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ABSTRACT
We propose a stochastic programming model as a solution for optimizing the problem of locating and
allocating medical supplies used in disaster management. To prepare for natural disasters, we
developed a stochastic optimization approach to select the storage location of medical supplies and
determine their inventory levels and to allocate each type of medical supply. Our model also captures
disaster elaborations and possible effects of disasters by using a new classification for major earthquake
scenarios. We present a case study for our model for the preparedness phase. As a case study, we
applied our model to earthquake planning in Adana, Turkey. The experimental evaluations showed that
the model is robust and effective. (Disaster Med Public Health Preparedness. 2017;11:747-755)
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The decision-making process for preparing and
responding activities for health care systems in
disaster management is a strategic challenge.

Given the uncertainties of events, decision-making
in this area must balance preparedness and risk.
Generally, the structures of optimization models in
disaster management include a preparedness phase
and a response phase, which implies before and after
the catastrophic occurrence, respectively.

In this article, we present a mathematical program-
ming model for planning storage, selecting a ware-
house, and delivering medical supplies between
warehouses and hospitals. We present a model for
emergencies and disaster situations in the center of
Adana (Turkey), which is vulnerable to earthquakes.
We introduce a two-stage stochastic programming
(SP) scenario-based model for before and after the
disaster (earthquake) in the preparedness phase.

SP can be used as a general purpose technique to
make nonanticipatory decisions in uncertainty events.
Our goals in this article were to select a subset of
warehouses to store additional medical supplies and
to determine the inventory level in the first stage and
then to define a transportation plan for each scenario
in the second stage. The goal of our mathematical
model was to minimize costs and delivery times during
a disaster. Thus, we utilized a scenario-based SP model
to optimize this problem.

Two major challenges in our SP model were selecting
the locations and allocating them. Concerning
selecting a location, Shishebori and Jabalameli1

presented a multi-objective, mixed-integer, non-
linear programming model for determining locations
of new medical service centers with respect to
network design and system reliability. Their model
minimizes total investment and operational costs.
Rennemo et al2 proposed a three-stage SP model
for locating and routing problems with stochastic
elements. The first stage of the model entails facility
location decisions with respect to opening of dis-
tribution centers. The last 2 stages involve amounts of
aid to be delivered to each recipient and types of
vehicles to be used for transportation. The goal of the
model is to maximize the utility provided by covering
the demand. In this model, the amount of uncertain
demand is considered. Lu3 presented a P-center model
with uncertain nodal weights for locating urgent
relief distribution centers in an emergency logistics
responding system. In this model, a heuristic frame-
work is used to obtain robust solutions. In another
emergency facility location problem, Mirzapour et al4

used a P-center location to determine the location of
relief rooms in affected areas before flood occurrence.
They proposed a mixed-integer nonlinear program-
ming model for minimizing the maximum expected
weighted distance from the relief room to all demand
regions in order to decrease the evacuation time of the
population. In 2007, frameworks for facility location
of medical service models were investigated by Jia
et al.5 They first surveyed general facility location
problems and then proposed a general facility location
model that is suited for large-scale emergencies.
This model can be cast as a covering model, a
P-median model, or a P-center model in a large-scale
emergency.5
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Because it has uncertainty parameters, SP is an appropriate
technique for planning in the preparedness phase. Scenario-
based SP models take advantage of probabilistic scenarios to
represent disasters and their outcomes. In this regard, Mete
and Zabinsky6 proposed a two-stage SP approach for the
storage and distribution of medical supplies. The first stage of
their model focuses on the location of medical supply ware-
houses, and the second stage focuses on distribution and
transportation of the medical supplies. Warehouse selection is
implemented according to the capacity of the warehouses
from the asset of possible locations and ends by determining
inventory levels of each warehouse. In fact, the SP model of
Mete and Zabinsky6 is closer to our proposition, but there is a
significant difference in the major scenarios. In our SP model,
major earthquake scenarios are on the Richter magnitude
scale and this classification of earthquake events supports a
wide variety of possible magnitude scales. We determined
86 routes, with each one starting from a warehouse and
arriving at a hospital in the center of Adana. Each warehouse
included limited capacities that can provide services to
several demand points (hospitals). In order to accelerate
delivery of medical supplies, warehouses were selected by
considering the closest distance to demand points (hospitals).
Because of uncertainty demands before the onset of the
earthquake, we envisage fluctuating demands in hospitals.
We estimated the demands of each hospital with respect to
population density and their distance from other existing
hospitals in the same region. In 2004, a scenario-based two-
stage SP model was proposed for transporting humanitarian
aid during emergency response. In the first stage of this model,
goods are pre-positioned by allowing movement of goods
between existing supply depots. In the second stage, a
transportation plan is drawn up based on the existing
supply and realization of uncertain demand and arc capacities.
Those authors sought to determine transportation plans and
to define both stages in the response phase.7

In the application of stochastic models in health services,
Lamiri et al formulated a stochastic model for operating room
planning with 2 classes of patients: elective patients and
emergency patients.8 That model minimized the sum of
elective-patient-related costs and overtime costs of operating
rooms. The researchers proposed a solution that combined
Monte Carlo simulation and mixed integer programming.
Beraldi et al9 used an SP model with chance constraints to
design an emergency medical service. That model minimized
overall costs for selecting the best location for a service site
and vehicle assignment for each service site. In addition, the
chance constraint in that study was due to the Poisson nature
of the call arrival process. Another location problem
addressed by SP is the necessity for regional emergency
resources storage.10 In that case, the authors proposed a
two-stage SP model to solve the region division problem.
Their objective minimized resources, transportation cost, and
penalty cost in disaster management. In scenario-based
modeling of emergency management, Lv et al11 used a

model for emergency evacuation management and risk ana-
lysis under multiple uncertainties in emergency management.
In addition, Salman and Yücel12 presented a scenario-based
practical optimization method to select the locations of
emergency response facilities in the pre-disaster stage. That
study provides insight from Istanbul.

In a study aimed to reduce the effects of earthquake, a
formulation was presented to coordinate 3 main agencies
and then propose a heuristic approach to solve different
subproblems.13 That study pointed out 3 main actors parti-
cipating in disasters and emphasized the importance of
coordination between the actors.13 The authors considered
3 phases of 4 disaster management phases (preparedness,
response, mitigation, and recovery). Each actor was in charge
of 1 of the 4 phases, integrating all phases in disaster man-
agement except for recovery. For robustness of the entire
transportation system in large-scale urban disasters such as
earthquakes, Liu et al14 developed a model network retrofit
problem as a two-stage SP problem that optimizes a mean-risk
objective of the system loss. In other study, Caunhye et al15

investigated optimization models used in emergency logistics.
Disaster operations can be performed before or after disaster
occurrence. Short-notice evacuation, facility location, and
stock prepositioning are drafted as the main pre-disaster
operations, whereas relief distribution and casualty transpor-
tation are categorized as post-disaster operations. In 2014
Sazvar et al16 developed a two-stage SP model and proposed a
new replenishment policy in a centralized supply chain for
deteriorating items. They considered inventory and trans-
portation costs, as well as the environmental impacts under
uncertain demand. Rennemo et al2 presented a three-stage SP
model for disaster response planning, considering the opening
of local distribution facilities, the initial allocation of
supplies, and the last mile distribution of aid.

Tricoire et al17 formulated a bi-objective model utilizing
two-stage SP with recourse. They presented a covering
tour model with stochastic demand in which the 2 objectives
are given by (1) cost (opening cost for distribution centers
plus the routing cost for a fleet of vehicles) and (2) expected
uncovered demand. In the application of SP models,
Alizadeh et al18 considered a two-stage stochastic extension
of the bi-level pricing model. They developed a SP model in
the area of financial scope. In the first stage of the model, the
leader sets tariffs on a subset of arcs of a transportation net-
work, with the aim of maximizing profits. Their model is
focused on sensitivity analysis with respect to the constraints
linking the tariffs at the 2 stages of the stochastic program.

Our SP model is a mathematical model that minimizes the
sum of total distance and transportation time from the
warehouse to the hospital. We formulated the first-stage SP
model by considering the distances from the warehouses to
the existing hospitals in the center of the city (Adana).
During the second stage, the amount of medical supplies that
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must be delivered to the hospitals for each scenario was
determined.

We developed the SP model by considering a new classifi-
cation scenario in earthquake events. We introduced major
scenarios utilizing the Richter magnitude scale. In this study,
all possible scenarios were under several intervals of the
Richter magnitude scale. In addition, each major earthquake
scenario was divided into 3 times (scenarios): working times
(W), rush hour times (R), and non-working times (N). Thus,
we had 9 scenarios in this SP model. In the center of Adana,
there are 12 great hospitals and 7 medical supply warehouses.

METHODS
In this section, our SP model is defined and formulated.
A two-stage SP model was proposed for the medical supply
location and the allocation problem in the center of Adana.
Our SP model was composed of the first stage and the second
stage, which included deterministic and nondeterministic
decisions, respectively. The nomenclature of the model
elements is given as follows:

The parameters were as follows:

I is sets of warehouses,
J is hospitals
cij is transportation time between warehouse (i) and hospital (j),
wjk is the penalty for each unit of unfulfilled demand at
j hospital,
djk is the demand of k type at j hospital,
hik is the storage capacity of warehouse (i) for medical supplies (k),
ek is the maximum amount available of k type,
fij is the distance between warehouse (i) and hospital (j),
τjk is the upper limit for penalty of unsatisfied demands in
hospital (j),
K is the type of medical supplies, and
M is the number of warehouses selected.

The decision variables were as follows:

xi =
1; If warehouse i is selected for service
0; otherwise

�
;

sik is the inventory level of k in i warehouse,
yjk is the amount of unfulfilled demand at j hospital, and
tijk is the amount of k type to deliver from i to j.

Stage 1: Warehouse Selection and Inventory Decisions
This stage selects warehouses from the set of existing ware-
houses by considering total distances between warehouses and
hospitals. In the first stage of SP, the binary decision variable
xi is 1, if warehouse i is selected for service, or 0 otherwise, for
each warehouse i∈ I and sik represents the inventory level
of medical supply k in the warehouse I for all i∈ I, k∈K.
In addition, fij represents distances between warehouses i and
hospitals j as well as the objective function in our first-stage

SP model, the minimized sum of the total distance between
warehouses and hospitals. The triplet of (x,s,ξ) is a simple
probability and ξ is denoted as being scenarios (ξ∈Ξ)
in the formulation.

The first stage of the SP model is as follows:

Min Z=
X
i

ð
X
j=J

fijxiÞ +EΞ Q x; s; ξð Þ½ � (1)

Subject to: P
i= I

sik ≤ ek for all k 2 K (2)

sik ≤ hikxi for all i; k 2 K (3)
P
i
xi ≤m for all i 2 I (4)

xi 2 0; 1f g; sik ≥ 0 for all i 2 I; k (5)

The objective function of the first stage problem (1) mini-
mizes the sum of the total distance plus the expected value
function EΞ Q x; s; ξð Þ½ �ð Þ The limitations on the availability of
medical supplies and capacities of warehouses are represented
by (2) and (3), respectively. Finally, (4) constraint includes
a selection of warehouse numbers.

Stage 2: Demand Satisfaction Decisions and
Transportation Amount
Stage 2 presents the transportation amount of medical supply
k to be delivered from warehouse i to hospital j under disaster
scenario. ξ The objective function of this stage is the
action of the first stage (Q(x,s,ξ)) that is expanded as the
objective function.

We minimized the transportation durations and penalizations
devoted for each unit of unfulfilled demand at hospital j under
scenario ξ (wij(ξ)). The decision variable yjk(ξ) represents
the amount of unfulfilled demand in each hospital j under
the different scenarios. We let djk(ξ) represent the demand of
medical supply type k at hospital j for scenario ξ. In addition,
this model utilizes a parameter, namely τjk, to denote the
upper limit for penalties of unsatisfied demand for each hos-
pital j and medical supply type k. We will define notifications
of our SP model in the rest of this section.

The second stage of the SP model is formulated as follows:

Q x;s;ξð Þ=Min
X
i2I

X
j2J

ðcij ξð Þ
X
k2K

tijk ξÞð Þ+
X
j2J

X
k2K

wjk ξð ÞyjkðξÞ

(6)

Subject to: P
j
tijk ξð Þ≤sik for all i 2 I;k2K (7)P

i
tijk ξð Þ=djk ξð Þ�yjk ξð Þ for all j2 J;k2K (8)

wjk ξð Þyjk ξð Þ≤τjk for all j2 J;k2K (9)
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tijk ξð Þ;yjk ξð Þ≥0 for all i2 I;k2K (10)

The objective function of the second stage problem (6)
includes the total transportation duration and the penalty of
unfulfilled demand. The total amount of medical supplies that
will be shipped from a warehouse is bounded by the inventory
levels of the corresponding warehouse for every supply
type (7). Moreover, we add the balance constraint (8) to
determine the unsatisfied demand amounts, yjk(ξ), and a
non-negativity constraint for them to prevent favoring
deliveries over the demand amounts. The constraint (9)
ensures that the total penalty for each hospital and medical
supply type is smaller than a threshold value, τjk. In this
study, unfulfilled demand is not assumed and total availability
of medical supplies is assumed to be sufficient for all scenarios.

Our SP model is a scenario-based optimization model.
We assumed 3 major earthquake scenarios based on Richter
magnitude scale rather than fault.6 In this model for the
weekdays we assumed 9 working hours, 4 rush hours, and
11 non-working hours. We treated Saturdays as a workday
and Sundays as non-working time. Thus, we had 168 hours in
a week that were divided into 54 working hours, 24 rush
hours, and 90 non-working hours. We proposed the prob-
abilities of the 9 scenarios with respect to earthquake
sequence and their probabilities (Table 1) since approxi-
mately 1500 years ago in Adana.19 We calculated the
occurrence probabilities for each scenario in Table 2.

Decision-makers can also plan with respect to the fluctuations
in demand of the different hospitals in each scenario. We
considered the fact that downtown Adana has a higher
population during working hours, whereas residential areas
are more populated in the non-working hours. On the other
hand, the center of Adana is divided into 2 districts west and

east of the Seyhan River. The district west of the Seyhan
River has a high-density population in the center of Adana.
Demand in hospitals near residential areas is increased during
non-working hours. We assumed that the demand for
hospitals in rush hour is balanced in different parts of the city.

In catastrophic events, due to excess recourse to hospitals,
demand increases. In order to manage these situations,
constraints were used at available medical supply warehouses.
There are 7 medical supply warehouses in Adana, 2 of which
are cooperative firms and the remaining of which are private
firms. In addition, we considered 12 hospitals in the center of
Adana city, 4 of which are private and the remaining of
which are state hospitals. The location of the hospitals and
warehouses are marked on the map shown in Figure 1.

We extracted the demand of hospitals for each scenario
(Table 3) by considering the approximate number of injuries
in each part of Adana (plan of disaster action and scenarios,
Adana, 2008). Table 3 includes the amount of estimated
demand for each hospital by using the predicted damage
and population density in each scenario declared by Disaster
and Emergency Management of Adana.

In estimating the demands of hospitals, we considered the
fact that downtown Adana has a higher population during
working hours, whereas residential areas are more populated
in non-working hours. Thus, we assigned relatively high
demand to downtown hospitals during working hours for
big earthquakes. Demand in hospitals near residential areas is
increased during non-working hours. We assumed that the
demand of hospitals is balanced in different parts of the city
in rush hours. We assigned a large fixed value as a penalty
coefficient to unsatisfied demand (wjk) in the objective
function to provide an incentive to satisfy the demand of
hospitals with equal importance. The total availability
of medical supplies (ek = 18000) is assumed to be sufficient
for all scenarios.

We determined 84 routes; each started from a warehouse and
arrived at a hospital, depending on their locations in the city.
The distance and transportation time between warehouses
and hospitals under each scenario are provided in Table 4.

The solution of the SP model was achieved by solving
the deterministic equivalent of the model, which allowed

TABLE 1
Earthquake Sequence in the Center of Adana

Richter Frequency Probability of Occurrence

5≤Richter<6 4 0.4
6≤Richter<7 3 0.3
7≤Richter<8 3 0.3
Total 10 1

TABLE 2
Probabilities of Scenariosa

5≤ Richter<6 6≤Richter< 7 7≤Richter< 8

Scenario W1 R1 N1 W2 R2 N2 W3 R3 N3

Probability of occurrence 0.13 0.06 0.21 0.1 0.04 0.16 0.1 0.04 0.16

aAbbreviations: W, working times; R, rush hour times; N, non-working times.
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us to compute the optimal first-stage decision when the
second stage can be represented in a closed form. The
SP model was coded in GAMS (GAMS Software GmbH,

Frechen, Germany) and was solved by CPLEX solver in less
than 1 minute in Windows 7 (Microsoft Corp, Redmond,
WA) with a 64-bit operating system and 4GB RAM.

FIGURE 1
Location of Hospitals and Warehouses in the Center of Adana, Turkey.

TABLE 3
Demand at Hospitalsa

5≤ Richter<6 6≤Richter< 7 7≤Richter< 8

Hospital W1 R1 N1 W2 R2 N2 W3 R3 N3

1 228 1382 2536 456 2764 5072 684 4146 7608
2 170 980 1575 340 1960 3150 510 2940 4725
3 177 910 1590 354 1820 3180 531 2730 4770
4 342 2074 3806 684 4148 7612 1026 6222 11418
5 114 691 1268 228 1382 2536 342 2073 3804
6 88 575 965 175 1150 1930 263 1725 2895
7 192 1075 2331 384 2150 4662 576 3225 6993
8 160 990 1825 320 1980 3650 480 2970 5475
9 137 840 1520 274 1680 3040 411 2520 4560
10 128 838 1490 255 1676 2980 283 2514 4470
11 150 920 1779 300 1840 3558 450 2760 5337
12 106 775 1425 211 1550 2850 316 2325 4275
Total Demand 1992 12,050 22,110 3981 24,100 44,220 5872 36,150 66,330

aAbbreviations: W, working times; R, rush hour times; N, non-working times.
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TABLE 4
Distances and Transportation Time Under Scenariosa

Warehouse Hospital Distance
5≤ Richter<6 6≤ Richter<7 7≤ Richter< 8

(i ) (j ) (km) W1 R1 N1 W2 R2 N2 W3 R3 N3

1 1 3.7 18 27 9 27 36 18 36 45 27
1 2 6.4 28 42 14 42 56 28 56 70 42
1 3 5.5 26 39 13 39 52 26 52 65 39
1 4 7.4 32 48 16 48 64 32 64 80 48
1 5 8.1 34 51 17 51 68 34 68 85 51
1 6 11.7 44 66 22 66 88 44 88 110 66
1 7 10.2 44 66 22 66 88 44 88 110 66
1 8 3.4 14 21 7 21 28 14 28 35 21
1 9 3.1 14 21 7 21 28 14 28 35 21
1 10 3.3 18 27 9 27 36 18 36 45 27
1 11 2.6 12 18 6 18 24 12 24 30 18
1 12 5.4 26 39 13 39 52 26 52 65 39
2 1 3.6 14 21 7 21 28 14 28 35 21
2 2 3.3 14 21 7 21 28 14 28 35 21
2 3 2.4 10 15 5 15 20 10 20 25 15
2 4 3.3 14 21 7 21 28 14 28 35 21
2 5 4 20 30 10 30 40 20 40 50 30
2 6 7.6 28 42 14 42 56 28 56 70 42
2 7 10.4 32 48 16 48 64 32 64 80 48
2 8 4.7 18 27 9 27 36 18 36 45 27
2 9 3.3 14 21 7 21 28 14 28 35 21
2 10 2.7 12 18 6 18 24 12 24 30 18
2 11 6.9 30 45 15 45 60 30 60 75 45
2 12 2.8 12 18 6 18 24 12 24 30 18
3 1 9.4 38 57 19 57 76 38 76 95 57
3 2 12 32 48 16 48 64 32 64 80 48
3 3 12.6 36 54 18 54 72 36 72 90 54
3 4 12.4 46 69 23 69 92 46 92 115 69
3 5 13.1 50 75 25 75 100 50 100 125 75
3 6 18.4 50 75 25 75 100 50 100 125 75
3 7 9.8 44 66 22 66 88 44 88 110 66
3 8 6.6 30 45 15 45 60 30 60 75 45
3 9 8.2 32 48 16 48 64 32 64 80 48
3 10 8.5 34 51 17 51 68 34 68 85 51
3 11 9.8 36 54 18 54 72 36 72 90 54
3 12 9.6 38 57 19 57 76 38 76 95 57
4 1 9.2 38 57 19 57 76 38 76 95 57
4 2 11.7 32 48 16 48 64 32 64 80 48
4 3 12.3 34 51 17 51 68 34 68 85 51
4 4 12 44 66 22 66 88 44 88 110 66
4 5 12.7 50 75 25 75 100 50 100 125 75
4 6 18 48 72 24 72 96 48 96 120 72
4 7 9.5 42 63 21 63 84 42 84 105 63
4 8 8 28 42 14 42 56 28 56 70 42
4 9 9.1 30 45 15 45 60 30 60 75 45
4 10 9.7 34 51 17 51 68 34 68 85 51
4 11 8.7 34 51 17 51 68 34 68 85 51
4 12 9.2 36 54 18 54 72 36 72 90 54
5 1 1.4 8 12 4 12 16 8 16 20 12
5 2 4.6 20 30 10 30 40 20 40 50 30
5 3 3.7 16 24 8 24 32 16 32 40 24
5 4 4.5 20 30 10 30 40 20 40 50 30
5 5 4.8 22 33 11 33 44 22 44 55 33
5 6 8.8 32 48 16 48 64 32 64 80 48
5 7 11.6 38 57 19 57 76 38 76 95 57
5 8 2.4 10 15 5 15 20 10 20 25 15
5 9 1.7 10 15 5 15 20 10 20 25 15
5 10 1.5 8 12 4 12 16 8 16 20 12
5 11 4.9 22 33 11 33 44 22 44 55 33
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RESULTS AND DISCUSSION
Because of the significant differences in building strength in
a city, we proposed a new classification of scenarios by using
Richter magnitude scales rather than the intensity scale.
Major highways will experience substantial damage, partial
closures, and collapsed small bridges, which will cause longer
transportation times. The streets of the center of Adana,
which are heavily traveled, are more likely to be damaged.
When the Richter magnitude scale (scenarios) increases,
significant disruption of utilities and damage to tall buildings
in the downtown area are expected. Although our case study
highlights earthquakes in Adana, our methodology can pro-
vide robust preparedness plans for many types of disasters
in different cities. The availability of medical supply types,
possible warehouse locations, and capacities should be
determined in advance. We also need the frequently used
routes from warehouses to hospitals as well as alternative
routes according to the possible damage to transportation
infrastructure. Our models can cover several types of medical
supplies (k); in this case study, we considered a single type of
medical supply for the sake of clarity in the representation.

According to the optimal solution, we selected 4 warehouses to
actively store medical supplies in preparation for the possible
scenarios (earthquakes). The major factor in warehouse selec-
tion is the sum of the total distance from the warehouses to the

hospitals (fij). The sum of the total distances between ware-
houses and hospitals and their capacities are shown in Table 5.

In the given case, selected warehouses 1, 5, 6, and 7 are closer
to the downtown hospitals. Owing to the short distance
between warehouse 1 and hospital 11 as well as the high-
density population in the south of Adana, warehouse 1 is
selected instead of warehouse 2.

One of the major parameters in the second stage is the
transportation time (cij) under each scenario. In the rescue of
victims and injured people, time is a crucial factor; thus,
one of the most important goals in this study was accelerating

TABLE 5
Selecting Warehouses

Warehouse Sum Total Distance (km) Capacity

*1 70.8 18,000
2 55 18,000
3 130.4 18,000
4 130.1 18,000
*5 53.9 18,000
*6 48 18,000
*7 54.5 18,000

TABLE 4
Continued

Warehouse Hospital Distance
5≤ Richter<6 6≤ Richter< 7 7≤ Richter< 8

(i ) (j ) (km) W1 R1 N1 W2 R2 N2 W3 R3 N3

5 12 4 18 27 9 27 36 18 36 45 27
6 1 5 20 30 10 30 40 20 40 50 30
6 2 1.3 8 12 4 12 16 8 16 20 12
6 3 0.45 4 6 2 6 8 4 8 10 6
6 4 3.9 18 27 9 27 36 18 36 45 27
6 5 4.6 22 33 11 33 44 22 44 55 33
6 6 8.2 30 45 15 45 60 30 60 75 45
6 7 7.1 32 48 16 48 64 32 64 80 48
6 8 3.5 20 30 10 30 40 20 40 50 30
6 9 3.5 16 24 8 24 32 16 32 40 24
6 10 2.8 14 21 7 21 28 14 28 35 21
6 11 7 32 48 16 48 64 32 64 80 48
6 12 0.65 4 6 2 6 8 4 8 10 6
7 1 3.6 14 21 7 21 28 14 28 35 21
7 2 3.4 14 21 7 21 28 14 28 35 21
7 3 2.5 10 15 5 15 20 10 20 25 15
7 4 3.3 14 21 7 21 28 14 28 35 21
7 5 4 20 30 10 30 40 20 40 50 30
7 6 7.6 28 42 14 42 56 28 56 70 42
7 7 10.4 32 48 16 48 64 32 64 80 48
7 8 4.7 18 27 9 27 36 18 36 45 27
7 9 3.3 16 24 8 24 32 16 32 40 24
7 10 2.7 12 18 6 18 24 12 24 30 18
7 11 6.2 28 42 14 42 56 28 56 70 42
7 12 2.8 12 18 6 18 24 12 24 30 18

aAbbreviations: W, working times; R, rush hour times; N, non-working times.
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deliveries of medical supplies in an earthquake. The
second stage of the SP model proposes delivery amounts from
warehouses to hospitals. The detailed results are presented in
Table 6, which shows the transportation amount on each
route from warehouse to hospital. The totals indicate the
amount of supplies needed to be stored at each warehouse by
scenario. In this case study, the demands of all hospitals are
satisfied for all earthquake scenarios.

The northern and southern parts of center Adana lack
enough hospitals. There exists only one hospital in the
northern region (hospital 7) and one hospital in the southern
region (hospital 11). Obviously, in the mentioned regions, an
increase in the number of injuries in hospitals 7 and 11 under
the non-working-hour scenario (N) is expected.

CONCLUSION
We offer a stochastic optimization approach to medical
supply distribution and selection of warehouses in the pre-
paredness phases. Our method takes advantage of a two-step
approach. We planned our two-stage SP model for the center
of Adana in Turkey, which is an earthquake-prone city. The
goal of our SP model was the timely delivery of medical
supplies and determining the amount of medical supplies
delivered from warehouses to hospitals. In this study, we selected
warehouses from a set of existing warehouses and determined
their inventory levels in the first stage. In addition, we deter-
mined a transportation plan that includes amount of delivery of
medical supplies in the second stage. Finally, our methodology is

applicable to any city if the necessary data are provided by
different stakeholders in disaster management.
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