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Is grid turbulence Saffman turbulence?
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There has been a longstanding debate as to whether the large scales in grid turbulence
should be classified as of the Batchelor or Saffman type. In the former, the integral
scales, u and �, satisfy u2�5 ≈ constant , while in Saffman turbulence we have
u2�3 = constant . For strictly homogeneous turbulence the energy decay rates in
these two types of turbulence differ, with u2 ∼ t−10/7 in Batchelor turbulence and
u2 ∼ t−6/5 in Saffman turbulence. We present high-resolution measurements of grid
turbulence taken in a large wind tunnel. The particularly large test section allows us
to measure energy decay exponents with high accuracy. We find that the turbulence
behind the grid is almost certainly of the Saffman type, with u2�3 = constant . The
measured energy decay exponent, however, is found to lie slightly below the theoretical
prediction of u2 ∼ t−1.2. Rather we find u2 ∼ t−n, with n = 1.13±0.02. This discrepancy
is shown to arise from a weak temporal decay of the dimensionless energy dissipation
coefficient, ε�/u3, which is normally taken to be constant in strictly homogeneous
turbulence, but which varies very slowly in grid turbulence.

Key words: homogeneous, theory

1. Introduction
We consider the decay of high Reynolds number isotropic turbulence, as

approximated by grid turbulence. In particular, we are interested in the rate of
decay of the turbulent kinetic energy, 〈u2〉/2, and the rate of growth of the integral
scale �. It is generally agreed that both 〈u2〉 and � evolve according to power laws,
and there are two classical predictions. In Kolmogorov’s theory of the large scales,
based on the conservation of Loitsyansky’s integral, we expect

〈u2〉�5 = constant. (1.1)

This may be combined with the empirical law

du2

dt
= −A

u3

�
, A = constant, (1.2)

where u2 = 〈u2〉/3, to give,

〈u2〉 ∼ t−10/7, (1.3)

� ∼ t2/7. (1.4)

A competing theory, due to Saffman (1967), has

〈u2〉�3 = constant, (1.5)
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374 P.-Å. Krogstad and P. A. Davidson

which, when combined with (1.2), demands,

〈u2〉 ∼ t−6/5, (1.6)

� ∼ t2/5. (1.7)

(See also Pullin & Saffman 1998 for a discussion of Saffman turbulence.)
Both types of turbulence may be generated, at least approximately, in computer

simulations (see e.g. Ishida, Davidson & Kaneda 2006) and the respective decay
laws are recovered. However, it remains an open question as to how grid turbulence
should behave. It is not even clear that (1.1)–(1.7) represent the only possibilities, or
that all types of grids must produce turbulence of the same class. Nevertheless, it is
intriguing that the data of Lavoie, Djenedi & Antonia (2007) show decay exponents
for 〈u2〉 ∼ t−n which are not too far from, though lower than, the Saffman estimate of
n = 6/5. Could it be that grid turbulence is Saffman turbulence?

There have been many measurements of decay exponents over the years. Comte-
Bellot & Corrsin (1966) found 1.15 <n< 1.29 and Warhaft & Lumley (1978) estimated
n ∼ 1.34, to mention just a few. In most cases the uncertainty in the determination
of the exponent is linked to the unknown virtual origin in time. We investigate this
question by performing high spatial resolution experiments in a large wind tunnel.
The long test section, which is more than 250 mesh lengths, minimizes the uncertainty
in using the data to estimate power-law exponents for 〈u2〉 and �. As a result we are
able to determine the decay exponents to high accuracy. The test section is also wide
enough to minimize sidewall effects.

Perhaps it is worthwhile highlighting some of the main findings of the paper. In
§ 2 we discuss the theoretical decay laws of Kolmogorov and Saffman, as well as
possible alternative laws. We show that, provided A in (1.2) is indeed a constant, the
Saffman decay exponent of n = 6/5 represents a theoretical minimum for n. That is,
the turbulence can decay no more slowly than 〈u2〉 ∼ t−1.2. However, if A varies slowly
with t , as A ∼ t−p , p � 1, then the decay exponent for Saffman turbulence changes
to n = 1.2(1 − p), which again represents a theoretical minimum decay rate. So the
invariance, or otherwise, of A is important.

At first sight it seems odd that A should be considered a (weak) function of t .
The usual argument for A being constant is that, in strictly homogeneous turbulence,
the dissipation ε, which is a surrogate for the flux of energy from the large to
small scales, is a function of the large scale quantities 〈u2〉 and � only. Dimensional
analysis then demands, ε�/〈u2〉3/2 ∼ A = constant. However, in grid turbulence the
streamwise decay of kinetic energy, d(〈u2〉/2)/dx, means that the turbulence is not
strictly homogeneous and we have the possibility that ε is now a function of 〈u2〉, �

and d(〈u2〉/2)/dx, which can be written as ε = ε(〈u2〉, �, ε/U ), where U is the mean
velocity in the tunnel. In dimensionless terms we have

ε�/〈u2〉3/2 ∼ F (〈u2〉/U 2), (1.8)

or equivalently,

A = F (〈u2〉/U 2), (1.9)

where F is some unknown function. Thus A could be a weak function of x (or t) in
grid turbulence, even if not in strictly homogeneous turbulence.

There is a second reason why we might expect A to vary slowly with x. In the
experiment the Reynolds number based on the Taylor microscale, Reλ, varies along
the test section, typically starting at around Reλ ∼ 80 and then dropping to Reλ ∼ 70
at the exit of the section (see § 4.1). It is well known that A is a weak function of Reλ
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when Reλ < 100, and so this slight variation in Reλ could manifest itself in a slow
evolution in A. In summary, then, A may vary due to weak inhomogeneity or due to
a slow decline in Reλ.

In § 3 we describe the experimental set-up and in § 4 the data is discussed. Our
primary finding is that our turbulence is indeed Saffman turbulence, with 〈u2〉�3 =
constant , but that the energy decay exponent lies slightly below the Saffman value
of n = 1.2. In fact we find n = 1.13 ± 0.02. As suggested above, this discrepancy can
be traced back to a slow temporal variation in A, which is found to take the form
A ∼ t−p , p ≈ 0.075.

2. A review of theoretical decay laws in isotropic turbulence
We now summarize the various decay laws which, on theoretical grounds, one might

expect to see in freely decaying isotropic turbulence. These fall into two categories:
the classical decay laws of Kolmogorov and Saffman, and the more general cases that
arise when we allow for non-analytic behaviour of the spectral tensor (the Fourier
transform of the two-point correlation 〈uiu

′
j 〉). Let us start with the classical theories.

2.1. Classical decay laws

Consider fully developed isotropic turbulence in which the Reynolds number is high,
Re = u�/ν 	 1 , so that Kolmogorov’s 1941 theory applies. (Here u = 〈u2

x〉1/2 is the
usual integral velocity scale and ν the viscosity.) In such a case we expect the large
scales of the turbulence to be self-similar when scaled with u and �, and the small
scales to be self-similar when scaled using the Kolmogorov microscales, υ and η.

Now the two-point velocity correlation 〈u · u′〉(r) is related to the energy spectrum
E(k) by

E(k) =
1

π

∫ ∞

0

〈u · u′〉krsin(kr) dr, (2.1)

where k is the wavenumber and r =| r |=| x′ − x |. Expanding (2.1) for small k yields

E(k → 0) =
Lk2

4π2
+

Ik4

24π2
+ · · · (2.2)

provided, of course, that 〈u · u′〉 decays sufficiently rapidly with separation for the
expansion to be valid. (This requires that, at large r , 〈u · u′〉 ∼ O(r−6), or smaller.) The
prefactors L and I are the integrals

L =

∫
〈u · u′〉 dr (2.3)

and

I = −
∫

r2〈u · u′〉 dr, (2.4)

which are known as the Saffman and Loitsyansky integrals respectively.
This suggests that, as far as the behaviour of the large scales is concerned, there are

two important cases: when L is non-zero we have E(k → 0) ∼ Lk2, which is called a
Saffman spectrum, and in those cases where L = 0, we obtain E(k → 0) ∼ Ik4, which
is sometimes known as a Batchelor spectrum. These two canonical cases are usually
referred to as Saffman and Batchelor turbulence, respectively, and we shall adopt this
convention here. Other possibilities exist, however, such as E(k → 0) ∼ kp , p < 4, but
we shall postpone our discussion of these until § 2.2.
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Both E ∼ Lk2 and E ∼ Ik4 spectra may be generated in computer simulations (see
e.g. Ishida et al. 2006). Which type of turbulence is seen is determined by the initial
conditions. A more interesting and controversial question, however, is whether grid
turbulence is of the Saffman or Batchelor type. Until now, the experimental data have
been ambiguous on this point, and so there is no uniformity of opinion on this issue.
It is not even clear that all forms of grid turbulence must be of the same class. It
is quite possible, for example, that different types of grids or different ranges of Re

could produce different classes of turbulence.
Let us now consider Saffman turbulence in more detail. Noting that 〈u · u′〉 is related

to the longitudinal correlation function f (r) by

〈u · u′〉 =
u2

r2

∂

∂r
(r3f ), (2.5)

it is clear that Saffman’s integral can be rewritten as

L = 4πu2[r3f ]∞, (2.6)

where the subscript ∞ indicates r → ∞. Thus a finite value of L implies an algebraic
decline in f , as f∞ ∼ r−3, though this does not exclude the possibility that 〈u · u′〉∞
decays more rapidly, say exponentially. Indeed, it is not difficult to construct fields of
isotropic turbulence in which f∞ ∼ r−3, yet 〈u · u′〉∞ falls off as a Gaussian (Davidson
2004).

Next, noting that ensemble and volume averages are equivalent, we have

L =
1

V

〈[∫
V

u dV

]2
〉

, (2.7)

where V is some large control volume. This gives us a simple physical interpretation
of Saffmans integral as a measure of the amount of linear momentum held in the
turbulence. It also provides a way of quantifying when we will, or will not, obtain
a Saffman spectrum: we obtain such a spectrum whenever the turbulence contains
a sufficiently large amount of linear momentum, P =

∫
V

u dV . In particular, we

require that 〈P2〉 grows with V as 〈P2〉 ∼ V such that L remains finite and non-zero
as V → ∞ (Saffman 1967). If 〈P2〉 grows more slowly with V , then we obtain a
Batchelor spectrum.

Saffman showed that L is an invariant of freely decaying turbulence. This follows
from integrating the Kármán–Howarth equation,

∂

∂t
〈u · u′〉 =

1

r2

∂

∂r

1

r

∂

∂r
(r4u3K) + 2ν∇2〈u · u′〉, (2.8)

combined with the observation that the longitudinal triple correlation u3K(r) =
〈u2

x(x)ux(x + r êx)〉 falls as

(u3K(r))∞ ∼ r−4 + O(r−5) (2.9)

at large r (Batchelor & Proudman 1956). The physical interpretation of the
conservation of L is given in Davidson (2004, p. 360), where it is shown that
the linear momentum in some large control volume V is approximately conserved in
the sense that the flux of linear momentum out through the bounding surface is too
small to change 〈P2〉/V in the limit of V → ∞.

One of the important consequences of the conservation of L is that it controls the
rate of decay of energy. The argument goes as follows. Self-similarity of the large
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scales demands

L = a2u
2�3, (2.10)

where a2 is a dimensionless constant, and so the integral scales are constrained to
satisfy

u2�3 = constant, (2.11)

which is the hallmark of Saffman turbulence. (Although E(k → 0) ∼ Lk2 is the
definition of Saffman turbulence, the low-k form of E is very difficult to measure
experimentally, whereas its hallmark, u2�3 = constant is testable. Hence (2.11) is often
taken as the test of Saffman turbulence.)

This is important as it may be combined with the empirical, but well established,
relationship

du2

dt
= −A

u3

�
, A = constant, (2.12)

to give the decay laws

u2

u2
0

=

[
1 +

5

6
A

u0t

�0

]−6/5

, (2.13)

�

�0

=

[
1 +

5

6
A

u0t

�0

]2/5

, (2.14)

where u0 and �0 are the values of u and � at t = 0 (Saffman 1967). (We shall address
in § 2.4 the possibility that A could be a weak function of t in grid turbulence, if not
in strictly homogeneous turbulence.)

Let us now consider Batchelor turbulence in which we have the spectrum, E ∼ Ik4.
The first point to note is that it is the initial conditions which dictate whether we have
a Saffman or Batchelor spectrum. That is, L is an invariant, and so if L is non-zero
at t = 0 we have E ∼ Lk2 for all time, whereas L = 0 at t = 0 precludes such a
spectrum. Note also that, unlike L, the integral I is not, in general, an invariant. That
is, the Kármán–Howarth equation (2.8) integrates to give

dI

dt
= 8π [u3r4K]∞ (2.15)

and we expect that the long-range pressure forces will, in general, establish long-
range triple correlations of the form K∞ ∼ cr−4, where c is some prefactor whose
magnitude cannot be predicted in a rigorous way (Batchelor & Proudman 1956).
Interestingly, though, simulations performed in very large computational domains
show I ≈ constant once the turbulence has become fully developed (Ishida et al.
2006). This suggests that the prefactor c = (r4K)∞ is extremely small in mature
turbulence. One of the consequences of the observed conservation of I is that one
recovers Kolmogorovs decay laws in these simulations, i.e.

u2 ∼ t−10/7, � ∼ t2/7. (2.16)

These decay laws rest on the assumption that I is conserved and they may be
derived by combining (2.12) with the fact that self-similarity of the large scales yields

I = a4u
2�5 = constant, (2.17)

for some dimensionless constant a4. Evidently, (2.16) are the analogues of (2.13)
and (2.14) for E ∼ Ik4 turbulence. Indeed, one of the recurring themes of isotropic
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turbulence has been whether grid turbulence should be governed by (2.13) and (2.14)
or else by (2.16). However, as we now show, these are not the only possibilities.

2.2. Other decay laws

Expansion (2.2) is valid only if 〈u · u′〉 decays sufficiently rapidly with separation r . Let
us suppose that, at t = 0, we (somehow) enforce long-range power-law correlations
of the form

u2f∞ = Cmr−m, (2.18)

where the Cm are dimensional prefactors. Then the Kármán–Howarth equation,
combined with K∞ ∼ cr−4, tells us that the coefficients Cm are invariants, provided
that m < 6. So we shall restrict ourselves to m < 6, with m = 3 corresponding to a
Saffman spectrum where, from (2.6), we have C3 = L/4π. Note that the invariance of
Cm, for m < 6, means that these long-range correlations cannot emerge spontaneously
as a result of the turbulence dynamics; they have to be enforced at t = 0 as an initial
condition. This, in turn, raises questions as to what is a physically acceptable initial
condition, an issue to which we will return. Note also that an algebraic decay in
〈u · u′〉 means that certain moments of the two-point correlations diverge, and so we
should expect non-analytic behaviour of the spectral tensor at k = 0.

Now self-similarity of the large scales demands Cm = bmu2�m where the bm are
dimensionless constants. It follows that

u2�m = constant, m < 6, (2.19)

which may be combined with (2.12) to give

u2

u2
0

=

[
1 +

m + 2

2m
A

u0t

�0

]−2m/(m+2)

, m < 6, (2.20)

where u0 and �0 are the values of u and � at t = 0. (In grid turbulence t = 0 in (2.20)
would correspond to the point where the turbulence first becomes fully developed.)
Note that we recover Saffman’s decay law for m = 3. It is interesting to compare
(2.20) with the form of u2 usually adopted when analysing grid turbulence data, i.e.

u2 = C[t − τ ]−n, (2.21)

where τ is some virtual origin in time, t = 0 is now taken to correspond to the grid,
and C is a dimensional constant.

Finally, we note that the energy spectrum corresponding to (2.18) takes the form

E(k → 0) ∼ km−1, m < 6, (2.22)

with or without a log correction.

2.3. A lower bound on the energy decay exponent (assuming A is constant)

There now arises the interesting question of whether or not there is a lower bound
on m, and hence on the energy decay exponent

n =
2m

m + 2
(2.23)

In this respect it is interesting to note that m < 3 causes Saffman’s integral to diverge,
and this seems unlikely for the following reason. We have seen that

L =
1

V

〈[∫
V

u dV

]2
〉

, (2.24)
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where V is some large volume embedded within the turbulence. Thus we obtain a
finite value of L if, and only if, on average, the turbulence contains just the right
amount of linear momentum in a large control volume V , P =

∫
V

u dV . That is, if L

is to remain finite as V → ∞, then 〈P2〉 must grow with V as 〈P2〉 ∼ V . If L diverges,
on the other hand, then 〈P2〉 must grow faster than 〈P2〉 ∼ V . This is important as it
is possible to use the central limit theorem to show that a growth faster than 〈P2〉 ∼ V

is unlikely to occur, the implication being that m cannot be smaller than 3.
This can be seen from the following argument, suggested by Davidson (2004, p.

356). Let us take our control volume V to be a large sphere of radius R, large in the
sense that R 	 �. We may consider the turbulence to be composed of a random sea of
eddies (blobs of vorticity), each of which has some linear impulse, 2Li =

∫
x × ω dV .

(Here the subscript i indicates the ith eddy within the volume V and ω is vorticity.)
Now, the linear momentum within some large spherical volume V is proportional
to the sum of the linear impulses of the individual eddies contained within V , i.e.
P ∼

∑
Li . Suppose that there are N eddies within V , each assigned a random value

of Li taken from a p.d.f. of zero mean. Then the central limit theorem requires that
〈P2〉 ∼ V , which is consistent with a finite value of L in the limit of V → ∞.

There is, however, a weakness in this argument. It turns out that the value of
P =

∫
V

u dV depends not just on the vortices inside V , but also on the vortices
external to V . This deficiency is readily accounted for, however, by using the more
detailed analysis of Davidson (2009), and it turns out that the central finding remains
unchanged.

In summary, then, the central limit theorem suggests that 〈P2〉 can grow no faster
than 〈P2〉 ∼ V and this requires Saffmans integral to be convergent. If this is indeed
the case then the minimum value of m is m = 3, and the corresponding minimum
decay exponent, assuming A is constant, is the Saffman value of n = 6/5 = 1.2.

2.4. The influence of a temporal variation in A

So far we have assumed that the coefficient A in (2.12) is constant. In practice,
however, because of the streamwise variation in u2/U 2 in grid turbulence, or else
the slow decline of Reλ, the coefficient A may exhibit some slight temporal variation
(see § 1). This, in turn, changes the energy decay exponent. We close this section by
considering the consequences of this slow variation in A. In the interests of brevity,
we shall restrict the discussion to Saffman turbulence, where u2�3 = constant , though
the results may be generalized in an obvious way to other cases. We focus on Saffman
turbulence because, as we have seen, this yields the minimum decay exponent, and we
are interested in how a temporal variation in A can influence this minimum exponent.
Integrating

du2

dt
= −A(t)

u3

�
, (2.25)

subject to u2�3 = constant , yields

u2

u2
0

=

[
1 +

5

6

u0

�0

∫ t

0

A dt

]−6/5

(2.26)

and

�

�0

=

[
1 +

5

6

u0

�0

∫ t

0

A dt

]2/5

, (2.27)

where �0 and u0 are the initial values of � and u. Note that, as before, t = 0 in (2.26)
and (2.27) correspond to the time where the turbulence first becomes fully developed.
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The question now arises as to the form of A(t). It is tempting to assume that
A(t) is a power law, analogous to (2.21), i.e. u2 = C[t − τ ]−n. However, there are no
theoretical reasons why A(t) should take this form. Nevertheless, we shall see that
the experimental data suggests that A is a weak function of t , and that a reasonable
approximation to A(t) is

A(t) = C∗[t − τ ]−p, (2.28)

where C∗ is another constant, p � 1, and τ is the same virtual origin as in (2.21). It
is convenient to adopt this approximation to A(t) as it allows us to parameterize the
influence of a slow temporal decline of A on the energy decay exponent n.

Reverting the notation of § 2.1, we see that (2.28) takes the form

A(t) = A0

[
1 +

5

6

A0

1 − p

u0t

�0

]−p

. (2.29)

More importantly, (2.26) and (2.27) now simplify to

u2

u2
0

=

[
1 +

5

6

A0

1 − p

u0t

�0

]−6(1−p)/5

(2.30)

and

�

�0

=

[
1 +

5

6

A0

1 − p

u0t

�0

]2(1−p)/5

(2.31)

Note that (2.29) and (2.30) are consistent with (1.9), i.e. A ∼ [〈u2〉](5/6)p/(1−p), which
was derived on the basis of dimensional analysis. Note also that, for p = 0, we recover
the classic decay laws of Saffman (1967). In summary, then, if A(t) evolves slowly
according to (2.28), and the experiments suggest this is a good approximation, then
the minimum energy decay exponent (i.e. the decay exponent for Saffman turbulence)
changes from n = 1.2 to n = 1.2(1 − p).

We shall see that experimental evidence shows that p is a small positive number of
the order of p ∼ 0.08. Clearly, the net effect of a slow variation in A(t) is to reduce
the energy decay exponent to a value slightly below that of the theoretical estimate
of 6/5. We shall return to this issue in § 4.4.

3. Experimental details
The experiments were performed in the large recirculating wind tunnel of the

Department of Energy and Process Engineering at The Norwegian University of
Science and Technology, Trondheim, Norway. The tunnel test section is 2.7 m wide
and 1.8 m high at the start of the test section, with an adjustable roof to compensate
for the sidewall boundary layers. The test section is 11 m long.

The grid was produced from 2 mm sheet metal. Square holes 30 mm × 30 mm were
punched at 40 mm spacing, giving a solidity of 44 % and a mesh size of M = 40 mm.
The tests were performed at a grid Reynolds number of ReM = MU/ν = 3.6 × 104.

Measurements were taken using a combination of two component laser Doppler
anemometer (LDA) and one and two component hot-wire anemometry. The LDA
system consisted of a 400 mW Spectra Physics air cooled argon laser mated to a
Dantec Dynamics 60 mm fibre optics probe with a 40 MHz Bragg cell. Data evaluation
was performed using a burst analyser and the data was weighted using the transit
time option. Smoke was injected in the return section of the tunnel. The amount of
smoke and the setting of the photo multiplier was adjusted so that the data rate
was steady at about 3 kHz. Normally 105 samples were acquired per measurement
position.
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Purpose made probes were made for the hot-wire measurements by etching
Wollaston wires with a 2.5 μm platinum–10 % rhodium core to a nominal length
of 0.5 mm. This gave a wire length to Kolmogorov length scale ratio ranging
from about lw/η ≈ 2.6 at the first measurement station to lw/η ≈ 0.8 at the most
downstream position. For the X -wire probes 0.9 mm long 5 μm wires were used with
wire angles close to ±45o and wire separation of 0.8 mm. The hot wires were operated
at an overheat temperature of about 320oC using in-house made anemometers. The
frequency response of the anemometers were adjusted to be better than f = 30 kHz
at the test velocity of U ≈ 13.5 m s−1.

The signal from the anemometer was amplified so that the mean voltage spanned
as much as possible of the ±10 V range of the data acquisition system and sampled
to a PC at 12 bit resolution to derive the mean velocity. The signal was then passed
through a Krohn-Hite AC-coupled amplifier and low-pass filter unit. The high-pass
filter of this unit is fixed at 0.1 Hz. The gain of this amplifier was continuously adjusted
so that the turbulent signal fell within the ±10 V range of the data acquisition system,
giving an extra 10–40 times signal gain to improve the resolution. This conditioned
signal was also sampled at 12 bit resolution on a separate PC to give high-resolution
turbulence data.

After a number of tests at various x/M positions along the tunnel axis with filter
cutoff settings of fc ≈ 30 kHz and sampling rates of fs ≈ 60 kHz, the pre-multiplied
dissipation spectra were computed and inspected. For the following measurements
sixth-order Butterworth filters were used and the cutoff frequency was set where the
dissipation spectrum showed a minimum at the high frequency end, i.e. where the
electronic noise started to drown the small-scale part of the signal. Typically fc was
10 kHz close to the grid and 3.5 kHz at x/M = 250.

For most measurements 8 × 105 data were sampled per channel, but occasionally
batches of up to 16 × 106 samples were acquired to assure statistical convergence for
high-order moments.

4. Results
4.1. Flow homogeneity and isotropy

In the following, angle brackets 〈∼〉 will be used to denote time averages, which, in the
light of the ergodic hypothesis, are equivalent to ensemble averages in a statistically
steady flow.

Initially, the grid was mounted at the entrance to the test section. However, as
observed in previous experiments (e.g. Comte-Bellot & Corrsin 1966, Lavoie et al.
2007) it was found that the streamwise normal stress, 〈u2〉 was significantly higher
than the two spanwise components, 〈v2〉 and 〈w2〉, and that improvement in the
isotropy could be obtained by placing the grid upstream of a contraction. Instead of
fitting a secondary contraction downstream of the grid as was done by Comte-Bellot
& Corrsin (1966) and Lavoie et al. (2007), the grid was moved upstream into the
test section contraction to a position where the ratio of the grid to test section area
was 1.48. This gave a grid which was 72 meshes wide and 55 meshes high. This is
considerably more meshes than has been used in most previous grid experiments. We
therefore expect that sidewall boundary layer effects should be quite small. The test
section started at x/M = 30.3 downstream of the grid and this is the position of
the first measurement station. The roof of the test section was carefully adjusted to
eliminate any streamwise velocity gradient. From x/M ≈ 45 to 250 the streamwise
time averaged velocity U , based on LDA measurements was found to be constant to
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Figure 1. Streamwise distributions of Reλ (left axis) and U (right axis).

within −0.6 %/+0.3 % of the spatial mean and the two spanwise components, V and
W , were found to be less than −0.5 %/+1.1 % and −0.4 %/+0.5 % of U , respectively.

Figure 1 shows the streamwise distribution of U , normalized with the value
measured at x/M = 150. A weak acceleration downstream of the contraction exists
on the centreline up to x/M ≈ 45 and this affects the turbulent flow. This is illustrated
by the development of the turbulent Reynolds number, Reλ = λ

√
〈u2〉/ν (where λ

is the Taylor microscale and ν the kinematic viscosity), which shows a much steeper
decay rate in this region than further downstream, where U ≈ constant.

The spanwise homogeneity of the mean flow was also measured at a number
of x/M positions. Except at the entrance to the test section (x/M ≈ 30) where a
small spanwise gradient was detected, U was uniform in the spanwise direction to
within ±0.3 %. Figure 2 shows the spanwise distributions of the second-, third- and
fourth-order moments of u. The spanwise uniformity is seen to be quite good for all
moments. The turbulence intensity decays from about 2.75 % at the inlet of the test
section to 0.8 % near the outlet while the skewness Su is everywhere close to zero and
the flatness Fu remains constant at about 2.95.

For isotropic turbulence the ratios 〈u2〉/〈v2〉 and 〈u2〉/〈w2〉 should be unity
everywhere. The same applies to the ratio 〈q2〉/3〈u2〉 = (〈u2〉 + 〈w2〉 + 〈w2〉)/3〈u2〉,
where 〈q2〉 is twice the turbulent kinetic energy, i.e. 〈q2〉 = 〈u2〉. These quantities are
shown in figure 3 where both LDA and hot-wire data have been included.

The ratio 〈u2〉/〈v2〉 measured with LDA or hot wire are very close to 1 down to
x/M ≈ 130. Further downstream the trends from the two measurement techniques
diverge, the LDA data show a steady increase while the ratio from the hot wires
decreases slowly. The difference was traced back to inaccuracies in 〈u2〉 measured by
the LDA. The power-law decay, i.e. 〈u2〉 ∼ x−n, was well satisfied by all the hot-wire
data (see § 4.2), but for the LDA data the decay of 〈u2〉 was found to slow down for
x/M > 130 while 〈v2〉 continued to follow the decay of the hot-wire data.

For the hot-wire data the ratio 〈u2〉/〈v2〉 decreased slowly towards about 0.92 at
the most downstream station indicating that the rate of decay was slightly slower for
〈v2〉 than for 〈u2〉. This trend is opposite to that observed for 〈u2〉/〈w2〉. At the test
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Figure 2. Spanwise distributions of 〈u2〉, skewness Su and flatness Fu.
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Figure 3. Streamwise distributions of stress ratios.
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section entrance 〈u2〉/〈w2〉 was measured to be about 1.1 and the ratio continued to
increase downstream indicating a faster decay rate for 〈w2〉 than for 〈u2〉.

Even with a contraction downstream of the grid it is very difficult to get truly
isotropic conditions. Using a contraction ratio of 1.36, Lavoie et al. (2007) also had
problems obtaining isotropy in their square rod experiment. Their ratio 〈u2〉/〈w2〉 is
slightly higher than 1.1 and shows a development which is virtually identical to the
present results (figure 3) in the overlapping x/M range. (Measurements of 〈u2〉/〈v2〉
were not reported in the experiment of Lavoie et al.) Comte-Bellot & Corrsin (1966)
typically obtained values of 〈u2〉/〈v2〉 ≈ 0.96 in the range 20 <x/M < 300 for their
square rod grids which is not very different from the present values. (Again the
ratio 〈u2〉/〈w2〉 was not reported in their measurements.) Although a number of
contraction ratios upstream of the test section were initially tried when setting up
the present experiment, it was never possible to get both 〈u2〉/〈v2〉 and 〈u2〉/〈w2〉 to
be 1 simultaneously over a significant streamwise distance. As the flow developed
downstream 〈u2〉/〈w2〉 was always found to increase steadily, showing that 〈w2〉
decayed faster than 〈u2〉. The reason for this remains unknown, but has been observed
in many previous experiments, for example, in the experiment of Bennett & Corrsin
(1978) and Lavoie et al. (2007).

Since true isotropy seems very difficult to achieve one may argue that instead of
studying the decay rate of 〈u2〉 it would make more sense to study the decay of
〈q2〉 ∼ x−n. Therefore 〈q2〉/3〈u2〉 has also been included in figure 3. This ratio is
seen to be virtually constant throughout the measurement range and although it is
not identical to 1, the deviation is small and the scatter acceptable considering the
extensive x/M range covered.

4.2. Energy decay rate

It has been shown repeatedly that it is very difficult to obtain reliable values from
experimental data for the constants a, x0 and n in the decay law

〈u2〉
U 2

= a
( x

M
− x0

M

)−n

. (4.1)

There are a number of reasons for this. The first point to note is that, comparing
(4.1) with (2.20), and noting that t = 0 in (2.20) corresponds to the start of mature
turbulence, we see that x0 is not the point where the turbulence first becomes fully
developed, but rather a distance n�0A

−1(U/u0) upstream of that point. So we do not
know in advance where x0 should be. Second, many investigations have covered a
rather limited x/M range with only a small number of streamwise positions. In this
case it may be difficult to determine exactly where the initial transient decay region
ends and the fully developed turbulence begins. If data from the initial transient
region are included in the fit, higher values of the decay exponent n are normally
obtained. A third, related problem is that if the x/M range is too limited then the
derived value of n becomes very sensitive to the choice of x0. Typically x0/M has
been found to be of the order 5–10. If the x/M range investigated is only a few
multiples longer than this, one finds that even small changes in the estimated x0/M

will severely affect the estimates of both a and n.
As the streamwise distance increases, the measurements start to be affected by

noise. Some obvious sources are electronic noise generated or picked up by the
anemometres and amplifier/filter units, low frequency oscillations from the wind
tunnel fan control system and turbulence transmitted through the pressure field from
the sidewall boundary layers. Some investigators (e.g. Bennett & Corrsin 1978) have
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constructed correction schemes to account for these effects. However, instead of trying
to correct the low turbulence intensity data we have chosen to do the measurements
at such high streamwise resolution that the onset of departure from (4.1) due to noise
will be evident in the data.

It is fair to assume that the initial development of the flow depends strongly on
the initial conditions, as demonstrated by Lavoie et al. (2007). Kistler & Vrebalovich
(1966) showed that the constant a in (4.1) is directly related to the pressure drop
across the grid. Only the decay exponent n for fully developed turbulence can be
assumed to be independent of the grid geometry. Instead of doing a direct power law
fit to the data, (4.1) was rewritten as

ln

(
〈u2〉
U 2

)
= ln(a) − n ln

( x

M
− x0

M

)
, (4.2)

and a linear fit made.
Three fitting procedures were applied to the data to extract the best estimates for

n.

4.2.1. Regression method

This method is based on the work by Mohamed & LaRue (1990) where we search
for the fit that gives the smallest variance between the data and (4.2). If f (x) is the
function to be fitted to a set of data points di(xi), we search for the minimum of

σ 2 =
1

(N − 1)

N∑
i

(di(xi) − f (xi))
2 :

(a) Starting with all the available data a curvefit was made and the variance σ 2

recorded. The data for the most upstream x/M positions were then eliminated one-
by-one from the fit until the lowest value of σ was found. This position, xlow , was
then assumed to be the end of the initial decay range.

(b) Keeping xlow/M fixed the same procedure was used to eliminate data from the
high end of the x/M measurement range. The xhigh/M position where σ now had a
minimum was taken to be the point where system noise was starting to affect the
data or the final decay commenced. The values obtained for a, x0 and n for this best
fit was taken to be the correct values using this method.

Figure 4 shows Regression fits to one single wire data set and two X -wire sets
for which all three normal stresses had been obtained using the same probe. Hence
〈q2〉 could be calculated for both sets. Even though this set is considerably more
elaborate to obtain than 〈u2〉 used for the single wire data fit, the results are very
similar. All sets showed that the fit should be limited to the region 45< x/M < 200.
For x/M > 200 it is clear that the data starts to depart from the fits as noise begins
to affect the data. The values obtained for the fit constants are shown in table 1.

With this method we find 1.11 � n � 1.15, which is slightly below the theoretical
minimum of Saffman’s n = 1.2. However, we shall see shortly that A decays slowly in
accordance with (2.28), which reduces n in a way which is consistent with the data.

4.2.2. Local exponent method

Since the single wire data was taken at intervals of �x/M = 2.5 with a spatial
resolution better than �s/�x = 0.01, it was expected that the local exponent could
also be derived with reasonable accuracy using two-point differencing. Rewriting (4.2)
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Method Variable Single wire X -wire Set1 X -wire Set2
〈u2〉 〈q2〉 〈q2〉

Regression fit x0/M 7.3 5.5 4.5
n 1.11 1.12 1.15

Local exponent n 1.15 1.12 1.14
Maximum decay n 1.12 1.18 1.21

Table 1. Constants obtained from the fit procedures.
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Best fit (X-wire Set1)

Best fit single wire

Best fit (X-wire Set2)

Figure 4. Fit to 〈u2〉 from a single wire data set and 〈q2〉 for two X -wire data sets.

the exponent at position (x − x0)/M may then be expressed as

n(x) = −ln

⎡
⎢⎢⎣

〈u2〉
U 2

(x − x0 + �x)

〈u2〉
U 2

(x − x0 − �x)

⎤
⎥⎥⎦

/
ln

[
x − x0 + �x

x − x0 − �x

]
.

Using the value for x0 obtained from the Regression method, the local exponent
could now be found (figure 5). Both the single wire and X -wire data show the same
trends, but it is obvious that this method gives an estimated value for n which depends
on position. For 50 < (x − x0)/M < 175 the values obtained are reasonably constant
and fall between n ≈ 1.15 and 1.20. Further downstream the local exponent decreases
and the scatter increases. Even though the Regression method indicated that a good
fit would be obtained for data up to x/M = 200, the Local exponent method indicates
that the decay rate as described by (4.1) with a constant exponent should not be
explored much beyond x/M = 175.

The exponents obtained by averaging the local values over the range 50 <x/M < 175
are also given in table 1. These lie in the range 1.12 � n � 1.17 and are very close to
the values obtained by the previous method. Again, the measurements are consistent
with Saffman turbulence in which A(t) is slowly decreasing.
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Figure 5. Local exponents of 〈u2〉 from one single wire data set and from 〈q2〉 for two
X -wire data sets.

4.2.3. Maximum decay range method

Finally, we will apply the method of Lavoie et al. (2007). Fitting data to (4.1)
implies that one tries to optimize three independent coefficients. The experience is
that if the number of data points is low, many values for the constants may fit the
data equally well. These authors claim that if one of these constants may be assumed
to be known, the uncertainty of the remaining constants decreases by an order of
magnitude. If, for example, xo is kept constant and a power-law range really exists for
a range of the data, the remaining constants obtained from the fit should remain the
same for any subset that falls within this range. Hence by scanning different subsets
in the measurement domain with fixed xo, one searches for the value of xo that gives
constant values for a and n independent of which subset is used.

We have already found from the Regression method that the data for x/M > 200
is not likely to follow (4.1). Hence we will once again limit the range of the fit to
x/M < 200 and starting from the full remaining set we will drop data used for the fit
one-by-one from the low end of x/M . Figure 6 shows the exponents of the power-
law decay range obtained when this method was applied to the single wire data as
function of the assumed starting point, xstart/M and xo/M . It is apparent from the
figure that a value of xo/M ≈ 6 gives the longest range of constant n, which then is
close to 1.12. xo/M obtained in this way is not very different from the value obtained
by the Regression method, and the estimated exponent is only marginally higher.

The method was also applied to 〈q2〉 from the two X -wire data sets. However, the
correct combination of n and xo/M was less well defined in this case because the
region of constant n was significantly narrower than for 〈u2〉. This is probably due to
the fact that two independent sets of measurements and three velocity components
are required to obtain 〈q2〉, so the scatter in the data is significantly higher than for
the single wire 〈u2〉 data. Tentative values are given in table 1.

Summing up the results from the three methods used to obtain the decay exponent,
(but excluding the less reliable X -wire data using method 3), we find that n in
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Figure 6. Decay exponent as function of starting coordinate. 〈u2〉 from a single wire data set.

this experiment was typically n = 1.13 with an uncertainty of ±0.02. All of the
measurements of n are close to, but slightly lower than, Saffman’s exponent of
n = 1.2.

4.3. Higher order moments

For isotropic turbulence we expect the skewness and flatness to be 0 and 3 respectively
for all velocity components. For the homogeneous grid flow they are expected to be
slightly, but not very different, due to the slow streamwise decay. The streamwise flux
of kinetic energy to downstream regions of lower energy leads to a small positive
velocity skewness. A close inspection of figure 7 shows that there is a very slow
streamwise development in the skewness. According to the approximate model of
Maxey (1987) the odd-order moments of the fluctuations may be written as

〈u2p+1〉
〈u2p〉〈u2〉1/2

≈ pA
〈u2〉1/2

U
, (4.3)

for p � 1. With p = 1, the skewnesses Su, Sv and Sw should all be of the order of
the turbulence level, 〈u2〉1/2/U , which drops from about 0.03 at the first measurement
station to slightly below 0.008 at the last location. This agrees well with the range
measured for the skewnesses.

The flatness factors Fu, Fv and Fw are constant at about 2.93 throughout the flow.
This suggests that the single point velocity statistics are very close to, but not quite,
Gaussian. These measurements agree well with the data of Townsend (1947), who
suggests that Fu lies between 2.9 and 3 while Su should be zero.

4.4. Length scales

Irrespective of what the correct value for the decay exponent n is, the squared
Taylor microscale must grow linearly with the distance from the grid for isotropic
turbulence, provided 〈u2〉 decays as a power law. Defining the Taylor microscale as
λ2 = 〈u2〉/〈(∂u/∂x)2〉, for isotropic turbulence this may be written as λ2 = 15ν〈u2〉/ε =
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Figure 7. Skewness and flatness factors for u, v and w.

5ν〈q2〉/ε. Combined with the decay equation (U/2)d〈q2〉/dx = −ε it then follows that

λ2 =
−10ν

U

〈q2〉
d〈q2〉/dx

=
10nν

U
(x − x0) (4.4)

without any assumptions about the decay exponent, n.
In order to determine the distribution of λ2 it is necessary to determine as accurately

as possible 〈(∂u/∂x)2〉, or the dissipation rate ε. With the present data there are at
least three options to determine 〈(∂u/∂x)2〉 or ε. First, 〈(∂u/∂x)2〉 may be computed
directly from the time series. Linked with the isotropic relation ε = 15ν〈(∂u/∂x)2〉 the
dissipation rate is obtained. This estimate will be denoted εiso. ε may also be obtained
directly from the gradient of the 〈q2〉 distribution as ε = −(U/2)d〈q2〉/dx. We will
denote this εq2. The third method relies on the universality of the spectral inertial
subrange. Let F11(k1) be the one-dimensional spectrum of u. Kolmogorov’s five-third
law, F11(k1) = C1ε

2/3k
−5/3
1 may then be used to extract an independent estimate for

ε, although one-dimensional spectra at these kinds of Reynolds numbers do not
exhibit a broad −5/3 range. In this experiment, εspec was extracted from the peak in

the compensated spectrum (k5/3
1 F11(k1) = C1ε

2/3) with C1 = 0.5 as recommended by
Pearson, Krogstad & van de Water (2002). This estimate is labelled εspec.

The three estimates for the dissipation rate are shown in figure 8. The agreement
between the methods is seen to be excellent and the choice of method is therefore
not likely to affect the values obtained for λ2 significantly. We have chosen to use the
isotropic estimate εiso, since it appears to have the least scatter.

Also included in the figure is the dissipation rate that follows from the fit made to
(4.1) for the measured 〈u2〉/U 2. The expected decay of the dissipation rate may then
be written as

Mε

U 3
= −3

2

d(〈u2〉/U 2)

d(x/M)
=

3

2
na

(x − x0

M

)−n−1

. (4.5)
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Figure 8. Estimates of dissipation rate using εiso, εspec and εq2.
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Figure 9. Development of the integral scale.

Using the exponent and the offset obtained in § 4.2.1 this estimate is plotted for
45 < (x − x0)/M < 200, which is the range where the fit applies, and is seen to match
the data well. This verifies that the data is internally consistent. (When the fit to
〈q2〉/U 2 was used it gave virtually indistinguishable estimates, so these have not been
included in the plot.)

The development of (λ/M)2 follows very closely the expected linear trend (figure 9).
A best fit to the data in the range 45 < (x − x0)/M < 200, using x0 as found from the
energy decay power law fit, gave an exponent of 0.97. Given the experimental scatter,
this may be taken as effectively unity.
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Introducing (4.4) into the definition of Reλ = uλ/ν we find that the Reynolds
number should decay with x as

Reλ =

√
10na

UM

ν

(x − x0

M

)(1−n)/2

. (4.6)

A curve fit to the measured Reλ for 50 < x/M < 250 using (4.6) (see figure 1) gave an
exponent of (1 − n)/2 = 0.067, which suggests a decay exponent of n = 1.13. This is
the same as the mean exponent found in § 4.2, verifying that the data is self-consistent.

Next we investigate the development of the integral length scale �uu, which is
defined as

�uu =

∫ ∞

0

〈u(x)u(x + r)〉
〈u2〉 dr. (4.7)

Rather than measuring the correlation 〈u(x)u(x+r)〉 simultaneously at two streamwise
positions in space, it was approximated by using the Taylor frozen equilibrium
hypothesis, i.e. u(x)u(x + r) ≈ u(x)u(x − U�t). Ideally the correlation should decay
monotonically to zero for large r , but this is rarely found to be the case in experiments,
where the correlation is found to oscillate slowly around 0 indefinitely. Therefore the
integral in (4.7) was terminated at the first zero crossing. The integral scale is shown
in figure 9 based on the single wire measurements. Although the data for �uu exhibits
considerable more scatter than λ2, it is obvious that it also increases downstream
according to a power law. The data for (x − x0)/M < 50 is seen to be affected by
the small initial acceleration in U . This assumption is further supported by the Reλ
distribution shown in figure 1 and the single wire local decay exponents shown in
figure 5, which tend to be higher than the rest for the first few stations. A fit to the
�uu/M data in the range 50 < x/M < 200 gave a growth exponent of m = 0.362 which
is somewhat lower than the Saffman exponent of m = 0.4. However, it is consistent
with (2.31) and hence Saffman turbulence, if we take a value of p ≈ 0.09, which turns
out to be close to the measured value of p (see next section).

4.5. The variation of A and its influence on the power-law exponents for 〈u2〉 and �uu

We have already commented that the coefficient A in expression (2.12), which is
related to the dissipation rate through

ε =
3

2
Au3/�uu, (4.8)

is not strictly a constant in grid turbulence. Figure 10 shows A calculated using the
estimated values of εiso and �uu. Also shown is the best fit power law A ∼ [(x−x0)/M]−p

where x0 is the value obtained from § 4.2 and the data was again fitted in the range
50 < x/M < 200. The best fit exponent is p = 0.075. From (2.30) we see that the
corresponding energy decay exponent for Saffman turbulence is n = 1.11, which is
consistent with the measured values of n = 1.13±0.02. The corresponding power-law
exponent for �uu, on the other hand, is given by (2.31), and p = 0.075 would have
�uu ∼ t0.370, which is very close to the measured exponent of 0.362. This demonstrates
that the exponents derived for A(t), the energy decay and the growth rate of �

are all internally consistent, and also consistent with Saffman turbulence in which
u2�3

uu = constant . Table 2 summarizes the exponents found.
Finally, we return to (2.11), i.e. the question of whether the product 〈u2〉�3

uu, or
indeed 〈u2〉�5

uu, is constant for grid generated turbulence. It is clear from figure 11
that 〈u2〉�5

uu increases steadily with downstream distance, while the Saffman integral
L ∼ 〈u2〉�3

uu remains constant for (x − x0)/M > 45, within the experimental scatter. All
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Exponent n in 〈u2〉 ∼ t−n m in �uu ∼ t−m

Calculated assuming Saffman
turbulence and p = 0.075 1.11 0.370

Measured 1.13 ± 0.02 0.362

Table 2. Comparison of power-law exponents.
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Figure 10. Development of A in (2.12).
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in all, the data for (x − x0)/M > 45 is consistent with grid turbulence being Saffman
turbulence, evolving in time with the modified expressions (2.30) and (2.31).

5. Conclusions
We have shown that, in strictly homogeneous turbulence in which A = constant ,

the minimum decay exponent in the scaling u2 ∼ t−n is the Saffman value of n =
6/5. However, in grid turbulence, A may vary slowly due to the weak streamwise
inhomogenuity of the flow or else due to the decline in Reλ with x, and indeed the
experiments indicate A ∼ t−p , 0 < p � 1. This slow decline in A changes the predicted
decay exponent for Saffman turbulence to n = 6(1 − p)/5, which then represents the
minimum decay exponent for weakly inhomogeneous grid turbulence, i.e. u2 can decay
no slower than u2 ∼ t−1.2(1−p). The corresponding predicted variation in the integral
scale is � ∼ t0.4(1−p). In any event, whether the turbulence is strictly homogeneous or
weakly inhomogeneous, the hall-mark of Saffman turbulence is u2�3 = constant .

Our experiments show the following. Once the turbulence is fully developed and the
streamwise acceleration falls to zero, which corresponds to x > 50 M in the present
set-up, we find:

(i) u2�3 ≈ constant;
(ii) u2 ∼ t−n, n = 1.13 ± 0.02;
(iii) � ∼ t0.362;
(iv) A ∼ t−p, p = 0.075.
Finding (i) is highly suggestive of Saffman turbulence. Moreover, given the measured

value of p, Saffman turbulence would require u2 ∼ t−1.11 and � ∼ t0.370, which are very
close to the actual measurements. It is almost certain, therefore, that our turbulence
is of the type envisaged by Saffman in 1967. It follows that, for a given value of p,
the turbulence energy decays as slowly as it can do.

Perhaps some words of caution are appropriate at this point. Although it seems
very likely that the turbulence behind our grid is Saffman turbulence, it is entirely
possible that different grids, or different ranges of Re, could produce different results.
As noted in § 2, whether or not L is finite, depends on how much linear impulse is
imparted to the turbulence during its creation. If 〈[

∫
V

u dV ]2〉 is smaller than O(V ),

then L = 0 and the turbulence will decay faster than u2 ∼ t−1.2(1−p). It seems plausible,
for example, that the symmetric shedding of vortices from a square or round bar grid
at low-to-moderate Re will result in little linear impulse, and hence L = 0 (Saffman
1967). On the other hand, the less organized shedding of vorticity from a conventional
grid at high Re, or from our perforated plate grid, seems more likely to yield a finite
value of L, which is what we have observed.

The authors would like to acknowledge the help from Dr Muyiwa Adaramola in
setting up the experiment. Also, discussions with Mr Stuart Fox on the Regression
method in the initial phase of this project proved very useful.
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