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Vortex structures are very popular research objects in turbulent boundary layers (TBLs)
because of their prime importance in turbulence modelling. This work performs
a tomographic particle image velocimetry measurement on the near-wall region
(y< 0.1δ) of TBLs at three Reynolds numbers Reτ = 1238, 2286 and 3081. The main
attention is paid to the wall-normal evolution of the vortex geometries and topologies.
The vortex is identified with swirl strength (λci), and its orientation is recognized
by using the real eigenvector of the velocity gradient tensor. The vortex inclination
angles in the streamwise–wall-normal plane and in the streamwise–spanwise plane as
functions of wall-normal positions are investigated, which provide useful information
to speculate on the three-dimensional shape of the vortex tubes in a TBL. The
difference between the orientations of vorticity and swirl is discussed and their
inherent relationship is revealed based on the governing equation of vorticity. Linear
stochastic estimation (LSE) is further deployed to directly extract three-dimensional
vortex models. The LSE velocity fields for ejection events happening at different
wall-normal positions shed light on the evolution of the topologies for the vortices
dominating ejection events. LSE based on a centred prograde spanwise vortex provides
a typical packet model, which indicates that the population density of the packets in
a TBL is large enough to leave footprints in conditionally averaged flow fields. This
work should help to settle the severe debate on the existence of packet structures and
also lays some foundation for the TBL model theory.

Key words: turbulent boundary layers

1. Introduction
Vortex structures play important roles in the mass and momentum exchanges

of turbulent boundary layers (TBLs). Below the buffer layer, the quasi-streamwise
vortices could induce vertical motions, which lift up the viscously retarded fluid to
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form low-speed streaks. In the outer layer, hairpin-like vortices are populated, with
each containing a spanwise-extending head and one or two streamwise-inclined legs
(Adrian 2007). The convection of a hairpin vortex would cause the transformation
of local events from Q2 to Q4, which is consistent with hot-wire measurements
(Wallace, Brodkey & Eckelmann 1977). Hairpin vortices can usually align as a
group along the streamwise direction, with their heads uniformly distributed in
an inclined shear layer, forming a packet structure. The packet could significantly
improve momentum transportation because of the joint inducing effect from individual
member structures. Ganapathisubramani, Longmire & Marusic (2003) recognized the
packets according to the low-speed regions bordered by the counter-rotated vortex
pairs in the spanwise–streamwise plane, and concluded that these structures contribute
a large portion to the Reynolds shear stress of a TBL.

These investigations on hairpin or packets have stirred some TBL theoretical works.
Adrian, Meinhart & Tomkins (2000) proposed a conceptual structure model of TBLs,
which regards the turbulent flow as the superposition of multi-layer hairpin packets
with different convection velocities. Such a simple hairpin model could explain many
coherent motions frequently observed in the experimental data, such as the uniform
momentum zone, Q2–Q4 events and large-scale motions. Marusic & Perry (1995),
Perry & Marusic (1995) and Marusic (2001) combined the attached eddy hypothesis
and the hairpin model, and undertook quantitative investigation work by artificially
producing TBL flow by randomly piling up hairpins or packets. They first tried
single hairpin models with 3 and � shapes, and later improved the procedure by
using an additional packet model, which could provide accurate predictions of the
velocity statistics. The work of de Silva, Hutchins & Marusic (2015) also supports
the opinion that TBLs could be well modelled as the superposition of hairpin packets
with different scales. Recently, these works on the attached eddy model have been
reviewed by Marusic & Monty (2019).

The theoretical application of the hairpin model typically needs the input
information of vortex structures, including the geometric shape, the radius, strength
and so on. In instantaneous TBL fields, common vortex structures including the
hairpin vortex have a tube-like shape, which were collectively called fine-scale eddies
(Tanahashi et al. 2004). Tanahashi et al. (2004), Das et al. (2006), Del Alamo et al.
(2006) and Kang, Tanahashi & Miyauchi (2007) investigated the scaling law of
fine-scale eddies based on direct numerical simulation (DNS) data for the turbulent
channel flow from Reτ = 100 to Reτ = 1900. They concluded that the diameter and
the maximum azimuthal velocity for fine-scale eddies can be scaled by Kolmogorov
microscale and Kolmogorov velocity, respectively; and the velocity distribution in
the cross-section of a vortex tube could be modelled as a Burgers vortex. Stanislas,
Perret & Foucaut (2008) studied the streamwise-oriented vortical structures based
on stereoscopic particle image velocimetry (SPIV) data and found that the vortex
structures below and up to the wall-normal position y+ = 150 show significantly
different dynamic characteristics: in the near-wall region (y+< 150), the vortices have
large populations and they interact with each other strongly, while in the outer region
(y+ > 150), the vortex density is low and also the interaction is weak. Herpin et al.
(2013) further extended the scaling law of the vortices up to Reτ = 6860 based on
SPIV data.

The orientations of vortices also provide important information for the TBL theory
model. Earlier flow visualization studies (Head & Bandyopadhyay 1981) and the
correlation analysis on DNS data (Moin & Kim 1984) revealed that the vortex
structures with 45◦ inclination along the streamwise direction prevail for a large
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range of length scales in TBLs. Ong & Wallace (1998) performed a joint probability
density analysis with various vorticity components based on multi-probe hot-wire
measurement data, and found that when the vorticity vector lifts away from the wall,
the angle of inclination to the streamwise direction would reduce. Ganapathisubramani,
Longmire & Marusic (2006) performed dual-plane particle image velocimetry
(dual-plane PIV) experiments and obtained the full velocity gradient tensor in the
logarithmic region. The distributions of instantaneous vorticity inclination angles
at two wall-normal locations (y+ = 110 and y+ = 575) were investigated and the
characteristic shapes of vortices in the TBL were discussed accordingly. However, the
local vorticity vector is not always aligned with the direction of vortical structures
in turbulent wall-bounded flows, especially at locations close to the wall (Bernard,
Thomas & Handler 1993; Zhou et al. 1999; Gao, Ortizdueñas & Longmire 2011).
Gao et al. (2011) improved the technique of recognizing vortex orientation by using
the real eigenvector of the velocity gradient tensor. They analysed the DNS and
dual-plane PIV data at three wall-normal positions (y+ = 47, y+ = 110 and y+ = 198)
and concluded that the angle of inclination to the wall would increase with the
wall-normal positions, which is consistent with the hairpin model.

So far, the investigations on vortex characteristics including the radius, strength
and orientation have shed light on many important aspects of the vortices in TBLs.
Compared to the fully investigated scaling law of radius and strength reported in
the literature, the results about vortex orientation are limited. It has been seen that
a significant change of vortex shape from a quasi-streamwise type to a hairpin type
happens in the buffer layer, which could be indicated from the variation of the
vortex orientation. However, a systematic wall-normal evolution picture about vortex
orientation is not available, and requires further analysis on three-dimensional (3-D)
and three-component (3-C) TBL data. These results would also help to identify
different types of vortex and expand the application range of the hairpin model from
the logarithmic region to the buffer region.

Another motivation in analysing 3-D and 3-C data of TBLs is to provide more
proof for the existence of packet structures. Christensen & Adrian (2001) found their
statistical footprints based on two-dimensional (2-D) PIV data, ideally proposed a
concept of 3-D eddy packets and accordingly claimed that the population density for
packets is large enough to make a difference in the conditional averaged flow fields.
Jodai & Elsinga (2016) also observed typical hairpin packets in the buffer region of
TBLs from instantaneous tomographic PIV velocity fields. However, the observations
on DNS data sometimes led to different conclusions. In the results of Wu & Moin
(2009), large numbers of hairpin packets were observed (Reθ < 1000), while in the
results of Schlatter et al. (2014) at higher Reynolds number Reθ = 4300, no hairpin
packet visibly exists. To deal with the current debate on the existence of hairpin
packets, statistical evidence from 3-D data and quantitative comparisons between
experimental data and DNS data are necessary.

This paper intends to fill in these knowledge gaps in TBL research. Tomographic
PIV measurements have been performed to capture the full velocity components in
the buffer region or logarithmic region for Reτ = 1238, 2286 and 3081. The structures
in instantaneous flow fields will be observed and the hairpin packets therein will be
recognized. Subsequently, the vortex orientations will be analysed by using the real
eigenvector of the velocity gradient tensor. To further investigate the wall-normal
evolution of vortex structures, the linear stochastic estimations for the ejection events
at different wall-normal positions will be employed. The topological structures for
developing hairpins will be revealed, and the corresponding characteristic scale will be

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

41
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.412


Vortex structures in near-wall region of turbulent boundary layer 429

Camera

Flow

Laser slice

FIGURE 1. (Colour online) Experimental set-up for the TPIV experiment.

quantitatively investigated. At last, the linear stochastic estimation given a prograde
spanwise vortex will be performed in order to reveal the potential hairpin-packet
structure in TBLs. In this work, the results of tomographic particle image velocimetry
(TPIV) data will be quantitatively compared to the corresponding results of the
DNS data. The conclusions will be carefully drawn by comprehensively analysing
the two types of datasets. Thus, this work provides credible information about
the characteristics of the dominant vortex structures, which will help to settle the
long-standing debate about packet structures and also lay some foundation for the
correlated TBL model theory.

The sections of this paper are presented as follows. Details about TPIV and
corresponding analysis methods are introduced in § 2. In § 3, the results and
discussions are further introduced from four aspects: observations on the instantaneous
flow field, statistical investigation on vortex orientation, extracting hairpin or packet
structures by using linear stochastic estimation, and further discussions based on these
results. At last, the conclusions will be provided in § 4.

2. Measurements and methods
2.1. Experimental set-up

This experiment was conducted in the large water tunnel of Beihang University in
China. The experimental section of the tunnel is approximately 16 m long and has a
cross-section of 1.2 m × 1.0 m in height and width. The free-stream velocity could
be adjusted from 0.1 to 0.5 m s−1 with the corresponding turbulent intensity less than
1 %. A 1 m × 14 m plate with a thickness of 2 cm was vertically placed along the
streamwise direction in the tunnel to generate a developing TBL (see figure 1). The
leading edge of the plate had a round shape in order to avoid local flow separation.
A trip wire with a diameter of 5 mm was mounted at the leading edge of the
plate to accelerate the transition of the boundary layer. The water was seeded with
hollow glass spheres with mean diameters of approximately 10 µm and a density of
1.05 × 103 kg m−3. Four dual-exposure charge-coupled device (CCD) cameras with
resolutions of 2456 pixel × 2058 pixel were arranged in a cross-like configuration,
pointing to the measurement region with viewing angles of ∼20◦ from one side
of the tunnel (see figure 1). The laser light sheet was generated from a 500 mJ
dual-pulse laser device and then expanded to illuminate the measurement volume
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Speed of tunnel motor (r.p.m.) 35 80 125

Reτ 1238 2286 3081
Free-stream velocity (m s−1) 0.117 0.295 0.455
Sample rate (Hz) 0.5 1 2
Number of velocity fields 560 560 560
Friction velocity uτ (m s−1) 0.00510 0.0118 0.0178
Wall unit (mm) 0.200 0.0869 0.0577
Investigation window (Wall unit) 14.4 33.1 49.9

(δ) 0.0116 0.0145 0.0162
Wall-normal range (Wall unit) 20.8–92.8 64.4–230.1 72.1–321.8

(δ) 0.02-0.08 0.03-0.10 0.03-0.10

TABLE 1. A collection of parameters for TPIV velocity fields.

with a thickness of 16 mm. The target measurement domain is a block region with
streamwise and spanwise dimensions of 125 mm and 95 mm, respectively, and a
wall-normal range of 4–20 mm away from the wall.

In this experiment, the motor speeds for the tunnel were successively adjusted
to 35, 80 and 125 revolutions per minute (r.p.m.), which correspond to three
Reynolds-number cases with free-stream velocities of 0.117 m s−1, 0.295 m s−1

and 0.455 m s−1, respectively. The cameras and laser device were triggered with a
Micropulse 725 synchronizer from MicroVec at low sampling rates of 0.5 Hz, 1 Hz
and 2 Hz for Reτ = 1238, 2286 and 3081, respectively. In total, 560 image pairs
were recorded by each camera, which would produce 560 velocity fields by the
tomographic processing. The recorded tomographic PIV data were produced by the
3-D version of MicroVec software, which implemented the advanced TPIV processing
including particle reconstruction of the intensity-enhanced multiplicative algebraic
reconstruction technique (IntE-MART) (Wang et al. 2016b) and the dual-basis pursuit
(DBP) algorithm (Ye et al. 2015), and window-deformed 3-D correlation analysis
with multi-passes. The resulting velocity fields were further processed by a robust
divergence-free smoothing (DFS) algorithm (Wang et al. 2016a) to remove the
potential outliers and reduce noise. The resulting velocity field is distributed on a
170× 130× 21 equally spaced grid.

To quantify TBL, a laser Doppler velocimetry (LDV) experiment for measuring
the velocity profile was performed to achieve the basic parameters of the TBL.
For each Reynolds number, the LDV measurement covered the whole boundary
layer by approximately 60 discrete measurement points with exponentially increasing
wall-normal distances. The friction velocity uτ and TBL thickness δ were obtained
by fitting the mean streamwise velocity profiles using a composite profile model
(Chauhan, Nagib & Monkewitz 2007; Kendall & Koochesfahani 2008). In the current
work, x, y and z axes are set to be parallel to the streamwise, wall-normal and
spanwise directions, respectively. The streamwise velocity components are denoted
as U, and the three fluctuation velocity components are denoted as u, v and w. The
variables normalized by the inner size including the friction velocity uτ and wall unit
are represented by a symbol with a subscript ‘+’, such as U+ and y+. The parameters
of the experiments and the final TPIV velocity fields are given in table 1.
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FIGURE 2. (Colour online) Comparisons between TPIV data and LDV data regarding the
mean streamwise velocities and the corresponding standard deviations.

2.2. TPIV velocity validation
To quantitatively access the accuracy of TPIV data, the mean streamwise velocities
and the corresponding standard deviations from TPIV and LDV measurements are
compared. As shown in figure 2, the mean streamwise velocity profiles for LDV
and TPIV are in good agreement for all the Reynolds numbers. As for the standard
deviation profiles, the TPIV data are very close to LDV data, although somewhat
lower for the highest Reynolds number. As shown in table 1, a higher Reynolds
number corresponds to lower resolution in terms of wall unit, which could filter out
small-scale fluctuations and cause the underestimation of velocity deviations. The
ultimately underestimated amount of velocity deviations is approximately 0.1, which
represents less than 5 % of the LDV data. These results from figure 2 validate the
accuracy of this TPIV measurement to some extent. In the following discussion, the
results based on TPIV velocity fields will be quantitatively compared with those
based on the DNS data, which will further add to the credibility of the TPIV results.

2.3. DNS data for reference
To provide a standard reference, a set of DNS data for TBLs is also analysed in this
work, which serves as an important supplement for the TPIV velocity fields. The
DNS data were obtained from an open-access database (https://torroja.dmt.upm.es/ftp/
blayers/) for a high-Reynolds-number TBL (Sillero, Jiménez & Moser 2013; Sillero,
Jiménez & Moser 2014). Details about the code for DNS and the corresponding
validations are introduced in Simens et al. (2009) and Borrell, Sillero & Jiménez
(2013). In total, two complete DNS fields were downloaded, each of which contains
15 361× 535× 4096 vectors in the streamwise, wall-normal and spanwise directions,
respectively. It covers a developing TBL with a Reynolds number ranging from
Reτ ≈ 1000 to Reτ ≈ 2000. For convenience in data processing, only three data
segments corresponding to Reτ ≈ 1100, 1500 and 1900 were extracted from the
whole DNS data. The extracted data were chopped into small subvolumes of
1000× 300× 600 wall units, and the corresponding velocity fields were interpolated
onto a regular grid with a uniform spacing of seven wall units. A detailed description
for the DNS velocity fields is collected in table 2. The Reynolds numbers for the three
DNS datasets vary in small ranges (the half-spans are approximately 50). Thus, they
will be simply denoted as Reτ = 1100, 1500 and 1900 in the following discussion.
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Central Reynolds number ∼1100 ∼1500 ∼1900

Reynolds-number range (wall unit) 1045–1153 1449–1555 1850–1955
Wall-normal range (wall unit) 7–301 7–301 7–301
Spacing (wall unit) 7 7 7
Number of vectors per field 142× 85× 43 142× 85× 43 142× 85× 43
Number of fields 540 520 500

TABLE 2. A collection of parameters for DNS velocity fields.

2.4. Vortex strength and orientation
In this work, the λci criterion (Zhou et al. 1999) is employed to visualize the
vortex structures from TPIV velocity fields; λci is the imaginary part of the complex
eigenvalue for the velocity gradient tensor (∇u), which is referred to as the local
swirl strength. In theory, these complex eigenvalues occur only in regions with local
circular or spiral streamlines, which automatically excludes regions having vorticity
but no local swirl motion, such as parallel shear layers. The λci criterion has been
widely used to extract vortex structures from TBL data (Ganapathisubramani et al.
2006; Wu & Christensen 2006; Gao et al. 2011; Jodai & Elsinga 2016). Typically,
a positive threshold for λci is necessary in order to recognize clear vortex structures,
and to reduce the influence of noise. In § 3.1, a threshold of λci= 0.25λci,max is chosen
to visualize the complex vortex structures in instantaneous TPIV velocity fields.

Besides the swirl strength, the swirl orientation is also an important aspect of vortex
characteristics. Zhou et al. (1999) suggested that the local swirl flow will be stretched
or compressed along the direction of the real eigenvector (Λr) of ∇u. Gao, Ortiz-
Duenas & Longmire (2007) attempted to prove that the real eigenvector gives the
stretching direction of the swirl isosurface tube. And later, Gao et al. (2011) employed
Λr to identify the vortex orientation in a TBL and achieved convincing results by
comparing DNS data and experimental data. More recently, Liu et al. (2018) proposed
a new criterion for vortex identification, which was named as ‘rortex’; ‘rortex’ is based
on a new definition of swirl strength, combined with Λr as the rotational axis, which
was also validated by using DNS data.

Following the above-cited works, the vortex orientation in this work is identified
by using the real eigenvector Λr of ∇u. Since Λr could correspond to two opposite
directions in space by adjusting its signs, the one forming an acute angle with ω is
adopted in this work. To get a unit direction vector, Λr should be normalized by its
own modulus as default. To describe the orientation angle, the Λr vector is projected
onto the x–y plane and the x–z plane. In the x–y plane, the angle between the projected
vector and the positive part of the x axis is defined as the projection angle θxy. In
the x–z plane, the angle between the projected Λr vector and the negative part of
the z axis is defined as the projection angle θ−zx. The definitions for these vortex
inclination angles are consistent with Gao et al. (2011). In a TBL, the mean shear
leads to the frequent occurrence of prograde spanwise vortices, which corresponds to
high population density at θ−zx = 0. For clarity, the definitions of the two orientation
angles (θxy and θ−zx) have been illustrated by figure 3. In theory, the two inclination
angles θxy and θ−zx would completely determine the spatial orientation of the Λr vector.

In the following § 3.2, the vortex orientation angles at different wall-normal
positions and Reynolds numbers will be statistically investigated. To make a fair
comparison among these statistical results, the λci thresholds for different cases
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FIGURE 3. (Colour online) Definitions of the two projection angles for the vortex
orientation: θxy and θ−zx.
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FIGURE 4. (Colour online) (a) The p.d.f.s for λci of five different wall-normal positions
from three Reynolds-number cases of TPIV; (b) p.d.f.s normalized by their corresponding
height (p.d.f.max).

should be carefully chosen. In fact, the swirl strength varies sensitively with the
increase of wall-normal positions or the change of resolutions caused by different
Reynolds-number cases. Therefore, flexible thresholds should be used to adapt to
the local distributions of swirl strength from these different cases, just as Gao et al.
(2011) did. The probability density distributions (p.d.f.s) for λci from five different
wall-normal positions and three Reynolds-number cases are displayed in figure 4(a).
It shows that, while the heights and widths of these p.d.f. curves vary from case to
case, their shapes remain the same. Once normalized by their height (p.d.f.max), all of
them collapse onto one single curve as shown in figure 4(b). Such similarity of p.d.f.
curves provides a good way to scale λci from different cases, which would result in a
uniform threshold. In § 3.2, the threshold (λci,thre) will be chosen as the most probable
value of swirl strength, which corresponds to an abscissa of λci = 0.41/p.d.f.max
in figure 4(b). Various tests show that the threshold chosen here would lead to
satisfactorily stable and consistent results. And an adjustment to the threshold from
λci = 0.2/p.d.f.max to λci = 0.6/p.d.f.max would just lead to similar results. In the
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following sections, the results from different Reynolds-number cases of the TPIV
data agree very well, which also validates the adaptability of this normalization
technique and the corresponding threshold.

This work employs a very simple statistical strategy: all the data points satisfying
λci > λci,thre are counted to calculate the p.d.f.s of the vortex orientation angles
(θxy and θ−zx). This strategy is different from the statistical strategy employed by
Ganapathisubramani et al. (2006) and Gao et al. (2011), in which complex processing
techniques are employed to isolate the vortex cores in the x–z plane before counting
the vortex cores satisfying certain conditions. The later statistical method could
provide the radius and circulation information besides the orientation, which seems
very competitive. However, the later method is based on an identifying technique
applied in the x–z plane, which filters out the in-plane eddies and only focuses
on the eddies clearly crossing the x–z plane (Gao et al. 2011). As we know, both
streamwise vortices and spanwise vortices populated in a TBL could belong to the
in-plane eddies. Furthermore, the more complex the statistical method is, the riskier
it is to introduce artificial or unphysical factors into the final results. Therefore, in
this work, the simple statistical strategy is employed when investigating the vortex
orientation.

2.5. Linear stochastic estimation
Linear stochastic estimation (LSE) is an effective statistical method to extract coherent
structures from experimental data. The method tries to estimate the flow field
associated with a given reference event based on simple linear expressions, and
accordingly provides the conditional average field near the given event. If we denote
the reference event by E(x, y, z), then the LSE flow field could be calculated by the
following equation:

uLSE(1x, 1y, 1z)=
〈u(1x+ x, 1y+ y, 1z+ z)E(x, y, z)〉x−z,t

〈E(x, y, z)2〉x−z,t
〈E(x, y, z)〉x−z,t, (2.1)

where the operation 〈 · 〉x−z,t denotes averaging both in the x–z plane and along the
time dimension. The expressions for the v and w components are similar to the above
formula. The resulting LSE velocity fields reflect the statistically averaged flow given
the reference event, which could be employed to extract representative vortex structure
from TBL.

Before using LSE, reference events should first be prescribed. In a TBL, two typical
events, including the ejection and prograde spanwise vortex, are usually employed as
reference events. The ejection event (Eejection) could be represented by

Eejection =

{
uv if u< 0, v > 0,
0 otherwise.

(2.2)

The event of a prograde spanwise vortex (EspV) corresponds to the negative spanwise
component of swirl strength, which could be given by

EspV =

{
λciΛr,z if Λr,z < 0,
0 if Λr,z > 0,

(2.3)

where Λr,z is the third component of the Λr vector.
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In earlier research, LSE was usually employed to extract hairpin or packet
structures in the outer region (Christensen & Adrian 2001; Elsinga et al. 2010),
which were regarded as important evidence of the existence of hairpin structures. The
corresponding LSE hairpin model has also been employed as an initial disturbance in
a laminar boundary flow to investigate the evolution and autogeneration mechanism of
the hairpin structure (Zhou et al. 1999). Compared to the outer region, the near-wall
region corresponds to larger change in both the mean velocity and vortex orientations.
In this work, LSE is employed to extract coherent vortex models from the near-wall
region of a TBL. The near-wall region encounters a vortex-type transition from
quasi-streamwise ones to hairpin ones, and both vortex types could induce strong
ejection events. Thus, an ejection event happening at a given wall-normal position
will be chosen as the reference event to extract these dominant structures in the
following § 3.3. On the other hand, the hairpin packets are also important structures
in the TBL, which are characterized by several prograde spanwise vortices aligning
along inclined shear layers. Therefore, LSE given a prograde spanwise vortex will
also be employed to extract the packet structures submerged in the TBL flow.

3. Results and discussion
3.1. Observations on instantaneous structures in the near-wall region

The near-wall region below y+ = 100 typically corresponds to a dramatic increase in
mean velocity profile and contains various vortex structures with dense population
(Wu & Christensen 2006; Stanislas et al. 2008). The region is typically occupied
by low-speed streaks and quasi-streamwise vortices, which is closely correlated to
the formation of the hairpin structures and other multi-scale structures. A closer
observation on this region would help to cast some light on the structure organization
and flow environment for formation of hairpin structures at the very beginning stage.

Figure 5 displays an instantaneous TPIV velocity field of Reτ = 1238, which
corresponds to the finest spatial resolution among the three TPIV configurations
listed in table 1. The wall-normal range is from y+ = 20 to y+ = 85, covering the
buffer layer and the bottom part of the logarithmic layer. It shows that a number of
quasi-streamwise vortices with various scales and shapes are distributed around several
streamwise-extending low-speed streaks, visually consistent with the observations
based on DNS (Robinson 1991; Jeong et al. 1997; Schlatter et al. 2014) and TPIV
data (Jodai & Elsinga 2016). Three typical subzones with distinct vortex characteristics
are noticed and framed in figure 5(b). In subzone A, two streaks connect with
each other when they meander downstream, accompanied by several long-extending
and curved vortex structures. The enlarged view of subzone A (figure 5c1) shows
more details about these structures: the quasi-streamwise vortices a1, a2 and a3
extend downstream and connect to a spanwise vortex a4, following by a couple of
counter-rotated and twisted vortices a5 and a6. The streamwise lengths for these
quasi-streamwise vortices are 150–200 wall units, which is consistent with the results
reported by Jeong et al. (1997). In subzone B, several streamwise-inclined vortices
(b1, b2 and b3) ride on an undulating streak in a staggered array, which is a typical
characteristic of near-wall turbulence (Jiménez & Pinelli 1999; Schoppa & Hussain
2002). The length scales for b1, b2 and b3 is approximately 100 wall units, much
shorter than the ones in subzone A, but in line with the travelling wave solution of
Waleffe (2001). Vortices b2 and b3 are connected on the top of the streak and form
a hairpin-like structure, resembling the phenomenon observed by Jodai & Elsinga
(2016). In subzone C, the vortex structures show an approximately symmetric pattern
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FIGURE 5. (Colour online) Vortex structures from an instantaneous TPIV velocity field:
(a) oblique view, (b) top view, and (c1–c3) magnified views of three subzones as framed
in (b). The green surfaces represent the vortex structures identified by the isosurface
of λci = 0.25λci,max. The blue surfaces represent the low-speed streaks identified by the
isosurface of U+ = 12. The skeletons of vortices in (c1–c3) are sketched by magenta
dashed lines.

over a comparatively straight low-speed streak. Several spanwise vortices ride on a
common low-speed streak with similar streamwise spacings, which can be considered
as a packet structure. The distinct characteristics of the structures in subzone B and
subzone C are reminiscent of the two instability modes of a near-wall streak: the
sinuous mode producing staggered quasi-streamwise vortices and the varicose mode
leading to the formation of hairpins (Berlant 2008).

Considering the importance of packet structures, more details of subzone C in
figure 5 have been shown in figure 6. The front view (figure 6a) of subzone C is
provided to show the inclination angles of the structures. The contour map of the x–y
section, which intersects c2 at the spanwise centre, is given to show the streamwise
velocity and swirl strength distribution by using the colour bars and lines, respectively,
as shown in figure 6(b). The contour shows that the four spanwise vortices (c1, c2,
c3 and c4) are distributed on an inclined shear layer, which fits well with the typical
packet signature in the x–y section (Adrian 2007). The inclined angle is approximately
18◦ and the streamwise distance for two neighbouring ones is 50–100 wall units. The
vortex c1 is a typical hairpin structure, with a streamwise leg, 45◦ inclined neck
and a spanwise head part. Spanwise vortex c2 connects the two legs of hairpin c1,
forming a second hairpin or arch structure. The height for the head of c2 is at
y+ = 60, which falls in the buffer layer. Jodai & Elsinga (2016) provided the first
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FIGURE 6. (Colour online) Magnified views for the subzone C of figure 5(b) (front view).
In panel (a), the green surfaces represent the vortex structures identified by the isosurface
of λci = 0.25λci,max, and the blue surfaces represent the low-speed streaks identified by
the isosurface of U+ = 12. Panel (b) is an x–y contour slice whose spanwise position is
z+ = 75, intersecting vortex c2 at its spanwise centre. The two types of contour lines in
(c) represent the streamwise velocity and the swirl strength (λci), as indicated by the two
colour bars above the contour map.

experimental evidence that a hairpin could exist below y+ = 60 for Reτ = 782. This
result further shows that the packet structure could be found in this region, although
no regular streamwise vortex legs are attached to c3 and c4 to form other typical
hairpins. Above the shear layer, sweep events are observed between c1 and c2, and
between c3 and c4. These sweep events could be produced by an upstream vortex
like c5. The sweep flows collide with the downstream ejection flows induced by
spanwise vortices (c1 or c3), and then turn to supply the upstream vortices (c2 or
c4). A little earlier than this work, Jodai & Elsinga (2016) observed the phenomenon
where a sweep event causes the generation of new hairpins upstream of a mature
hairpin in time-resolved TPIV data. It seems that the sweep event plays an important
role in the formation and maintenance of a packet structure, which agrees with the
interpretation of Goudar, Breugem & Elsinga (2016) in the autogeneration mechanism
of hairpin structures.

3.2. Vortex orientation
3.2.1. P.d.f. for the inclination angles of Λr

To investigate the wall-normal variation of the vortex orientation, the p.d.f.s of
θxy and θ−zx for different wall-normal positions are collected into a contour map as
shown in figure 7. The most probable θxy and θ−zx, named as θxy,m and θ−zx,m, which
correspond to the local maxima of their p.d.f. curves for a given wall-normal position,
are recognized. Considering that the p.d.f. curves of θ−zx are very flat for y+>150 and
the local maxima are difficult to distinguish, only θxy,m for y+ < 150 were displayed
in the corresponding contour maps. The results based on TPIV data (Reτ = 1238,
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FIGURE 7. (Colour online) Contour maps for the p.d.f. of θxy and θ−zx in terms of Λr at
different wall-normal positions for four Reynolds numbers. Panels (a) and (b) correspond
to the p.d.f. contour maps for θxy and θ−zx, respectively, with y+ and θxy (or θ−zx) being
the longitudinal coordinate and the horizontal coordinate. The four columns correspond to
the results for Reτ = 1238 (TPIV), Reτ = 2286 (TPIV), Reτ = 3081 (TPIV) and Reτ = 1900
(DNS), respectively. Notably, in each contour map, the maximum peaks of p.d.f. functions
(the most probable θxy or θ−zx) for different wall-normal positions are marked using black
points in the corresponding contour maps. Three longitudinal dashed lines corresponding
to θxy= 45, θxy=−135 and θ−zx= 0 are also displayed in the contour maps as references.

2286 and 3081) and DNS data (Reτ = 1900) are orderly arranged in the four columns
of the subplot matrix in figure 7(a,b), with the corresponding longitudinal coordinates
aligned and colour bars set as equal. As we can see, although the wall-normal ranges
of the TPIV results differ significantly, a good consistency in the variation of the
contour map and maximum positions can be observed compared to the DNS data.
These results provide important clues for the evolution of the vortex orientation from
y+ = 20 to y+ = 300.

The p.d.f.s of θxy show two local maxima, which remain prominent in the whole
wall-normal range considered. For a given wall-normal position, the horizontal spacing
between the two maxima stays constant at approximately 180, corresponding to the
two opposite orientations in the x–y projection plane. With the increase of y+, θxy,m
increases monotonically, which means the angle of inclination to the x axis in the
x–y plane becomes larger and larger according to the definition in § 2.3. At y+= 150,
θxy,m begins to level off and approaches 45◦ and −135◦, respectively. The streamwise
inclined angles of θxy,m= 45◦ and −135◦ could correspond to the two streamwise legs
of one hairpin (Adrian 2007) in a statistical sense, and the results herein are consistent
with a vast number of reports about the orientation of the coherent structures in the
previous literature (Theodorsen 1952; Head & Bandyopadhyay 1981; Moin & Kim
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FIGURE 8. (Colour online) The p.d.f. curves for θxy and θ−zx in terms of Λr from example
wall-normal positions (y+ ≈ 50 and y+ ≈ 200) for different Reynolds numbers. The solid
lines with red, green and blue colours represent the results of TPIV data for Reτ = 1238,
Reτ = 2286 and Reτ = 3081, respectively. The dashed lines with red and green colours
represent the results of DNS data (Reτ = 1900) at y+ ≈ 50 and y+ ≈ 200, respectively.

1984; Marusic 2001). At higher wall-normal positions, the corresponding p.d.f. peaks
become weaker, which indicates that the possibility for the swirl with a different
inclination angle becomes larger. On the other hand, the p.d.f. distribution for θ−zx also
shows two local maxima at θ−zx,m =±60–70 for y+ < 100. With the increase of wall-
normal position, the absolute values of the most probable inclination angles (θ−zx,m)
become smaller and the corresponding p.d.f. peaks become less prominent. At higher
wall-normal positions (y+> 150), only a flat plateau could be found at approximately
θ−zx = 0, which corresponds to the spanwise vortices. The p.d.f. pattern transition
happening at y+≈150 indicates that the dominant vortex structures change from quasi-
streamwise types to spanwise types with the increase of wall-normal positions; and
these spanwise vortices could be the head parts of hairpin structures. For y+ > 150,
the p.d.f. of θ−zx shows a broad plateau between θ−zx = −90 and θ−zx = 90, which
indicates that vortices with various plan-view inclination angles exist in TBLs with
high population density.

To quantitatively compare the results from the TPIV data and DNS data, figure 8
collects the p.d.f. curves of θxy and θ−zx for two wall-normal positions (the positions
closest to y+ = 50 and y+ = 200) from both TPIV data and DNS data. For TPIV
data, the results of Reτ = 2286 and Reτ = 3081 for y+ ≈ 200 agree very well,
which indicates the good repeatability of TPIV results. Compared to the results of
DNS, the p.d.f. curves for TPIV data seem more flat, with smaller p.d.f. peaks
and smaller variations in p.d.f. values. The difference could be caused by the
measurement uncertainty, which usually corresponds to a random distribution in
the vortex orientation. While the longitudinal deviations in p.d.f. peaks are obvious
for TPIV and DNS data, the corresponding horizontal coordinates (θxy,m and θ−zx,m)
and their wall-normal variations are very consistent. At last, it is worth noting that,
besides the measurement uncertainty, the comparatively lower spatial resolution of
TPIV data or even the difference in Reynolds numbers might also lead to some
difference in p.d.f. distribution, which will be specially discussed in § 3.2.4.

3.2.2. A sketch for the conceptual vortex tube
Theoretical modelling for the complex vortex structures has always been one

of the most important subjects in TBL studies. The classical hairpin model has
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been successfully applied in explaining and predicting the complex structures in
TBLs, while its quantitative features remain as an open question for further study.
In the current work, the statistical investigation of the inclination angles in § 3.2.1
provides useful information to infer the 3-D geometry and topology of the dominant
vortex prevalent in a TBL. The model will be educed based on the most probable
inclination angles (θxy,m and θ−zx,m), which reflect the most probable geometric shape
of the vortex tube. It is believed that this quantitative modelling will be beneficial for
turbulence modelling. We suppose that the dominant vortex tube could be simplified
as a 3-D curve, and θxy,m and θ−zx,m could be determined by the tangent slope of
this curve at the corresponding wall-normal position. Let xv, yv and zv represent the
spatial coordinates of the 3-D curve of the dominant vortex tube. According to the
definitions of θxy and θ−zx introduced above, it could be obtained that

dxv
dyv
= cot(θxy,m), (3.1)

and
dzv
dxv
=−cot(θ−zx,m), (3.2)

where cot(·) represents the cotangent function of angles.
Considering that both θxy and θ−zx are functions of wall-normal position y+, another

formula is obtained by combining (3.1) and (3.2) as

dzv
dyv
=

dzv
dxv

dxv
dyv
=−cot(θ−zx,m) cot(θxy,m). (3.3)

Integrating (3.1) and (3.3), one could obtain joint equations for the 3-D curve of the
dominant vortex tube. In this work, only the data from Reτ = 1900 (DNS data) are
adopted to calculate the 3-D curve since the DNS data correspond to the finest spatial
resolution and do not suffer from measurement uncertainty. Considering the symmetric
characteristics of the vortex tube with regard to the x–y plane, only half of the data for
θxy,m > 0 and θ−zx,m > 0 are employed. A second-order polynomial model is employed
to fit the data of θxy,m or θ−zx,m before the integrating operation. The integration range
is limited to be 10–100 wall units, where the p.d.f. peaks are very prominent.

The final result of the 3-D vortex tube has been displayed by a thick line in figure 9.
To make it clear, the projection curves of the 3-D vortex tube onto the x–y, x–z and
y–z planes have also been displayed for reference. It shows that in the x–y plane,
the vortex tube bends upwards with increasing slope. In the x–z plane, for y+ > 50,
the vortex tubes continuously change direction from the quasi-streamwise direction
towards the spanwise direction with the increase of y+. An inflection point is found at
y+= 50, below which the curve bends outwards (along the spanwise direction), which
is a typical feature for the leg of an ‘�’ type vortex. A similar study on extracting the
vortex model based on the inclination angles can be found in the work of Pirozzoli,
Bernardini & Grasso (2008). They obtained a ring-like vortex model based on the
conditional expected elevation angles determined from the DNS data of a supersonic
TBL. Compared to vortices with a ring-like shape, more like the head part of a hairpin
vortex, vortices resembling the model shown by the sketch (in figure 9) are more
popular when the flow is close to the boundary. Examples of such a vortex tube like
the sketch could be observed from the instantaneous flow field (such as a5 and c1 in
figure 5), with slight distortion in the shape. Jodai & Elsinga (2016) also observed
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FIGURE 9. (Colour online) A sketch for the conceptual vortex tube determined by the
most probable orientation of Λr based on DNS data.

similar structures in an instantaneous TPIV velocity field (see the vortices in figure 8
of their paper). The short vortices like b2 and b3 in figure 5 of this paper could
be viewed as the fragments of such a vortex sketch. In a TBL, the vortex tubes
resembling the model in figure 9 either could be arranged around a low-speed streak
in a staggered array (such as the structures in figure 5c2), or in some cases could form
the lower parts (legs) of a hairpin structure (such as the structures in figure 5c3).

The sketch in figure 9 could reveal some basic aspects of the geometry for the
most populated vortex. However, it is also worth noting that the result is based
on an ad hoc assumption that the most probable vortex orientations at different
wall-normal positions correspond to only one vortex tube described by a continuous
3-D curve. In an instantaneous TBL field, it could be imagined that the real vortex
tubes should be the fragments of this complete curve model or its distorted versions.
To better investigate the spatial shape of the vortex structure, LSE is necessary to
directly extract a complete vortex structure, which will be the research object for the
following § 3.3.

3.2.3. The direction of vorticity and Λr

Although Λr has an obvious advantage in recognizing the axes of vortex tubes from
strong shear layers, the well-developed equations for vortex dynamics are based on ω.
In fact, earlier investigators (Ong & Wallace 1998; Ganapathisubramani et al. 2006)
usually treated ω as the indicator of the vortex orientation, and obtained some results
about vortex orientation based on ω. Gao et al. (2011) discussed the differences
between ω and Λr based on DNS data and dual-plane PIV data for Reτ = 1160, and
concluded that the difference is significant at the wall region. In this work, the 3-D
and 3-C velocity fields allow us to give a more complete analysis on the relationships
of ω and Λr for wider Reynolds-number range and for more wall-normal positions.

Similar to the results shown in figure 8, the inclination angles for ω, which are
also represented by θxy and θ−zx, are statistically investigated based on both the TPIV
data and the DNS data. The resulting p.d.f. curves for y+ ≈ 50 and y+ ≈ 200 are
displayed in figure 10. Before drawing any conclusion from this figure, a prudent
check on the consistency of different data is necessary. For TPIV data, the results
of Reτ = 2286 and Reτ = 3081 at y+ ≈ 200 agree well with each other, adding some
credibility to the TPIV data. However, when comparing the TPIV data and the DNS
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FIGURE 10. (Colour online) The p.d.f. curves for θxy (a) and θ−zx (b) in terms of ω from
two example wall-normal positions (y+≈ 50 and y+≈ 200) for different Reynolds numbers
(including both TPIV data and DNS data). The solid lines with red, green and blue colours
represent the results of TPIV data for Reτ =1238, Reτ =2286 and Reτ =3081, respectively.
The dashed lines with red and green colours represent the results of DNS data for Reτ =
1900.

data at close wall-normal positions (y+ ≈ 50), obvious differences between the p.d.f.
curves based on TPIV data and the DNS data are observed. For θxy, the p.d.f. curves
based on DNS data have higher peaks than the ones for TPIV data, which is consistent
with the discussion for figure 8 and could be explained as the effect of measurement
uncertainty. For θ−zx = 0, a higher peak at θ−zx = 0 is found for TPIV data, which
seems contradictory to the former explanation. In fact, the latter could be explained as
the result of insufficient spatial resolution of the TPIV data, which will be investigated
in the following § 3.2.4. By comparing figure 10 with figure 8, the consistency and
difference between the orientations of swirl and vorticity could be noticed. For θxy in
terms of vorticity, the p.d.f. curves show two distinct peaks, which are very similar
to the p.d.f. curves shown in figure 8(a), noting that the latter ones are calculated
based on Λr, while the former results are based on ω. At y+≈ 50, the most probable
inclination angles for θxy (i.e. θxy,m) in terms of ω are estimated to be 35◦ and −145◦,
which are larger than the corresponding θxy,m for Λr as shown in figure 8(a). At y+≈
200, θxy,m for ω are estimated to be approximately 40◦ and −140◦ based on the DNS
data, consistent with the corresponding θxy,m for Λr. For θ−zx in terms of vorticity, the
p.d.f. curve obviously changes its shape with the increase of the wall-normal position.
At y+≈50, according to the DNS data, the p.d.f. has three local maxima at θ−zx=−80,
0 and 80, respectively, which is different from the p.d.f. curve of Λr that has no peak
at θ−zx = 0. At y+ ≈ 200, the p.d.f. curve has a flat plateau at θ−zx = 0 according to
the DNS data, similar to the p.d.f. curve associated with Λr. The deviations between
the distributions of the inclinations for ω and Λr are caused by the underlying shear
flows in TBL. The mean shear flow in the x–y plane adds to the spanwise component
of ω, which corresponds to the concentration of its p.d.f. at θ−zx = 0.

For further comparison between the orientations of Λr and ω, the most probable
inclination angles (θxy,m or θ−zx,m) could be identified and collected for comparison.
For the wall-normal range considered, the p.d.f. curves for θxy in terms of both Λr
and ω have two obvious local maxima (θxy,m), which makes it very convenient for
identification and comparison. However, the situation is different for the p.d.f.s of θ−zx.
While the p.d.f. curve of θ−zx in terms of Λr has two local maxima (θ−zx,m) at the
lower normal position (such as y+ ≈ 50 shown in figure 8b), the corresponding p.d.f.
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FIGURE 11. (Colour online) Plot of [θxy,m] in terms of Λr and ω as functions of wall-
normal positions for different Reynolds numbers based on TPIV data and DNS data.

curve in terms of ω has an additional peak at θ−zx= 0, which sometimes covers up the
other two potential peaks and causes difficulty in the identification (as shown by the
red line in figure 10b). Therefore, only θxy,m is considered in the following comparison
between Λr and ω.

The wall-normal variation of θxy,m for Λr and ω is investigated by collecting the
results based on both TPIV data and DNS data as functions of y+. To combine the two
individuals of θxy,m at one wall-normal position, the modulo operation is employed in
order to make θxy,m become a single-valued variable ranging from 0 to 90. The modulo
operation on θxy,m is defined as [θxy,m] = mod(θxy,m, 180), with mod(·, 180) denoting
the modulo operation, returning the remainder after division by 180. The results are
shown in figure 11. Still, deviations are observed between the results of TPIV data
and DNS data, which are caused by the resolution issue of TPIV data as explained
in the following § 3.2.4. Neglecting such deviations, all the results show a consistent
trend for the wall-normal variations of θxy,m. This shows that, for all the Reynolds
numbers, the inclination angle for ω in the x–y plane is larger than that for Λr and
the difference is quite large in the region very close to the wall where the gradient of
mean velocity is large, which is consistent with the results in Gao et al. (2011). This
inclination angle for Λr keeps increasing with the increase of y+ and its deviation
from that of ω decreases monotonically. At y+= 150, the two sets of curves for θxy,m

approach each other and begin to level off at 40◦–45◦ together.
Why do the curves for θxy,m in terms of both Λr and ω collapse onto a horizontal

line and what does that mean? In a quite early research work, Theodorsen (1952)
predicted that the leg of a hairpin vortex should incline at 45◦ to the streamwise
direction. The explanation (Head & Bandyopadhyay 1981) came from the governing
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equation for enstrophy, which takes the form

de
dt
=ω · S ·ω+ ν ω ·1ω, (3.4)

where S = (∇u + ∇Tu)/2 is the rate-of-strain tensor, e = ω · ω/2 represents the
enstrophy and ν is the kinematic viscosity of the fluid. The first term on the
right-hand side of the above equation is the production term of the vorticity, and
it indicates that an increasing rate of enstrophy depends on the stretching rate of
the material line element along the vorticity direction. When the vorticity is in line
with the principal axis of S corresponding to the largest eigenvalue, the enstrophy
has the largest increasing rate, which means the magnitude of vorticity possesses
the largest increasing rate. In a statistical sense, S in a TBL corresponds to a pure
shear deformation tensor in the x–y plane because of the TBL mean flow. The
corresponding principal axis is along the direction of 45◦ (Head & Bandyopadhyay
1981) inclined to the streamwise direction. Therefore, [θxy,m] = 45 corresponds to
the direction of vorticity with largest increasing rate in magnitude, which makes the
concentration of ω at [θxy,m] = 45 reasonable.

Although the above explanation seems solid, it does not give any clue about the
direction of Λr. Considering that Λr has been widely applied in the above sections,
further analysis on Λr and its inherent relationship with ω would create some value
for the above work. This time, the investigation departs from the governing equations
for vorticity, which is

dω
dt
= S ·ω+ ν1ω. (3.5)

This equation is also equivalent to the following one, noting that ∇u = S + Ω and
Ω ·ω= 0, where Ω = (∇u−∇Tu)/2:

dω
dt
=∇u ·ω+ ν1ω. (3.6)

Still, only the first term on the right-hand side of the equation is focused on in the
following analysis, since it is the production term for vorticity.

If a swirl occurs in the locality, i.e. λci > 0 for ∇u, then ∇u has three different
eigenvalues: a real one (λr), and a pair of conjugated ones. Thus ‘only one’ real
eigenvector Λr exists for ∇u, satisfying

∇u ·Λr = λrΛr. (3.7)

Herein, the term ‘only one’ means kind of unique, in the sense that the direction
of Λr is unique while the magnitude might be variable.

If ω is in line with Λr, i.e. ω= cΛr, then

∇u ·ω=∇u · (cΛr)= cλrΛr = λrω, (3.8)

where c is a constant number.
Considering that the left-hand side of the above equation corresponds to the

principal term of vorticity generation, the above equation means that the rate of
change for ω is parallel to ω itself. Thus, one may conclude that if ω is in line
with Λr, ω would not change direction in the following small time interval. If not,
since the direction of Λr satisfying (3.7) is unique, ω would change its direction. In
other words, Λr provides an important reference to judge whether ω could keep its
orientation, which gives some insight into the inherent relationships between them.
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FIGURE 12. (Colour online) The p.d.f. curves for θxy and θ−zx in terms of Λr and ω at
two example wall-normal positions for DNS data with different Reynolds numbers.

The above conclusion helps in the further discussion about figure 11. At the wall
region (y+< 100), the sharp difference between the orientations of ω and Λr indicates
that ω would change direction in the following time interval. At the same time, the
quasi-streamwise vortex pairs carrying strong ω are typically elevated by the inducing
effect of themselves. Such an elevating motion of ω accompanied by the changing of
its orientation would lead to a wall-normal variation of the orientation of ω, which
can be clearly observed in figure 11. For y+ > 150, when the included angle of Λr
and ω is significantly reduced, the direction of ω stops changing with y+, following
the same logic. The inherent relationship between Λr and ω introduced in this work
provides an explanation for the phenomenon displayed in figure 11.

3.2.4. Discussions on Reynolds-number effect and the resolution issue
Although the TPIV data contain three cases with different Reynolds numbers,

the corresponding spatial resolutions, which are determined by the interrogation
window of the cross-correlation analysis, differ significantly. Such deviations in
spatial resolution cause a failure in analysing the Reynolds-number effect on vortex
orientations based on TPIV data. To make up for the drawbacks of TPIV data, a
further statistical investigation on the DNS data is performed and the results from
different Reynolds numbers are quantitatively compared. Figure 12 collects the p.d.f.
curves for θxy and θ−zx in terms of Λr and ω, and the results based on DNS data with
three different Reynolds numbers are compared. It shows that the p.d.f. curves for
different Reynolds numbers collapse onto one single curve for a fixed wall-normal
position. The results strongly validate that the p.d.f.s of θxy and θ−zx are independent of
Reynolds number. Such a conclusion is consistent with the opinion that the Reynolds
number has an obvious influence on large-scale structures while the properties of
fine-scale structures (as recognized by the swirl criterion employed here) could be
scaled only by the inner scale, independent of the Reynolds number (Hutchins et al.
2009; Jiménez 2018).

In the discussion of §§ 3.2.1 and 3.2.3, the deviations between the results of
TPIV data and DNS data are explained as the result of experimental uncertainty and
insufficient spatial resolution. While the experimental uncertainty could be reduced
by optimizing the experimental configurations or the TPIV processing algorithm, the
spatial resolution issue is unavoidable. To make a further investigation on the effect
of the spatial resolution issue on the statistical results discussed above, a numerical
test on DNS data is performed. In this test, the DNS data for Reτ = 1900 are filtered
by a 3-D window of 33.1 × 33.1 × 33.1 (wall units), which is consistent with the
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FIGURE 13. (Colour online) The p.d.f. for θxy and θ−zx in terms of Λr and ω at two
example wall-normal positions (y+ ≈ 50 and y+ ≈ 200) for original and filtered DNS data
of Reτ = 1900.

spatial resolution of TPIV data for Reτ = 2286. The results for the p.d.f. of θxy and
θ−zx based on the original and filtered DNS data are collected in figure 13. At first
glance, obvious deviations between the two results can be observed. The p.d.f. peaks
for the filtered DNS data are usually higher than the original DNS data. Recalling the
discussion of figures 8 and 10, the p.d.f. peaks for the TPIV data, which also suffer
from the spatial resolution issue, are lower than that of the DNS data. This seemingly
contradictory result could be explained by inherent measurement errors in TPIV data,
which is not considered in the above test. For the results of Λr (figure 13a,c), the
filtering effect on DNS data does not obviously change the shapes of the original
p.d.f. curves. And the horizontal positions of the corresponding p.d.f. peaks slightly
shift away from the original positions. Differently, the results of ω (figure 13b,d) are
significantly influenced by the filtering effect especially at y+ ≈ 50. In figure 13(b),
the filtering effect causes a shift of more than 10◦ with regard to θxy,m of ω at y+≈ 50.
In figure 13(d), the p.d.f. curve for the filtered data shows a strong peak at θ−zx = 0,
and the two small humps at θ−zx ≈ ±90 of the original p.d.f. curves are concealed.
The influence on the p.d.f. of θ−zx brought by the filtering effect is very consistent
with the results of TPIV data when compared to the DNS data. The results shown in
figure 13 indicate that Λr is more robust in recognizing the vortex orientations when
the data suffer from insufficient spatial resolution, which adds to the value of the Λr
criterion.

3.3. Extracting dominant structures by LSE
In § 3.2, the vortex orientation has been statistically investigated by using Λr, which
reflects the local features of the vortex structures in a TBL. In this section, as a
necessary supplement for the above investigations, we focus on the global features of
vortex structures in spatial organization. As introduced in § 2, the LSE method will
be employed to directly extract complete structures from TBL fields, which reflects
the overall characteristics of vortex structures in spatial organization associated with
the given LSE events.

3.3.1. LSE for an ejection event
Figure 14 displays the vortex structures identified from the LSE flow fields given

ejection events at different wall-normal positions. These LSE vortices are well
collected into one coordinate system, with corresponding reference event arranged
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FIGURE 14. (Colour online) Vortex structures dominating ejection events at different
wall-normal positions. These vortices are recognized from the LSE flow fields by
isosurfaces of λci= 0.4λci,max with colours representing the streamwise velocity fluctuations.
The vortices for reference ejection events at different wall-normal positions are
arranged along the streamwise direction according to x+e = 10y+e , where x+e and y+e
are the coordinates of the corresponding ejection events. The vortices from different
Reynolds-number cases (including both TPIV data and DNS data) are located at different
spanwise positions. Panels (a), (b), (c) and (d) correspond to the top, front, side and
oblique views, respectively.

along an inclined line x+e = 10y+e . Therefore, the variation of vortex shapes along
the x axis reflects the wall-normal evolution of LSE structure. For better comparison,
the LSE vortices resulting from different Reynolds numbers are arranged at different
spanwise positions, as indicated by the annotations on the right side of figure 14(a).
It shows that, for y+ < 40 (corresponding to x+ < 400 in the figure), the dominant
structure for an ejection event is a pair of counter-rotated streamwise vortices, with
a spanwise spacing of 50–100 wall units. A weak spanwise vortex tube connects
the streamwise vortex pair, forming an ‘H’-shaped vortex. With the increase of
wall-normal distances, the angle of inclination to the streamwise direction for the ‘H’
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FIGURE 15. (Colour online) Widths of the LSE vortices (W) and their deviations caused
by TPIV resolution. (a) Width of the LSE vortices (W) as a function of wall-normal
position based on the results of TPIV data and DNS data. (b) The deviations of W
caused by filtering the DNS data according to the interrogation windows of three TPIV
configurations. (c) Corrected TPIV results (W) based on the corresponding deviations in
(b) compared with the DNS results of Reτ = 1900.

vortex continuously increases until y+ = 120, from which the inclination angle keeps
constant at approximately 45◦. Such a wall-normal evolution trend for the inclination
angle is consistent with the results in § 3.2. The parallel and streamwise-extending
parts downstream of the connection position shrink to become small tongue-like
protuberances, which is the remnant of the vortex transition process and has also
been observed by Jodai & Elsinga (2016) in an instantaneous field. When the
spanwise vortex becomes stronger, the LSE structure transforms from ‘H’ vortex into
a typical hairpin, which finishes at approximately y+ = 60. At y+ > 100, a second
spanwise vortex occurs between the two legs, which rotates in the opposite direction
to the former spanwise vortex. Together, the two spanwise vortex tubes and the
two bordering legs form a structure with a loop-like head. The loop-like vortex is
the conditional vortex of an isotropic turbulence (Adrian 1979), whose occurrence
indicates that the local flow is close to isotropic turbulence and the logarithmic
region has begun. The structures continuously increase with the wall-normal positions
while keeping the characteristic shape unchanged. The results from different Reynolds
numbers show very good consistency in the topological shapes. For the TPIV data of
Reτ = 3081, the vortices appear somewhat fatter than the ones from DNS data, which
is caused by the comparatively lower spatial resolution of these TPIV data.

To quantitatively investigate the size evolution of LSE structures, the characteristic
width W is defined as follows. First, the swirl strength (λci) distribution in the slice
at the height of the reference ejection event is extracted. Then, the two maximum
peaks on the slice are recognized and their spanwise distance is calculated, which is
defined as the width of LSE structures W. Figure 15(a) shows W as a function of
wall-normal position for all the Reynolds numbers. It shows that the widths increase
with y+ and the increasing speed becomes stable when y+> 100. The linear increasing
trend of vortex size is consistent with the famous attached eddy hypothesis, which is
an important theory accurately predicting the statistics of the log region (Woodcock
& Marusic 2015). For the DNS data, W from three different Reynolds numbers
collapse onto a single curve, which indicates that the widths of vortex structures are
independent of Reynolds number. For the TPIV data, the curves for three Reynolds
numbers appear parallel and could be well overlapped only by shifting a constant
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FIGURE 16. (Colour online) Spanwise vorticity distribution in x–y planes extracted
from the LSE flow fields given a centred prograde spanwise vortex. Panels (a) and
(b) correspond to the results of DNS data for Reτ = 1100 and Reτ = 1900. Panel (c)
corresponds to a combination of the TPIV results for Reτ = 1238, Reτ = 2286 and Reτ =
3081. The contour maps in the three columns show the results estimated based on the
conditional spanwise vortices at three different wall-normal positions, as illustrated in the
corresponding headings.

distance along the vertical direction. Such constant shift might be caused by the
variance of TPIV resolution for different Reynolds numbers, which has been noticed
in the discussion of figure 14.

To estimate the deviations of W caused by the resolution issue, another numerical
test is performed on the DNS data of Reτ = 1900. This time, the DNS data are filtered
by the three interrogation windows corresponding to the three cases of TPIV data,
which have been listed in table 1. Then W calculated from the filtered DNS data
are compared to W based on the original DNS data. The corresponding deviations
(denoted as 1W) are shown in figure 15 as functions of wall-normal positions. It
shows that 1W approximately remains constant for y+ > 100, and increases with
the size of the filter window. Such variations of 1W with different wall-normal
positions and filtering windows are consistent with the deviations of the TPIV results
when comparing to the DNS data as shown in figure 15(a). Therefore, the results of
1W in the numerical test are employed to correct the TPIV results in figure 15(a),
accordingly. The final results depicted in figure 15(c) show that the corrected TPIV
data are close to the DNS data, which validates the consistency of TPIV data and
DNS data.

3.3.2. LSE for a prograde spanwise vortex
Figure 16 displays the spanwise vorticity distribution in the x–y plane extracted

from LSE flow fields given a centred prograde spanwise vortex. The results based
on two sets of DNS data for Reτ = 1100 and Reτ = 1900 are provided in the first
two rows. For each Reynolds-number case, three example wall-normal positions of
y+ = 63.0, y+ = 161.0 and y+ = 210.0 are chosen as the position of centred spanwise
vortex, and the corresponding results are displayed in the three columns. For TPIV
data, since the three cases with different Reynolds numbers have limited wall-normal
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range, only one LSE field for each case is displayed. The TPIV results are combined
to display in the third row of figure 16. At lower wall-normal positions (as shown
in figure 16a1,b1,c1), the contour shows one strong central vortex and two inclined
shear layers located upstream and downstream of the centred vortex. When the central
vortices depart from the wall, the inclination angles for the shear layers increase. In
figure 16(a2,b2,c2), obvious vorticity peaks occur on the upstream and downstream
shear layers. The occurrence of the vorticity peaks makes the structure quite resemble
a typical packet structure, which contains the head parts of several hairpins distributing
on an inclined shear layer. Farther away from the wall, the vorticity peaks become
weak but are still distinguishable as shown in figure 16(b3,c3). According to the
DNS data, the spacing between the central vortex and its neighbouring upstream one
is estimated to be 175 wall units for Reτ = 1100 and 200 wall units for Reτ = 1900.
The spacing remains almost constant with the increase of wall-normal position, but
becomes larger with the increase of the Reynolds number. When comparing the results
of TPIV data and DNS data, one obvious difference is observed in the neighbouring
region of the central vortex. Two small vorticity peaks occur in this region for
TPIV data, between which the central vortex is sandwiched along an approximately
horizontal line. This awkward vorticity distribution occurs in all the three cases of
TPIV data, as marked by the magenta arrows in figure 16. In both figure 16(c2,c3),
imagining that the two small vorticity peaks are razed and the gap between either of
them and the central vortex is filled, the resulting vorticity distribution would be quite
similar to the DNS results (figure 16b2,b3). Based on these observations, the authors
believe that the two small vorticity peaks are caused by measurement uncertainties,
which contribute to the interruption of vorticity in the locality. Once accepting that,
the results of TPIV data and DNS data would be remarkably consistent as the dashed
magenta circles indicated. Anyway, these current results provide statistical proofs for
the packet structures and cast some light on their geometric characteristics.

Statistical evidence for hairpin packets was first provided by Christensen & Adrian
(2001), who found an inclined shear layer in LSE velocity field based on 2-D PIV
data (in the x–y plane). The shear layer was recognized by using the map of unit
vectors, and irregular spanwise vortices were discovered on the shear layer. Recently,
Deng et al. (2018) designed a proper orthogonal decomposition-based filter technique,
and tried to filter out the isolated vortices before performing self-correlation on the
2-D λci field (in the x–y plane). They found three peaks aligned along an inclined
line, which corresponds to three spanwise vortices in one packet structure. In this
work, without an extra filter operation, the LSE technique could provide a multi-peak
pattern in the x–y plane, which is attributed to the advantage of 3-D velocity data. The
volumetric data support a spanwise average in the calculation of LSE velocity field,
which would strengthen the effects of spanwise vortices, as most of them extend along
the spanwise direction. The success of extracting hairpin packets from 3-D velocity
data could provoke more interest in the analysis on 3-D TBL data.

3.4. Further discussions
While § 3.1 discussed the characteristics of typical vortices and their spatial
organization in an instantaneous TBL flow, §§ 3.2 and 3.3 extended the discussion by
quantifying the probability for the occurrence of the typical structure and depicting its
geometry in a statistical sense. These results in §§ 3.1 and 3.3 cooperatively sketch
out a picture for the vortex structures and their evolution below the logarithmic
regions of TBLs. The buffer region is populated by quasi-streamwise vortices, which
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usually occur in pairs and are distributed along meandering low-speed streaks as
shown in figure 5. The quasi-streamwise vortices suffer from strong shear flows,
which results in significant differences in the orientations of local vorticity and swirl.
The quasi-streamwise vortices usually bend away from the wall and turn towards
the spanwise direction when they extend downstream. This characteristic could either
be observed from the instantaneous field, or be inferred based on the wall-normal
variations of the p.d.f.s for θxy and θ−zx. On the top of the low-speed streaks, these
streamwise vortices interact with the neighbouring ones and form complex structures
such as hairpin vortices or arc vortices, which contribute to the plateau of the p.d.f.
curves for θ−zx. The vortex structure with tongue-like protrusions found in the LSE
results (figure 14) also indicates that the hairpin structure could be evolved from a pair
of streamwise vortices. In the logarithmic region, when the interaction effect between
vortices becomes weaker, the dominant vortex structures from different wall-normal
positions keep similar geometries. The ejection event in this region is dominated
by a hairpin structure, which is inclined at 45◦ along the streamwise direction and
possesses a loop-like head. The width of the hairpin structure increases linearly with
the wall-normal position, supporting the famous attached eddy hypothesis.

When an incoming sweep event is blocked by the ejection event induced by an
existed hairpin structure, a spanwise vortex would occur by the rolling-up effect. If the
newly formed spanwise vortex is connected to the legs of the existing hairpin structure,
a typical packet structure would form. In a TBL, the incoming sweep event could be
produced by the inducing effect of an upstream spanwise vortex, which is abundant in
the logarithmic region as shown by the p.d.f. of θ−zx. The packet structures composed
of several spanwise vortices also exist in the logarithmic region, which promote the
momentum exchange of TBLs at large scales. Results from this work support the
classical opinions about the schematics of vortex structures in TBLs (Robinson 1991;
Adrian 2007), yet providing more proofs and details about the structures and their
wall-normal evolutions.

4. Concluding remarks

Tomographic PIV measurements are conducted to capture the vortex structures
below y/δ= 0.1 for three Reynolds numbers from Reτ = 1238 to Reτ = 3081. Results
of the TPIV measurements combined with the DNS results are analysed, which
provides plenty of information about the vortex structures below the logarithmic
region.

The instantaneous velocity field from TPIV results shows typical vortex structures
in the buffer region. Quasi-streamwise vortices with various scales and shapes are
distributed around several streamwise-extending low-speed streaks. A hairpin-like
structure is formed by the connection of a pair of quasi-streamwise vortices from
the two sides of one low-speed streak, which is consistent with the observation of
Jodai & Elsinga (2016). A vortex group containing a typical hairpin vortex and three
spanwise vortices upstream is observed, which shows a typical packet signature in
the x–y plane.

The vortex orientation is quantitatively investigated by using the real eigenvector
of the velocity gradient tensor. The p.d.f.s of θxy show two local maxima for the
wall-normal range considered, which are named as the most probable inclination angle
(θxy,m). With the increase of wall-normal distance, θxy,m continuously increases and
levels off at approximately 45◦ and −135◦, which are correlated with the two legs of
the hairpin structures. The p.d.f. of θ−zx also shows two maximum peaks at ±60◦–70◦
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for y+ < 100. For higher wall-normal position, the two maximum peaks become less
prominent and the corresponding θ−zx (θ−zx,m) tend to approach θ−zx = 0 (spanwise
direction). Based on the quantitative results about the most probable orientations, a
sketch of the imaginary vortex tube is provided. The conceptual vortex tube bends
upwards and changes direction from the streamwise towards the spanwise with the
increase of wall-normal position, resembling some vortex structures observed in the
instantaneous field.

The orientation of vorticity is also statistically investigated by the p.d.f.s of the
corresponding θxy and θ−zx. Results indicate that the orientation of ω is significantly
influenced by the mean shear flow of the TBL. The θxy,m in terms of ω is larger than
that of Λr, but the difference becomes small with the increase of wall-normal position.
The inherent relationship between the orientations of Λr and ω is analysed by using
the governing equation of vorticity. It shows that Λr provides an important reference
to judge whether ω could keep its orientation.

The LSE velocity fields given ejection events happening at different wall-normal
positions shed some light on the evolution of the vortices dominating the ejection
events. A transition from streamwise vortex to hairpin vortex is observed when the
ejection event leaves away from the wall, consistent with variation of θxy,m and
θ−zx,m discussed before. At y+ = 50, a vortex structure with two tongue-like bulges
is observed, which could be viewed as the remnant of this transition process. The
LSE vortex with a loop-like head occurs at approximately y+ = 120, indicating the
mature hairpin vortex and also the start of the logarithmic region. Further away from
the wall, the shape of the LSE vortex remains similar while its width increases at a
constant rate, which validates the famous attached eddy hypothesis.

An LSE based on a centred prograde spanwise vortex results in a typical packet
signature in the x–y plane. The inclination angle with respect to the wall for the
packets increases when they depart away from the wall. The streamwise spacing for
the neighbouring hairpin heads is estimated as 150–200 wall units for the Reynolds-
number range considered. The spacing stays nearly constant with the increase of wall-
normal position, but becomes larger with the increase of the Reynolds number. The
results based on TPIV data and DNS data agree well in this work, which provides
credible evidence for the existence of packet structures.

In this work, the deviations between TPIV results and DNS results are noticed
and analysed carefully. The influence of Reynolds number is excluded by comparing
the DNS results for different Reynolds numbers. Therefore, these deviations are
caused by the measurement uncertainties and the resolution issue of TPIV results.
Numerical tests on the DNS data are performed to quantify the influence of this
resolution problem. Results of the tests explain some aspects of the deviations in
these p.d.f. curves based on TPIV data and DNS data. The orientation of Λr is
more robust to the resolution issue compared to the orientation of ω, which adds
some value to the Λr criterion. The tests also provide a solution to correct the width
of LSE vortex suffering from the resolution issue, which works well on the TPIV
data. The numerical tests and the comparison between TPIV results and DNS results
are a reminder that the influence of the resolution issue should be considered when
carrying out a similar analysis based on PIV or TPIV data.
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