaries 0 ≤ A∗ < a < b <

B∗ ≤ 1. For this we shall need the following elementary result from convex analysis (see, for
example, [17]) and another preliminary result.

Proposition 1. Let I = [c, d] for some points −∞ < c < d < ∞ and suppose that
f : [c, d] → R is a differentiable strictly convex (respectively, strictly concave) function. Then

f (x)(> [<])f (x̄)+ f ′(x̄)(x − x̄) for c ≤ x̄ < x ≤ d.

Lemma 1. (i) Let B ∈ [b, 1] be given and fixed. Then �(A,B) < 0 for all A ∈ [a, 1] such
that A �= B. Similarly, if A ∈ [0, a] is given and fixed then 	(A,B) < 0 for all B ∈ [0, b]
such that B �= A.

(ii) Let B ∈ [b, 1] be given and fixed. If there exists A�,B∗ ∈ [0, a) such that �(A�,B∗ , B) = 0
then A�,B∗ is unique. Similarly, let A ∈ [0, a] be given and fixed. If there exists B	,A∗ ∈ (b, 1]
such that 	(A,B	,A∗ ) = 0 then B	,A∗ is unique.

(iii) Suppose that, for each B ∈ [b1, b2], where b ≤ b1 < b2 ≤ 1, there exists a unique
A
�,B∗ ∈ [0, a) such that �(A�,B∗ , B) = 0. Then there exists a unique continuously differen-

tiable function φ : [b1, b2] → [0, a) such that�(φ(B), B) = 0 for all B ∈ [b1, b2]. Similarly,
suppose that, for eachA ∈ [a1, a2], where 0 ≤ a1 < a2 ≤ a, there exists a uniqueB	,A∗ ∈ (b, 1]
such that 	(B	,A∗ , A) = 0. Then there exists a unique continuously differentiable function
ψ : [a1, a2] → (b, 1] such that 	(A,ψ(A)) = 0 for all A ∈ [a1, a2].

Proof. (i) Since G1 is strictly convex in [a, 1], we have

�(A,B) ≤ G′
1(A)(B − A)−G1(B)+G1(A) < 0.

The first inequality follows from the fact thatG1 ≤ H1, whereas the second inequality follows
from Proposition 1. The result for 	 follows by symmetry.

(ii) This follows from the fact that for each B ∈ [b, 1], �A(A,B) = G′′
1(A)(B − A) < 0 for

all A ∈ [0, a) (recall that G′′
1 < 0 in [0, a)) and so the mapping A 
→ �(A,B) is strictly

decreasing in [0, a). The result for 	 follows by symmetry.

(iii) The existence and uniqueness of φ and ψ follows from the implicit function theorem upon
noting that for a given B ∈ [b1, b2],�A(A,B) �= 0 for all A ∈ [0, a) and similarly for a given
A ∈ [a1, a2], 	B(A,B) �= 0 for all B ∈ (b, 1]. �

To determine A∗ and B∗ we shall first consider the case when there exists a unique (see
Lemma 1(ii)) A�,1∗ ∈ [0, a) such that �(A�,1∗ , 1) = 0 and a B�,0∗ ∈ [b, 1] such that �(0,
B
�,0∗ ) = 0. The proof will be divided in two steps (see 1◦ and 2◦ below). To this end let us

introduce the following notation.

(I) If there exists at least one A	,1∗ ∈ [0, a] such that 	(A	,1∗ , 1) = 0, we will set

a
	,1
min = min{A	,1∗ : 	(A	,1∗ , 1) = 0}. (21)
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Moreover, we will assign

ã	,1 = max{A	,1∗ : A	,1∗ ≤ A�,1∗ } and â	,1 = min{A	,1∗ : A	,1∗ ≥ A�,1∗ }
whenever the sets {A	,1∗ : A	,1∗ ≤ A

�,1∗ } and {A	,1∗ : A	,1∗ ≥ A
�,1∗ } are nonempty. If,

on the other hand, {A	,1∗ : A	,1∗ ≤ A
�,1∗ } = ∅ we will assign ã	,1 = 0, whereas if

{A	,1∗ : A	,1∗ ≥ A
�,1∗ } = ∅ we shall set â	,1 = a.

(II) We shall assign
b�,0max = max{B�,0∗ : �(0, B�,0∗ ) = 0}. (22)

If, in addition, there exists a unique (see Lemma 1(ii)) B	,0∗ ∈ (b, 1] such that 	(0,
B
	,0∗ ) = 0, we set

b̃�,0 = max{B�,0∗ : B�,0∗ ≤ B	,0∗ } and b̂�,0 = min{B�,0∗ : B�,0∗ ≥ B	,0∗ },
whenever the sets {B�,0∗ : B�,0∗ ≤ B

	,0∗ } and {B�,0∗ : B�,0∗ ≥ B
	,0∗ } are nonempty. In the

case when {B�,0∗ : B�,0∗ ≤ B
	,0∗ } = ∅ we assign b̃�,0 = b, whereas if {B�,0∗ : B�,0∗ ≥

B
	,0∗ } = ∅ we set b̂�,0 = 1.

Step 1◦. Assume that there exists a unique B	,0∗ ∈ (b, 1] such that 	(0, B	,0∗ ) = 0. If
�(0, B	,0∗ ) = 0 then A∗ = 0 and B∗ = B

	,0∗ solve (16) and (17). If, on the other hand,
�(0, B	,0∗ ) < 0 thenA∗ = 0 andB∗ = B

	,0∗ satisfy (18). Finally, suppose that�(0, B	,0∗ ) > 0
and let b̃�,0 and b̂�,0 be defined as in (II) above. Then, by the definition of b̃�,0 and b̂�,0, we
either have B	,0∗ ∈ (b̃�,0, b̂�,0) and�(0, B) > 0 for all B ∈ (b̃�,0, b̂�,0) or B	,0∗ = b̂�,0 = 1
and �(0, B	,0∗ ) > 0 (note that B	,0∗ �= b since 	(0, b) < 0). Suppose first that B	,0∗ ∈
(b̃�,0, b̂�,0). From Lemma 1(iii), we see that there exists a unique continuously differentiable
function φ : [b̃�,0, b̂�,0] → [0, a) such that �(φ(B), B) = 0 for all B ∈ [b̃�,0, b̂�,0]. Now
recall, from the proof of Lemma 1(ii), that the mapping B 
→ 	(0, B) is strictly increasing in
(b, 1]. From this together with the fact that 	(0, B) < 0 for all B ∈ (0, b] (see Lemma 1(i)),
we see that 	(0, B) > 0 for all B ∈ (B	,0∗ , 1].

(i) Suppose that 	(A, 1) > 0 for all A ∈ [0, a]. Again from Lemma 1, we have the
existence of a unique continuously differentiable function ψ : [0, a] → (b, 1] such that
	(A,ψ(A)) = 0 for all A ∈ [0, a]. Since B	,0∗ ∈ (b̃�,0, b̂�,0), it follows that the sets
{(φ(B), B) : B ∈ (b̃�,0, b̂�,0)} and {(A,ψ(A)) : A ∈ (0, a)} must intersect so there
exists (A∗, B∗) ∈ (0, a)× (b̃�,0, b̂�,0) solving (16) and (17).

(ii) Suppose that there exists at least one A	,1∗ ∈ [0, a] such that 	(A	,1∗ , 1) = 0. Let
a
	,1
min be defined as in (21). Since 	(0, 1) > 0 we have a	,1min > 0 and 	(A, 1) > 0

for all A ∈ (0, a	,1min). Again, by using Lemma 1, we see that there exists a unique
continuously differentiable function ψ : [0, a	,1min] → (b, 1] such that 	(A,ψ(A)) = 0

for all A ∈ [0, a	,1min]. If either b̂�,0 < 1, or b̂�,0 = 1 and �(0, b̂�,0) = 0, the sets

{(φ(B), B) : B ∈ (b̃�,0, b̂�,0)} and {(A,ψ(A)) : A ∈ (0, a	,1min]} intersect and, hence, we

conclude that there exists (A∗, B∗) ∈ (0, a	,1min]×(b̃�,0, b̂�,0) solving (16) and (17). Now
suppose that b̂�,0 = 1 and�(0, b̂�,0) > 0 (note that�(0, b̂�,0) cannot be negative under
the assumption that �(A�,1∗ , 1) = 0). If a	,1min ≥ A

�,1∗ then the sets {(φ(B), B) : B ∈
(b̃�,0, b̂�,0)} and {(A,ψ(A)) : A ∈ (0, a	,1min]} intersect and so there exists (A∗, B∗) ∈
(0, a	,1min] × (b̃�,0, b̂�,0) solving (16) and (17). When a	,1min < A

�,1∗ we shall consider

three cases. If 	(A�,1∗ , 1) < 0 then A∗ = A
�,1∗ and B∗ = 1 satisfy (19). If, on the other
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hand, 	(A�,1∗ , 1) = 0 then the A∗ = A
�,1∗ and B∗ = 1 solve (16) and (17). Finally,

suppose that	(A�,1∗ , 1) > 0 and let ã	,1 and â	,1 be defined as in (II) above. Then, from
Lemma 1, there exists a unique continuously differentiable function ψ : [ã	,1, â	,1] →
(b, 1] such that 	(A,ψ(A)) = 0 for all A ∈ [ã	,1, â	,1]. Since A�,1∗ ∈ (ã	,1, â	,1), it
follows that the sets {(φ(B), B) : B ∈ (b̃�,0, b̂�,0)} and {(A,ψ(A)) : A ∈ (ã	,1, â	,1)}
intersect and, hence, we conclude that there exists (A∗, B∗) ∈ (ã	,1, â	,1)×(b̃�,0, b̂�,0)
solving (16) and (17).

It remains to consider the caseB	,0∗ = b̂�,0 = 1 and�(0, B	,0∗ ) > 0. From Lemma 1 we obtain
the existence and uniqueness of a continuously differentiable function φ : [b̃�,0, 1] → [0, a)
such that �(φ(B), B) = 0 for all B ∈ [b̃�,0, 1]. Now suppose that 	(A�,1∗ , 1) < 0. Then
A∗ = A

�,1∗ and B∗ = 1 solve (19). If, on the other hand, 	(A�,1∗ , 1) = 0 then A∗ = A
�,1∗ and

B∗ = 1 solve (16) and (17). Finally, if 	(A�,1∗ , 1) > 0 then by Lemma 1 there exists a unique
continuously differentiable functionψ : [ã	,1, â	,1] → (b, 1] such that	(A,ψ(A)) = 0 for all
A ∈ [ã	,1, â	,1] and the sets {(φ(B), B) : B ∈ (b̃�,0, 1)} and {(A,ψ(A)) : A ∈ (ã	,1, â	,1)}
intersect. From this we conclude that there exists (A∗, B∗) ∈ (b̃�,1, 1)×(ã	,1, â	,1) satisfying
(16) and (17).

Step 2◦. Let us now assume that 	(0, B) < 0 for all B ∈ [b, 1]. If there exists no
A
	,1∗ ∈ [0, a] such that 	(A	,1∗ , 1) = 0 then 	(A,B) < 0 in [0, a] × [b, 1] (see Lemma 1(i)).

In this case, A∗ = A
�,1∗ and B∗ = 1 satisfy (19). Suppose, on the other hand, that there exists

such a A	,1∗ . If 	(A�,1∗ , 1) = 0 then A∗ = A
�,1∗ and B∗ = 1 solve (16) and (17), whereas

if 	(A�,1∗ , 1) < 0 then A∗ = A
�,1∗ and B∗ = 1 satisfy (19). Finally, if 	(A�,1∗ , 1) > 0

then there exists a unique continuously differentiable function ψ : [ã	,1, â	,1] → (b, 1] such
that 	(A,ψ(A)) = 0 for all A ∈ [ã	,1, â	,1]. Let us define b�,0max as in (22). Again, by using
Lemma 1, we see that there exists a unique continuously differentiable function φ : [b�,0max, 1] →
[0, a) such that �(φ(B), B) = 0 for all B ∈ [b�,0max, 1]. The fact that A�,1∗ ∈ (ã	,1, â	,1)

implies that the sets {(φ(B), B) : B ∈ (b�,0max, 1)} and {(A,ψ(A)) : A ∈ (ã	,1, â	,1)} intersect
and, hence, we conclude that there exists (A∗, B∗) ∈ (ã	,1, â	,1)× (b

�,0
max, 1) solving (16) and

(17).
We now consider the case�(A, 1) < 0 for allA ∈ [0, a) and when there existsB�,0∗ ∈ [b, 1]

such that�(0, B�,0∗ ) = 0. The free boundariesA∗ andB∗ can be obtained by repeating steps 1◦
and 2◦ above. Note, however, that when considering the case �(0, B	,0∗ ) > 0, we must have
b̂�,0 < 1 (since �(0, 1) < 0).

We next consider the case�(A,B) < 0 in [0, a] × [b, 1]. If there exists B	,0∗ ∈ (b, 1] such
that 	(0, B	,0∗ ) = 0, we see that A∗ = 0 and B∗ = B

	,0∗ satisfy (18). If, on the other hand,
	(0, B) < 0 for all B ∈ [b, 1] then A∗ = 0 and B∗ = 1 satisfy (20).

It remains to consider the case when there existsA�,1∗ ∈ [0, a) such that�(A�,1∗ , 1) = 0 and
when �(0, B) > 0 for all B ∈ [b, 1). By Lemma 1(iii) we see that there exists φ : [b, 1] →
[0, a) such that �(φ(B), B) = 0 for all B ∈ [b, 1]. If 	(A�,1∗ , 1) = 0 then A∗ = A

�,1∗
and B∗ = 1 solve (16) and (17). If, on the other hand, 	(A�,1∗ , 1) < 0 then A∗ = A

�,1∗
and B∗ = 1 solve (19). Finally, suppose that 	(A�,1∗ , 1) > 0. Then we must have either
A
�,1∗ ∈ (ã	,1, â	,1) and 	(A, 1) > 0 for all A ∈ (ã	,1, â	,1) (note that A�,1∗ �= a since

�(a, 1) < 0) or A�,1∗ = ã	,1 = 0 and 	(A�,1∗ , 1) > 0. In the first case, by Lemma 1(iii),
we see that there exists ψ : [ã	,1, â	,1] → (b, 1] such that 	(A,ψ(A)) = 0 for all A ∈
[ã	,1, â	,1]. The fact thatA�,1∗ ∈ (ã	,1, â	,1) implies that the sets {(φ(B), B) : B ∈ (b, 1]} and
{(A,ψ(A)) : A ∈ (ã	,1, â	,1)} intersect and so there exists A∗ ∈ (ã	,1, â	,1) and B∗ ∈ (b, 1]
which solve (16) and (17). In the second case, again by Lemma 1(iii), we see that there exists
ψ : [0, â	,1] → (b, 1] such that 	(A,ψ(A)) = 0 for all A ∈ [0, â	,1]. This implies that the
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sets {(φ(B), B) : B ∈ (b, 1)} and {(A,ψ(A)) : A ∈ (0, â	,1)} intersect and so there exists
A∗ ∈ (0, â	,1) and B∗ ∈ (b, 1), which solve (16) and (17).

3.1. Uniqueness of solution to the free-boundary problem

We now consider some special cases in which there exists a unique solution to the system
of equations (16) and (17). In particular, we shall consider the case when there exist unique
continuously differentiable functions φ : [b, 1] → [0, a) and ψ : [0, a] → (b, 1] such that
�(φ(B), B) = 0 for all B ∈ [b, 1] and 	(A,ψ(A)) = 0 for all A ∈ [0, a], and for which the
sets {(φ(B), B) : B ∈ (b, 1]} and {(A,ψ(A)) : A ∈ [0, a)} intersect. Let A� denote the range
of the function φ. By continuity of φ, it follows that A� is a closed interval in [0, a). Similarly,
if we set A	 to be the range of the function ψ then by continuity of ψ it follows that A	 is a
closed interval in (b, 1].
Proposition 2. Suppose that

(i) H ′
1(B) > G′

1(A) and H ′
2(A) > G′

2(B) for all (A,B) ∈ A� × A	 ,

(ii) H ′
1(B) < G′

1(A) and H ′
2(A) < G′

2(B) for all (A,B) ∈ A� × A	 .

Then the solution to (16) and (17) is unique.

Proof. We shall only prove (i) as the result for (ii) follows analogously. For this we
note that, for any A ∈ A� given and fixed, �B(A,B) < 0 for all B ∈ A	 and so the
mapping B 
→ �(A,B) is decreasing in A	 . Similarly, for B ∈ A	 given and fixed,
	A(A,B) < 0 for all A ∈ A� and so the mapping A 
→ 	(A,B) is decreasing in A�.
Suppose, for contradiction, that there exist two pairs (A1∗, B1∗) and (A2∗, B2∗) in A� × A	 ,
such that (A1∗, B1∗) �= (A2∗, B2∗), which solve (16) and (17). Suppose first that A1∗ < A2∗. If
B1∗ ≤ B2∗ we have 0 = �(A1∗, B1∗) > �(A2∗, B1∗) ≥ �(A2∗, B2∗) = 0, where the first inequality
follows from the fact that forB ∈ [b, 1] the mappingA 
→ �(A,B) is decreasing in [0, a) (see
Lemma 1(i)). So we must have B1∗ > B2∗ whenever A1∗ < A2∗. But if this is the case, we obtain
0 = 	(A1∗, B1∗) > 	(A2∗, B1∗) > 	(A2∗, B2∗) = 0. The second inequality follows from the fact
that the mapping B 
→ 	(A,B) is increasing for any givenA ∈ [0, a] (see Lemma 1(i)). From
this it follows that A1∗ ≥ A2∗. By symmetry one can see that this case is not possible either and
so uniqueness of A∗ and B∗ follows. �
Proposition 3. Suppose thatH ′

1(B) > G′
1(A)andH ′

2(A) < G′
2(B) for all (A,B) ∈ A�×A	 .

Then, ifG′′
1 is increasing in A�,G′′

2 is decreasing in A	 ,H1 is concave in A	 andH2 is concave
in A�, the system of equations (16) and (17) is unique.

Prior to proving Proposition 3 we need the following simple fact from convex analysis.

Lemma 2. Let f, g be differentiable functions on some closed interval [l, m]. Suppose that
there existsA ∈ [l, m) such that f (A) = g(A). If f is convex, g is concave, and f (m) < g(m),
then there exists no other point B ∈ [l, m) such that f (B) = g(B).

Proof. We first show that f (B) < g(B) for any B ∈ (A,m). For this consider the lines
L1(x) joining the points (A, g(A)) and (m, g(m)), and L2(x) joining the points (A, f (A)) and
(m, f (m)). By concavity of g and convexity of f , we have g(B) ≥ L1(B) > L2(B) ≥ f (B).
We next show that f (B) > g(B) for any B ∈ [l, A). For this we note, by convexity of f and
concavity of g (recall Proposition 1), that

f ′(A) ≤ f (m)− f (A)

m− A
<
g(m)− g(A)

m− A
≤ g′(A). (23)
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Again by convexity of f , concavity of g, and Proposition 1, we have

f (B) ≥ f (A)+ f ′(A)(B − A)

= g(A)+ f ′(A)(B − A)

≥ g(B)− g′(A)(B − A)+ f ′(A)(B − A)

= g(B)+ (f ′(A)− g′(A))(B − A)

> g(B) for all B ∈ [l, A),
where the last inequality follows from (23). �

Proof of Proposition 3. Since the functions φ and ψ are continuously differentiable we can
take the partial derivatives on both sides of the equations�(φ(B), B) = 0 and	(A,ψ(A)) = 0
and rearranging terms to obtain

φ′(B) = −�B(φ(B), B)
�A(φ(B), B)

= − G′
1(φ(B))−H ′

1(B)

G′′
1(φ(B))(B − φ(B))

< 0,

ψ ′(A) = −	A(A,ψ(A))
	B(A,ψ(A))

= − G′
2(ψ(A))−H ′

2(A)

G′′
2(ψ(A))(A− ψ(A))

< 0.

The inequalities follow from the concavity properties of G1 and G2 and from the fact that
G′

1(φ(B)) < H ′
1(B) and G′

2(ψ(A)) > H ′
2(A). From this we conclude that φ and ψ are

decreasing on A	 and A�, respectively. Take any B1, B2 ∈ A	 such that B1 < B2. From the
monotonicity property of φ together with the facts thatG′′

1 < 0 and is monotonic increasing on
A�, and that B1 − φ(B1) < B2 − φ(B2), we have

− 1

G′′
1(φ(B1))(B1 − φ(B1))

> − 1

G′′
1(φ(B2))(B2 − φ(B2))

> 0. (24)

Using again the concavity property of G1 on A� and that of H1 on A	 , we obtain

G′
1(φ(B1))−H ′

1(B1) < G′
1(φ(B2))−H ′

1(B2) < 0, (25)

where the last inequality follows by recalling thatG′
1(A) < H ′

1(B) for all (A,B) ∈ A�×A	 .
Combining (24) and (25), we see that

φ′(B1) = − G′
1(φ(B1))−H ′

1(B1)

G′′
1(φ(B1))(B1 − φ(B1))

< − G′
1(φ(B2))−H ′

1(B2)

G′′
1(φ(B2))(B2 − φ(B2))

= φ′(B2),

from which the strict convexity property of φ on A	 follows. Analogously, one can show thatψ
is strictly concave on A	 . Since φ is continuously differentiable and φ′ < 0 in [b, 1], it follows
that the inverse functionφ−1 : A� → [b, 1] is a decreasing continuously differentiable function.
Moreover, using the fact that the inverse of convex decreasing functions is also convex we deduce
that φ−1 is convex on A�. Since A� is a closed interval, we can use Lemma 2 to deduce that
the functions φ−1 and ψ intersect only once on A� and so we can conclude that there exists
only one point (A∗, B∗) ∈ A� × A	 which solves the system of equations (16) and (17). �

4. Verification theorem

We initiate this section by showing that if there exist 0 ≤ A∗ < a < b < B∗ ≤ 1 solving
(16) and (17) then the functions u and v in the free-boundary problem (6)–(12) coincide with
the value functions of the nonzero-sum game (1) and (2).
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Theorem 1. LetX be Brownian motion in [0, 1], started at x ∈ [0, 1] and absorbed at either 0
or 1. Suppose that Gi,Hi , for i = 1, 2, are C2 functions on [0, 1] such that Gi ≤ Hi . Assume
also thatGi(0) = Hi(0), thatGi(1) = Hi(1), and thatGi satisfy assumptions (3)–(5). If there
exist A∗ ∈ [0, a) and B∗ ∈ (b, 1], which solve (16) and (17) then the functions

u(x) =

⎧⎪⎨⎪⎩
G1(x) if 0 ≤ x ≤ A∗,
u∗(x;A∗, B∗) if A∗ < x < B∗,
H1(x) if B∗ ≤ x ≤ 1,

v(x) =

⎧⎪⎨⎪⎩
H2(x) if 0 ≤ x ≤ A∗,
v∗(x;A∗, B∗) if A∗ < x < B∗,
G2(x) if B∗ ≤ x ≤ 1,

where u∗(x;A∗, B∗) takes the form (13) and v∗(x;A∗, B∗) is given by (14), coincide with the
value functions V 1

σ∗(x) = supτ M
1
x (τ, σ∗) and V 2

τ∗(x) = supσ M
2
x (τ∗, σ ), respectively, where

τ∗ = inf{t ≥ 0 : Xt ≤ A∗} ∧ ρ0,1 and σ∗ = inf{t ≥ 0 : Xt ≥ B∗} ∧ ρ0,1.

Proof. We first show that V 1
σ∗(x) ≤ u(x) for all x ∈ [0, 1]. Since G1, H1 and u∗ are

C1 functions on [0, 1], it follows that u is absolutely continuous on [0, 1] and that u′ (which
exists almost everywhere) is of bounded variation. But this implies that u can be written as
the difference of two convex functions. So we can apply the Itô–Tanaka formula (see [19]) to
u(Xt ) to obtain

u(Xt ) = u(x)+
∫ t

0
u′−(Xs) dXs + 1

2

∫ 1

0
lxt du′(x)

= u(x)+
∫ t

0
u′−(Xs) dXs + 1

2

∫ 1

0
lxt u

′′(x)1(x �= A∗, x �= B∗) dx

+ 1

2

∫ 1

0
lxt 1(x = A∗) du′(x)+ 1

2

∫ 1

0
lxt 1(x = B∗) du′(x)

= u(x)+Mt + 1

2

∫ t

0
[G′′

1(Xs)1(0 ≤ Xs < A∗)+ 01(A∗ < Xs < B∗)

+H ′′
1 (Xs)1(B∗ < Xs ≤ 1)]1(Xs �= A∗, Xs �= B∗) ds

+ 1

2
l
B∗
t (u

′+(B∗)− u′−(B∗))

= u(x)+Mt + 1

2

∫ t

0
[G′′

1(Xs)1(0 ≤ Xs < A∗)

+ 01(A∗ < Xs < B∗)+H ′′
1 (Xs)1(B∗ < Xs ≤ 1)] ds

+ 1

2
l
B∗
t (H

′
1(B∗)−G′

1(A∗)), (26)

where (lB∗
t )t≥0 is the local time of X at the point B∗, defined by

l
B∗
t = Px − lim

1

ε

∫ t

0
1(B∗ < Xs < B∗ + ε) ds

and (Mt)t≥0 is a local martingale, given by
∫ t

0 u
′−(Xs) dXs . The third equality follows from

the occupation time space formula (see [6]) together with the definition of u and the fact that u
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is smooth at A∗. The last equality follows again from the definition of u. Since σ∗ = inf{t ≥
0 : Xt ≥ B∗} ∧ ρ0,1, we have

G1(Xt )1(t ≤ σ∗)+H1(Xσ∗)1(σ∗ < t) ≤ u(Xt )1(t ≤ σ∗)+H1(Xσ∗)1(σ∗ < t)

= u(Xt )1(t ≤ σ∗)+ u(Xσ∗)1(σ∗ < t)

= u(Xt∧σ∗)

≤ u(x)+Mt∧σ∗ (27)

for any given t ≥ 0. The first inequality can be seen by noting that since G1 is concave in
[0, a] then the line u∗(x;A∗, B∗) supports the hypograph of G1 in [A∗, a] and so u ≥ G1
in [A∗, a]. On the other hand, since u(B∗) ≥ G1(B∗), it follows that u majorises the line
joining the points (a,G1(a)) and (B∗,G1(B∗)) in the interval [a, B∗], which, in turn, by
convexity ofG1 in (a, B∗], majorisesG1 in [a, B∗]. The first equality follows from the fact that
u(Xσ∗) ∈ {0} ∪ [B∗, 1] and by the definition u = H1 in {0} ∪ [B∗, 1]. The second inequality
follows from (26) upon noting that G′′

1 ≤ 0 in [0, A∗) and that lB∗
t increases only when the

process is at B∗. Now suppose that (τn)∞n=1 is a localizing sequence of stopping times for M .
Then, from (27), we have

G1(Xτ∧τn)1(τ ∧ τn ≤ σ∗)+H1(Xσ∗)1(σ∗ < τ ∧ τn) ≤ u(x)+Mτ∧τn∧σ∗ (28)

for every stopping time τ ofX. Taking the Px-expectation in (28) we conclude, by the optional
sampling theorem, that

Ex[G1(Xτ∧τn)1(τ ∧ τn ≤ σ∗)+H1(Xσ∗)1(σ∗ < τ ∧ τn)] ≤ u(x) (29)

for all stopping times τ . Letting n → ∞ in the left-hand side expression in (29), we obtain,
by using the Lebesgue dominated convergence theorem and by noting that σ∗ < ∞ Px-almost
surely and G1 and H1 are bounded,

lim
n→∞ Ex[G1(Xτ∧τn)1(τ ∧ τn ≤ σ∗)+H1(Xσ∗)1(σ∗ < τ ∧ τn)]

= Ex

[
lim
n→∞(G1(Xτ∧τn)1(τ ∧ τn ≤ σ∗)+H1(Xσ∗)1(σ∗ < τ ∧ τn))

]
= M1

x (τ, σ∗),

and so we conclude that
M1
x (τ, σ∗) ≤ u(x) for all τ . (30)

Taking the supremum in (30) over all τ , it follows that V 1
σ∗(x) ≤ u(x). It remains to prove

that (30) holds with equality if τ is replaced by τ∗. Indeed, from (26) and the structure of the
stopping times τ∗ and σ∗, we have

u(Xτ∗∧τn∧σ∗) = u(x)+Mτ∗∧τn∧σ∗ . (31)

Taking the Px-expectation on both sides of (31) and the limit as n → ∞, we have, by the
Lebesgue dominated convergence theorem,

lim
n→∞ Exu(Xτ∗∧σ∗∧τn) = Ex

[
lim
n→∞ u(Xτ∗∧σ∗∧τn)

]
= Exu(Xτ∗∧σ∗) = u(x).

Since u(Xτ∗∧σ∗) = G1(Xτ∗)1(τ∗ ≤ σ∗) + H1(Xσ∗)1(σ∗ < τ∗), we conclude that M1
x (τ∗, σ∗)

= u(x) and so V 1
σ∗(x) ≤ M1

x (τ∗, σ∗). By definition, V 1
σ∗(x) ≥ M1

x (τ∗, σ∗) and so the equality
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of V 1
σ∗ and u follows. To show that V 2

τ∗(x) = v(x) one can follow the same steps as for V 1
σ∗(x).

Note that the fact that the mapping t 
→ G2(Xt )1(t < τ)+H2(Xτ )1(τ ≤ t) is right-continuous
with left limits (in contrast with that of player one which is left-continuous with right limits)
does not affect the proof since τ∗ is finite, G2(0) = H2(0) and G2(1) = H2(1). �

We next provide three results to link the solution of the free-boundary problem with the
value functions of the game in the case whenA∗ andB∗ satisfy one of the conditions (18)–(20).
The proofs can be carried out using similar arguments to the proof of Theorem 1 and, therefore,
shall be omitted.

Theorem 2. Consider the assumptions given in Theorem 1. Suppose that A∗ = 0 and that
there exists B∗ ∈ (b, 1] which satisfy (18). Then the functions

u(x) =
{
u∗(x; 0, B∗) if 0 ≤ x < B∗,
H1(x) if B∗ ≤ x ≤ 1,

v(x) =
{
v∗(x; 0, B∗) if 0 ≤ x < B∗,
G2(x) if B∗ ≤ x ≤ 1,

where u∗(x; 0, B∗) takes the form (13) and v∗(x; 0, B∗) is given by (14), coincide with the
value functions V 1

τ∗(x) = supτ M
1
x (τ, σ∗) and V 2

σ∗(x) = supσ M
2
x (τ∗, σ ), respectively, where

τ∗ = ρ0,1 and σ∗ = inf{t ≥ 0 : Xt ≥ B∗} ∧ ρ0,1.

Theorem 3. Consider the assumptions given in Theorem 1. Suppose that B∗ = 1 and that
there exists A∗ ∈ [0, a) which satisfy (19). Then the functions

u(x) =
{
G1(x) if 0 ≤ x ≤ A∗,
u∗(x;A∗, 1) if A∗ < x ≤ 1,

v(x) =
{
H2(x) if 0 ≤ x ≤ A∗,
v∗(x;A∗, 1) if A∗ < x ≤ 1,

where u∗(x;A∗, 1) takes the form (13) and v∗(x;A∗, 1) is given by (14), coincide with the
value functions V 1

τ∗(x) = supτ M
1
x (τ, σ∗) and V 2

σ∗(x) = supσ M
2
x (τ∗, σ ), respectively, where

τ∗ = inf{t ≥ 0 : Xt ≤ A∗} ∧ ρ0,1 and σ∗ = ρ0,1.

Theorem 4. Consider the assumptions given in Theorem 1. Suppose that A∗ = 0 and B∗ = 1
satisfy (20). Then the functions

u(x) = u∗(x; 0, 1) and v(x) = v∗(x; 0, 1),

where u∗(x; 0, 1) takes the form (13) and v∗(x; 0, 1) is given by (14), coincide with the value
functions V 1

τ∗(x) = supτ M
1
x (τ, σ∗) and V 2

σ∗(x) = supσ M
2
x (τ∗, σ ), respectively, where τ∗ =

σ∗ = ρ0,1.

5. Regular diffusions

We shall now link nonzero-sum games of optimal stopping for one-dimensional regular
diffusions with nonzero-sum games of optimal stopping for Brownian motion. In doing so
one can then use the results in the previous sections to show that for a certain class of payoff
functions, nonzero-sum optimal stopping games for one-dimensional regular diffusions admit
a Nash equilibrium point. So letX be a one-dimensional regular diffusion in [0, 1], absorbed at
either 0 or 1, and suppose that α ≥ 0 is a given constant. Let us assume that the fine topology
coincides with the Euclidean topology and let LX be the infinitesimal generator ofX. It is well
known that under regularity conditions (see, for example, [16]), LXF = 1

2σ
2(x)Fxx + μ(x)Fx

for x ∈ (0, 1), whereμ(x) ∈ R is the drift and σ 2(x) is the diffusion coefficient ofX. Moreover,
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the second order LXF = αF admits two linearly independent solutions ψ and ϕ such that
ψ(0), ϕ(1) > 0 and that ψ is increasing and ϕ is decreasing. These solutions are uniquely
determined up to a multiplicative constant. In the case when α = 0 we can take ψ = S and
ϕ ≡ 1, where S is the scale function of X.

Step 1◦. Consider the nonzero-sum game of optimal stopping in which player one chooses a
stopping time τ∗ and player two a stopping time σ∗ in order to maximize their expected payoffs,
which are respectively given by

Ex[e−α(τ∧σ)(G1(Xτ )1(τ ≤ σ)+H1(Xσ )1(σ < τ))],
Ex[e−α(τ∧σ)(G2(Xσ )1(σ < τ)+H2(Xτ )1(τ ≤ σ))],

where Gi,Hi : [0, 1] → R, for i = 1, 2, are continuous functions such that Gi ≤ Hi with
Gi(0) = Hi(0) and Gi(1) = Hi(1). For a given stopping time σ chosen by player two, let

V 1,α
σ (x) = sup

τ
Ex[e−α(τ∧σ)(G1(Xτ )1(τ ≤ σ)+H1(Xσ )1(σ < τ))] (32)

be the value function of player one and, for a given stopping time τ chosen by player one, let

V 2,α
τ (x) = sup

σ
Ex[e−α(τ∧σ)(G2(Xσ )1(σ < τ)+H2(Xτ )1(τ ≤ σ))] (33)

be the value function of player two. Suppose that there exist continuous functionsu, v : [0, 1] →
R such that

u = inf
F∈sup1

v(G1,K1)
F, v = inf

F∈sup2
u(G2,K2)

F, (34)

where
sup1

v(G1,K1) = {F : [0, 1] → [G1,K1] : F is continuous,

F = H1 in D2, F is α-superharmonic in Dc2}, (35)

sup2
u(G2,K2) = {F : [0, 1] → [G2,K2] : F is continuous,

F = H2 in D1, F is α-superharmonic in Dc1}, (36)

with Ki , for i = 1, 2, being the smallest α-superharmonic function (relative to X) majorizing
Hi , D1 = {u = G1} and D2 = {v = G2} (recall that a measurable function F : R → R is
α-superharmonic if Ex[e−ατF (Xτ )] ≤ F(x) for all stopping times τ of X and all x ∈ [0, 1]).
From the DPSC of the value functions u(x) = V 1,α

σD2
(x) and v(x) = V 2,α

τD1
(x) for all x ∈ [0, 1],

where τD1 = inf{t ≥ 0 : Xt ∈ D1} and σD2 = inf{t ≥ 0 : Xt ∈ D2}.
Step 2◦. Let I : [0, 1] → R be a strictly increasing continuous function and J : [0, 1] → R

a Borel measurable function. J is said to be I -concave if

J (x) ≥ J (c)

(
I (d)− I (x)

I (d)− I (c)

)
+ J (d)

(
I (x)− I (c)

I (d)− I (c)

)
for 0 ≤ c < x < d ≤ 1.

It is known (see, for example, [4, Chapter 16] or [15, Proof of Theorem 3.2]) that a Borel
measurable function J is α-superharmonic if and only if J/ϕ is I -concave or, equivalently, if
and only if J/ψ is Î -concave, where I and Î are strictly increasing continuous functions given
by I = ψ/ϕ and Î = −1/I = −ϕ/ψ . From this, it follows that the collections of the functions
in (35) and (36) are equivalent to

sup1
v(G1,K1) =

{
F : [0, 1] → [G1,K1] : F is continuous,

F = H1 in D2,
F

ϕ
is I -concave in Dc2

}
(37)

https://doi.org/10.1017/apr.2017.8 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.8


444 N. ATTARD

and

sup2
u(G2,K2) =

{
F : [0, 1] → [G2,K2] : F is continuous,

F = H2 in D1,
F

ϕ
is I -concave in Dc1

}
, (38)

where Ki , for i = 1, 2, is the smallest function majorizing Hi such that Ki/ϕ is I -concave.
Step 3◦. We show that the sets in (37) and (38) are equivalent to collections involving

ordinary concave functions. For this let B be a Brownian motion in [I (0), I (1)], absorbed at
either I (0) or I (1) and consider the nonzero-sum game of optimal stopping in which player
one chooses a stopping time γ∗ and player two a stopping time β∗ in order to maximize their
expected payoffs, which are respectively given by

Ey[G̃1(Bγ )1(γ ≤ β)+ H̃1(Bβ)1(β < γ )], Ey[G̃2(Bβ)1(β < γ )+ H̃2(Bγ )1(γ ≤ β)]
for y ∈ [I (0), I (1)], where G̃i := (Gi/ϕ) ◦ I−1 and H̃i := (Hi/ϕ) ◦ I−1 for i = 1, 2. Given
stopping time β chosen by player two, let

W
1,α
β (y) = sup

γ
Ey[G̃1(Bγ )1(γ ≤ β)+ H̃1(Bβ)1(β < γ )] (39)

be the value function of player one and similarly, given stopping time γ chosen by player one,
let

W 2,α
γ (y) = sup

β

Ey[G̃2(Bβ)1(β < γ )+ H̃2(Bγ )1(γ ≤ β)] (40)

be the value function of player two. Suppose that there exist continuous functions ũ, ṽ : [I (0),
I (1)] → R such that

ũ = inf
F∈s̃up1

ṽ
(G̃1,K̃1)

F and ṽ = inf
F∈s̃up2

ũ
(G̃2,K̃2)

F,

where
s̃up1

ṽ(G̃1, K̃1) = {F : [1(0), 1(1)] → [G̃1, K̃1] : F is continuous,

F = H̃1 in D̃2, F is concave in D̃c2} (41)

and
s̃up2

ũ(G̃2, K̃2) = {F : [1(0), 1(1)] → [G̃2, K̃2] : F is continuous,

F = H̃2 in D̃1, F is concave in D̃c1}, (42)

with K̃i for i = 1, 2, being the smallest concave function majorizing H̃i, D̃1 = {ũ = G̃1} and
D̃2 = {ṽ = G̃2}. Again from the DPSC of the value functions (note that G̃i(I (0)) = H̃i(I (0))
and G̃i(I (1)) = H̃i(I (1)) since Gi(0) = Hi(0) and Gi(1) = Hi(1)), we have

ũ(y) = W
1,α
β
D̃2
(y) and ṽ(y) = W 2,α

γ
D̃1
(y) for all y ∈ [I (0), I (1)], (43)

where γ
D̃1

= inf{t ≥ 0 : Bt ∈ D̃1} and β
D̃2

= inf{t ≥ 0 : Bt ∈ D̃2}.
Step 4◦. We now link the value functions in (32) and (33) with those in (39) and (40) via the

collections of functions in (37) and (38) and (41) and (42). It is easy to see that ϕ(x)ũ(I (x)) ≥
G1(x) for all x ∈ [0, 1] and thatϕ(x)ũ(I (x)) = H1(x) for all x ∈ {x ∈ [0, 1] : ϕ(x)(ṽ◦I )(x) =
G2(x)}. Since we know that ũ is concave in {y ∈ [I (0), I (1)] : ṽ(y) > G̃2(y)} then by writing
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ũ = (ũ◦I )◦I−1 and by making use of the fact that a Borel measurable functionF onD ⊆ [0, 1]
is I -concave if and only if F ◦ I−1 is concave on I (D) = {I (x) : x ∈ [0, 1]}, it follows that
ũ ◦ I is I -concave in {x ∈ [0, 1] : ϕ(x)(ṽ ◦ I )(x) > G2(x)}. This fact can also be used to
show that ϕ(x)K̃1(I (x)) = K1(x) for all x ∈ [0, 1]. Repeating the above arguments for ṽ and
comparing the functions ϕ(ũ◦ I ) and ϕ(ṽ ◦ I )with the functions u and v in (34), it follows that

ϕ(x)ũ(I (x)) = V 1,α
σD2
(x) and ϕ(x)ṽ(I (x)) = V 2,α

τD1
(x) for x ∈ [0, 1],

where D1 = {x ∈ [0, 1] : ϕ(x)ũ(I (x)) = G1(x)} and D2 = {x ∈ [0, 1] : ϕ(x)ṽ(I (x)) =
G2(x)}. From (43), we can deduce that

V 1,α
σD2
(x) = ϕ(x)W

1,α
β
D̃2
(I (x)) and V 2,α

τD1
(x) = ϕ(x)W 2,α

γ
D̃1
(I (x)) for x ∈ [0, 1].
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