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The interaction between isotropic turbulence and a normal shock wave is investigated
through a series of direct numerical simulations at different Reynolds numbers and
mean and turbulent Mach numbers. The computed data are compared to experiments
and linear theory, showing that the amplification of turbulence kinetic energy across
a shock wave is described well using linearized dynamics. The post-shock anisotropy
of the turbulence, however, is qualitatively different from that predicted by linear
analysis. The jumps in mean density and pressure are lower than the non-turbulent
Rankine–Hugoniot results by a factor of the square of the turbulence intensity. It
is shown that the dissipative scales of turbulence return to isotropy within about
10 convected Kolmogorov time scales, a distance that becomes very small at high
Reynolds numbers. Special attention is paid to the ‘broken shock’ regime of intense
turbulence, where the shock can be locally replaced by smooth compressions. Grid
convergence of the probability density function of the shock jumps proves that this
effect is physical, and not an artefact of the numerical scheme.
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1. Introduction

The interaction of turbulence with a shock wave is a fundamental problem in
fluid mechanics, with relevance to a wide range of fields and applications including
aeronautics (supersonic flight and propulsion), astrophysics (supernovae explosions,
accretion shocks), nuclear physics (inertial confinement fusion) and medicine
(shock wave lithotripsy). The canonical shock–turbulence interaction problem, where
additional complications (e.g. mean shear, streamline curvature, real gas effects,
magnetic effects, etc.) have been removed, is that of isotropic turbulence passing
through a nominally planar shock wave. This canonical problem is the focus of the
present study.

Figure 1 shows the essence of the canonical shock–turbulence interaction. Isotropic
turbulence, characterized by a Taylor-scale Reynolds number Reλ and a turbulent
Mach number Mt, passes through a normal shock wave, characterized by the mean
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FIGURE 1. (Colour online) Snapshot of eddies extracted by the Q-criterion and
shaded/coloured by the cosine of the angle between the vorticity vector and the shock-normal
direction. The shock is visualized by an isosurface at large negative dilatation, and the flow is
from left to right.

Mach number M. The initially isotropic turbulence becomes compressed, energized
and anisotropic as it passes through the shock. The figure clearly shows that most
post-shock eddies immediately behind the shock are oriented in the plane of the shock;
some distance downstream of the shock, the orientation of the eddies becomes more
isotropic again.

Theoretical studies based on the mode decomposition of turbulence in supersonic
flows (Kovasznay 1953) were first developed in Ribner’s linear analysis (Ribner
1953, 1954). Lele (1992) combined rapid distortion theory (RDT) with gas dynamics
to formulate the jump relations across a shock in a turbulent mean flow, whereas
Jacquin, Cambon & Blin (1993) used RDT and Helmholtz’s decomposition of the
fluctuating field to obtain two regimes (solenoidal acoustic and ‘pressure-released’),
thus limiting the amplification of turbulent kinetic energy that occurs when the fluid is
processed by the shock. RDT incorporates more restrictive assumptions than does the
broader linear interaction analysis, resulting in its more limited scope and agreement
with experiments. By using recently developed analytical techniques, Wouchuk, Huete
Ruiz de Lira & Velikovich (2009) constructed an exact analytical model of the
shock–turbulence interaction, obtaining closed-form expressions for several quantities
of interest. More recently, Donzis (2012a) approached the problem from a different
direction, by using dimensional and similarity arguments to argue that both the
amplification of the shock-normal Reynolds stress and whether the interaction is in
the ‘broken shock’ or ‘wrinkled shock’ regimes (to be defined below) should scale
with Mt/[

√
Reλ(M − 1)]. This is in contrast to Ribner’s linear theory, which is valid

only in the limits of large Reλ and small Mt. In follow-up work, Donzis (2012b)
then expanded and deepened the analysis to make theoretical predictions regarding the
structure of the shock in the presence of turbulence.

Experiments have been carried out in shock tubes and wind tunnels with different
means of generating turbulence. Hesselink & Sturtevant (1988) considered the
propagation of weak shocks in a random medium and explained the wave front
distortion they encountered in terms of medium inhomogeneities that focus/defocus the
front. Keller & Merzkirch (1990) used a shock tube with grid-generated turbulence and
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a shock wave reflecting at the end wall; they saw amplification of turbulence occurring
at larger scales, but not at the small-scale structures. Barre, Alem & Bonnet (1996)
studied, with hot-wire and laser Doppler velocimetry (LDV) techniques, the interaction
in a wind tunnel of a normal shock and quasi-homogeneous isotropic turbulence
generated using a multi-nozzle in a Mach 3 flow. They found close agreement
with Ribner’s linear theory for the amplification of velocity fluctuations, and some
discrepancy with earlier experiments for the turbulent energy amplification present at
low wavenumbers. In an experiment by Agui, Briassulis & Andreopoulos (2005), an
incident shock generated an induced flow behind it that passed later through a grid
to obtain a nearly homogeneous and isotropic flow field, which was then processed
by the reflected shock. Intense vorticity structures were suggested as the cause of
high-amplitude events of time signals of enstrophy, dissipation rate and dilatational
stretching; the dissipation seemed to have a more dominant effect on the flow motions
than on the enstrophy.

Direct numerical simulations (DNS) of the shock–turbulence interaction problem
have emerged in the literature over the past couple of decades. Lee, Lele & Moin
(1993) (see also Lee, Lele & Moin 1994) found partial agreement with linear analysis,
with some discrepancy arising as the turbulent Mach number, Mt, was increased,
resulting in distorted shock waves lacking a well-defined front. This work was later
extended to stronger shocks (Lee, Lele & Moin 1997). Hannappel & Friedrich (1995)
related the amplification of turbulent kinetic energy to the ratio of compressible
to incompressible kinetic energy, explaining the different behaviour in terms of the
pressure diffusion term of the turbulent kinetic energy equation. Mahesh, Lele & Moin
(1997) found that upstream correlations of vorticity–entropy and velocity–temperature
fluctuations have a strong influence on the turbulence evolution across the shock.
Jamme et al. (2002) studied the effect of different types of isotropic turbulence (by
combining entropy, vortical and acoustic fluctuations), and reported their influence
in the amplification of kinetic energy and vorticity variance, as well as in the
reduction of the transverse microscale. Their results agreed well with linear analysis.
Sesterhenn, Dohogne & Friedrich (2005) used a shock-fitting algorithm that provided
good agreement with the more widely used shock-capturing methods.

In the DNS of Larsson & Lele (2009), the small scales where viscous dissipation
occurs were shown to decrease significantly in size during the interaction with the
shock, implying that the resolution requirements behind the shock are substantially
finer than before it. This insight combined with a grid convergence study allowed
for the viscous dissipation to be fully resolved immediately behind the shock. The
amplification of turbulence kinetic energy (TKE) was observed to agree well with
the predictions of linear theory, while the turbulence anisotropy and Taylor length
scales showed qualitative disagreements between DNS and linear theory. Moreover,
this study identified two different regimes of the interaction depending on the strength
of the incoming turbulence: the ‘wrinkled shock’ regime in which the shock retains
its topological structure, and the ‘broken shock’ regime in which it does not (e.g.
where the shock is locally, in space and time, replaced by a smooth compression or
by multiple weaker shocks). Finally, Grube, Taylor & Pino Martı́n (2011) considered
highly compressible turbulence with much higher turbulent Mach number than in
previous studies (Mt & 0.7 compared to Mt . 0.4 in the studies mentioned above),
where the incoming turbulence spontaneously generates eddy shocklets. They found
general agreement with results using less compressible incoming turbulence (without
eddy shocklets).
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The present study builds on our prior work reported in Larsson & Lele (2009),
with deeper analysis and post-processing of the DNS databases. Additionally, new
simulations at higher Reynolds number have been performed, allowing for an
assessment of the effect of Re on the interaction. The study focuses primarily on
two different aspects of the shock–turbulence interaction problem: (i) the amplification
of turbulence and how this compares to linear theory; and (ii) how the turbulence
modifies the shock and how this scales with the flow parameters. Finally, to encourage
and enable deeper and novel analysis of these DNS databases, both comprehensive
statistics and the raw databases are available for download from the corresponding
author.

The paper is organized as follows. The numerical method and simulation parameters
are described in § 2, along with verification of the quality of the computed data. This
material naturally lends itself to discussing certain physical effects as well, including
the post-shock Kolmogorov scale and the mean shock jumps. The behaviour of the
Reynolds stresses and vorticity variances is discussed in § 3, along with validation
using experimental data and comparison to the predictions of linear theory. Finally,
the different interaction regimes are discussed in § 4, including some visualization of
instantaneous flow fields.

2. Methodology and verification
The compressible Navier–Stokes equations for a perfect gas are solved using

DNS. The density, velocity, pressure and temperature are denoted by ρ, ui, p and
T , respectively. The ratio of specific heats is γ = cp/cv = 1.4, and the viscosity is
approximated by a power law µ = µref (T/Tref )

3/4. The spatial coordinates are xi,
where x1 is the shock-normal (streamwise) direction. The shock is located at x1 = 0
on average. Averages are computed over the homogeneous x2 and x3 directions and
over time t. Standard (Reynolds) averages are denoted by an overbar, f , while density-
weighted (Favre) averages are denoted by a tilde, f̃ = ρf /ρ; fluctuations around these
averages are denoted by single and double primes, as f ′ = f − f and f ′′ = f − f̃ ,
respectively. The Reynolds stresses are Rij ≡ ũ′′i u′′j . Given the axisymmetric nature of
this problem, the off-diagonal stresses are naturally zero.

Reference values are taken from immediately upstream of the shock and denoted
by subscript ‘u’; downstream, post-shock values are denoted by subscript ‘d’. We
can then define the mean Mach number M = ũ1,u/ c̃u and the turbulent Mach
number Mt = √Rkk/ c̃u. We consider two different Reynolds numbers, based on the
dissipation length scale Lε = (Rkk/2)

3/2 /ε and on the Taylor length scale λ, where
λ2 = R22/(∂2u2)

2 and ε is the dissipation rate of TKE; these Reynolds numbers are
ReL = ρ√Rkk/3 Lε/µ and Reλ = ρ√Rkk/3 λ/µ, respectively (where all quantities are
taken immediately upstream of the shock).

The present study uses DNS in the extended sense that all scales of turbulence
are computed but the shock waves are captured numerically. This approach inherently
relies on the assumption of a separation of length scales associated with those two
physical phenomena: if the smallest eddies (of size comparable to the Kolmogorov
length scale, η) are much larger than the physical thickness of the shock, δs,
then the shock essentially represents a discontinuity to the turbulent eddies. Hence,
the shock–turbulence interaction process is accurately described provided that the
numerical shock thickness, δn, is sufficiently small compared to η. This has been
verified in several prior studies, using different methods: Lee et al. (1997) compared
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shock-resolved simulations (where the viscous shock profile was resolved) with shock-
captured simulations (where it was not), and found excellent agreement. A different
approach was taken in Larsson (2010), where a theoretical model of the error
introduced by the numerical shock-capturing was used to predict and quantify the
error on the post-shock turbulence. The error in post-shock second-order statistics was
found to scale as the square of the shock-normal grid spacing; this was also confirmed
in numerical experiments. Quantitatively, this study concluded that the shock-capturing
error in DNS is negligible except at very low Reynolds numbers. The final verification
of the extended DNS methodology is through standard grid refinement to verify that
all computed statistics are insensitive to the grid spacing. This verification is shown
in § 2.1 for the present work.

A solution-adaptive finite-difference method (Larsson & Lele 2009) that applies
different numerical schemes to shocks and broadband turbulence is utilized, the idea
being to use numerics that are well suited to each physical phenomenon. Narrow
regions around shock waves are treated with a fifth-order accurate weighted essentially
non-oscillatory (WENO) scheme with Roe flux splitting, whereas a sixth-order
accurate central difference scheme in the split form by Ducros et al. (2000) is used in
the remainder of the domain. The use of the split form drastically improves nonlinear
numerical stability, and no de-aliasing filter is used. During each time step, shock
waves are identified as regions where the negative dilatation is greater than the low-
pass-filtered vorticity magnitude, i.e. where −∂kuk >

√
ωkωk, with ωi = εijk∂juk being

the vorticity. Having identified the grid points occupied by shock waves, the WENO
scheme is applied to the narrow region comprising those points as well as three
additional grid points in every direction in order to ensure that the central scheme
is never used across any shocks. The switching between different numerical schemes
introduces internal ‘interfaces’ in the domain. The method devised by Pirozzoli (2002)
is used to ensure conservation across these interfaces, and the numerical stability of
the interfaces has been analysed and verified (Larsson & Gustafsson 2008). Time
advancement is done using a fourth-order accurate explicit Runge–Kutta scheme.

The numerical method has been verified and validated on several problems (cf.
Johnsen et al. 2010), including the canonical shock–turbulence interaction problem
(Larsson & Lele 2009). We specifically note that the solution-adaptive method has
no effect on the results: grid convergence tests (§ 2.1) show that the numerical errors
are negligibly small, and many separate tests (some of which are reported in Johnsen
et al. (2010)) have confirmed that the switching between different schemes has no
discernible impact on the results, provided sufficient grid resolution.

The specification of inflow turbulence from pre-computed periodic boxes of isotropic
turbulence is described in Larsson & Lele (2009); briefly, isotropic turbulence was
allowed to decay temporally until the turbulence was deemed developed, as judged by
having decaying vorticity variance and a velocity derivative skewness settled around
−0.5. These measures are both related to the small scales, whereas the larger scales
develop more slowly (especially at higher Reynolds numbers). Therefore, the cases
at the higher Reynolds number were allowed to decay for a longer time, specifically
until the dissipation length scale Lε had started growing in time. Finally, multiple
independent boxes were blended together using the technique described in Larsson
(2009).

A total of 20 cases have been computed, all of which are listed in table 1. The
first 16 cases are at Reλ ≈ 40 with ReL ≈ 200, while the final four cases are at
Reλ ≈ 70 with ReL ≈ 650. A third measure of the turbulence Reynolds number, the
ratio of the dissipation length scale to the Kolmogorov scale, is also listed in the
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Reλ ReL Lε/η M Mt Grid 1x2,3/1x1,s

39 180 58 1.05 0.05 828× 3842 1.3
38 180 57 1.28 0.15 1040× 3842 2.0
39 190 59 1.28 0.22 1040× 3842 2.0
38 180 57 1.28 0.26 1040× 3842 2.0
38 180 57 1.28 0.31 1040× 3842 2.0
38 180 57 1.50 0.15 1040× 3842 2.0
39 190 59 1.50 0.22 1040× 3842 2.0
39 190 59 1.51 0.31 1040× 3842 2.0
39 180 58 1.51 0.37 1040× 3842 2.0
39 190 59 1.87 0.22 1040× 3842 2.0
39 190 59 1.87 0.31 1040× 3842 2.0
40 200 61 2.50 0.22 1257× 3842 2.8
40 200 62 3.50 0.16 1257× 3842 2.8
41 210 63 3.50 0.23 1257× 3842 2.8
42 210 65 4.70 0.23 1257× 3842 2.8
42 220 66 6.00 0.23 1257× 3842 2.8
73 650 149 1.50 0.14 2234×10242 2.8
73 660 152 1.50 0.22 2234×10242 2.8
72 650 150 1.52 0.38 2366×10242 2.8
74 670 153 3.50 0.15 2234×10242 2.8

TABLE 1. List of cases in the present study with parameters taken immediately upstream
of the shock.

table; this measure is about 60 and 150 at the two different Reynolds numbers,
respectively. The low- and high-Re cases use grids with 384 and 1024 points in the
transverse directions, respectively. The grid is stretched in the shock-normal direction
such that the grid spacing 1x1,s at and immediately behind the shock is appropriate
for the anisotropically compressed post-shock turbulence. This reduced shock-normal
grid spacing also minimizes the numerical error incurred at and immediately behind
the shock, to the point where this error is negligible according to the analysis and
criteria given by Larsson (2010). This grid stretching implies that the number of points
in the shock-normal direction differs between the cases. The simulations were run on
4096–65 536 cores for about 6–18 h depending on the case.

In the following sections the quality of the computed data is assessed. The material
also lends itself naturally to discuss some physical phenomena, including the decrease
of the Kolmogorov scale at the shock.

When presenting data, it is natural to normalize by the conditions immediately
upstream of the shock. What is less clear is how to scale the shock-normal coordinate,
i.e. what the relevant length scale is. One choice is a characteristic eddy size, which
could be either the dissipation length scale Lε or the Kolmogorov length scale η for
the large and small motions, respectively. Another choice is a convected time scale
characteristic of the evolution of turbulence, which could be taken as ũτε = ũ(Rkk/2)/ε
or ũτη = ũ

√
ν/ε for the large and small scales, respectively.

2.1. Grid convergence and decrease of the Kolmogorov scale
The most basic test of the quality of DNS data is to verify that the statistics are grid
converged. Figure 2 shows the shock-normal Reynolds stress R11 and the dissipation
rate ε for a sequence of grids at Reλ ≈ 70. The error in R11 is less than 0.1 % on
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FIGURE 2. (Colour online) Grid convergence at (M,Mt) = (1.50, 0.14) and Reλ = 73 on
2234 × 10242 grid (solid), 1675 × 7682 grid (dashed) and 1117 × 5122 grid (dash-dotted):
(a) shock-normal Reynolds stress R11; (b) dissipation rate ε. Both quantities are normalized
by their values upstream of the shock on the finest grid. The grey strip shows the region of
unsteady shock movement.
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FIGURE 3. (Colour online) Kolmogorov length scale η. (a) Profile through the shock at
(M,Mt) = (1.50, 0.14) and Reλ = 73. The grey strip shows the region of unsteady shock
movement. (b) Change in η across the shock for all cases versus Mach number. At each Mach
number, the cases are shown with different symbols in order of increasing Mt. At Reλ ≈ 40
the symbols are, in order: circle, square, diamond, and triangle. At Reλ ≈ 70 the symbols are,
in order: plus, cross, and star. The solid line is the estimate from (2.1).

the finest grid, while the error in ε is less than 3 %. That the error in dissipation rate
is larger is natural, since it depends primarily on the smallest scales of turbulence
(that are the least resolved). The low-Reynolds-number cases at Reλ ≈ 40 are better
resolved, with smaller errors.

The increase in dissipation rate across the shock evident in figure 2 immediately
suggests that the Kolmogorov scale also changes across the shock. A sample profile
of the Kolmogorov length scale η = ν3/4ε−1/4 is shown in figure 3, which clearly
demonstrates this effect. This decrease in η was one of the main points made by
Larsson & Lele (2009), who estimated the change as

ηd

ηu
∼
(

Td

Tu

)3/8(
ρd

ρu

)−1

, (2.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

57
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.573


300 J. Larsson, I. Bermejo-Moreno and S. K. Lele

0

0.5

1.0

1.5

2.0

2.5

0 2 4 6
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2 4 6

(a) (b)

FIGURE 4. (Colour online) Effect of the computational box size. Profiles through the shock
at (M,Mt) = (1.50, 0.15) and Reλ = 38 of (a) R11 stress and (b) transverse vorticity variance
ω′2ω

′
2. Peak energy at the initial time at mode number 4 (solid) and 8 (dashed). The grey strip

shows the region of unsteady shock movement.

where the density and temperature jumps are to be taken from the Rankine–Hugoniot
relations. The change across the shock of the Kolmogorov length scale is shown in
figure 3 for all cases as a function of the Mach number. There is no real effect of
either the Reynolds number or the turbulent Mach number on this phenomenon. The
agreement with the estimate (2.1) is reasonable but not great, especially at large Mach
numbers. The culprit is the simplistic estimate of the vorticity jump across the shock
being proportional to the density jump; a better estimate could be developed using
more elaborate theory (cf. Sinha 2012). Nevertheless, the estimate captures the main
effect of a decrease in η across a shock wave.

We note that the present results for the change in η differ slightly from those
reported in Larsson & Lele (2009) as a result of a different definition of the post-shock
value ηd: it is defined as the value immediately behind the region of unsteady shock
motion (i.e. at the point where the profile leaves the grey strip in figure 3) in the
present study.

2.2. Box size effects and spectra

The grid convergence in the previous section assesses how well the smallest scales are
resolved by the grid; in this section the focus is instead on how the largest scales are
affected by the finite computational box size. This test is performed at Reλ = 38 for
the (M,Mt) = (1.50, 0.15) case. The base case has peak energy at mode number 4
(i.e. at wavenumber 4 in a domain of length 2π) in the inflow database at the initial
time. This is compared to a case with peak energy at mode number 8 but all other
parameters matched (including the grid spacing in terms of the Kolmogorov scale).
Two profiles through the shock are shown in figure 4 for typical large- and small-scale
quantities. The results collapse very well except for some discrepancy in the viscous
decay region behind the shock. We note that the cases at Reλ ≈ 70 have peak energy
at mode number 6 at the initial time, and therefore are less affected by finite box size
effects.

The box size effects are further investigated in figure 5, which shows the spectra
of the streamwise velocity u′ in the transverse directions. The almost perfect collapse
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FIGURE 5. (Colour online) Effect of the computational box size. Spectra in the transverse
directions (wavenumber k23 =

√
k2

2 + k2
3) at (M,Mt) = (1.50, 0.15) and Reλ = 38 of

streamwise velocity u1 (lines). Peak energy at the initial time at mode number 4 (solid) and
8 (dashed), for positions upstream (x1/Lε,u = −0.5) and downstream (x1/Lε,u = 0.5) of the
shock. Also shown is the spectrum of the unsteady shock-motion ẋs (symbols). The spectra
have been normalized by their respective variances.

of the spectra for positions both upstream and downstream of the shock again implies
that effects of the finite box size are minimal.

Figure 5 also shows the spectrum of the unsteady shock motion ẋs, which is defined
as the time derivative of the instantaneous shock location xs(x2, x3, t) (to be defined
and discussed in § 4). The spectrum of ẋs is almost identical to the spectrum of the
incoming velocity, suggesting that the shock is forced by the incoming flow. While a
rather obvious observation, this will be utilized in § 4.3 to derive a regime criterion for
the shock–turbulence interaction process.

2.3. Shock drift and shock jumps
In canonical shock–turbulence interaction there are no geometric features anchoring
the shock in a particular location, and the shock is free to move in response to
the incoming flow. Moreover, the Rankine–Hugoniot relations are valid only for the
instantaneous flow, but not on average in the presence of turbulence (Lele 1992). The
average shock-jump relations for a turbulent flow include the turbulence stresses and
heat flux, which are modified across the shock; therefore, the jumps in the mean
quantities are also modified compared to quiescent flow. This effect has a practical
importance for computation of canonical shock–turbulence interaction, in that the
shock may have a finite and possibly large drift velocity. An example is shown in
figure 6, where the instantaneous mean (in the transverse directions) position of the
shock is seen to drift in time. There is a clear change in drift velocity at t/τdb ≈ 4.7;
this time corresponds to the time it takes an acoustic wave to propagate from the
outlet to the shock. This process is the slowest of the different initial transients and
determines when the problem becomes fully developed. After this transient, the mean
drift velocity for the case in the figure is less than 0.2 % of the mean incoming
velocity, which is sufficiently small to have negligible effects on the problem (e.g. on
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FIGURE 6. (Colour online) Instantaneous mean (in the transverse directions) shock position
as a function of time for (M,Mt)= (1.52, 0.38) and Reλ = 72. The time is normalized by the
duration of the inflow database; averages are collected only during the final τdb. The final drift
velocity of the shock is less than 0.2 % of the upstream velocity.
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FIGURE 7. (Colour online) Representative mean density and pressure profiles (solid)
for (M,Mt) = (1.50, 0.22) and Reλ = 73, compared to the inviscid, non-turbulent,
Rankine–Hugoniot results (dashed).

the collection of averages). We note that the case in the figure has the largest drift
velocity among all cases due to the high turbulence intensity.

As a practical matter, the negligible drift was achieved by utilizing a linearized
Rankine–Hugoniot relation for the pressure jump to adjust the specified back-pressure
until the shock remained essentially stationary (Larsson & Lele 2009).

Typical profiles of mean density and pressure are shown in figure 7. It is clear
that the jumps across the shock are smaller than predicted by the Rankine–Hugoniot
relations, in qualitative agreement with the analysis of Lele (1992). To investigate
whether there is quantitative agreement with that theory, the deviation from the
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FIGURE 8. (Colour online) Deviation in the mean density and pressure jumps across the
shock from the inviscid Rankine–Hugoniot relations, as measured by fρ and fp (defined in the
text). (a) Deviation in the density jump fρ , compared to the empirical fit fρ ≈ 0.95 (Mt/M)

2

(solid) and the analysis of Lele (1992) (three dash-dotted curves at, from bottom to top,
Mt = 0.2, 0.3 and 0.4). (b) Deviations in pressure fp versus density fρ , compared to the
curve fp = γ fρ (solid). DNS results at Reλ ≈ 40 with Mt ≈ 0.05 (circle), 0.15 (square), 0.22
(diamond), 0.26 (triangle), 0.31 (pentagram) and 0.37 (hexagram). DNS results at Reλ ≈ 70
with Mt ≈ 0.15 (plus), 0.22 (cross) and 0.38 (star).

Rankine–Hugoniot jump is defined as

fρ = ρd,RH − ρd

ρd,RH
, (2.2)

where subscript RH implies the Rankine–Hugoniot value. The deviation in the
pressure jump fp is defined similarly. The post-shock values from the DNS are taken
at the local minimum behind the shock, after the inviscid post-shock adjustment.
The deviations are shown in figure 8. While the theory of Lele (1992) is
qualitatively correct (predicting small positive values of fρ), there are quantitative
discrepancies with the present DNS data. These discrepancies could perhaps be
attributed to the application in Lele (1992) of homogeneous RDT, which is known
to have shortcomings for shock–turbulence interaction. The deviation from the
Rankine–Hugoniot relations in the DNS data scales rather closely with (Mt/M)

2 or,
equivalently, with the square of the turbulence intensity upstream of the shock. The
deviations in pressure and density are proportional to each other with a factor of γ ; in
other words, the deviations are isentropic.

Estimates of the deviations fρ and fp from the Rankine–Hugoniot values can be
derived by considering the mean conservation equations. Conservation implies that

ρ ũ1 = const., (2.3a)

ρ ũ2
1 + p+ [ρR11] = const., (2.3b)

1
2
ρ ũ3

1 +
γ

γ − 1
pũ1 +

[
ρ ũ1

(
R11 + Rkk

2

)]
≈ const., (2.3c)

where the dominant terms due to turbulence are enclosed in square brackets; the
turbulent triple correlation and the temperature–velocity correlation were neglected for
simplicity. These jump relations could be combined into turbulent Rankine–Hugoniot
relations, and solved provided a closure for the jumps in the turbulence stresses is
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FIGURE 9. (Colour online) Profiles of the shock-normal Reynolds stress R11 through the
shock at Mt ≈ 0.15. (a) Results at M = 1.50 with Reλ of 38 (solid) and 73 (dashed),
respectively, and at M = 3.50 with Reλ of 40 (dash-dotted) and 74 (dotted), respectively.
Note that the cases at M = 1.50 have the lowest post-shock peak at x1/Lε,u ≈ 0.8, while the
cases at M = 3.50 have the highest post-shock peak at the same location. (b) Zoom around
the shock, showing the full peak in R11 for (M,Mt)= (1.50, 0.14) and Reλ = 73 (solid). Also
shown is the estimated profile of R11 solely due to the unsteady shock movement (dashed).
The grey strips show the regions of unsteady shock movement (in panel (a), the narrower
region corresponds to M = 3.50).

assumed. This was done by Lele (1992) using homogeneous RDT as the closure,
but could instead be done using results of Ribner’s linear theory to achieve a more
accurate closure. However, let us instead simply estimate the scaling of the deviations
fρ and fp using (2.3). The non-turbulent terms in (2.3b) are of order ρ ũ2

1 while those
in (2.3c) are of order ρ ũ3

1. The turbulence terms in both equations are therefore of
relative magnitudes R11/ũ2

1 and Rkk/ũ2
1; when evaluated upstream of the shock, this is

exactly the square of the turbulence intensity, or equivalently (Mt/M)
2. Therefore, the

deviations fρ,p should scale, to first order, as (Mt/M)
2. In fact, expanding fρ,p in powers

of (Mt/M)
2 and solving the jump relations gives fρ/ (Mt/M)

2 of order unity, and fp/fρ
close to γ . For both quantities, the exact values are weak functions of M, and, of
course, depend on the exact closure used.

3. Reynolds stresses and vorticity
3.1. Reynolds stresses: evolution through the shock

Profiles of the shock-normal Reynolds stress R11 through the shock are shown in
figure 9 for four cases with fixed Mt. The post-shock evolution of R11 is non-
monotonic, with a clear peak located about 0.8 units of Lε,u behind the shock
location. This peak is a consequence of a post-shock adjustment in which internal
energy is converted into shock-normal velocity fluctuations. This adjustment process
is predicted by Ribner’s linear theory. The main effect of increasing the Reynolds
number is a slower decay rate behind the shock. This is not surprising at these low
Reynolds numbers. The fact that the post-shock peak, in both magnitude and position,
is insensitive to the Reynolds number implies that the post-shock adjustment process
is inviscid and occurs primarily at the large scales. The effect of changing the mean
Mach number is to modify the amplification of R11, while the position of the peak
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FIGURE 10. (Colour online) Evolution of the turbulence anisotropy R11/R22 at (M,Mt) ≈
(3.50, 0.16) and Reλ = 40 (solid) and 74 (dashed), compared to results from linear interaction
analysis (dash-dotted) taken from Sinha, Mahesh & Candler (2003), and experiments
(symbols) by Barre et al. (1996) using LDV.

does not change. The latter implies that the post-shock adjustment process occurs over
turbulence length scales rather than acoustic ones.

Figure 9 also shows a zoom around the shock for a single case. The large peak
around the shock is solely due to unsteady shock movement, and not turbulence.
This can be illustrated by using the simple model for the instantaneous shock-normal
velocity:

u1(x, ξ)=
{

u1,u, x< xs(ξ),

u1,d, x> xs(ξ),
(3.1)

where xs is the instantaneous shock position and ξ is a random variable. In other
words, the velocity field is assumed to be non-turbulent with a randomly varying shock
position. It is then easy to show that this model implies (regardless of the random
number distribution) the variance u′1u′1 = (u1,u − u1)(u1 − u1,d), which is shown in the
figure by the dashed line. The agreement at the shock shows that the peak in R11 in
that location is almost entirely due to the unsteady shock movement. As a side point,
we note that the region of unsteady shock movement (the grey strip in the figure) is
defined here as the region of mean fluid compression.

We next compare the computed Reynolds stresses to the experimental data of Barre
et al. (1996), who generated approximately isotropic turbulence using a multi-nozzle in
a supersonic wind tunnel. The experimental conditions were different from the ones in
the DNS: specifically M = 3, Mt ≈ 0.01 and a turbulent Reynolds number based on the
dissipation length scale of order 30 (estimated from the information in the paper).

The evolution of the turbulence anisotropy R11/R22 is shown in figure 10 and is
considered first. The two DNS cases at different Reynolds numbers show a fairly
constant level of anisotropy behind the shock, with no evidence of a return to
isotropy within the (admittedly short) domain. The experimental data similarly show
an essentially constant level of post-shock anisotropy, at a slightly lower level: about
1.2 compared to 1.3 in the DNS.
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FIGURE 11. (Colour online) Evolution of the turbulence kinetic energy Rkk/2 at (M,Mt) ≈
(3.50, 0.16) and Reλ = 40 (solid) and 74 (dashed), compared to results from linear interaction
analysis (dash-dotted) taken from Sinha et al. (2003), and experiments by Barre et al. (1996),
where the plus symbols show the raw LDV measurements and the solid circles show the
results of combining hot-wire data of R11 with LDV data of R11/R22. The shock-normal
coordinate x1 is normalized by (a) the dissipation length scale and (b) the convected time
scale, in the respective panels. The grey strip in panel (b) shows the region of unsteady shock
movement.

We next consider the evolution of the turbulence kinetic energy in figure 11, using
two different normalizations of the shock-normal coordinate. First, it is clear that
there is a considerable spread in the LDV data. The hot-wire data are much cleaner,
but collected only for the R11 component. By using the experimental result for the
anisotropy R11/R22 discussed above, the hot-wire data can be used to estimate the
trace of the Reynolds stress; this is shown in solid symbols in the figure. When
the shock-normal coordinate is normalized using a characteristic length scale of the
turbulence (the dissipation length scale), there is considerable disagreement. This
disagreement, however, is entirely due to the differing conditions between the DNS
and the experiment, and, specifically, how the shock-normal coordinate is normalized.
After the post-shock adjustment, the main physical process is simply decay of the
turbulence. This implies that the relevant length scale is a convected turbulence
decay time scale, i.e. ũ1τε = ũ1Lε/

√
Rkk/2; this normalization is used in figure 11(b).

The agreement for x1 & 0.02 ũ1,uτε,u between the DNS and the experiment is quite
remarkable.

3.2. Reynolds stresses: budgets
The Reynolds stress equation (cf. Wilcox 2000) can be simplified considerably for
the present case of canonical shock–turbulence interaction. Moreover, away from the
shock, several terms are negligible. Thus to a good approximation the Reynolds stress
equations can be written as

∂1(ρ ũ1Rkk)≈−2σkj∂ju′′k + 2p′∂ku′′k − 2∂1p′u′′1, (3.2a)

∂1(ρ ũ1R11)≈−2σ1j∂ju′′1 + 2p′∂1u′′1 − 2∂1p′u′′1, (3.2b)

∂1(ρ ũ1R22)≈−2σ2j∂ju′′2 + 2p′∂2u′′2. (3.2c)

The terms on the right are, in order, viscous dissipation, pressure–strain correlation and
pressure–velocity transport. Note that ρ ũ1 is constant (by virtue of mass conservation),
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FIGURE 12. (Colour online) Reynolds stress budget for (M,Mt)= (1.50, 0.14) and Reλ = 73.
Viscous dissipation (thick solid), pressure–strain (dashed), pressure–velocity (dash-dotted),
the sum of these three terms (symbols), and the sum of these three terms plus the mean
convection (thin solid line around zero). All terms are scaled by the corresponding value of
ρεij taken immediately behind the shock. The grey strip shows the region of unsteady shock
movement.

and hence equations (3.2) represent the rate of change of the Reynolds stresses. The
budget for one representative case is shown in figure 12.

To establish the quality of the budgets computed from the DNS data, the thin solid
lines in figure 12 show the sum of all terms in (3.2) (with the mean convection moved
to the right-hand side). The deviation from zero is the error in (3.2), due to both
neglected terms and finite averaging. The error is an order of magnitude smaller than
the results.

The viscous dissipation is dominant for x1/Lε,u & 2; in fact, it is the only
non-negligible term for the evolution of the turbulence kinetic energy. The
pressure–velocity term is significant in the post-shock adjustment region, where it
contributes to the growth of R11 and Rkk. The pressure–strain term is very large behind
the shock but quickly decreases in magnitude. For x1/Lε,u & 1, it becomes slightly
positive for the transverse stresses and equally negative for the shock-normal stress,
and thus contributes to a (very slow) return to isotropy. The effect on the kinetic
energy (a pressure-dilatation correlation) is negligible. The shape and characteristic
length scale of the pressure–strain term is quite constant for different M, Mt and Reλ.

The most interesting use of the budget terms is to artificially remove the viscous
dissipation from the resulting profiles. The integrated right-hand side of the budget
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FIGURE 13. (Colour online) Using the integrated dissipation term to extrapolate to infinite
Reynolds number at (M,Mt) ≈ (3.50, 0.16). Raw DNS results (decaying profiles) at Reλ
of 40 (solid) and 74 (dashed); DNS results with artificially removed viscous dissipation
(equation (3.4); see text for details) at Reλ of 40 (plus) and 74 (cross); compared to linear
theory (dash-dotted). The grey strip shows the region of unsteady shock movement.

equations (3.2) over an interval equals the change in Reynolds stress over that same
interval. Thus (where Rαα denotes either R11, R22 or Rkk)

Rαα(x1)= Rαα(x1,0)+ 1
ρ ũ1

∫ x1

x1,0

([Diss.] + [Rem.]) dx′1, (3.3)

where the mean mass flux is constant and hence can be taken outside the integral,
and where [Diss.] and [Rem.] represent the viscous dissipation and all remaining
terms, respectively. Provided that x1,0 is taken from behind the shock, this reconstructs
the profile to within very small numerical integration errors; across the shock, the
numerical integration errors in (3.3) are substantial.

One can therefore define

R∗αα = Rαα(x1,0)+ 1
ρ ũ1

∫ x1

x1,0

[Rem.] dx′1 = Rαα − 1
ρ ũ1

∫ x1

x1,0

[Diss.] dx′1 (3.4)

as the Reynolds stress with the effect of viscous dissipation removed: i.e. an artificial
extrapolation to infinite Reynolds number. This type of profile is shown in figure 13
for two cases, where it is clear that the modified profiles agree quite well with the
result of linear theory.

3.3. Reynolds stresses: change due to the shock interaction
The size of the post-shock adjustment region is about Lε, i.e. about one characteristic
large eddy size. In most practical applications, this is small relative to the main
features of the flow, and hence the most important result of a shock–turbulence
interaction is the effect on the post-shock turbulence after this adjustment, i.e. in
the far field. Therefore, the modification to turbulence by a shock should be defined
using the far-field values of Rij.

The turbulence anisotropy R11/R22 is approximately constant in the post-shock
region, and thus its far-field value is easily computed. For the TKE Rkk/2, however, the
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FIGURE 14. (Colour online) Amplification of the TKE across the shock versus Mach number,
using different definitions of the post-shock state. DNS with spatial extrapolation to the mean
shock position (circle, the technique used in figure 15), DNS with artificially removed viscous
dissipation (plus, see text for details), and linear theory (solid, taken from Sinha et al. (2003)).
Also shown are the values from DNS computed at the post-shock peak (cross).

significant viscous decay in the DNS results makes it difficult to define unambiguously
the amplification induced by the shock. Some studies in the literature (e.g. Donzis
2012a) define the amplification through the value at the post-shock peak in Rkk. While
well defined, this introduces an effect of the Reynolds number, as a result of the
viscous decay occurring up to the post-shock peak. An alternative is to spatially
extrapolate the Rkk profile back to the mean shock position (cf. Larsson & Lele 2009).
This is less well defined, but potentially avoids the Reynolds-number effect.

These different definitions are compared in figure 14. Unsurprisingly, the spatial
extrapolation leads to larger computed amplification factors compared to using the
post-shock peak. There are multiple cases at different Reλ and Mt at several values
of the mean Mach number; while there is some spread among these cases using both
definitions, the spread is arguably smaller when using the spatial extrapolation.

The modified R∗kk defined in (3.4), where the effect of viscous dissipation has been
artificially removed, can be used to define yet another amplification factor across the
shock. Since this artificial quantity is constant in the far field, the value there can be
directly used to compute the amplification of Rkk; this is also shown in figure 14. The
resulting amplification factors are similar to or slightly larger than those obtained with
spatial extrapolation.

The predicted amplification from linear analysis is between the values estimated
using spatial extrapolation and the artificial profiles (which can be viewed as
extrapolations to infinite Reynolds number). Overall, these results suggest rather
strongly that the linear theory of Ribner (1954) accurately describes and predicts
the amplification of TKE.

The amplification factors are shown again in figure 15, using the results of the
spatial extrapolation only. In this figure the symbols denote different values of Reλ and
Mt. Close inspection reveals a very small dependence on the Reynolds number, but a
slightly larger dependence on the turbulent Mach number (or, similarly, the turbulence
intensity). Specifically, the amplification factors consistently decrease for more intense
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FIGURE 15. (Colour online) Amplification of the TKE across the shock versus Mach number,
where the post-shock Rkk is defined through spatial extrapolation to the mean shock position.
At each Mach number, the cases are shown with different symbols in order of increasing Mt.
At Reλ ≈ 40 the symbols are, in order: circle, square, diamond, and triangle. At Reλ ≈ 70 the
symbols are, in order: plus, cross, and star. Also shown for comparison are results from linear
interaction analysis (solid), taken from Sinha et al. (2003), and experiments (solid circle) by
Barre et al. (1996) using hot-wire anemometry for R11 combined with LDV measurements of
R11/R22.

turbulence. This is consistent with the decrease in the mean compression at higher Mt,
as discussed earlier.

The amplification computed from the experiment by Barre et al. (1996) (which was
also extrapolated back to the shock position) is also included in the figure. There is a
close agreement between the experiment, the linear analysis and the DNS results.

The turbulence anisotropy in the far field is shown in figure 16. Given the essentially
constant values of this quantity in the post-shock region, no extrapolation is necessary
for this quantity. There is a qualitative disagreement with Ribner’s linear analysis for
M & 1.3, where the linear theory predicts a decreasing anisotropy (with the Mach
number) and, in fact, that the transverse Reynolds stress R22 should be larger than the
shock-normal R11 for M > 1.9. Both the DNS and the experiment give anisotropies
of type R11 > R22 for all Mach numbers. This strongly suggests that the generation
of turbulence anisotropy during the interaction with a shock is a nonlinear process,
driven by the significant pressure–strain and pressure–velocity terms in the immediate
post-shock region.

3.4. Vorticity variances
Sample profiles of vorticity variances through the shock are shown in figure 17. All
cases give results that are qualitatively similar. The transverse vorticity is amplified
instantaneously during the shock interaction, whereas the shock-normal component is
initially unaffected by the interaction. A short distance behind the shock, however,
the vorticity components return to isotropy, thus suggesting that the small scales
return to isotropy as well. The distance over which this occurs clearly decreases with
Reynolds number. In fact, the proper length scale to describe this phenomenon is the
convected Kolmogorov time scale. This is shown in figure 18, where the anisotropy is
defined to account for the different amplification ratios of the transverse component at
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FIGURE 16. (Colour online) Mach number dependence of the post-shock turbulence
anisotropy in the far field. At each Mach number, the cases are shown with different symbols
in order of increasing Mt. At Reλ ≈ 40 the symbols are, in order: circle, square, diamond,
and triangle. At Reλ ≈ 70 the symbols are, in order: plus, cross, and star. Also shown for
comparison are results from linear interaction analysis (solid), taken from Sinha et al. (2003),
and experiments by Barre et al. (1996) using LDV (error bar showing the experimental
root-mean-square variation in the far field).
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FIGURE 17. (Colour online) Evolution of vorticity variances at (M,Mt) = (3.50, 0.16) and
Reλ of 40 (solid) and 74 (dashed). Shock-normal (ω′1ω

′
1, lower curves) and transverse (ω′2ω

′
2,

upper curves) components.

different Mach numbers. There is a high degree of collapse in the return to isotropy
of the vorticity, which occurs over a distance of about 10 convected Kolmogorov time
scales. At high Reynolds numbers, this distance would become very small, perhaps
too small to detect in experiments. The anisotropic amplification of vorticity across the
shock is, therefore, of little practical importance. For example, in Reynolds averaged
Navier–Stokes (RANS) modelling of the dissipation rate (or surrogates thereof), the
objective must be to predict the change from pre-shock to after the post-shock
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FIGURE 18. (Colour online) Anisotropy of vorticity variances for all cases, where the
anisotropy is defined as (ω′2ω

′
2 − ω′1ω′1)/(ω′2ω′2|d − ω′2ω′2|u). The outlier corresponds to

(M,Mt)= (1.52, 0.38) and Reλ = 72.

adjustment. Similarly, since large-eddy simulation (LES) is aimed at high Reynolds
numbers with filter widths far exceeding the Kolmogorov scale, there is no reason to
expect that small-scale anisotropy behind the shock could be captured.

4. Interaction regimes
At Reynolds numbers of practical interest, the shock is an inviscid phenomenon

and essentially a discontinuity. The incoming turbulence perturbs the shock beyond
its nominally planar shape. To illustrate the wide difference in instantaneous shock
interactions that occur for intense turbulence, consider the shock and three pathlines
through the shock shown in figure 19. The instantaneous shock is highly corrugated
and shows a large range of instantaneous density jumps across it.

To quantify these departures from the mean, we define the instantaneous shock
location xs(x2, x3, t) as the position along the shock-normal direction (x1) where
the minimum dilatation occurs (i.e. maximum fluid compression). Given this, the
instantaneous density jump across the shock 1ρs(x2, x3, t) is then defined as the
maximum difference in density between the two grid points upstream and downstream
of xs(x2, x3, t). While clearly numerical in nature, this definition is consistent with the
known nature of the WENO shock-capturing scheme to capture a shock in two or
three grid points. We also note that the Kolmogorov length scale downstream of the
shock is between 1.5 and 3 times the shock-normal grid spacing for all cases; thus
our definition of the shock jump is effectively to compare the density values about one
Kolmogorov length upstream and downstream of the shock, respectively. By including
two grid points before and after the shock location, the computed 1ρs is a very
reasonable approximation to the instantaneous shock jump even in a highly turbulent
flow field.

With these definitions, the excursions of the shock in figure 19 are −0.4 . xs/Lε .
0.3, with 1ρs going from virtually zero to more than three times its mean value. The
regions of the shock with virtually zero compression were termed ‘shock holes’ in
Larsson & Lele (2009), and the presence or absence of instantaneous shock holes was
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FIGURE 19. Instantaneous pathlines of three fluid particles at (M,Mt) = (1.51, 0.37) and
Reλ = 39 that crossed the shock at the same time, in regions of very high compression (solid),
relatively low compression (dash-dotted) and virtually zero compression (a ‘shock hole’,
dashed line). (a,c) 3D views of the pathlines together with an isosurface of negative dilatation
visualizing the shock (grey surface) at the time when the particles traverse it (marked by a
pale/yellow dot for each particle). The projections of the pathlines on the bottom plane of the
domain are included for clarity. (e) A zoomed view of the particle trajectories at the instant
when they crossed the shock, with the shock shaded/coloured by the local density jump across
it, normalized with the average density jump. (b,d,f ) Traces of entropy, shock-normal velocity
and dilatation along the three pathlines, plotted as functions of the shock-normal coordinate
relative to the shock position at the time the particle crossed the shock.
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FIGURE 20. Instantaneous shock strength and shape for increasing Mt at fixed M ≈ 1.50
and Reλ ≈ 40. (a–d) Instantaneous shock educed through isocontour of negative dilatation
coloured by the density jump, 1ρs, for Mt = 0.15, 0.22, 0.31, 0.37 (from left to right).
(e) The p.d.f. of the normalized density jump for Mt of 0.15 (solid), 0.22 (dashed), 0.31
(dash-dotted) and 0.37 (dotted).

used to classify the shock–turbulence interaction into the ‘broken shock’ (with shock
holes) or ‘wrinkled shock’ (without) regimes, respectively.

Figure 19 also shows the traces of several quantities along three pathlines that
traversed the shock at the same time. At the time of shock crossing, the pathlines
crossed the shock in regions of very high, rather low and virtually zero compression,
respectively. The fluid particle that passed through a shock hole has completely smooth
profiles of all quantities, with no discernible interaction with the shock at all. Note
that the velocity of this particle was only slightly supersonic as it approached the
shock, with a smooth decrease through the sonic point. This statement comes with two
caveats: first, the averaged speed of sound is used in the figure, and, secondly, the
velocity is in the frame of the mean, not instantaneous, shock. Nevertheless, the fact
that the shock hole is associated with near-sonic flow approaching the shock will be
used below in defining a criterion for which regime the interaction is in.

While the numerical method is not the focus of this paper, we note that the solution-
adaptive method reverts to the central difference scheme in the shock holes. For the
case shown in figure 19, the WENO scheme is used at points where the rate of
dilatation ∂kuk . −1 (on average); as can be seen in the figure, the trace through the
shock hole never comes close to this limit.

4.1. Instantaneous shock strength
The effect of increasingly intense turbulence on the shock is illustrated in figure 20.
The four cases shown have Mt from 0.16 to 0.37, or turbulence intensities from 6 to
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FIGURE 21. Joint p.d.f. of the instantaneous density jump across the shock 1ρs and the
instantaneous shock position xs at (M,Mt) = (1.51, 0.37) and Reλ = 39. Contours spaced
logarithmically from the peak (light) down to three decades lower (dark).

14 %. The increasing corrugation of the shock is clear, as is the increasing prevalence
of very large or small local fluid compressions. This is further illustrated in the
probability density function (p.d.f.) of 1ρs, which broadens substantially for more
intense turbulence.

Figure 21 shows the joint p.d.f. of the density jump and the shock location. Strong
shock events are correlated with a pushed-back shock, and vice versa; this is consistent
with observations by Lee et al. (1993). This makes sense in two ways. First, the
local shock velocity increases with shock strength, thus implying that displaced shock
segments return towards the mean position. If this were not the case, the configuration
would be unstable. Secondly, by geometrical reasoning, a pushed-back shock would
have a concave curvature, which by focusing of the post-shock flow would imply a
higher post-shock density, i.e. a stronger shock.

The p.d.f.s of the density jump are very insensitive to the Reynolds number, as
shown in figure 22. This suggests that the presence of shock holes is not an effect of
low Reynolds number. Specifically, one might have expected that larger viscous forces
would more easily overcome the inviscid shock compression. While undoubtedly true,
the collapse of the p.d.f.s in the figure suggests that this would happen only for
Reynolds numbers significantly lower than those considered here.

4.2. Grid convergence of shock-jump p.d.f.s
The present study is a DNS in the extended sense of fully resolving all scales
of turbulence but capturing the shock discontinuity numerically. A discussion on
the accuracy and realism of this approach was given in § 2, including theoretical
arguments and grid convergence verification that strongly suggest that the post-shock
statistics are unaffected by the numerical shock-capturing technique. Let us take this
question one step further. One key finding in the study of Larsson & Lele (2009)
was the presence of smooth instantaneous profiles through the shock; further examples
of such smooth profiles were shown above as well. It is then important to verify
that these instantaneously smooth interactions are physical, and not artefacts of the
numerical shock-capturing scheme.
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FIGURE 22. (Colour online) The p.d.f. of the instantaneous density jump across the shock
1ρs at (M,Mt)≈ (1.50, 0.38) and Reλ of 39 (solid) and 72 (dashed).
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FIGURE 23. (Colour online) The p.d.f. of the instantaneous density jump across the shock
1ρs at M ≈ 1.50 and Reλ ≈ 40 computed on the finest 1040×3842 grid (solid): (a) Mt = 0.15;
(b) Mt = 0.37, with inset showing a zoom around small density jumps. Also shown for
comparison is the p.d.f. computed on a coarser 694 × 2562 grid in two different scalings: raw
(dashed) and with 1ρs scaled by the ratio of fine to coarse grid spacing (dash-dotted).

Consider the quantity 1ρs and how it depends on the grid resolution h. For
discontinuous solutions, the jump is, by definition, unaffected by the grid spacing.
For smooth solutions, the jump as defined here (the density difference within a local
numerical stencil) must scale as ∂1ρ h, i.e. proportional to h. Given the chaotic nature
of the flow, it is impossible to perform a grid refinement study on these instantaneous
events. However, the events do appear in the p.d.f. of 1ρs.

Figure 23 shows this p.d.f. computed on the finest and next coarsest grids for two
cases. At low Mt these two p.d.f.s agree very well with each other across the full range
of 1ρs, but at high Mt there is a disagreement at low density jumps. If we hypothesize
that the events in the region of disagreement are smooth interactions, then the p.d.f.s
should instead collapse when scaled by the grid spacings; this is also shown in the
figure, and collapse is seen for 1ρs . 0.11ρs at the highest Mt. This offers statistical
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evidence that there exists instantaneously smooth profiles through the shock, provided
the turbulence is sufficiently intense. Specifically, the convergence of the p.d.f.s under
different scalings shows that the existence of the smooth profiles is not an artefact of
the numerical scheme.

The fact that the p.d.f.s from two different grids collapse in ‘smooth’ scaling for
1ρs . 0.11ρs implies that the majority of points on the shock that experience such
instantaneous jumps have smooth compressions through the ‘shock’; they are ‘shock
holes’. From the p.d.f., this range of shock jumps occurs for only about 0.05 %
of the points on the shock surface. The different p.d.f.s collapse in ‘discontinuity
scaling’ for 1ρs & 0.61ρs, which corresponds to about 90 % of the points on the
shock surface. The p.d.f.s in the intermediate interval collapse in neither scaling,
implying that a mixture of smooth and discontinuous events occur for density jumps
in this interval. Thus the fraction of the shock that experiences smooth compressions
is certainly larger than 0.05 % but less than 10 %; if we pick the point where the
fine-grid p.d.f. is halfway between the differently scaled coarse-grid p.d.f.s, we get
that about 1 % of the shock surface is locally (in space and time) occupied by shock
holes.

4.3. Criterion for the ‘wrinkled’ and ‘broken’ shock regimes

The existence of different regimes in the shock–turbulence interaction process is clear.
The regimes were dubbed the ‘wrinkled’ and ‘broken’ shock regimes in Larsson &
Lele (2009), to describe whether the shock retains its structure or not. Lee et al.
(1993) argued that the interaction should be in the broken regime when the pressure
fluctuations induced by the turbulence in the upstream flow are large compared to the
pressure jump across the shock; this then led to a parameter M2

t /(M
2 − 1).

In the present work a different argument is used, leading to the different controlling
parameter Mt/(M − 1). This is similar (except for the Reynolds-number dependence)
to the parameter K = Mt/[

√
Reλ(M − 1)] arrived at by Donzis (2012a) using

similarity arguments about the instantaneous shock thickness. In follow-up work, as
part of a deeper theoretical analysis of the shock–turbulence interaction problem,
Donzis (2012b) then used arguments very similar to those used here (but developed
independently) to arrive also at Mt/(M − 1) as the controlling parameter for the
interaction regimes.

Consider the instantaneous traces along pathlines in figure 19. Among these three
pathlines, the strongest shock compression is associated with the highest approach
velocity and vice versa. In fact, the velocity leading up to the shock hole smoothly
reaches sonic speed before the ‘shock’, suggesting that this was caused solely by
the upstream turbulence. Several caveats are in order (mentioned above, but worth
repeating): the averaged speed of sound was used in the figure, the velocity is in the
frame and direction of the averaged shock, and we only showed three events here.
Despite these caveats, it is still tempting to hypothesize that shock holes are created
whenever there is a finite (and likely sufficiently large) probability of subsonic flow
upstream of the shock. Let us assume that the incoming shock-normal velocity u1 can
be described by a p.d.f. P(u)= Q(s)/u′rms, where s= (u− u)/u′rms and Q(s) is assumed
universal for all turbulence Mt and Reλ. The probability of subsonic flow (in the frame
of the mean shock position) is then

β =
∫ c

−∞
P(u) du=

∫ (c−u)/u′rms

−∞
Q(s) ds. (4.1)
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FIGURE 24. (Colour online) Regime diagram comparing the parameter Mt/(M − 1) with the
one proposed by Lee et al. (1993): cases in the wrinkled shock regime (cross), broken shock
regime (plus) and two borderline cases (circle).

If Q is universal, then β is an increasing function of Mt/(M − 1). Therefore, the
probability of subsonic flow will be larger than some threshold whenever Mt/(M − 1)
is larger than some critical value.

The arguments about how the p.d.f. of the density shock jump should scale under
grid refinement can then be used to classify every case. Cases where the unscaled
p.d.f.s on two grids agree everywhere are in the wrinkled shock regime, whereas cases
where the scaled p.d.f.s on two grids agree at least somewhere are in the broken
shock regime. Two cases were found to satisfy neither of these criteria: for small
density jumps, neither scaling of the p.d.f. collapses well. These cases are classified as
borderline here.

A scatter plot is shown in figure 24. The present parameter Mt/(M − 1) clearly
demarcates cases in the different regions, with Mt & 0.6(M − 1) being a reasonable
criterion for the broken shock regime. The parameter proposed by Lee et al. (1993)
does a reasonable job, but is erroneous for the point in the lower right corner;
this point corresponds to (M,Mt) = (1.05, 0.05), a case which was run solely to
demonstrate this point.

5. Summary
A sequence of DNS of isotropic turbulence interacting with a normal shock wave is

presented. The DNS data spans mean Mach numbers from 1.05 to 6, turbulent Mach
numbers from 0.05 to 0.38, and Taylor-scale Reynolds numbers from 40 to 70. The
DNS results are verified by assessing the sensitivity of the results to the grid resolution
and the computational box size, and validated by comparing the TKE and Reynolds
stress anisotropy with the experimental data of Barre et al. (1996).

The mean density jumps across all conditions are found to be about a factor
0.95 (Mt/M)

2 lower than the Rankine–Hugoniot results for inviscid flow; the correction
factor for the mean pressure jumps is a factor γ = cp/cv higher. This is in qualitative
but not quantitative agreement with the theoretical analysis of Lele (1992).

The arguably most important effect of a shock–turbulence interaction is the
amplification of TKE. Given the difficulty of accurately measuring close to the
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shock in experiments, and the rapid viscous decay in simulations, there are different
definitions of the amplification factor in the literature. In this study three different
methods are used to define the amplification of TKE: the post-shock peak TKE,
the post-shock TKE extrapolated back to the mean shock position, and a ‘modified’
far-field TKE computed from the budget equation by ignoring the dissipation term.
There are differences among the amplification factors computed using these three
methods, but the latter two methods produce results that are relatively close to each
other. This relative closeness in the results, despite the rather different means of
removing the Reynolds-number effect, can be taken as some form of consistency check
on the amplification factors computed using these two methods (extrapolation and
‘modified’ far-field TKE). Moreover, these amplification factors agree quite well with
those predicted by the linear theory of Ribner (1954). Therefore, at least this one key
aspect of the interaction (between two distinctly nonlinear phenomena, turbulence and
a shock wave) can be accurately represented using linear theory.

In contrast, the linear theory predicts highly anisotropic amplification of vorticity
(zero amplification of streamwise vorticity). Early simulations by Lee et al.
(1993, 1997) essentially verified this prediction. The present study, however, suggests
that this prediction, while true, has little practical importance: the post-shock vorticity
is found to reach isotropy about 10 convected Kolmogorov time scales behind the
shock, for all conditions computed here. Since vorticity is a small-scale phenomenon,
this makes perfect sense. In realistic applications, with high Reynolds numbers and
small Kolmogorov scales (relative to other scales of interest), the post-shock vorticity
(and small scales in general) can be considered isotropic for most practical purposes.

The possibility of large excursions around the mean of the local, instantaneous
shock strength has previously been reported experimentally (by Hesselink & Sturtevant
(1988), at M 6 1.1 in a random medium) and computationally (first by Lee et al.
(1993), at M = 1.05; later by Larsson & Lele (2009), at M up to 1.5). In the
present study this is confirmed through visualization of the distorted shocks at
different turbulence intensities. The probability density function (p.d.f.) of the local
shock strength is shown to be very insensitive to the Reynolds number, implying that
these effects are due purely to inviscid interactions between the incoming turbulence
and the shock wave. Furthermore, comparison of the p.d.f.s computed at different
grid resolutions shows that the presence of ‘shock holes’, i.e. events where the shock
locally disappears, is not an artefact of the numerical method; therefore, it is a
physical effect.

Assuming that the presence of shock holes is caused by locally subsonic flow
approaching the shock is shown to lead to a regime criterion for the ‘broken shock’
(shock holes do appear) and ‘wrinkled shock’ (shock holes never appear; the shock
maintains its topology at all times) regimes; specifically, an interaction is in the
‘broken shock’ regime for Mt & 0.6(M − 1). The factor of 0.6 comes purely from the
DNS data; however, we note that this coincides with the value predicted by Donzis
(2012b) when he assumed a Gaussian pre-shock velocity field.
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