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SUMMARY
The paper presents a distributed cooperative control law for autonomous deployment of a team of
heterogeneous agents. Deployment problems deal with the coordination of groups of agents in order
to cover one or more assigned areas of the operational space. In particular, we consider a team
composed by agents with different dynamics, sensing capabilities, and resources available for the
deployment. Sensing heterogeneity is addressed by means of the descriptor function framework, an
abstraction that provides a set of mathematical tools for describing both agent sensing capabilities
and the desired deployment. A distributed cooperative control law is then formally derived finding a
suboptimal solution of a cooperative differential game, where the agents are interested in achieving
the requested deployment, while optimizing the resources usage according to their dynamics. The
control law effectiveness is proven by theoretical arguments, and supported by numerical simulations.

KEYWORDS: Heterogeneous autonomous agents; Cooperative control; Distributed control;
Deployment problems.

1. Introduction
Deployment problems deal with the distribution of a team of agents in an environment of interest so
that a desired coverage of a prescribed area is achieved.1 Examples are the static coverage problem,2

which requires the distribution of agents according to a coverage function that denotes regions with
higher and lower interest; the uniform deployment problem,3 where the agents must spread in the
operational area so that the resources they carry are uniformly distributed (a special case of the
static coverage problem); and the target assignment problem4 that assigns to the team a set of static
targets to cover. These types of problems arise in a wide range of applications, including, but not
limited to, environment monitoring,5 precision agriculture,6 surveillance7 and crowds monitoring.8

For these problems, the use of a team composed by autonomous agents with different capabilities
and characteristics is particularly appealing. As a matter of fact, a heterogeneous team can respond
to different mission scenarios, since the agents can be equipped with different types of sensors and
payloads.

Agents heterogeneity arises at three levels:

• Sensing. The area covered by the agents may differ, due to the different types of sensors equipped,
and their characteristics.

• Dynamics. The team can be composed by different vehicles that can even operate in distinct domains
(e.g. it may include both aerial and ground vehicles).

• Resources. The agents may not have the same amount of resources (e.g. fuel or battery charge).

Coordination algorithms for team of heterogeneous agents must cope with these three aspects, in
order to achieve the requested coverage according to the agents capabilities.
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Sensing heterogeneity has been extensively studied in literature. Algorithms based on Voronoi
tessellation, such as power diagrams9 and weighted Voronoi diagrams,10 are usually adopted to address
static coverage problems with isotropic mobile sensors having different sensing radius.3,11–14 The
case of anisotropic sensors is considered instead in refs. [15,16], where the authors proposed a new
geometric approach that overcomes Voronoi limitations. Gradient-based methods are preferred when
agents’ sensors have a limited field of view.17–21 Another technique adopted for solving static coverage
tasks is the area partitioning, where planning algorithms are used to divide the environment in regions
and design paths the agents must follow in order to keep the assigned region under control. Partitioning
techniques are generally adopted for the coordination of unmanned aerial vehicles (UAVs). In ref. [22],
the authors propose a graph-based partitioning that determines the number of UAVs to deploy given
the area to cover, the available flight time, and the time needed to prepare a vehicle. Distributed
techniques for area partitioning are proposed in refs. [23–25], where a team of aerial robots with
isotropic sensing with different radius and limited speed is considered. A common trend observable in
the literature, related to deployment problems, is to consider agents with single-integrator kinematics.
Coverage control laws for unicycles are proposed in refs. [26–28]. Agents with double-integrator
kinematics are considered in refs. [29,30]. Generally, in the literature, the control law design is based
on kinematic models. In ref. [31], the authors extends coverage control based on Voronoi diagrams
to non-holomonic agents using dynamic models.

Resources optimization seems to be a less studied problem in the area of deployment problems. In
ref. [32], the authors present a Voronoi partitioning technique for a team of single-integrator agents,
that optimizes control usage. A similar problem is studied in ref. [33], where the authors considered
the deployment in a constant flow environment (a river). Other modifications of the classical Voronoi
diagrams were proposed in refs. [34–36] for the optimal deployment of a sensor network, in order
to maximize the area covered while minimize control usage. The references considered agents with
single-integrator kinematics and isotropic sensors with different radius. An extension of the previous
works to linear time-invariant systems is proposed in ref. [37].

To the best of the authors’ knowledge, what seems to be missing is a coordination strategy that
takes in account all the three aspects of agents heterogeneity at the same time. Moreover, most of the
solutions proposed in literature address only specific deployment problems. For instance, the majority
of the previously cited papers considers the static coverage problem. Application of these solutions
to different deployment problems, e.g. to a target assignment task, is not straightforward and may
require significant modifications.

The aim of the paper is to propose a general methodology for the solution of deployment problems,
which combines a well established formalism for modeling and coordinating teams of heterogeneous
agents, with a cooperative control law based on game theoretic arguments.

In particular, we deal with sensing heterogeneity by means of a modeling abstraction: the descriptor
function framework, originally proposed in ref. [38]. The framework’s key idea is the use of a common
formalism, the descriptor functions, to describe both the agent capabilities (e.g. the area covered by
the agent sensors) and the desired deployment (e.g. the area to cover). In this way, it is possible to
quantify the mismatch between the desired and the current deployment, and use this error measurement
to coordinate the agents motion. The error can then be used for the design of the agent control laws.
This feature allows the accomplishment of different tasks without modifying the underlying control
architecture, as opposed to the majority of the solutions proposed in literature. The descriptor function
framework capabilities of coordinating team of heterogeneous agents have been extensively proven in
several papers, see e.g. [39] and [40]. Furthermore, the framework is capable of considering the human
presence, and the descriptor function formalism can be extended in order to achieve human–machine
cooperation.41 The interested reader could refer to ref. [42] for further reference.

Agents cooperation is formally introduced into the descriptor function framework framing the
deployment problem as a cooperative differential game. The agents composing the team are considered
as players that aim to cooperatively reaching the desired deployment, while minimizing their
consumption according to their dynamics. To achieve the objective, while coping with their limitations,
agents must cooperate and coordinate their actions to avoid penalizing each other. Speaking in terms
of game solutions, this can be seen as finding a Pareto efficient solution of the game.43 Pareto strategies
are such that any deviation does not result in lower costs for all the players. Hence, the players are
interested in cooperating in order to minimize the incurred costs while avoiding to penalize each other,
as opposed to Nash strategies where the players selfishly try to minimize their own costs, knowing
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that the others do the same. Game theory formalism has already been used to address the control of
multi-agent systems.44 In particular, potential games were used for exploration tasks45 and sensor
coverage problems.46,47 However, potential games, and in particular, Nash equilibria considered in
the previously cited papers, do not guarantee that one agent does not penalize the others as opposed
to Pareto efficient strategies.

The cooperative game, once formulated, is transformed into a classical optimal control problem
with non-linear terminal cost. To provide an approximate solution of the problem, and, thus, of the
cooperative differential game, we solve the associated generalized Hamilton–Jacobi–Bellman (GHJB)
equation. The GHJB is a relaxed version of the Hamilton–Jabobi–Bellman (HJB) equation for solving
the optimal control problem that provides a suboptimal solution, as well as the associated cost. In
particular, the GHJB equation can be used to iteratively improve the performance of the control law,
starting from an initial suboptimal solution.48 In the present paper, however, we will only solve once
the GHJB obtaining a suboptimal solution of the problem. The iterative method for performance
improvement proposed in ref. [48] is not considered, and its application to the deployment problem
is left as topic for future research. The solution of the cooperative game is a centralized strategy for
the whole team. Hence, a decentralization policy is discussed in order to obtain a distributed control
law that each agent can implement and compute autonomously.

The paper is structured as follows. In Section 2, we discuss the modeling of the team of autonomous
agents and we introduce the main concepts at the basis of the descriptor function framework. In
Section 3, the cooperative deployment game is stated and solved. A decentralization of the solution is
proposed and the nature of the possible equilibria reached by the team is discussed. Section 4 presents
simulations results. In particular, the proposed cooperative control law is tested for three different
types of deployment: a target assignment task, a uniform deployment problem, and a static coverage
task. Conclusions are drawn in Section 5.

Notation.
The field of reals is denoted with R, and the set of the strictly positive reals is denoted with R+ =

{x ∈ R : x > 0}. The set of positive reals, including zero, is instead denoted with R+
0 = R+ ∪ {0}.

The agent configuration space on a topological space X is denoted with C(X ). Vectors and matrices
are denoted using the bold font, e.g. v, whereas scalar values with the normal font, e.g. α. The identity
matrix is denoted with I, and the zero matrix with 0. Dimensions of these matrices are omitted when
they can be easily inferred from the context, or otherwise indicated as subscripts. Positive definite and
semi-definite matrices are denoted using the notation A > 0 and A ≥ 0, respectively. The operator
‖ · ‖W , with W ≥ 0, denotes the weighted Euclidean norm of a vector, i.e. ‖v‖W = √

vT Wv. The
operators diag {·} and ver {·} represent the block diagonal and the vertical concatenation, respectively.
The operator ⊗ denotes the Kronecker product.

2. Team Modeling

2.1. Agents dynamics
We consider a team T composed by N agents. The team operational space is denoted with Q ⊂ Rn,
and may be two-dimensional or three-dimensional, i.e. n = {2, 3}. In either case, Q is assumed to be
a closed and bounded set. The agent pose, i.e. its position and orientation in the operational space, is
denoted with pi ∈ C(Rn).

Agents are modeled by driftless control affine dynamics,{
ẋi(t ) = gi(t, xi(t ))ui(t )

pi(t ) = hi(xi(t ))
(1)

where xi ∈ Rqi is the ith agent state vector, ui ∈ Rmi is the control vector, gi : [0, ∞) × Rqi → Rqi×mi ,
and hi : Rqi → C(Rn) is a function that maps the agent state into the pose vector pi. We assume that
both gi(·) and hi(·) are continuous and differentiable functions. In addition, we assume that the agent
is controllable, that is the accessibility distribution associated with the vector fields g1

i (·), . . . , gmi
i (·),

where g j
i (·) denotes the jth column of gi(·), has dimension equal to qi. We recall that the accessibility
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distribution of the driftless control affine dynamics (1) is given by the involutive closure of � =
span{g1

i (·), . . . , gmi
i (·)}. Further details on non-linear controllability can be found in ref. [49].

Remark 1. Considering a two-dimensional operational space Q ⊂ R2, where the agent pose is
given by pi = [xi, yi, θi]T , two common examples of vehicle kinematics that can be modeled as in (1)
are:

• single integrators, with xi = pi, ui ∈ R3, and

gi = I3×3, hi(xi) = xi (2)

• unicycles, with xi = pi, ui = [uis, uiθ ]T , and

gi(xi) =
⎡
⎣cos θi 0

sin θi 0
0 1

⎤
⎦ , hi(xi) = xi (3)

The controllability of both vehicle kinematics (2) and (3) is straightforward to prove.

We define the team state, control, and pose vectors, respectively, as

x = ver {xi}i∈T ∈ Rq, q =
∑
i∈T

qi

u = ver {ui}i∈T ∈ Rm, m =
∑
i∈T

mi

p = ver {pi}i∈T ∈ CN (Rn)

The team dynamics are then defined as

{
ẋ(t ) = g(t, x(t ))u(t )

p(t ) = h(x(t ))
(4)

where g: [0, ∞) × Rq → Rq×m is given by

g(t, x) = diag {gi(t, xi)}i∈T (5)

and the function h : Rq → CN (Rn) is defined as

h(x) = ver {hi(xi)}i∈T

2.2. Agents capabilities: The descriptor function framework
Framework overview: The descriptor function framework is based on three main elements: the
agents that form the team, the team mission, and the tasks. The team is composed by a set of
heterogeneous agents that operate in a given environment in order to complete one or more objectives.
The desired spatial distribution of the agents participating to the same objective is described by the
task. Coordination in time and space of the various tasks is defined by the mission.

Agent capability of executing a task in a point of the operational space is quantified using the agent
descriptor function (ADF), which is a function of the agent relative distance with respect to that point.
In particular, the value of the ADF relative to a given task in a point of the space, describes the capacity
of the agent to execute that task in that point. If an agent is not able at all of executing a particular task,
the associated ADF will be equal to zero in all the operational space. Agents descriptor functions can
then be viewed as the quantities of resources that the agents carry with them and deploy/use in the
operational space.
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Fig. 1. Example of Gaussian ADF with limited field of view, as defined in (7), with A = 3, � = 3I2×2, k = 2,
and φ = 90◦.

The desired distribution of resources in the environment is described by the task descriptor function
(TDF). The TDF is an indication to the team on how to deploy in order to accomplish the task.

The sum of all agents’ descriptor functions relative to a task represents the current task descriptor
function (CTDF). This function describes the spatial distribution of all the resources pursuing the
same objective.

The difference between the TDF and the CTDF is the task error function (TEF). The TEF describes
the amount of resources needed, or in excess, in a given point of the operational space. Thus, it is a
measure of the level of accomplishment of the task.

The TEF can be used to develop control laws capable of coordinating the agents of the team. By
developing agents controllers based on the TEF, different tasks can be defined within the descriptor
function framework, without the need for different control laws. One should simply define the TDFs
according to the objectives of the mission the team has to accomplish. Therefore, the descriptor
function framework is a potentially versatile and general tool for multi-agent system coordination and
control.

In addition, the knowledge of the CTDF allows the self-organization and adaptation of the team. In
particular, agents can use the CTDF to coordinate their actions in order to complete the task(s) assigned
(task level self-organization) and to switch among the mission tasks (mission-level self-organization).

In the following, we will deal only with the team task level self-organization. The task considered
will be the generic deployment problem, and all the descriptor functions definitions introduced in the
next section will refer to this task class.

Framework elements mathematical definition: The ith agent capability with respect to the task is
described by the ADF,

di(pi, q) : C(Rn) × Q → R+
0

The ADF indicates the quantity of resource that the agent can provide in a location q of the operative
space, given its current pose. We assume that the ADF is a continuous and differentiable function
over the operational space Q (see Fig. 1 as an example).

Remark 2. Consider a sensing application in Q ⊂ R2, with q = [qx, qy]T . A common choice
for modeling the area covered by agents carrying isotropic sensors is the use of Gaussian functions
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centered on the agent position, e.g.

dG(pi, q; μi) = Ai exp

(
−1

2
‖R(θi)(q − Spi)‖2

�−1
i

)
(6)

with

R(θi) =
[

cos θi sin θi

− sin θi cos θi

]
, S =

[
1 0 0
0 1 0

]

where μi = {Ai, �i} is the set of agent i ADF parameters with �i ∈ R2×2 denoting the symmetric
positive definite covariance matrix, R(·) rotates the ADF according to the current agent orientation,
and S is a selection matrix that extracts the agent position components from the pose vector.

Sensors characterized by a limited field of view can be modeled using the following modified
version of (6), as shown in ref. [39]:

dG,FOV(pi, q; μi, ρi) = dG(pi, q; μi) fFOV(pi, q; ρi) (7)

where the field-of-view function fFOV : C(Rn) × Q → R+
0 is defined as

fFOV(pi, q; ρi) = fFOV,r (pi, q; ρi) fFOV,l (pi, q; ρi)

fFOV,r (pi, q; ρi) =
(

1 + exp

(
−ki

(
r1 cos

(
φi

2

)
+ r2 sin

(
φi

2

))))−1

fFOV,l (pi, q; ρi) =
(

1 + exp

(
−ki

(
−r1 cos

(
φi

2

)
+ r2 sin

(
φi

2

))))−1

[
r1

r2

]
= R

(
θi − π

2

)
(q − Spi)

with ρi = {ki, φi}. The function fFOV(·) is equal to 1 inside the field of view of the agent, and smoothly
decreases to 0 on the boundaries. The parameter φ ∈ [0, 2π] is the agent field of view, whereas k
models the slope on the boundaries of the field of view, see Fig. 1.

The area covered by the agent is given by the ADF support set. In particular, we define the support
set of a generic descriptor function as

supp {di(pi, ·)} = {q ∈ Q : di(pi, q) ≥ 0}

Remark 3. The support set of the Gaussian ADF (6) is theoretically equal to the whole operational
space. However, the area effectively covered by the sensor is smaller. For this reason, for ADFs of
this type, we can use the following modified definition of support set:

suppε {di(pi, ·)} = {q ∈ Q : di(pi, q) ≥ ε} , ε ∈ R+
0

where ε is a threshold on the sensor intensity that denotes values for which the sensor is actually
covering.

The sum of all the agents ADFs is the CTDF,

d (p, q) =
∑
i∈T

di(pi, q)

and describes how the team resources are deployed in the operative space.
The task, i.e. the desired distribution of the team resources, is described by means of the TDF,

d∗(t, q) : [0, ∞) × Q → R+
0

Note that in general this function may be time-varying.
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Remark 4. Let us consider a sensing application. In this context, the ADF models the area covered
by the agent sensors, the CTDF the current sensed area, and the TDF the area the team has to cover.

The difference between the TDF and the CTDF represents the TEF,

e(t, p, q) = d∗(t, q) − d (p, q) (8)

The TEF describes the amount of resources needed, or in excess, in a given point of the operational
space. Therefore, it represents the mismatch between the desired and the current team deployment.

Given the TEF, the task state of execution is quantified by the task error index ξ : [0, ∞) ×
CN (Rn) → R+

0 , defined as follows:

ξ (t, p) =
∫

Q
f (e(t, p, q))σ (q)dq (9)

where f : R → R+
0 is a positive definite penalty function equal to zero only when the error is zero,

and σ : Q → R+
0 is a weight function used to increase or decrease the interest in particular areas of

the operational space. A possible choice for f (·) is the family of penalty functions

f (e) = max {0, e}p , p = 1, 2, . . . (10)

that are positive and convex.

Remark 5. The error index (9) along with the penalty function (10) is commonly used for static
and effective coverage problems, see e.g. [50].

Remark 6. Note that f (·) is a continuous positive semi-definite function over R, and it is strictly
convex over (0, +∞), along with all its derivatives ∂n f /∂en for n < p.

3. Deployment as a Cooperative Game

3.1. Formulation of the cooperative game
Given the dynamics of the single agents and a mathematical tool for modeling their capabilities, we
now develop a cooperative control law that coordinates the team to achieve a desired deployment.

Using the elements of the descriptor function framework, the desired deployment is described by
a time-invariant TDF, i.e. d∗(q), and the agent capabilities using ADFs.

For each agent, we define the following cost function to be minimized:

Ji(ui, ui− ) = βξ (pi(t f ), pi− (t f )) + γ vi(pi(t f ), pi− (t f )) +
∫ t f

t0

‖ui(t )‖2
Ri

dt (11)

where t f is the fixed end time, β, γ ∈ R+, and Ri > 0. The agents are interested in reaching the optimal
deployment that minimizes the task error index ξ (·), while minimizing the control energy, i.e. the
resources usage.

In (11), we also introduced the collision avoidance function vi : CN (Rn) → R+
0 , defined in the

following subsection. The introduction of vi(·) in the terminal cost is sufficient to guarantee that the
agent i does not collide with the others during the deployment, as it will be proven in Section 3.5.

With the notation i−, we denote the set of all agents, excluded agent i, i.e. i− = { j ∈ T /{i}}.
Accordingly, pi− and ui− denote the set of position and control vectors of all the agents, except
for agent i, respectively. The aim is to highlight the fact that the cost incurred by agent i is not
uniquely determined by its actions, but it is also influenced by other agents decisions. To truly achieve
cooperation, the agents must pursue their objective without penalizing the others.

To this end, the team deployment can be framed as a cooperative game, where the agents are players
that want to achieve the desired deployment, taking also into account their control energy. In doing
this, each agent must not penalize the others with its actions. Hence, we are interested in finding a
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cooperative strategy that enables the agents coordination in order to achieve the desired deployment
according to the different resources available to the agents.

Formally, given the players/agents dynamics (1) and the cost functions (11), we want to find the
Pareto efficient solution of the game, defined as follows.

Definition 1. A set of control actions {u∗
i }i∈T , is said to be Pareto efficient (or Pareto optimal), if

the set of inequalities

Ji(ui, ui− ) ≤ Ji(u∗
i , u∗

i− ), i ∈ T

where at least one of the inequalities is strict, does not allow for any set of solutions.43

Pareto optimality can be interpreted as a solution in which any change made by a single agent
does not help decreasing other agents incurred cost function. Therefore, agents must cooperate in
order to minimize the cost incurred without penalizing other agents. Pareto optimal strategies are thus
different from a set of strategies that constitutes a Nash equilibrium. As a matter of fact, the latter
represents a situation where the players act selfishly since they are interested in minimizing their own
cost, knowing that the other players will do the same.

We now formulate the deployment problem as a cooperative differential game.

Problem 1. Consider the cooperative differential game played by the team of agents T , with
dynamics (1), interested in minimizing the cost functions (11). Find a set of control laws {u∗

i (t )}i∈T
for t ∈ [t0, t f ], with t f fixed, that constitutes a Pareto efficient solution of the game.

3.2. Collision avoidance
For each agent i, we define the following collision avoidance function:

vi(p) =
∑
j∈i−

l
(∥∥S(pi − p j )

∥∥)
where S ∈ Rn×n is a selection matrix that extracts the agent position from its pose vector. The function
l : R+

0 → R+
0 is adapted from ref. [51], and it is defined as follows:

l (x) =
(

min

{
0,

x2 − R2

x2 − r2

})2

, R > r > 0

The value R denotes the radius of the area where the agents can detect the presence of other agents,
whereas r is the safe distance the agents must maintain. It is worth of note that

lim
x→r+

l (x) → +∞

As a consequence of this property, if vi(·) → +∞, then there exists a pair of agents i and j such that
‖S(pi − p j )‖ → r+, i.e. they are getting too close. Therefore, if vi(·) attains finite values during the
deployment, then collisions between the agent i and the other agents do not occur.

3.3. A Pareto suboptimal strategy for static deployment
To solve Problem 1, we use the following result:

Lemma 1. Given a set of N weighting coefficient αi ∈ (0, 1) such that
∑N

i=1 αi = 1, if the set of
control action u∗ = {u∗

i }i∈T is such that

u∗ ∈ argmin{ui}i∈T

{∑
i∈T

αiJi(ui, ui− )

}

then it is Pareto efficient.

Proof. See ref. [43], Lemma 6.1. �
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Note that the lemma does not require the convexity of the agent cost functions Ji(·). Furthermore,
we obtain different sets of Pareto optimal strategies changing the weights αi, i.e. the relevance of
agent i.

By means of Lemma 1, we formulate a parameterized optimal control problem, equivalent to
Problem 1.

Problem 2. Given the dynamics (4), find the optimal control law u∗(t ) ∈ Rm for t ∈ [t0, t f ] that
minimizes the cost function

J (u) = βξ (p(t f )) + γ v(p(t f )) +
∫ t f

t0

‖u(t )‖2
R dt (12)

with p(t f ) = h(x(t f )), where t f is the fixed final time, and x(t f ) is the free endpoint.

Note that Problem 2 is a fixed-time free-endpoint optimal control problem, with non-linear terminal
cost.

The following Lemma proves the equivalence of the two problems.

Lemma 2. Problem 1 is equivalent to Problem 2, with

R = diag {αiRi}i∈T (13)

v(p) =
∑
i∈T

αivi(p) (14)

where αi ∈ (0, 1) are N weighting coefficients such that
∑

i∈T αi = 1.

Proof. The proof is a consequence of Lemma 1, noting that the cost function (12) is equal to

J (u) =
∑
i∈T

αiJi(ui, ui− )

with the introduction of (13) and (14). �

We now propose a set of control laws for the agent and prove, by means of formal arguments, that
it is a suboptimal solution of Problem 2, hence a set of Pareto suboptimal strategies for Problem 1.

More specifically, we will find a solution of the GHJB equation associated to the optimal control
problem stated in Problem 2. The GHJB is a relaxation of the HJB equation that solves the optimal
control problem, and provides a suboptimal control along with its cost. The equation can then be used
to improve controller performance by means of iterative techniques.48 Although the GHJB equation
is linear and easier to solve than the HJB equation, no general solution exists, and several numerical
methods were proposed over the years.52–55 The following Lemma provides a solution for the GHJB
associated to Problem 2.

Theorem 1. The set of control laws

u∗
i (t, x) = − 1

αi
R−1

i gi(t, xi)
T ∂hi(xi)

∂xi

T [
β

∂ξ (p)

∂ pi
+ γ

∂v(p)

∂ pi

]T

p=h(x)

(15)

for i ∈ T is a set of Pareto suboptimal strategies for the cooperative differential game stated in
Problem 1.

Proof. The HJB equation associated to the fixed-time free-endpoint optimal control problem stated
in Problem 2 is

∂V (t, x)

∂t
+ min

u∈Rm
H

(
t, x,

∂V (t, x)

∂x
, u

)
= 0
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with boundary condition

V (t f , x(t f )) = βξ
(
h(x(t f ))

) + γ v(h(x(t f ))) (16)

where V : [t0, t f ] × Rq → R is the value function, and

H
(

t, x,
∂V
∂x

, u
)

= ‖u‖2
R + ∂V (t, x)

∂x
g(t, x)u

is the Hamiltonian function associated to the problem, see e.g. ref. [56]. The relative GHJB equation
is defined as follows:

∂V (t, x)

∂t
+ H

(
t, x,

∂V (t, x)

∂x
, u

)
= 0 (17)

with boundary condition (16), see ref. [48]. A solution of (17) is

u∗(t, x) = −R−1g(t, x)T ∂V (t, x)

∂x

T

(18)

with value function

V (t, x) = βξ (h(x)) + γ v(h(x)) (19)

that satisfies the boundary condition (16).
The control law (18) is a suboptimal solution of Problem 2, and the value function (19) evaluated

at (t0, x(t0)) is the associated cost. According to Lemma 2, (18) also represents a Pareto suboptimal
solution for Problem 1. In particular, noting that the Jacobian of h(·) is

∂h(x)

∂x
= diag

{
∂hi(xi)

∂xi

}
i∈T

and considering the definitions of R, and g(·), see (5) and (13), the Pareto suboptimal solution for the
ith agent (15) is obtained substituting the gradient of the suboptimal value function (19) in (18), and
considering the component of (18) relative to agent i. �

Remark 7. The value function (19) does not depend on time explicitly, as one may expect from
having fixed the time horizon. However, the reader should bear in mind that (19) is the solution of the
GHJB that represents a relaxation of the optimal control problem stated in Problem 2.

Remark 8. The control law (15) is de facto a gradient-based law. Compared to the gradient-based
methodologies presented in refs. [17–21], the solution proposed in this paper capable of coping with
rather general sensing capabilities (not limited to sensors with limited field of view, considered in the
references) and with different types of kinematics. In addition, control usage is taken into account, a
feature generally missing in gradient-based laws for coverage control.

3.4. Control law decentralization
The Pareto efficient control law (15) presents two different contributions: the task error index gradient
∂ξ/∂ pi that steers the agent in order to minimize ξ (·), and the collision avoidance term based on the
gradient ∂v/∂ p. These two contributions can be computed, in general, using only local information.

Computation of ∂ξ (p)/∂ pi: Considering (8), the gradient of the task error index is equal to

∂ξ (p)

∂ pi
= −

∫
Q

∂ f (e(p, q))

∂e(p, q)

∂di(pi, q)

∂ pi
σ (q)dq (20)
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The argument of the integral (20) is different from zero on the set

Qi(pi) =
{

q ∈ Q :
∂di(pi, q)

∂ pi
�= 0

}

Note that, according to the assumptions made on the ADF in Section 2.2, Qi(pi) is a closed and
bounded set, and Qi(pi) ⊆ supp {di(pi, q)}.

Thus, (20) is equal to

∂ξ (p)

∂ pi
= −

∫
Qi (pi )

∂ f (e(p, q))

∂e(p, q)

∂di(pi, q)

∂ pi
σ (q)dq (21)

Computation of (21) requires the local knowledge of e(·), the TEF, on Qi(pi). Assuming that the agent
i knows the TDF d∗(·) on Qi(pi), and the ADF parameters of the other agents, a possible algorithm
for the decentralized computation of (21) is the following:

1. Identify the set of neighboring agents whose ADFs have a non-empty intersection with Qi(pi), i.e.

T ∩
i (pi) = {

j ∈ T : supp
{
d j (p j, q)

} ∩ Qi(pi) �= ∅}
2. Compute the TEF on Qi(pi) as follows:

e(p, q) = d∗(q) − di(pi, q) −
∑
j∈T ∩

i

d j (p j, q) (22)

3. Use (22) to compute (21).

It is reasonable to assume that the TDF is provided to the agents by an external operator or supervisor
that monitors and assigns the tasks to the team. In addition, considering a team composed by agents
with different characteristics, it is also acceptable that the agents have knowledge about the other
agents ADFs, so that they can efficiently coordinate their actions according to their capabilities.

An alternative decentralized computation of (21) is based on the estimation of the TEF on Q(pi). In
particular, in ref. [42, Chap. 5], a TEF estimation algorithm based on dynamic consensus techniques
is proposed, that does not require the knowledge of agent ADFs.

Computation of ∂v(p)/∂ pi: The gradient of the collision avoidance function is given by

∂v(p)

∂ pi
=

∑
j∈i−

(αi + α j )
∂l (xi j )

∂xi j

∂xi j

∂ pi
, xi j = ‖S(pi − p j )‖ (23)

where

∂l (xi j )

∂xi j
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, xi j > R | xi j < r

4
(R2−r2 )

(
x2

i j−R2
)

(
x2

i j−r2
)3 xi j, R ≥ xi j > r

undefined, xi j = r

and

∂xi j

∂ pi
=

(
pi − p j

)T
STS

‖S(pi − p j )‖
Therefore, the jth term of (23) is computed only when the agent j enters inside the detection radius
of i, i.e. ‖S(pi − p j )‖ ≤ R.
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3.5. Team equilibria
We now prove, by means of Lyapunov-like arguments, that under the Pareto suboptimal control
law (15) the team reaches a final deployment that corresponds to a local minimum of the task error
index. More specifically, we will define a positive definite function V (·) representative of the task
execution state, which includes the error index ξ (·). We will prove that V (·) decreases monotonically
with time (V̇ (·) ≤ 0) if the control law (15) is adopted by the agents, meaning that the coverage task is
accomplished by the team. Hence, V (·) is a Lyapunov function, that can be used to prove also that the
team converges to a deployment that represents a local minimum of ξ (·). Furthermore, if the agents
initial configuration is safe, that is p(t0) ∈ Psafe, where

Psafe = {
p ∈ CN (Rn) :

∥∥S(pi − p j )
∥∥> r, ∀i, j ∈ T , j �= i

}
then collisions do not occur during the deployment.

Theorem 2. If p(t0) ∈ Psafe and the following two relationships hold

ker

{
gi(t, xi)

T ∂hi(xi)

∂xi

T }
= {0} , ∀i ∈ T (24)

γ = ωβ, ω ∈ R+
0 (25)

where ω is a weighting parameter, then the team safely converges to a suboptimal deployment in the
sense of the task error index (9), under the control law (15).

Proof. Let us introduce the positive definite function

V (x) = ξ (h(x)) + ωv(h(x)) (26)

Note that V (·) ≥ 0, due to the positive semi-definiteness of ξ (·) and v(·). Applying the chain rule, the
time derivative of (26) is given by

V̇ = ∂ξ

∂x
ẋ + ω

∂v

∂x
ẋ =

∑
i∈T

(
∂ξ

∂ pi
+ ω

∂v

∂ pi

)
∂hi

∂xi
giui (27)

Introducing (15), we write (27) as follows:

V̇ = −
∑
i∈T

∥∥∥∥
(

I2×2 ⊗ gT
i

∂hi

∂xi

T )[
∂ξ/∂ pT

i
∂v/∂ pT

i

]∥∥∥∥
2

Wi

(28)

where

Wi = F ⊗ 1

αi
R−1

i , F =
[

β 1
2 (ωβ + γ )

1
2 (ωβ + γ ) ωγ

]

Since Ri > 0, in order to Wi being positive semi-definite, the eigenvalues of F must be greater or
equal to zero. These are given by

λ1,2 = 1

2

(
β + ωγ ±

√(
ω2 + 1

) (
β2 + γ 2

))
and are greater or equal to zero provided that γ = ωβ.

If conditions (24) and (25) are verified, then V̇ (·) ≤ 0 and V (·) is a Lyapunov-type function that,
under the control law (15), guarantees that the task error index monotonically decreases and the agents
do not collide with each other. The latter claim is justified by the fact that a collision occurs only when
v(·) → +∞. But since the agents start from a safe condition and V (·) monotonically decreases, this
cannot happen.
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Under condition (24), the task error index decreases until the team reaches an equilibrium xeq,
corresponding to a deployment peq = h(xeq) such that

peq ∈
{

p ∈ CN (Rn) :
∂ξ

∂ pi
= 0 &

∂v

∂ pi
= 0, ∀i ∈ T

}
(29)

The equilibria (29) correspond to deployments where the agents are at safe distance, and a stationary
point of the task error index has been reached, i.e. a local minima, maxima, or saddle point of ξ (·). We
now study the stability of these points, under the assumption that a safe deployment has been reached
(i.e. ∂v/∂ pi = 0, ∀i ∈ T ).

• Local minima. Denoting with p = h(x) a local minima of ξ (·), there exists a a neighborhood of x
such that V (x) − V (x) > 0. Since V̇ (·) < 0 and its equal to zero in x, then x is an asymptotically
stable equilibrium.

• Local maxima or saddle points. If x is a local maximum, then V (x) − V (x) < 0 in a neighborhood
of x, and since V̇ (·) < 0, then equilibrium x is unstable. The same applies to the saddle points of
ξ (·).
Therefore, given the unstable nature of local maxima and saddle points, the team safely reaches a

suboptimal deployment, under the Pareto suboptimal control law (15). �

Remark 9. Note that the condition (24) is satisfied by both the single integrator (2) and unicycle
dynamics (3).

4. Deployment Examples
The Pareto suboptimal control law (15) is now tested on three different types of deployment: a target
assignment task, a uniform deployment problem, and a static coverage task. The former is used to
analyze the cooperative behavior of the control law, showing that changing the control weights the
agents coordinate their motion in order to minimize their consumption and according to the different
agents limitations. With the uniform deployment problem and the static coverage task, we show how
the proposed cooperative control law is able to coordinate a large group of agents with different
dynamics, ensuring that no collisions occur and the desired deployment is safely achieved.

4.1. Target assignment
The target assignment problem requires that, given K static targets and N agents, at least each target
is covered by one agent if K ≤ N , or, otherwise, N targets are covered.

In this simulation, we consider a team composed by two agents that are demanded to cover two
targets. The agents have single-integrator like dynamics, and Gaussian ADFs with limited field of
view defined as in (7). ADF parameters for both the agents were set to

A = 3, � = 3I2×2, k = 2, φ = 90◦

Control law parameters were set to

αi = 1

N
= 1

2
, β = 1, γ = 0

The two targets are modeled using the Gaussian descriptor function (6), and the TDF is given by

d∗(q) = dG(pT1, q; μ) + dG(pT2, q; μ)

with μ = {A = 2, � = 3I2×2}.
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Fig. 2. Target assignment: initial and final deployments with different control weights. (a) Inital deployment. (b)
R1 = R2 = I3×3. (c) R1 = 10I3×3, R2 = I3×3. (d) R1 = I3×3, R2 = 10I3×3.

Agents initial poses and targets descriptor functions position and orientation vectors are,
respectively,

p1(t0) =
⎡
⎣ 6

12
3π/2

⎤
⎦ , p2(t0) =

⎡
⎣ 14

12
π/2

⎤
⎦ , pT1 =

⎡
⎣10

5
0

⎤
⎦ , pT2 =

⎡
⎣10

15
0

⎤
⎦

The selected penalty function for the evaluation of the task error index (9) is given by

f (e) = max{0, e}2 (30)

The aim of this simulation is to analyze the cooperative nature of the proposed agent control
law. More specifically, we expect that, by increasing the control weight of one agent, this
will move toward the nearest target, whereas the other agent, that has a lower penalization on
control, will move to the farthest target. Note, in fact, that Target 2 is closer to the agents than
Target 1. To gain better insights into the agent behavior, we turned off the collision avoidance
capability.
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Fig. 3. Uniform deployment: results for Ri = Imi×mi , ∀i ∈ T . (a) Initial deployment. (b) Final deployment. (c)
Inter-agent distances evolution. (d) Agents trajectories.

Figure 2 shows the different cooperative behaviors that emerge by changing agents’ control weights
Ri. The team initial deployment is shown in Fig. 2a. When the agents have the same control weights,
they reach the final deployment illustrated in Fig. 2b. In Fig. 2c, we increased the control cost for
Agent 1, and, as we can see, the agent moved to the closest target, whereas Agent 2, which has a
lower penalization on control, moved to Target 2. Hence, agents cooperation allowed to perform the
task while taking in account the different control capabilities of the agents. In Fig. 2c, we repeated
the test, but this time penalizing agent 2. A perfectly symmetric behavior emerged.

Table I summarizes the tests results. The normalized index �ui% quantifies agents control usage,
and is defined as

�ui% = �ui∑
j∈T �u j

, �ui =
∫ t f

t0

‖ui(t )‖dt

The results confirm the above observations. It should be noted that the task error index final value
ξ (p(t f )) is the same for all the tests, despite of the different choices of Ri.

The reason of the behavior observed in these tests lies in the fact that the inverse of the control
weight Ri acts as a gain for the control law (15). The agents with high values of Ri, i.e. with high control
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Table I. Task assignment, test results.

Control weights

R1 R2 �u1% �u2% ξ (p(t f ))

I2×2 I2×2 0.495 0.505 264
10I2×2 I2×2 0.054 0.956 263
I2×2 10I2×2 0.950 0.050 263

0 100 200 300 400 500 600 700 800 900
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Normalized task error index vs. control weight (Ri = ruImi×mi , ∀i ∈ T ).

penalization, sense only the closest targets. Hence, they move toward them. The agents with lower
control penalization will be attracted by the farthest targets, since the agents with higher penalization
already covered the closest targets.

4.2. Uniform deployment
The uniform deployment problem deals with the deployment of a team of agents so that a given area
of interest is uniformly covered.

In this simulation, we consider a team of 16 agents, with different dynamics and sensing capabilities.
In particular, the team is composed by nine single-integrator agents with Gaussian ADFs (6) with

A = 3, � = 3I2×2

and seven unicycles with dynamics (3) and Gaussian ADFs with field of view (7) with

A = 3, � = 3I2×2, k = 2, φ = 90◦

Control law parameter were set as follows for all the agents:

αi = 1

N
= 1

16
, β = 1, Ri = Imi×mi

The collision avoidance parameters were set to

γ = 1, r = 0.5, R = 1
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Fig. 5. Example of static coverage. (a) Task descriptor function. (b) Final deployment. (c) Inter-agent distances
evolution. (d) Agents trajectories.

The desired TDF is

d∗(q) = 1, ∀q ∈ Q

i.e. the team is demanded to uniformly cover the whole operational space, a 40 × 40 square. For this
simulation, we chose the penalty function (30) as for the previous test.

The CTDFs relative to the team initial and final deployments are shown in Fig. 3a and 3b,
respectively. As can be seen, the team successfully covered all the operational area. During the
deployment, the agents maintained the minimum safe distance and no collisions occurred, see Fig. 3c
and the agents trajectories shown in Fig. 3d.

In Fig. 4, we show how increasing the weights Ri to all the agents, influences the convergence rate
of the team to the desired deployment. As the control weight increases, the convergence is slower, as
one can expect looking at (28), and reaching the final deployment requires more time. Note that the
task error index final value is always the same, as Ri only influences the convergence rate.

4.3. Static coverage
The static coverage problem is similar to the uniform deployment, except that there are areas of
the operational space with higher and lower interest. A target coverage function is assigned to
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the agents, that are demanded to spread over the region of interest according to the coverage level
requested.

We consider the same team of agents used for the uniform deployment test, with initial deployment
as in Fig. 3a. Control law parameters are also the same.

The desired TDF is shown in Fig. 5a, and is defined as follows:

d∗(q) = dG(pSC, q; μ), pSC =
⎡
⎣20

30
0

⎤
⎦ , μ =

{
A = 5, � =

[
15 0
0 5

]}

The CTDF relative to the final team deployment is shown in Fig. 5b. As can be seen, the agents
successfully accomplished the task and reached the desired deployment. Figure 5c shows the inter-
agent distances during the deployment and proves that no collision occurred. The agents trajectories
are shown in Fig. 5d.

5. Conclusions
In this paper, we address the problem of deploying a team of heterogeneous agents formulated as a
cooperative differential game. In particular, we propose a Pareto suboptimal solution of the game,
solving an equivalent fixed-time free-endpoint optimal control problem by means of the generalized
HJB equation and the related theory. Agent heterogeneity was considered in terms of different sensing
patterns, dynamics, and resources available for the deployment. The descriptor function framework
was used in order to cope with the sensing heterogeneity of the agents, by means of simple yet
effective modeling tools and formalism. Under this framework, we showed how three different types
of deployment problems, viz. target assignment, uniform deployment, and static coverage, can be
readily solved, and how the use of cooperative strategies can take in account the different agents
resources available for the deployment. Lyapunov theory was used to formally prove the convergence
of the team to the desired deployment under the control law proposed. The Pareto suboptimal strategies
found can be implemented using only local data. More specifically, the control law can be distributed
assuming that each agent knows the position and orientation of the agents within its sensing pattern,
as well as their sensing capabilities.
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