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Energy dissipation rate limits for flow through
rough channels and tidal flow across topography

R. R. Kerswell†
School of Mathematics, Bristol University, Bristol BS8 1TW, UK

(Received 3 August 2016; revised 28 September 2016; accepted 3 October 2016;
first published online 4 November 2016)

An upper bound on the energy dissipation rate per unit mass, ε, for pressure-driven
flow through a channel with rough walls is derived for the first time. For large
Reynolds numbers, Re, the bound – ε 6 cU3/h where U is the mean flow through
the channel, h the channel height and c a numerical prefactor – is independent of
Re (i.e. the viscosity) as in the smooth channel case but the numerical prefactor c,
which is only a function of the surface heights and surface gradients (i.e. not higher
derivatives), is increased. Crucially, this new bound captures the correct scaling law
of what is observed in rough pipes and demonstrates that while a smooth pipe is a
singular limit of the Navier–Stokes equations (data suggest ε ∼ 1/(log Re)2U3/h as
Re→∞), it is a regular limit for current bounding techniques. As an application, the
bound is extended to oscillatory flow to estimate the energy dissipation rate for tidal
flow across bottom topography in the oceans.

Key words: Navier–Stokes equations, shear layer turbulence, variational methods

1. Introduction
In every turbulent flow, there is some key quantity of interest which is either

enhanced or suppressed compared to its laminar value and it is of fundamental
interest to understand this effect as a function of the parameters of the problem.
Well-known examples include the mass flux along a channel driven by an applied
pressure gradient, the heat flux across a differentially heated fluid layer or the wall
shear stress exerted by a fluid sheared between two parallel plates. One approach is to
derive strict inequality information on these key global flow quantities as a function
of the system parameters in the hope that this captures the correct scaling relationship.
This ‘bounding’ approach is attractive because it seeks to extract just enough of the
physics from the governing equations to make the correct prediction while eschewing
other secondary flow details which arise from directly solving the governing equations
and just may not be attainable in the asymptotic regime of interest (e.g. vanishing
viscosity). The downside of the bounding approach is that the bound derived can
be too conservative. Well-known examples are the energy dissipation rate ε in a
smooth pipe where the best (lowest) bound known predicts that ε approaches a finite
constant (in units of U3/h) as the Reynolds number Re becomes large – the so-called
Kolmogorov scaling (Frisch 1995) – whereas data suggest a ∼1/(log Re)2 drop off,
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Energy dissipation through rough channels 563

and the scaling of the Nusselt number Nu (normalised heat flux) in Boussinesq
convection with Rayleigh number Ra: the bound has Nu . Raα with α = 1/2 for
Ra→∞ whereas current data suggest α ≈ 0.31 (e.g. see the discussion in Waleffe,
Boonkasame & Smith (2015)) with probable dependence on the Prandtl number too
(Grossmann & Lohse 2000).

The bounding approach owes its roots to a suggestion by Malkus (1954) that
turbulent flows want to maximise their transport and was first applied in convection
by Howard (1963) and in shear flows by Busse (1969, 1970) (see Howard (1972)
and Busse (1978) for early reviews). The original approach was based on using
certain simple projections of the governing equations as constraints in an optimisation
problem. After initial successes, it quickly became hard to pose more constrained yet
still tractable problems and the field languished in the late 70s and 80s. In the early
90s, a new ‘background’ method introduced by Doering & Constantin (1992, 1994,
1996), Constantin & Doering (1995) revitalised the field by providing an alternative
way to systematically derive rigorous bounding results (Marchioro 1994; Kerswell
1996, 2002; Nicodemus, Grossmann & Holthaus 1997; Wang 1997; Hoffmann &
Vitanov 1999; Doering & Constantin 2001; Doering & Foias 2002; Otero et al.
2002; Plasting & Kerswell 2003, 2005; Plasting & Ierley 2005; Wittenberg 2010;
Whitehead & Doering 2011; Wen et al. 2013; Whitehead & Wittenberg 2014). The
key idea (traceable back to Hopf) is to decompose the flow variables into a steady
incompressible ‘background’ field which carries the inhomogeneities of the problem
and a fluctuating incompressible part which is unforced and hence of arbitrary
amplitude. The method then proceeds by designing the background field (typically
with a boundary layer of thickness δ) so that the influence of the unknown fluctuating
field on the key functional of interest can be bounded (by taking δ small enough).
While very successful (e.g. see Wang (1997) for a proof of an upper bound on ε

for a general domain where the boundary moves tangentially to itself everywhere),
the method does have its limitations, most notably illustrated by the problem of
pressure-driven flow across a rough wall (see also Nobili & Otto (2016) for work
in the convection problem). In flow driven across a rough wall, the background flow
must bring an O(1) (relative to δ→ 0) normal component of the exterior flow to zero
at the rough wall surface over a boundary layer distance of O(δ). Incompressibility
then forces the background flow to have an O(1/δ) component locally tangent to the
rough wall and control of the unknown fluctuating part is lost (technically the required
spectral constraint cannot be satisfied). Incompressibility of the background field is
the key obstacle here: relaxing the constraint on the background field causes problems
elsewhere (the fluid pressure cannot be eliminated from the analysis) or when it is
not relevant – in the case of convection where only a background temperature field
is needed – there is no problem (Goluskin & Doering 2016).

In the last 5 years, a second new bounding method has been developed by Otto
& Seis (2011), Seis (2015) – hereafter referred to as the ‘boundary layer’ method
– which potentially offers a new line of attack on the roughness problem. In this
paper we discuss how this method can indeed be extended to deliver a first rigorous
upper bound on the energy dissipation rate for pressure-driven flow through a rough
channel. Interestingly, the same scaling law emerges for the bound on ε in terms
of the applied pressure gradient as for the smooth channel situation (albeit with an
enlarged numerical prefactor dependent on the exact form of the roughness). This is
exactly what has also been found very recently for rough wall convection (using the
background technique) in Goluskin & Doering (2016). Assuming the bound carries
over to rough pipe flow, this then matches the observed scaling law for turbulent data
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564 R. R. Kerswell

(Moody 1944). There are two immediate implications: (i) a smooth wall is a singular
limit of rough wall flows at high Re flows yet a regular limit for current upper
bounding techniques; and (ii) current upper bounding techniques are actually better
at capturing scaling laws than has been immediately apparent by focussing on the
singular case of smooth wall problems (see Goluskin & Doering (2016) for references
which suggest that their rough wall bound may be consistent with convection data).
To illustrate how the new energy dissipation rate bound can be utilized, we extend
the result to oscillatory free-surface flow over one rough boundary which is a simple
model of tidal flow over topography. Understanding how topography such as isolated
ridges enhance dissipation and especially mixing processes is an important yet
poorly understood ingredient for ocean circulation modelling (e.g. see Melet, Legg &
Hallberg (2016) and references therein).

2. Three-dimensional rough channel flow
Imagine a channel of average height h, periodic extent hLx in the (streamwise)

direction of an applied pressure gradient and periodic spanwise extent hLy. If ν is the
kinematic viscosity, then introduce ν/h as the unit of speed, h as the unit of length
and h2/ν as the unit of time. The governing Navier–Stokes equations become

∂u
∂t
+ u · ∇u+∇p−∇2u=Grx̂, (2.1)

∇ · u= 0, (2.2)

where Gr := h3G/ν2, the Grashof number, is the non-dimensionalised applied pressure
gradient G driving the flow. For convenience, we refer to the cross-channel z-direction
as the ‘vertical’ direction and the x and y directions as ‘horizontal’ and imagine rough
channel boundaries at z = f (x, y) (the lower boundary) and z = g(x, y) (the upper
boundary). The roughness functions f and g will be assumed at least C3 (3 times
differentiable), periodic over A := [0, Lx] × [0, Ly] such that∫∫

A
f dx dy= 0 and

1
A

∫∫
A

g dx dy= 1 (2.3a,b)

(to preserve the average channel height as 1 in non-dimensional units and non-
dimensional volume as A := LxLy) and to be such that the channel is never blocked
at any point (i.e. f < g for any (x, y) ∈ A). In the following we work with a
one-dimensional (1-D) family of interior surfaces

S(λ) := {(x, y, z)|z= F(x, y, λ) := (1− λ)f (x, y)+ λg(x, y) for (x, y) ∈A} (2.4)

with λ ∈ [0, 1] which smoothly interpolate between the two rough boundaries: λ= 0
giving the lower boundary and λ= 1 the upper boundary: see figure 1. Let C(λ, y∗) be
the line formed from the intersection of S(λ) with the y= y∗ plane. Let V(λ) be the
volume enclosed by S(λ), S(0) (the lower boundary) and the planes x= 0, x=Lx, y=
0 and y=Ly, and let ∂V(λ) be the boundary of V(λ). The flow conditions at the edges
of each surface are periodic so that the flow is invariant under the transformations
x→ x+ Lx and y→ y+ Ly. A long-time average is defined as

〈
(·)〉 := lim

T→∞
1
T

∫ T

0
(·) dt. (2.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

65
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.650


Energy dissipation through rough channels 565
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FIGURE 1. (Colour online) The flow geometry. The top boundary is given by z= g(x, y)
and the bottom by z= f (x, y). The intermediate surface shown in outline is parametrised
by λ and defined by z= F(x, y, λ) := (1− λ)f (x, y)+ λg(x, y).

We start the ‘boundary layer’ bounding analysis (Otto & Seis 2011; Seis 2015) by
taking the line integral of (2.1) along C(λ, y) (in the direction of increasing x) followed
by an integration over y,∫ Ly

0

∫
C(λ,y)

ŝ ·
[
∂u
∂t
+ u · ∇u+∇p−∇2u

]
ds dy=Gr

∫ Ly

0

∫
C(λ,y)

ŝ · x̂ ds dy, (2.6)

where s is the arc-length along C(λ, y) and ŝ := (x̂+Fxẑ)/
√

1+ F2
x is the unit tangent

vector (subscripts indicate partial derivatives so that Fx = ∂F/∂x with y and λ held
fixed). Crucially, this procedure kills the pressure term as∫

C(λ,y)
ŝ · ∇p ds= p(Lx, y, F(Lx, y, λ), t)− p(0, y, F(0, y, λ), t)= 0 (2.7)

by periodicity in x. With this, and converting the line integral to an integration over
x, we get

A Gr= ∂

∂t

∫∫
A
(x̂+ Fxẑ) · u dx dy+

∫∫
A
(x̂+ Fxẑ) · [u · ∇u−∇2u] dx dy. (2.8)
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566 R. R. Kerswell

The first term on the right-hand side can be dropped after long-time averages,
assuming that the kinetic energy remains bounded in time, to leave

Gr=
〈

1
A

∫∫
A
(x̂+ Fxẑ) · [u · ∇u−∇2u] dx dy

〉
, (2.9)

which is an identity for any λ ∈ [0, 1]. We now generate volume integrals from this
expression which can be related to the long-time-averaged energy dissipation rate per
unit mass (in units of ν3/h4)

ε :=
〈

1
A

∫∫∫
|∇u|2 dV

〉
:=
〈

1
A

∫ Lx

0

∫ Ly

0

∫ z=g(x,y)

z=f (x,y)
|∇u|2 dz dy dx

〉
. (2.10)

To do this, (2.9) is integrated over λ ∈ [0, Λ] to give

ΛGr=
〈

1
A

∫ Λ

0

∫∫
A
(x̂+ Fxẑ) · [u · ∇u−∇2u] dx dy dλ

〉
. (2.11)

This can be converted into a volume integral by converting the integral over λ to one
over z with the addition of a (Jacobian) scaling factor ∂z/∂λ|x,y = Fλ(x, y, λ):

ΛGr=
〈

1
A

∫∫∫
V(Λ)

a · [u · ∇u−∇2u] dx dy dz
〉
∀Λ ∈ [0, 1], (2.12)

where

a := x̂+ Fxẑ
Fλ

= x̂+ [ fx + (z− f )[ln(g− f )]x]ẑ
(g− f )

(2.13)

eliminating λ in favour of z (recall g= g(x, y) and f = f (x, y)). The key now is to lift
spatial derivatives off u and onto a by judicious use of the divergence theorem. This
leads to

ΛGr = 1
A

〈∮
∂V(Λ)

(a · u)u · n̂+ u · (n̂ · ∇)a− a · (n̂ · ∇)u dS

−
∫∫∫

V(Λ)
u · (u · ∇)a+ u ·∇2a dV

〉
∀Λ ∈ [0, 1] (2.14)

(note the last term requires the roughness functions f and g to be at least C3). Due
to periodicity over (x, y)∈ [0, Lx] × [0, Ly], the only parts of ∂V(Λ) which need to be
considered are the lower boundary S(0) where u = 0 and the interior surface S(Λ).
Hence, in fact

ΛGr = 1
A

〈∫
S(Λ)

(a · u)u · n̂+ u · (n̂ · ∇)a− a · (n̂ · ∇)u dS

−
∫
S(0)

a · (n̂ · ∇)u dS

−
∫∫∫

V(Λ)
u · (u · ∇)a+ u ·∇2a dV

〉
∀Λ ∈ [0, 1]. (2.15)
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Energy dissipation through rough channels 567

Now the strategy is to separately average (2.15) over Λ ∈ [0, `] and over Λ ∈ [1 −
`, 1] and then compute the difference in order to eliminate the Λ-independent S(0)
boundary term. Subtracting 1/`

∫ `
0 (2.15) dΛ from 1/`

∫ 1
1−` (2.15) dΛ gives

(1− `)Gr = 1
A

〈
1
`

∫ 1

1−`

∫
S(Λ)

(a · u)u · n̂+ u · (n̂ · ∇)a− a · (n̂ · ∇)u dS dΛ

− 1
`

∫ `

0

∫
S(Λ)

(a · u)u · n̂+ u · (n̂ · ∇)a− a · (n̂ · ∇)u dS dΛ

− 1
`

∫ 1

1−`

∫∫∫
V(Λ)

u · (u · ∇)a+ u ·∇2a dV dΛ

+ 1
`

∫ `

0

∫∫∫
V(Λ)

u · (u · ∇)a+ u ·∇2a dV dΛ
〉
. (2.16)

This is the generalisation of Seis’s (2015) expression (4.10) which can be recovered
by setting a= x̂, taking S(Λ) as the horizontal plane z=Λ over [0, Lx] × [0, Ly] and
n̂= ẑ. Notably, there are new integrated volume terms because the linear momentum
directed along C(λ, y) is not conserved but these turn out to be subdominant in what
follows. From here, the exercise is to bound the right-hand side of (2.16) in terms
of the energy dissipation rate ε and then to optimise over `∈ [0, 1/2] to produce the
best bound on Gr as in Seis (2015). Since our focus is on establishing the scaling
exponent of how Gr scales with ε rather than the secondary issue of producing the
best estimate for the numerical prefactor, we proceed by employing straightforward
conservative estimates. This has the advantage of securing our key result quickly and
relatively clearly but more careful estimates could lower the (numerical) bound on Gr
but not, we contend, the scaling exponent. Firstly,

Gr 6 1
A`(1− `)

{〈∫ 1

1−`

∫
S(Λ)
|a · u||u · n̂| dS dΛ

〉
+
〈∫ 1

1−`

∫
S(Λ)
|u · (n̂ · ∇)a| dS dΛ

〉
+
〈∫ 1

1−`

∫
S(Λ)
|a · (n̂ · ∇)u| dS dΛ

〉
+
〈∫ `

0

∫
S(Λ)
|a · u||u · n̂| dS dΛ

〉(1)
+
〈∫ `

0

∫
S(Λ)
|u · (n̂ · ∇)a| dS dΛ

〉(2)
+
〈∫ `

0

∫
S(Λ)
|a · (n̂ · ∇)u| dS dΛ

〉(3)
+
〈∫ 1

1−`

∫∫∫
V(Λ)
|u · (u · ∇)a| dV dΛ

〉
+
〈∫ 1

1−`

∫∫∫
V(Λ)
|u ·∇2a| dV dΛ

〉
+
〈∫ `

0

∫∫∫
V(Λ)
|u · (u · ∇)a| dV dΛ

〉(4)
+
〈∫ `

0

∫∫∫
V(Λ)
|u ·∇2a| dV dΛ

〉(5)}
(2.17)

(the superscripts in parentheses are just labels). Each of the integrals in (2.17) need
to be bounded by a function of ε. We focus on integrals concentrated at the lower
boundary and treat first the integral, I1, labelled (1) in (2.17). Firstly converting the
surface integral into one over A

I1 6
〈∫ `

0

∫∫
A
|a|
√

1+ F2
x + F2

y |u|2 dx dy dΛ
〉
. (2.18)
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568 R. R. Kerswell

Then using the fundamental theorem of calculus since u(x, y, f (x, y))= 0 (i.e. on S(0))
and Cauchy–Schwarz gives

I1 6
〈∫ `

0

∫∫
A
|a|
√

1+ F2
x + F2

y

∣∣∣∣∫ z

f (x,y)

∂u
∂z

dz
∣∣∣∣2 dx dy dΛ

〉

6
〈∫ `

0

∫∫
A
|a|
√

1+ F2
x + F2

y

(∫ z

f (x,y)
12 dz

∫ z

f (x,y)

∣∣∣∣∂u
∂z

∣∣∣∣2 dz
)

dx dy, dΛ

〉

6
〈∫ `

0

∫∫
A
|a|
√

1+ F2
x + F2

y ΛFλ

∫ z

f (x,y)

∣∣∣∣∂u
∂z

∣∣∣∣2 dz dx dy dΛ

〉

6 max
x,y,λ∈V(`)

{
|a|Fλ

√
1+ F2

x + F2
y

}∫ `

0
ΛdΛ

〈∫∫∫
|∇u|2 dV

〉
6 max

x,y,λ∈V(`)

{√
1+ F2

x

√
1+ F2

x + F2
y

}
× 1

2
`2Aε. (2.19)

Integral I4 (labelled (4) in (2.17) ) is treated similarly albeit with an extra integration
in Λ giving rise to `3 in the estimate:

I4 6
〈∫ `

0

∫∫∫
V(Λ)
|∇a||u|2 dV dΛ

〉
6
〈∫ `

0

∫ Λ

0

∫∫
A

Fλ|∇a||u|2 dx dy dλ dΛ
〉

6 max
x,y,λ∈V(`)

{
F2
λ|∇a|} ∫ `

0

∫ Λ

0
λ dλ dΛ

〈∫∫∫
|∇u|2 dV

〉
6 max

x,y,λ∈V(`)
{

F2
λ|∇a|}× 1

6
`3Aε. (2.20)

The remaining integrals, I2, I3 and I5, are treated as follows:

I2 6
〈∫∫

A

∫ F(x,y,`)

f (x,y)

|n̂ · ∇a|
√

1+ F2
x + F2

y

Fλ
|u| dz dx dy

〉

6
[∫∫∫

V(`)

|n̂ · ∇a|2(1+ F2
x + F2

y )

F2
λ

dV
]1/2[〈∫∫∫

V(`)
|u|2 dV

〉]1/2

6
[∫∫∫

V(`)

|n̂ · ∇a|2(1+ F2
x + F2

y )

F2
λ

dV
]1/2

×
[

max
(x,y)∈A

F2
λ

]1/2 ×
√

1
2
`2Aε

6
[

1
A

∫∫
A

max
Λ∈[0,`]

{|n̂ · ∇a|2(1+ F2
x + F2

y )
}dx dy

Fλ

]1/2

×
[

max
(x,y)∈A

F2
λ

]1/2 × A

√
1
2
`3ε,

(2.21)

where n̂ = (−Fxx̂ − Fyŷ + ẑ)/
√

1+ F2
x + F2

y and the last two lines follow using the
same type of estimates as in (2.19) and noting that Fλ=g(x, y)− f (x, y) is independent
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of λ and strictly positive. Respectively

I3 6
〈∫∫

A

∫ F(x,y,`)

f (x,y)

|a|
√

1+ F2
x + F2

y

Fλ
|∇u| dz dx dy

〉

6
[∫∫∫

V(`)

|a|2(1+ F2
x + F2

y )

F2
λ

dV
]1/2

×√Aε

6
[∫∫

A

∫ `

0

(1+ F2
x )(1+ F2

x + F2
y )

F3
λ

dΛ dx dy
]1/2

×√Aε

6
[

1
A

∫∫
A

max
Λ∈[0,`]

{
(1+ F2

x )(1+ F2
x + F2

y )
} dx dy

F3
λ

]1/2

× A
√
`ε (2.22)

and

I5 6
∫ `

0

[∫∫∫
V(`)
|∇2a|2 dV

]1/2[〈∫∫∫
V(`)
|u|2 dV

〉]1/2

dΛ

6
[

1
A

∫∫∫
V(`)
|∇2a|2 dV

]1/2

×
[

max
(x,y)∈A

F2
λ

]1/2 × `2A

√
1
2
ε

6
[

1
A

∫∫
A

Fλ max
Λ∈[0,`]

|∇2a|2 dx dy
]1/2

×
[

max
(x,y)∈A

F2
λ

]1/2 × A

√
1
2
`5ε. (2.23)

The estimates for the corresponding integrals centred at the top boundary are exactly
analogous, and grouping the contributions together for each term, we get a simplified
‘inequality’ version of (2.16)

Gr 6 1
`(1− `) {(B1`

2 + B4`
3)ε+ (B2`+ B3 + B5`

2)
√
`ε}. (2.24)

where the coefficients Bi represent the O(1) numerical factors (in the sense of
Gr→∞) of the ith integral bound (summed for both boundaries) when a factor of
A is factored out and the dominant ` and ε behaviour (which both are not O(1)) is
separated off. The idea now is to minimise the right-hand side over the choice of
` ∈ (0, 1/2) in the turbulent limit Gr→∞. Here, ε→∞ (naive scalings suggest
Gr . ε. Gr2 ) and the optimal `→ 0 so, working to leading order,

Gr 6 B1`ε+ B3

√
ε/`+ h.o.t. (2.25)

and now it is clear that all the new integral contributions due to the roughness are
subdominant. Instead the roughness manifests itself as adjusted numerical coefficients
for the integrals which arise in the smooth situation (Seis 2015). The minimising ` is
(B3/2B1)

2/3ε−1/3 and

Gr 6 3
2
(2B1B2

3)
1/3 × ε2/3 or

2
√

3
9B3
√

B1
×Gr3/2 6 ε, (2.26a,b)

where

B1 =
1∑
λ=0

max
(x,y)∈A

{
1
2

√
1+ F2

x

√
1+ F2

x + F2
y

}
, (2.27)
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B3 =
1∑
λ=0

[
1
A

∫∫
A

(1+ F2
x )(1+ F2

x + F2
y )

[g(x, y)− f (x, y)]3 dx dy
]1/2

(2.28)

(since ` � 1, it is sufficient to leading order to replace maxΛ∈[0,`] by the value at
Λ = 0 and similarly for the upper boundary). The lower bound in (2.26) indicates
that turbulence decreases dissipation for a given applied pressure gradient as per
the smooth wall case (Constantin & Doering 1995; Seis 2015). However, as there,
rewriting the result in terms of the a priori unknown mean flow recovers the familiar
upper bound situation. Taking 〈∫ ∫ ∫ u · (2.1) dV〉 connects the mean flow U with the
applied pressure gradient and ensuing dissipation rate,

U :=
〈

1
A

∫∫∫
u · x̂ dV

〉
= ε/Gr. (2.29)

This can be used to eliminate the pressure gradient (Gr) to get

ε6 27
4 B1B2

3U3 or ε6 27
4 B1B2

3 (in units of U3/h) (2.30a,b)

so that the bound predicts that the energy dissipation rate becomes independent of the
viscosity as the viscosity goes to zero – Kolmogorov scaling – just as in the smooth
wall calculation (Constantin & Doering 1995; Seis 2015, and Plasting & Kerswell
2005 for pipe flow).

3. Oscillatory flow across topography: the tidal problem
As a simple application of the above result, we now consider the ocean tidal

problem of oscillatory flow across bottom topography (and a free top surface). This
situation is modelled by assuming an oscillatory pressure gradient driving the flow
directly i.e. G ∼ ω∗U∗ where the tidal frequency ω∗ = 2π/12 hours= 1.4× 10−4 s−1

and U∗ ≈ 0.1 m s−1. We consider a symmetrised problem where the top boundary is
defined by g(x, y) = 1 − f (x, y) so that the real free surface position on average is
the (symmetric) midplane of the extended domain and h/2 is then the mean ocean
depth. By symmetry, the maximum dissipation in the extended domain is exactly
double the maximum dissipation in the ‘ocean’ domain. Further restricting the flow
in the extended domain to have zero vertical motion and zero stress across z = 1/2
(the horizontal free-surface approximation) can only reduce the maximum dissipation
possible (by restricting the competitor space) so halving the dissipation bound from
the unrestricted, extended domain should be an upper bound on the dissipation in a
flat surface ocean (z 6 1/2).

Taking a typical ocean depth h/2=1000 m, the Grashof number Gr=1.12×1017�
1 and the non-dimensionalised tidal frequency

1 �ω := h2ω∗

ν
=
√

hG
U2

√
Gr �Gr, (3.1)

where Υ := hG/U2 is a second non-dimensional number independent of ν which is
here O(1). This makes it clear that in the limit ν→0 (with everything else kept fixed),
Gr→∞ with ω∼√Gr. The governing equation for the problem is then

∂u
∂t
+ 2Ω × u+ u · ∇u+∇p−∇2u=Gr Γ (t)x̂, (3.2)
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the flow is assumed incompressible and a planetary rotation Ω is also included for
completeness (|Ω| =ω/2). The oscillatory function Γ (t) is defined such that

max
t∈[0,2π/ω]

|Γ (t)| = 1 (3.3)

but is otherwise left unspecified for clarity. As before, the analysis starts by taking the
line integral of (3.2) along C(λ, y) and integrating over y as above in § 2 but now also
multiplying by Γ (t) to rectify the forcing pressure gradient. This leads to an extended
version of (2.8)

AGrΓ (t)2 = Γ (t)
∂

∂t

∫∫
A
(x̂+ Fxẑ) · u dx dy

+Γ (t)
∫∫

A
(x̂+ Fxẑ) · [2Ω × u+ u · ∇u−∇2u] dx dy. (3.4)

Now long-time averaging leads to

AGr〈Γ (t)2〉 = −
〈
Γt

∫∫
A
(x̂+ Fxẑ) · u dx dy

〉
+
〈
Γ (t)

∫∫
A
(x̂+ Fxẑ) · [2Ω × u+ u · ∇u−∇2u] dx dy

〉
, (3.5)

where integration by parts in time has been used to transfer the time derivative onto Γ .
Integrating over λ ∈ [0, Λ] and converting to a volume integral over V(Λ), gives

ΛGr〈Γ (t)2〉 = 1
A

〈∫∫∫
V(Λ)

Γ (t)a · [u · ∇u−∇2u] + [Γ a× 2Ω − Γta] · u dx dy dz
〉

(3.6)
for all Λ ∈ [0, 1]. The first term on the right-hand side is as before, albeit with an
extra factor of Γ (t). Since this is bounded in modulus by 1, the subsequent estimates
are unchanged. The new second term on the right-hand side is of the form of I5 and
can be similarly estimated as adding a new term

[
1
A

∫∫
A

Fλ max
Λ∈[0,`]

|Γ a× 2Ω − Γta|2 dx dy
]1/2

×
[

max
(x,y)∈A

F2
λ

]1/2 × A

√
1
2
`5ε (3.7)

to (2.24). Since both Ω and Γt = O(ωΓ ) are O(
√

Gr), the leading-order version of
(2.24) is potentially modified to

Gr 6 B1`ε+ (B3 + B5`
2
√

Gr)
√
ε/`+ h.o.t. (3.8)

The minimiser, however, remains `∼ ε−1/3 with the new term O(Gr−1/2) smaller than
the other two terms. Hence the rotation and oscillation are not important at leading
order in the bound on the energy dissipation rate for tidal flow over topography.
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FIGURE 2. (Colour online) (a) The 2-D ridge tidal problem with the ocean represented
by the region z 6 1/2. (b) A cartoon of the Moody diagram for pipe flow (Moody
1944): Cf := ε/(U3/h), laminar flow has Cf ∼ 1/Re, turbulent smooth pipe data suggest
Cf ∼ 1/(log Re)2 at least to Re=O(108) and turbulent rough pipe data have Cf ∼O(1) as
Re→∞. Three lines are shown for rough pipe flow with the data increasing to higher
Cf as the representative height of the roughness increases.

3.1. A simple example
Here we consider a 2-D ridge of height a< 1/2 and horizontal extent aδ

f (x) := asech2

(
x− 1

2 L
aδ

)
− 2a2δ

L
tanh

(
L

2aδ

)
(3.9)

over x∈ [0, L] (the second term on the right-hand side ensures the roughness has zero
mean over x): see figure 2. This roughness function is not periodic over [0, L] but in
the steep (δ� 1) isolated (aδ� L) ridge limit this can be ignored. In this limit, it is
straightforward to approximate B1 and B3 as follows

B1 = max
x∈[0,L]

(1+ f 2
x )≈

16
27δ2

, B3 = 2
[

1
L

∫
(1+ f 2

x )
2

(1− 2f )3
dx
]1/2

.
[

2a
L(1− 2a)3δ3

]1/2

,

(3.10)
(using the fact that 2048/1155< 2) so the dissipation rate per unit mass is

ε6 4aU3

L(1− 2a)3δ5
(in units of ν3/h4) (3.11)

(including the 1/2 to reflect the fact that the ocean is strictly in z6 1/2). This can be
re-expressed using inertial units to give the familiar bound independent of the viscosity

ε6 4a
L(1− 2a)3δ5

(in units of U3/h). (3.12)
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Since this is the leading term due to the ridge (the dissipation bound for zero
topography is O(δ5) smaller), this expression can be viewed as giving the enhanced
dissipation caused by the ridge per unit length of the domain [0, L].

4. Discussion
Using a new bounding technique (Otto & Seis 2011; Seis 2015), this paper has

derived an upper bound on the energy dissipation rate (per unit mass) ε for pressure-
driven flow through a rough channel with bottom z = f (x, y) and top z = g(x, y) ( f
and g at least C3) such that the average height is h in the limit of vanishing viscosity
of the form

ε6 cU3/h, (4.1)

where U is the mean flow through the channel and

c := 27
8

1∑
λ=0

max
(x,y)∈A

{√
1+ F2

x

√
1+ F2

x + F2
y

}

×
( 1∑
λ=0

[
1
A

∫∫
A

(1+ F2
x )(1+ F2

x + F2
y )

[g(x, y)− f (x, y)]3 dx dy
]1/2)2

, (4.2)

with F(x, y, λ) := (1 − λ)f (x, y) + λg(x, y) and A := [0, Lx] × [0, Ly]. The fact that
bound predicts that the dissipation rate approaches a finite limit (in inertial units) as
the viscosity vanishes – so-called Kolmogorov scaling – then captures the observed
scaling of turbulent data in rough pipes – see figure 2 for a cartoon of the classic
Moody diagram (Moody 1944) – and indicates that the well-known discrepancy
between the bound and data scalings in the smooth wall case (Constantin & Doering
(1995), Plasting & Kerswell (2005), Seis (2015) and figure 2) is an exception rather
than the rule. Interestingly, boundary cross-flow produced by suction instead of
roughness also seems to achieve the same effect in plane Couette flow: bounds and
data have the same Kolmogorov scaling for non-zero suction but disagree for zero
suction (Doering, Spiegel & Worthing 2000). These observations, which may also
extend to convection although the available data are so far only suggestive (see
Goluskin & Doering 2016), substantially enhance the credentials of the bounding
approach as a viable way to extract key scaling laws in real turbulent flows where
smooth walls are not generic.

There is, of course, room for improvement. The bound derived here requires C3

differentiability of the roughness whereas it would be better (and more realistic)
to only require continuity and piecewise differentiability. This would allow sharp
corners, such as those present in roughness created by sand granules, to be treated.
It is possible that better functional analytic estimates may achieve this as well as
reducing the numerical prefactor c (e.g. by replacing the infinity norm present by a
less extreme norm). However, it seems difficult to see how the exponent in the scaling
law (i.e. ε∼Re0U3/h as Re→∞) could be changed. From a mathematical perspective,
formulating the full variational equations underlying the Otto–Seis ‘boundary layer’
method presents an enticing challenge with the potential for revealing valuable insights
into this new method. It was, after all, only after the full variational equations were
identified for the Doering–Constantin background method that an intimate connection
was made to the Malkus–Howard–Busse bounding approach (Kerswell 1997, 1998).

A significant challenge for the bounding approach remains, however, deriving
a dissipation bound on shearing systems with rough boundaries (e.g. rough plane
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Couette flow). Here, unlike pressure-driven flow through a stationary rough channel,
one rough boundary moving relative to another means that there has to be motion
locally perpendicular to one boundary and therefore work done by the pressure enters
the calculation. So far all bounding approaches eliminate the pressure as soon as
possible so a totally different approach will be needed. Nevertheless it is reasonable
to suppose that a dissipation bound will be derived with Kolmogorov scaling which
is what is observed in rough-walled Taylor–Couette flow. If one or both of the walls
are smooth, however, the observed dissipation rate then drops off like ∼1/(log Re)2
mimicking the situation in pipe flow (Cadot et al. 1997; van den Berg et al. 2003).

Finally, an application of the new bound has been made to a problem of interest in
ocean modelling. This warrants further development to include stable stratification and
a refocus on the turbulent mixing that can be caused by isolated topography (typically
by internal wave breaking) as this is an important yet poorly known input in ocean
models (e.g. see Melet et al. (2016) and references therein).
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