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Astrophysical flows are often subject to both rotation and large-scale background
magnetic fields. Individually, each is known to two-dimensionalize the flow in the
perpendicular plane. In realistic settings, both of these effects are simultaneously
present and, importantly, need not be aligned. In this work, we numerically investigate
three-dimensional forced magnetohydrodynamic turbulence subject to the competing
effects of global rotation and a perpendicular background magnetic field. We focus on
the case of a strong background field and find that increasing the rotation rate from
zero produces significant changes in the structure of the turbulent flow. Starting with a
two-dimensional inverse energy cascade at zero rotation, the flow first transitions to a
forward cascade of kinetic energy, then to a shear-layer dominated regime and finally
to a second shear-layer regime where the kinetic energy flux is strongly suppressed and
the energy transfer is mediated by the induced magnetic field. We show that the first
two transitions occur at distinct values of the Rossby number, and the third occurs at a
distinct value of the Lehnert number. The three-dimensional results are confirmed using
an asymptotic two-dimensional, three-component model, which allows us to extend our
results to the planetary-relevant case of an arbitrary angle between the rotation vector
and guide field. More generally, our results demonstrate that, when considering the
simultaneous limits of strong rotation and a strong guide field, the order in which those
limits are taken matters in the misaligned case.
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1. Introduction

Turbulence in geophysical and astrophysical settings contains additional physical
ingredients that break the isotropy of the flow, a traditional assumption in classical
turbulence theory, thereby adding complexity to the system at hand (Frisch 1995; Davidson
2013; Alexakis & Biferale 2018). This includes, but is not limited to, rotating, electrically
conducting, stratified and large aspect ratio systems. Asymptotic regimes are sought out to
simplify the system, thus allowing previous ideas and techniques of idealized turbulence
to be used. This is done by studying the limiting equations as a control parameter (rotation,
aspect ratio, etc.) is taken to zero or infinity. For example, one particular success is
the quasigeostrophic approximation, which predicts horizontal motion in the presence of
stratification and rapid rotation (Charney 1971; Vallis 2017). More generally, in rapidly
rotating systems without stratification and with periodic boundary conditions, the flow
becomes two-dimensional (2-D), invariant along the rotation axis (Smith & Waleffe 1999;
Mininni & Pouquet 2010; Gallet 2015; Buzzicotti et al. 2018). A similar simplification
occurs in plasmas in the presence of a strong uniform background magnetic ‘guiding’ field,
reducing the dynamics to 2-D magnetohydrodynamics (MHD) (Montgomery & Turner
1981; Nazarenko 2007; Alexakis 2011; Bigot & Galtier 2011; Sujovolsky & Mininni 2016),
and further to 2-D hydrodynamics (HD) if the magnetic field is not forced (Alexakis 2011;
Sujovolsky & Mininni 2016). Both of these limits produce 2-D HD turbulence, which is
characterized by the presence of an inverse cascade of energy, in which energy goes from
the forcing scale towards larger scales (Kraichnan 1967; Boffetta & Ecke 2012; Alexakis
& Biferale 2018). This is in contrast to the forward energy cascades found in 3-D HD and
MHD turbulence in the absence of a guiding field, where energy cascades to smaller scales.
The asymptotic regimes allow one to use energy cascade arguments to help understand
turbulent geophysical and astrophysical phenomena. For example, the inverse cascade in
the quasigeostrophic system is thought to contribute to the formation of jets in rapidly
rotating planetary atmospheres (Rhines 1975; Cho & Polvani 1996a,b; Held & Larichev
1996; Arbic & Flierl 2004; Tobias, Diamond & Hughes 2007; Gallet & Ferrari 2021). An
analogous cascade mechanism is thought to be responsible for the formation of poloidal
jets in tokamak plasmas in the presence of a strong background toroidal guiding magnetic
field (Diamond et al. 2005).

In many geophysical and astrophysical contexts, however, it is expected that a fluid is
subject to some combination of rotation, magnetic field, and stratification (Cho 2008;
Davidson 2013; Vallis 2017). Asymptotic analysis of these combined cases is more
difficult, where often the order in which the limits are taken matters, and knowing which
regime is observed in nature (and how the energy cascades behave) is a challenge (Aurnou
et al. 2015).

Furthermore, real physical systems are not subject to infinite rotation rates or infinite
background magnetic field strengths and reality often lies at intermediate values. There is
currently no existing theory for the cascade direction of such intermediate parameters,
and it is only more recently through state-of-the-art simulations (Smith, Chasnov &
Waleffe 1996; Smith & Waleffe 1999; Celani, Musacchio & Vincenzi 2010; Pouquet &
Marino 2013; Deusebio et al. 2014; Marino, Pouquet & Rosenberg 2015) and laboratory
experiments (Xia et al. 2011; Campagne et al. 2014; Baker et al. 2018) that we are
able to carefully investigate their turbulent dynamics. These studies looking into the
cascade of conserved quantities in geophysical and astrophysical flows have revealed the
presence of bidirectional cascades at intermediate parameter values, in which a fraction
of the conserved quantity input by the forcing goes to large scales whereas the rest
goes to small scales (Alexakis & Biferale 2018; Pouquet et al. 2019). This is not to be
confused with dual cascade scenarios, where the system has two conserved quadratic
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quantities which cascade in different directions, such as in 2-D HD turbulence with the
forward cascade of enstrophy and inverse cascade of energy. Most of these geophysical
and astrophysical systems seem to form bidirectional cascades at particular critical values
of the control parameters. Numerical simulations are crucial in revealing the behaviour
of turbulent systems in configurations and parameter values that are out of reach of
asymptotic methods.

Here, we investigate the turbulent dynamics of an incompressible electrically
conducting MHD fluid subject to rotation and a misaligned uniform background magnetic
field using a series of direct numerical simulations. Such a configuration is expected to
represent the turbulent dynamics in the atmospheric interiors of gas giant planets in the
transition region between the outer, neutral atmosphere and the deep, ionized one (e.g. Liu,
Goldreich & Stevenson 2008; Dietrich & Jones 2018; Benavides & Flierl 2020). There,
the dynamics is characterized by rapid rotation and the presence of a strong background
field generated by the dynamo in the deep interior region below. A simplified case of
a dipole magnetic field present in the transition layer would suggest that the alignment
between rotation and the background field would vary with latitude. The latest Juno
measurements by Moore et al. (2018) show, however, that the background field around
the transition region is quite ‘patchy’, but we still expect the misalignment with rotation
to be a generic feature. In these regions the electrical conductivity is expected to be quite
low (Liu et al. 2008; French et al. 2012; Dietrich & Jones 2018). For the sake of generality,
in the following we investigate a model with rather large conductivity, before discussing
how most of the results carry over to the low-conducting case in § 5. To some extent,
the ultimate effect of the background magnetic field is the same, resulting in anisotropic
flows, and eventually the two-dimensionalization of the flow perpendicular to the field
(Sommeria & Moreau 1982; Vorobev et al. 2005; Thess & Zikanov 2007; Favier et al.
2010; Gallet & Doering 2015; Baker et al. 2018). While our interests are at the fundamental
level, with application to gas giant planets in mind, the effects of a background field and
(possibly misaligned) rotation also need to be considered in the formation and dynamics
of ionized protoplanetary disks in the presence of the host star’s magnetosphere (Fromang
2005; Armitage 2011; Joos, Hennebelle & Ciardi 2012; Simon et al. 2013, 2018). Both
of the astrophysical settings mentioned so far are geometrically confined, so we will not
explore large domain size effects in this work (see discussion in § 4).

More generally, given the prevalence of astrophysical systems which are both ionized
and undergoing rotation, we expect our results to be general enough to apply in other
contexts. Our idealized system has simplified forcing and boundary conditions compared
with realistic astrophysical settings. However, its role is to uncover the dynamics of the
small scales, which can eventually guide parametrizations of sub-grid-scale fluxes in
large-scale models of astrophysical objects.

In particular, we are interested in understanding what happens when there are two,
two-dimensionalizing effects which act in different directions. What is the fate of the
inverse cascade and how ‘fragile’ is it to the variation in the secondary control parameter?
Focusing on the case of a strong background field, we find that increasing the rotation rate
from zero produces significant changes in the structure of the turbulent flow. Starting from
a 2-D inverse cascade scenario at zero rotation, we find four distinct dynamical regimes as
we increase rotation: for weak rotation rates we observe a bidirectional cascade of kinetic
energy, with energy flux to large scales decreasing as rotation is increased, and negligible
induced magnetic energy. For rotation rates past some critical point, the flow transitions to
a purely forward cascade of kinetic energy. Further increasing the rotation rate results in a
shear-layer dominated regime, where nonlinearities at large scales are suppressed. Finally,
at the largest rotation rates we investigated, we found a second shear-layer regime where
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the induced magnetic energy is no longer negligible, the kinetic energy flux is strongly
suppressed and the energy transfer is purely mediated by nonlinear terms which include
the induced magnetic field. Using a 2-D three-component asymptotic model of our system,
we also show that the first three regimes are separated by sharp transitions, hinting at the
existence of a bifurcation in the behaviour of the turbulent flow. One is found to be similar
to other previously found transitions from a bidirectional cascade to a forward one, while
the other shows subcritical behaviour including a discontinuity in the order parameter
and hysteresis. The transition to the magnetically active regime is beyond the scope of the
reduced model, but we show that it also sharpens towards a critical value as the background
magnetic field strength increases. We find more generally that, when considering the limit
of strong rotation and strong magnetic field, the order in which those limits are taken
matters.

In § 2 we introduce the system we will study: rotating MHD in the presence of a
background magnetic field, referred to as BΩ-MHD (Menu, Galtier & Petitdemange 2019).
In § 3 we discuss results from 3-D simulations in which the background magnetic field is
strong and as we vary the rotation rate in a perpendicular direction. In § 4 we introduce
a two-dimensional, three-component (2D3C) asymptotic model (similar to that derived
in Montgomery & Turner 1981) representing the strong background magnetic field limit
and including rotation, and discuss results from the simulations of that reduced system.
Discussion and implications of our results are presented in § 5, where we extend our results
to an arbitrary angle between rotation and background magnetic field, before discussing
the low conductivity limit, relevant to planetary settings.

2. Rotating MHD in the presence of a background magnetic field

The equations for rotating MHD in the presence of a uniform background magnetic field
are (Shebalin 2006; Galtier 2014)

∂v

∂t
+ (v · ∇)v = −∇p∗ − 2Ω × v + (∇ × b)× (B0 + b)+ Dv + f , (2.1)

∂b
∂t

+ (v · ∇)b = (B0 · ∇)v + (b · ∇)v + Db, (2.2)

∇ · v = 0,∇ · b = 0, (2.3)

where v = (vx, vy, vz) is the velocity field and b is the induced magnetic field, making
up the two dynamical variables in this system. The two control parameters are Ω , the
global rotation vector (with magnitude Ω) and B0, the uniform background field (with
magnitude B0). Other definitions include the total pressure modified by rotation p∗,
which is normalized by the constant density ρ0 and the dissipation terms, Dv and Db,
which could be regular viscosity and magnetic diffusion, respectively, but might also
include other forms of dissipation such as drag or hypodiffusion. The exact form of these
terms will be described in § 3, when the simulations are introduced. Magnetic fields are in
Alfvén units, being normalized by

√
ρ0μ0, where μ0 is the magnetic permeability. Finally,

f is a body force, which will be used to inject energy into the velocity field.
The inviscid and perfectly conducting system conserves the total energy,

E = 1
2

∫
(v2 + b2) d3x. (2.4)

However, when Ω and B0 are collinear, this system also conserves what is known
as the parallel helicity (Shebalin 2006) or hybrid helicity (Galtier 2014; Menu et al. 2019).
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The collinear system has received considerable attention – favoured over the misaligned
case in part due to its extra conserved quantity and the potential relevance of its cascade
for dynamo action (Shebalin 2006; Menu et al. 2019). It also possesses simplified linear
wave solutions which have been used to develop a weak wave turbulence theory (Galtier
2014; Bell & Nazarenko 2019). Here, we will not be considering the collinear case, and so
only the total energy will be conserved in our study of BΩ-MHD in § 3. Although waves
are certainly present in our system, our work concerns the strongly turbulent dynamics
of energy cascades (present partly in the zero frequency modes of the system). See
Appendix A for the dispersion relation of waves in the misaligned case.

Most studies, with rotation and background magnetic field aligned or not, have focused
on how rotation and a moderate background field affect the decay of kinetic and magnetic
energies in unforced simulations (Lehnert 1955; Favier, Godeferd & Cambon 2012;
Baklouti et al. 2019; Bell & Nazarenko 2019). Menu et al. (2019) investigated the
sensitivity of the cascade of hybrid helicity for various rotation and guide field alignments
in forced-dissipative simulations. We consider the effects of rotation and a misaligned
background magnetic field on the two-dimensionalization of the flow and the energy
cascade, including the limits of strong rotation and strong background magnetic field.

In our study, the rotation and background magnetic field vectors are perpendicular to
each other, namely, we have chosen Ω = Ω ẑ and B0 = B0x̂, the extension to an arbitrary
angle between Ω and B0 being discussed in § 5. The turbulence is maintained at a
statistically steady state by a forcing which inputs energy at a mean rate I at a length
scale 1/kf (see details in § 3). As a result, there is an emergent velocity scale U defined to
be U3 ≡ Ik−1

f , that we compare with the background field as a measure of its strength, the
inverse Alfvén Mach number

M−1 ≡ B0

U
. (2.5)

This dimensionless number can also be thought of as a measure of how the third term
on the right-hand side of (2.1) (the Lorentz force) and the first term on the right-hand
side of (2.2) compare with the advection terms in each respective equation, which would
determine whether or not the background field affects the dominant dynamics. When
M−1 � 1 the Lorentz force acts to constrain the velocity and induced magnetic fields
so that they do not vary along the x-direction and most of the energy lies in the kx = 0
modes, resulting in 2-D MHD (Montgomery & Turner 1981; Nazarenko 2007; Alexakis
2011; Bigot & Galtier 2011; Sujovolsky & Mininni 2016). It is important to note that, while
the dynamics depends on y, z and t, all vector components can be non-zero in periodic
domains. This is called two-dimensional, three-component (2D3C) dynamics (Biferale,
Buzzicotti & Linkmann 2017). If the induced magnetic field is not directly forced (as
is the case in our study), this results in 2D3C HD and an inverse cascade of horizontal
kinetic energy (Alexakis 2011; Sujovolsky & Mininni 2016). All of our simulations lie in
the regime of strong background magnetic field, M−1 � 1, making the rotation rate the
main control parameter in our study. Does this asymptotic regime survive in the presence
of rotation?

The relative strength of rotation is measured by the inverse Rossby number

Ro−1 ≡ 2Ω
kf U

. (2.6)

This number measures the relative importance of the second term on the right-hand side
of (2.1) (the Coriolis force) to the advection term, which would determine whether or not

935 A1-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

96
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.968


S.J. Benavides and others

the rotation affects the dynamics. Unlike the background magnetic field, the Coriolis force
only directly affects the velocity field. For non-stratified rapidly rotating HD in the absence
of any magnetic field, Ro−1 � 1, the strong Coriolis force acts to constrain the flow such
that it does not vary along the z-direction and most of the energy lies in the kz = 0 modes
(Smith & Waleffe 1999; Mininni & Pouquet 2010; Gallet 2015; Vallis 2017; Buzzicotti
et al. 2018), which results in 2D3C HD where the dynamics depends only on x, y, and t. If
the fluid is ionized and initialized with a non-zero seed magnetic field, rapid rotation does
not necessarily result in 2D3C HD because there is no direct constraint on the induced
magnetic field. Instead, if the transverse velocity component does not vanish, rapidly
rotating dynamos are formed with z-dependent induced magnetic fields (Otani 1993; Smith
& Tobias 2004; Aurnou et al. 2015; Seshasayanan & Alexakis 2016b; Seshasayanan, Gallet
& Alexakis 2017; Tobias 2021). However, since our base state is the x-independent 2D3C
HD regime found when M−1 � 1, rapid rotation is expected to act to constrain the flow
and prevent it from varying in the z-direction. Note that, in this configuration, rotation is
in the plane of the 2-D dynamics, not out of the plane as is often the case when it itself
is the cause of the bidimensionalization. Since rotation is now in the plane of the 2-D
velocities, the Coriolis force is expected to deflect horizontal velocities out of the plane,
as will be discussed in § 4 when we introduce a reduced model for this system following
Montgomery & Turner (1981).

Our goal in this study is to investigate the effects that in-plane rotation has on the 2-D
flow caused by a strong background magnetic field. In the next section we will describe
results from direct numerical simulations of the BΩ-MHD system for various rotation
rates, paying particular attention to the resulting energy cascade and morphology of the
flow field.

3. Strong background field limit: 3-D BΩ-MHD simulations

Equations (2.1)–(2.3) were solved numerically in a triply periodic domain of side length
2πL using the Geophysical High-Order Suite for Turbulence (GHOST) code (Mininni
et al. 2011). The dissipation terms, Dv and Db, each consist of a ‘hyperviscosity’ and a
large-scale dissipation term called ‘hypoviscosity’. The hyperviscosity replaces the regular
viscous and magnetic diffusion terms with a Laplacian of a higher order, in our case ∇2 →
−∇4. This higher order allows for the possibility of forcing at smaller length scales while
still properly resolving the smallest scales at moderate resolutions. As long as the order
of the Laplacian is not very large, hyperviscosity has been shown to have no significant
effect on the turbulent properties of 3-D turbulence, and we expect the same to be the case
for our work (Agrawal et al. 2020). The hypoviscosity, which would appear as ν−∇−2v
on the right-hand side of (2.1) and as η−∇−2b on the right-hand side of (2.2), acts as a
large-scale dissipation term. The resulting expressions for Dv and Db are,

Dv = −ν∇4v + ν−∇−2v,

Db = −η∇4b + η−∇−2b,

}
(3.1)

where ν is the kinematic ‘hyper’-viscosity, η = (μ0σ)
−1 is the magnetic ‘hyper’-

diffusivity, σ is the electrical conductivity, ν− is the ‘hypo’-viscosity and η− is the
magnetic ‘hypo’-diffusivity. Should an inverse cascade of a conserved quantity occur, this
term ensures that no condensate forms, which would otherwise affect the cascades and
inertial ranges (Chertkov et al. 2007; Xia et al. 2008; Gallet & Young 2013; Alexakis &
Biferale 2018; Seshasayanan & Alexakis 2018; van Kan & Alexakis 2019). This is done by
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System B0 M−1 Ω kf Forcing type ν ν− Resolution Count

(2.1)–(2.3) 13.3 84 [0–16.6] 8-10 Constant Amplitude 6.6e−7 0.06 2563 14
(2.1)–(2.3) 6.6 44 [0–7.3] 8-10 Constant Amplitude 6.6e−7 0.06 2563 11
(2.1)–(2.3) 3.3 23 [0–7.3] 8-10 Constant Amplitude 6.6e−7 0.06 2563 5
(4.1)–(4.2) ∞ ∞ [0–20] 12 Random 4e−7 1.0 5122 23

Table 1. A summary of the runs performed for this work. All runs have hyper- and hypo-viscosity of the same
order (section 3). For runs with a magnetic field, μ = ν and μ− = ν−. The simulations used Alfvénic units so
that B0/

√
ρ0μ0 → B0 and the other ρ0 was absorbed into the pressure. The values are non-dimensionalized by

L and the forcing amplitude f0 (or I0 for random forcing), so that kf is the forcing mode number and the forcing
amplitude (for constant amplitude forcing) or energy injection rate (for the random forcing) are both 1 in these
units. The typical velocity, U, was calculated after the fact for each run using U3 ≡ Ik−1

f , where I ≡ 〈 f · v〉 is
the time- and space-averaged energy injection rate. The count is the number of runs in that set.

choosing the coefficients ν− and η− such that the kinetic and magnetic energy at the largest
scales is smaller than that of the next largest scales. The modified GHOST code which
includes these alternative dissipative terms can be found in a public Github repository
(Benavides 2019). It is a standard parallel pseudo-spectral code with a fourth-order
Runge–Kutta scheme for time integration and a two-thirds dealiasing rule. The numerical
model is non-dimensionalized by L and the forcing amplitude f0, so that the wavenumbers
k correspond to mode numbers of the domain and the forcing amplitude is one. The 3-D
forcing f is isotropic and constant in time, comprising of a summation of cosines with
wavenumbers in the range 8 < |k| < 10, making kf = 9, and random phases. The forcing
wavenumber range is chosen in an attempt to properly resolve both an inverse cascade and
a forward cascade. I ≡ 〈 f · v〉 is the space- and time-averaged energy injection rate, where
〈·〉 represents a space and time average. We do not force the induced magnetic field.

All runs, unless otherwise stated, are in the large background field regime with M−1 ≈
84. We find this value to be large enough to produce the expected two-dimensionalization
in the absence of rotation (figure 1a). Larger background magnetic field values result in
significant restrictions in the time step which would limit our ability to perform the same
parameter sweep. The Reynolds and magnetic Reynolds numbers, defined, respectively,
as Re ≡ U/k3

f ν and Rem ≡ U/k3
f η when considering hyperviscous and hyperdiffusive

terms as we do, measure the relative strength of the advection terms compared with the
hyperviscous and magnetic hyperdiffusion terms. For the simulations we performed, the
Reynolds and magnetic Reynolds numbers were large (approximately 300) and equal to
each other, i.e. the magnetic Prandtl number is set to one. We performed 14 runs at
M−1 ≈ 84 but at different values of Ro−1, ranging from Ro−1 = 0 to Ro−1 = 27. All
averages and snapshots were taken in statistically steady states. See table 1 for details of
the simulations and a description of how we measured the non-dimensional numbers.

In this study, we are partly concerned with the behaviour of the energy cascade as
rotation is varied. We expect the presence of a bidirectional cascade, where a fraction
of the energy input by the forcing goes to large scales and the rest goes to small scales. As
such, we define a measure for the fraction of energy that goes to large scales in the form
of kinetic energy, ε−, and that which goes to small scales in the form of kinetic energy ε
and magnetic energy εb. Since the large-scale magnetic energy dissipation is practically
zero for every simulation performed, we ignore it from our analysis, as it plays no role.
These measures are based on the dissipation rates from each of the three dissipation terms,
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Ro–1 = 0

I II

III IV

Ro–1 = 1.4

Ro–1 = 4.4 Ro–1 = 27.0

(b)(a)

(c) (d )

Figure 1. Snapshots of the field-aligned vorticity ω = x̂ · (∇ × v), representing, from top left to bottom right,
Regimes I (a), II (b), III (c) and IV (d), as rotation rate is increased. The red colours represent positive vorticity
whereas the blue represents negative vorticity. Regime I is characterized by a bidirectional cascade, Regime
II a purely forward cascade, Regime III the formation of strong shear layers (seen here in the middle of the
domain) and Regime IV magnetically active shear layers. Regimes I–III have a negligible induced magnetic
energy, unlike Regime IV whose magnetic energy dominates the dynamics (figure 2).

and are defined in the following way:

ε−≡ν−〈|∇−1v|2〉/I, ε ≡ ν〈|∇2v|2〉/I, εb ≡ η〈|∇2b|2〉/I. (3.2a–c)

Energy balance at steady state tells us that ε− + ε + εb = 1. In the limit of large Reynolds
number and large forcing wavenumber, none of the energy injected is dissipated at the
forcing scale and proper inertial ranges are formed. In this case, the dissipation rate at
large scales represents the fraction of energy cascading to large scales, and similarly for
the dissipation rate at small scales. Our runs do not reach these idealized limits. The lack
of scale separation between the forcing and large-scale dissipation will manifest itself in
two related ways in this paper: (i) the large-scale dissipation rate will remain non-zero
despite zero average inverse cascade, because some energy that is being injected at kf will
be dissipated by the large-scale dissipation mechanism (ε− ≤ 0.1 for the 3-D runs), and
(ii) when layers form in Regime III, both the 3-D runs and 2D3C runs show an increase in
large-scale dissipation rate, not because of the presence of an inverse cascade, but because
the layers form coherent structures near the forcing scale, their energy grows and hence a
stronger large-scale dissipation rate is achieved. These jumps in ε− denote the presence of
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shear layers, as discussed in § 4. To complement these estimates for energy cascades, we
will look at the normalized spectral energy flux

ΠKE(k) ≡ 〈v<k · (v · ∇v)〉/I, (3.3)

ΠME(k) ≡ −〈v<k · ((B0 + b) · ∇b)〉/I + 〈b<k · (v · ∇b − (B0 + b) · ∇v)〉/I, (3.4)

where v<k stands for a filtering of the velocity v in Fourier space so that only the
wavenumbers with modulus smaller than k are kept. The flux Π(k) expresses the rate
at which energy is flowing out of scales larger than 2π/k due to nonlinear interactions,
normalized by the energy injection rate. Therefore, if energy is going from large to small
scales, the energy flux will be positive, and vice versa. Finally, to quantify the amount and
type of energy at each scale, we will also look at the energy spectra

EKE(k) ≡ 1
2

∑
|k|=k

|v̂|2(k), EME(k) ≡ 1
2

∑
|k|=k

|b̂|2(k), (3.5a,b)

where v̂ denotes the Fourier transform of v.
Beginning from quasi-2-D turbulence on the y–z plane at zero rotation, we find four

distinct regimes as we increased rotation (figure 1). Although not so apparent in the 3-D
simulations, these regimes are separated by seemingly sharp transitions, whose boundaries
are determined in § 4.

Regime I (figure 1a), defined for runs with Ro−1 < 0.6, is characterized by the presence
of a bidirectional cascade. This can be seen in figure 2 as a non-zero large-scale dissipation
rate as well as in figure 3(e), where the spectral energy transfers show that about half
of the energy injected by the forcing goes to large scales (negative Π(k)) and the other
half goes to small scales (positive Π(k)). The fraction of energy that goes to larger
scales decreases with increasing rotation (figure 2). At zero rotation we do not have a
purely inverse cascade (ε− ≈ 1) due to a combination of finite background magnetic field
strength and, as we will see in § 4, the fact that we are forcing the out-of-plane velocity
which acts as a passive scalar in the two-dimensionalized dynamics, thus contributing to a
forward energy flux (Campagne et al. 2014; Biferale et al. 2017). Therefore, at zero rotation
rate, the system is undergoing two independent cascades: an inverse energy cascade of
horizontal kinetic energy and a forward cascade of the out-of-plane kinetic energy. If
we were to force only the horizontal velocity components in the kx = 0 wavenumber
plane, we would expect to see ε− ≈ 1 at zero rotation. Figure 3(a) shows the kinetic
and magnetic energy spectra, which demonstrates that the magnetic energy is orders of
magnitude smaller than the kinetic energy (particularly at large scales) and that the largest
scales have the most energy, providing further confirmation of the presence of an inverse
cascade. The spike of magnetic energy at the forcing scale is due to the excitation of
Alfvén waves from the isotropic forcing. The eddy length scales seen in figure 1(a) are
set by a combination of the energy injection and the large-scale hypoviscosity coefficient.
Regime II (figure 1b), defined for runs with 0.6 < Ro−1 < 2.1, is characterized by a purely
forward cascade of energy (figures 2 and 3f ). This may come as a surprise, given that
the dynamics is two-dimensional. The reason for this seemingly contradictory state is
that, while two-dimensional, all three velocity components are active in the dynamics
and, furthermore, are coupled together with rotation. This results in a set of reduced
2D3C equations which no longer conserve enstrophy, making a forward cascade of energy
possible. The rotating 2D3C system will be discussed and explored numerically in § 4.

Regime III (figure 1c), defined for runs with 2.1 < Ro−1 < 7.5, is characterized by
the formation of strong shear layers along the y-direction, consisting of uniform velocity
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Figure 2. Dissipation rates normalized by the energy injection rate as a function of rotation rate measured by
the inverse Rossby number Ro−1. The blue solid line shows the ohmic dissipation rate due to the magnetic
diffusion term, εb, the green dashed line shows the viscous dissipation rate, ε, and the red dash-dotted line
shows the large-scale dissipation rate due to the hypoviscosity, ε−. Each regime is labelled at the top, and
the vertical dashed lines represent boundaries between regimes, chosen based on the 2-D runs in § 4. Stars
represent runs whose snapshots are shown in figure 1.
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Total
KE
ME10–3

Ro–1 = 0I Ro–1 = 1.4II Ro–1 = 4.4III Ro–1 = 27.0IV
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Figure 3. The time-averaged energy spectra (a-d) and spectral energy flux (e-h) for each regime found in our
simulations. The blue dashed line shows the magnetic components, either EME orΠME, the orange dash-dotted
line shows the kinetic components, EKE or ΠKE, and the solid black line shows their sum. The grey box
represents the forcing range. These are from the same simulations shown in figure 1 and which are starred in
figure 2.

in the x–z plane. The shear layers form when the rotational constraint on the dynamics
at large scales becomes sufficiently large, requiring that ∂zv ≈ 0 at those scales. The
combination of ∂z = ∂x = 0 and incompressibility implies that vy = 0 (since we are in
a periodic domain), and thus that the last remaining component of the nonlinear advection
term vy∂y = 0 and nonlinearities are suppressed at large scales. Because of the suppressed
nonlinearity at large scales, these shear layers form coherent structures that are fed directly
by the forcing but that do not transfer that energy away, causing a build up of energy (not
shown). The energy in the layers builds until a combination of the large-scale dissipation
(figure 2) and the nonlinear term (figure 3g) are able to remove energy from those scales.
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Regimes I–III have negligible induced magnetic energy, as is observed in simulations of
MHD with a strong background field (Alexakis 2011; Sujovolsky & Mininni 2016), and
so the induced magnetic field plays an insignificant role in the dynamics. The magnetic
fluctuations are also much smaller than B0 – less than 0.5 % of B0 in Regimes I–III.

This changes, however, in Regime IV (figure 1d), defined for runs with Ro−1 > 7.5,
where we have found the activation and growth of the induced magnetic field, which
dominates both the energy as well as the nonlinear energy transfers (figure 2). The
nonlinear advection term in the momentum equation is suppressed for practically all
scales (figure 3h), leading to laminar-like shear-layer structures (figure 1d) and a turbulent
magnetic field which is responsible for the nonlinear transfers of energy across scales,
via the Lorentz force and the magnetic induction equation. The shear-layer spacing in
figure 1(d) is set by the forcing scale. In this regime, significant induced magnetic field
fluctuations occur both parallel and perpendicular to the background magnetic field, with
a magnitude of approximately 3 % of B0.

We expect the boundaries between Regimes I–III to be independent of M−1, as they
are part of the asymptotic 2D3C HD, whose sole parameter is the rotation rate. We
confirm this in the next section, which deals specifically with this asymptotic set of
equations, by showing that the regime transitions happen for the same values of Ro−1.
The transition from Regime III to IV is of a different nature and represents a breakdown
of the hydrodynamic behaviour found for lower rotation rates. This transition is found to
be M−1-dependent, and will be discussed briefly in § 5.

4. Comparison with rotating 2D3C model

Regimes I–III can be better understood by considering the asymptotic limit of (2.1)–(2.3)
when taking M−1 → ∞ and keeping Ro−1 ∼ O(1) and the domain size fixed. The choice
of keeping the domain size fixed is based on the fact that we are motivated mostly by
astrophysical settings in confined geometries, in the presence of a strong background
magnetic field. We acknowledge, however, that in many other astrophysical settings, such
as the extended atmosphere of stars or the interstellar medium, a confined geometry may
not be the best representative system to study. In such systems, a more appropriate limit
might include taking the domain size to infinity at the same time as the M−1, so as to
prevent the exact two-dimensionalization of the flow (Thess & Zikanov 2007; Gallet &
Doering 2015). The limiting equations in this case would resemble more the Reduced
MHD system, derived for tokamaks but used also to study some astrophysical systems, in
which the flow is highly anisotropic, yet still three-dimensional (Strauss 1976; Oughton,
Matthaeus & Dmitruk 2017).

Our limiting procedure, with fixed domain size, is similar to that done in Montgomery
& Turner (1981), with the exception that we include the Coriolis term, and so we only
briefly discuss it here. Assuming a background magnetic field in the x direction and a
rotation axis along the z direction, the process results in a set of three dynamical equations
and one nonlinear constraint for the three variables: ψ( y, z, t) the streamfunction for the
in-plane velocities, vx( y, z, t) the out-of-plane velocity and A( y, z, t) the potential for
the in-plane magnetic field. This novel constraint, which results from the presence of
the Coriolis term, states that either δA/δvx = 0 or vy = ∂zψ = 0, where the former is
the functional derivative of A with respect to vx. Our 3-D simulations from § 3 seem to
be consistent with these constraints, where, in Regimes I–III for Ro−1 < 7.5, we have
A ≈ 0 but vy /= 0 and, in Regime IV for Ro−1 > 7.5, we have A /= 0 but vy = ∂zψ ≈ 0.
For the purposes of studying the reduced dynamics of Regimes I–III, we assume A = 0,
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knowing that it would not capture the transition to Regime IV. The resulting equations
form the 2D3C system with in-plane rotation

∂vx

∂t
+ [vx, ψ] = 2Ω

∂ψ

∂z
+ ν∇2

⊥vx + fx, (4.1)

∂ω

∂t
+ [ω,ψ] = 2Ω

∂vx

∂z
+ ν∇2

⊥ω + fω, (4.2)

where [F,G] ≡ ∂yF∂zG − ∂yG∂zF = 0,∇⊥ = (0, ∂y, ∂z), ω = x̂ · (∇ × v) = −∇2
⊥ψ is

the out-of-plane vorticity (of the in-plane velocities), ⊥ implies the directions
perpendicular to the background magnetic field and fω = x̂ · (∇⊥ × f ⊥). One could
equivalently arrive at (4.1) and (4.2) by taking rotating 3-D HD and requiring that
the velocity field does not depend on x. If considering an arbitrary angle between the
background field and rotation, only the perpendicular projection of the rotation vector on
the background field enters the model. For example, supposing without loss of generality
that B0 = B0x̂ and Ω = Ω(sin(θ)ẑ + cos(θ)x̂), then the Coriolis terms on the right-hand
side of (4.1) and (4.2) will be multiplied by sin(θ). This asymptotic model is in the
same spirit as some of the magnetized quasigeostrophic models used in astrophysical
applications (Aurnou et al. 2015; Maffei et al. 2019), but it is important to note that
here we have taken M−1 → ∞ while keeping Ro−1 ∼ O(1), whereas the magnetized
quasigeostrophic models take the rapidly rotating limit first. As is discussed in § 5, these
limits are not expected to be the same.

The Coriolis force now couples the two equations together, making what would
otherwise be a passive tracer into an active one. In fact, for non-zero rotation, it can be
shown that the 2D3C rotating system conserves kinetic energy and helicity

KE = 1
2

∫
v2

x + |∇ψ |2 d2x, (4.3)

H =
∫
vxω d2x. (4.4)

These are the same conserved quantities as in 3-D HD, but we emphasize that the dynamics
is two-dimensional and occurs on the y–z plane. This is in contrast to the case of zero
rotation, where the system conserves (separately) the in-plane kinetic energy

∫ |∇ψ |2 d2x
and the out-of-plane kinetic energy

∫
v2

x d2x, as well as the enstrophy,
∫
ω2 d2x. The

conservation of enstrophy can be shown to prevent the existence of a forward cascade
of in-plane kinetic energy (Fjortoft 1953; Kraichnan 1967; Alexakis & Biferale 2018).
Without the restriction of enstrophy conservation, though, the kinetic energy may go
downscale in a forward cascade, even if one does not force the out-of-plane component.

We solve (4.1) and (4.2), with modified hyper- and hypo-viscosities as in the 3-D
simulations, numerically in a doubly periodic domain of side length 2πL using the 2-D
predecessor of GHOST. The code can be found in a public Github repository (Benavides
2020). Unlike the 3-D runs, whose forcing function had a constant amplitude in time,
the 2D3C runs have random (white-in-time) forcing. At each time step, a wavenumber
kr of magnitude kf is chosen at random and f̂ω(k) (Fourier transform of fω) is set to
zero everywhere except for at kr, where it had a magnitude kf

√
2I0/�t (Chan, Mitra

& Brandenburg 2012). This has the effect of setting the energy injection rate for the
in-plane flow to be I = 〈ψ fω〉 = I0 on average, with I0 being an input parameter of the
simulation. The same forcing is applied for fx, but with an amplitude of

√
2I0/�t instead,
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Figure 4. Snapshots of the out-of-plane vorticity, ω = x̂ · (∇ × v) = −∇2
⊥ψ , for the 2D3C rotating

simulations, representing, from left to right, Regimes I (a), II (b) and III (c), as rotation is increased. We
see striking similarities to figure 1, confirming that the asymptotic 2D3C model captures the different regimes
found in the 3-D simulations of § 3.

giving the same results. Therefore, half of the energy is injected into the in-plane flow and
the other half in the out-of-plane velocity. We non-dimensionalize all dynamical variables
as before, using L and now the energy injection rate parameter I0. For all of the runs
reported kf = 12. See table 1 for details on the runs.

The goal of these simulations is to reproduce the parameter sweep performed in
§ 3, but with the added advantage of working with a 2-D code, thus allowing a larger
quantity of runs, higher resolutions (larger Reynolds numbers, around 600) and longer time
integration. We have performed 23 runs, with Ro−1 ranging from 0 to approximately 5,
at four times the horizontal resolution. Our results confirm the presence of Regimes I–III,
going from a bidirectional cascade to a forward cascade to a shear-layer configuration
(figure 4).

At zero rotation we see a bidirectional cascade with half of the injected energy going
to large scales and half going to small scales (figure 5), similar to what was found in
the 3-D runs (figure 2). For the 2D3C rotating system this is the case because of the
choice of forcing, which injects half of the energy to the in-plane flow and the other
half to the out-of-plane velocity. Since the two flows are completely decoupled at zero
rotation, they each follow the standard behaviour observed in 2-D and passive tracer
turbulence, that is, an inverse and forward cascade of energy, respectively. As we increase
rotation, the Coriolis force couples the two fields, enstrophy is no longer conserved, and
the in-plane velocities no longer cascade all the injected energy to large scales, resulting
in a bidirectional cascade with decreasing inverse energy flux. There is an approximately
linear approach to zero inverse energy flux, and at Ro−1 ≈ 0.6 there is a transition to
a purely forward cascade. With a larger number of simulations, Regimes I and II are
much more clearly separated, and their transition appears to be sharp (figure 5). This
transition is qualitatively similar to other bidirectional to forward cascade transitions seen
in other studies and could hint at a universal mechanism responsible for this transition
(Seshasayanan, Benavides & Alexakis 2014; Seshasayanan & Alexakis 2016a; Benavides
& Alexakis 2017; van Kan & Alexakis 2020).

Upon further increase of the rotation, the forward cascade regime (Regime II) transitions
to a shear-layer configuration (figure 4c), entering Regime III. This corresponds to the
case when the Coriolis force dominates at large scales, making the dominant balance
in (4.1) and (4.2) ∂zψ ≈ ∂zvx ≈ 0, hence the layers. There are a few differences in the
morphology of the shear layers seen for these runs, compared with Regime III in the 3-D
simulations (figure 1c). Here they take up the whole domain and also appear to equilibrate
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1.2
2D3C with rotation
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Figure 5. Dissipation rates normalized by the energy injection rate as a function of rotation rate measured
by the inverse Rossby number Ro−1. The green dashed line shows the viscous dissipation rate, ε, the
red dash-dotted line shows the large-scale dissipation rate due to the hypoviscosity, ε− and the purple
dash-dotted line shows the same but for hysteresis runs initialized with layers. Each regime is labelled at the
top, and the vertical dashed lines represent boundaries between regimes. These denoted boundaries are placed
at the same value of Ro−1 as those seen in figure 2. Triangles represent runs whose snapshots are shown in
figure 4.

at scales larger than the forcing, through a series of mergers (not shown). Neither of these
characteristics are seen in the shear layers of the 3-D simulations. We believe this is due to
a few factors, including the longer integration times and the change in forcing. A surprising
feature of this transition, revealed by the better-resolved parameter sweep, is that it is
discontinuous (figure 5). (An increase in large-scale dissipation marks this transition not
because an inverse cascade forms (a weakness of this measure), but because of a lack
of separation of scales. The layers form at or near the forcing scale and remain there as
coherent structures, fed directly by the forcing, resulting in a build up of energy at those
scales. This, in turn, results in a larger dissipation rate from the large-scale dissipation. If
we were to perform runs at a larger kf , this effect would disappear. The discontinuous
transition is also observed in the kinetic energy, which is not shown.) Discontinuities
are a characteristic of subcritical bifurcations, which should also display hysteresis. By
initializing in the layered regime, we confirmed the presence of hysteresis as we reduced
the rotation rate (figure 5 inset).

Despite differences in the forcing, Reynolds numbers and values of M−1, the regime
transitions seem to occur for the same values of Ro−1, suggesting that the rotating 2D3C
system successfully describes the dynamics observed in the 3-D simulations from § 3 and
that Regimes I–III are robust properties of the system. The 2-D asymptotic system has
allowed us to perform a more detailed parameter sweep of this parameter space, and has
revealed sharp transitions and non-trivial behaviour near those transitions which we did
not anticipate from the 3-D simulations.

5. Discussion and conclusions

We have investigated the turbulent dynamics of rotating MHD in the presence of a strong
uniform background magnetic field perpendicular to the rotation axis. Our investigations
have revealed surprising behaviour, confirmed both by a 3-D model and 2D3C asymptotic
model, as rotation rate is increased. We observed the weakening of the inverse cascade,
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a transition to a purely forward cascade for relatively weak rotation, and eventually a
shear-layer regime at larger rotation rates. These results were obtained in a specific
situation: orthogonal rotation and guide field at unit magnetic Prandtl number. However,
the derivation of the asymptotic 2D3C model allows us to generalize Regimes I–III to
the more realistic situation of an arbitrary angle between rotation and guide field at low
magnetic Reynolds number. First, for an arbitrary angle θ between rotation vector and
guide field, the reduced model is given by (4.1) and (4.2) where 2Ω is replaced by
2Ω sin(θ), the consequence being that the results in figure 5 carry over with Ro−1 replaced
by Ro−1 sin(θ) in the x-axis. Second, the 2D3C model illustrates the asymptotic limit in
which the guide field is so strong that it prevents any x-dependence. The same phenomenon
arises for the low magnetic Reynolds numbers that characterize transitions regions in
planetary interiors, see Gallet & Doering (2015) for a rigorous proof in an idealized
setting. The consequence is that we expect the very same reduced 2D3C model to hold
at low magnetic Reynolds number, starting either from the full MHD equations or from
their low magnetic Reynolds number quasi-static approximation. We thus conclude that
Regimes I–III carry over to the planetary relevant situation of an arbitrary angle between
rotation and guide field, together with a low magnetic Reynolds number (by contrast, the
magnetically active Regime IV will be affected by changes in magnetic Prandtl number).

We should also stress the fact that our study focuses on finite-size domains: motivated by
transitional layers in planetary interiors, we have restricted attention to a numerical domain
that is finite both along the direction of the rotation vector and the local direction of the
large-scale magnetic field. By contrast, an idealized turbulent cloud allowed to develop
arbitrarily large structures would never achieve exact two-dimensionalization (Davidson
2013; van Kan & Alexakis 2020, 2021), and it is possible that in those cases the Reduced
MHD description might be more relevant (Strauss 1976; Oughton et al. 2017).

The strong sensitivity of the inverse cascade to in-plane rotation could have significant
implications for the morphology of astrophysical flows, which often have both rotation
and a background magnetic field. Even for relatively weak rotation (Ro−1 ∼ 1) the inverse
cascade is entirely suppressed. As an inverse cascade is considered to be necessary for the
formation of jets on gas giant planets, this phenomenon could be a tentative alternative
explanation for the weakening of the jets in the depths of their atmospheres, as seen by
the Juno mission on Jupiter (Kaspi et al. 2018). In the outer electrically neutral regions
the jets can form because of the rapid rotation. These rotation-aligned jets may penetrate
deep into the interior until they reach the low Rem ionized regions of the atmosphere
whose turbulent dynamics suppresses the jets via ohmic dissipation (Liu et al. 2008).
Our work reveals another potential alternative, where a misalignment of the rotation
and background field cause the localized turbulent dynamics to cascade energy forward
instead of inversely, thereby taking away the dynamical origin of the jets. Apart from the
astrophysical implications, the rotating 2D3C model might be of interest to those studying
phase transitions in turbulence (Alexakis & Biferale 2018) – particularly those interested
in the transition from a forward to a bidirectional cascade, since, as far as we are aware,
this model is the only 2-D hydrodynamical one with this behaviour.

At the largest rotation rotates, our 3-D simulations showed a sudden activation of the
induced magnetic field, signalling the breakdown of the purely hydrodynamic asymptotic
model. The velocity field remained 2D3C, but the dynamics differed significantly from
the hydrodynamic shear-layer regime and were dominated by an induced 3-D magnetic
field. Although the 2D3C model breaks down, given the three-dimensionality of the
magnetic field, it is possible this transition could be studied with the Reduced MHD system
(Strauss 1976; Oughton et al. 2017). A series of simulations at lower M−1 values (table 1)

935 A1-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

96
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.968


S.J. Benavides and others

0.8

0.6

0.4

N
o
rm

al
iz

ed
 o

h
m

ic

d
is

si
p
at

io
n
, 
ε
b

0.2

0
0 0.1 0.2 0.3 0.4

M –1 = 23

M –1 = 44

M –1 = 84

(Ro/M )–1

0.5

Figure 6. Normalized ohmic dissipation, εb, vs (Ro/M)−1. The ohmic dissipation represents a measure of
how active the induced magnetic field is in the dynamics. We see that, for three values of M−1, the induced
magnetic field begins to dominate the dynamics once (Ro/M)−1 > 0.1, in other words when Ro−1 > 0.1M−1;
(Ro/M)−1 is also referred to as the Lehnert number (Lehnert 1955). Stars represent runs whose snapshots are
shown in figure 1.

reveals that the transition happens when M ∼ Ro, which represents roughly the point at
which the inertial wave frequency begins to dominate over the Alfvén wave frequency
(figure 6, Appendix A). Interestingly, this transition sharpens towards a critical value as
the background magnetic field strength increases. Therefore, when considering the limit
of strong rotation and strong background magnetic field, the order in which those limits
are taken matters. If Ro−1 < 0.1M−1, then one would expect a hydrodynamical regime,
whereas if Ro−1 > 0.1M−1 a magnetically dominated regime is expected.
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Appendix A. Wave dispersion relation

In the inviscid, perfectly conducting, and force-free case, the linearized BΩ-MHD system
admits wave solutions. Taking v of the form v = v̂ exp i(k · x − ωt) and plugging this into
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Figure 7. The dispersion relation for waves in the BΩ-MHD system, in the case where B0 = B0x̂ and Ω = Ω ẑ
((A3)). The green dashed line shows the Alfvén wave dispersion relation, and the purple dashed line shows that
of an inertial wave. The low frequency branch with Λ = 1 is similar to the magnetostrophic mode in the case
when B0 and Ω are aligned (Galtier 2014).

the linearized versions of (2.1)–(2.3), after some algebra we end up with

ω2(k × v̂) = 2iω(k · Ω)v̂ + (k · B0)
2k × v̂. (A1)

Next, we introduce the helical orthonormal basis for v̂, v̂(k) = v+
k ĥ+

k + v−
k ĥ−

k , where
k × ĥΛk = −iΛ|k|ĥΛk and Λ = ±1 indicates the sign of the helicity of ĥΛk (Herring
1974; Alexakis 2017). Introducing these bases and dotting (A1) with ĥΛk we arrive at the
dispersion relation. We normalize the frequency with the eddy turnover frequency, kf U,
and the wavevector k with kf , resulting in our final expression for the dispersion relation

ω̃(k̃;Λ) = −1
2

k̃ · x̂Ω‖
Λk̃Ro

± 1
2

√√√√( k̃ · x̂Ω‖
k̃Ro

)2

+ 4

(
k̃ · x̂B0

‖
M

)2

, (A2)

where k̃ ≡ (k̃2
x + k̃2

y + k̃2
z )

1/2, k̃i ≡ ki/kf and ω̃ ≡ ω/(kf U). In the specific case of our
study, where B0 = B0x̂ and Ω = Ω ẑ, this simplifies to

ω̃(k̃;Λ) = −1
2

k̃z

Λk̃Ro
± 1

2

√√√√( k̃z

k̃Ro

)2

+ 4

(
k̃x

M

)2

. (A3)

See figure 7 for a visualization of this dispersion relation, which depends on k̃x, k̃z and k̃.
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