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Capturing the influence of intermolecular
potential in rarefied gas flows by a kinetic model
with velocity-dependent collision frequency
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A kinetic model called the ν-model is proposed to replace the complicated Boltzmann
collision operator in the simulation of rarefied flows of monatomic gas. The model follows
the relaxation-time approximation, but the collision frequency (i.e. inverse relaxation
time) is a function of the molecular velocity to reflect part of the collision details of
the Boltzmann equation, and the target velocity distribution function (VDF) to which
the VDF relaxes is close to that used in the Shakhov model. Based on the numerical
simulation of strong non-equilibrium shock waves, a half-theoretical and half-empirical
collision frequency is designed for different intermolecular potentials: the ν-model shows
significantly improved accuracy, and the underlying mechanism is analysed. The ν-model
also performs well in canonical rarefied microflows, especially in thermal transpiration,
where kinetic models with velocity-independent collision frequency lack the capability to
distinguish the influence of intermolecular potentials.

Key words: kinetic theory, microscale transport

1. Introduction

The Boltzmann equation is the fundamental equation in the study of rarefied gas
dynamics that has found applications in space vehicle re-entry (Ivanov & Gimelshein
1998), microelectromechanical system processing (Karniadakis, Beskok & Aluru 2005),
vacuum technology (Sharipov & Seleznev 1998; Sone 2002) and shale gas extraction
(Wu et al. 2016, 2017). In Boltzmann’s description, all molecules move in straight lines
with fixed velocities until they encounter elastic collisions with other molecules. The free
transport is described by the streaming operator, while the binary collision is modelled by
the Boltzmann collision operator (BCO), which is a nonlinear function of the velocity
distribution function (VDF) and incorporates the effect of intermolecular potential.
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In the past century, the complicated structure of BCO has stimulated the development of
kinetic models that strive to imitate as closely as possible the behaviour of the Boltzmann
equation. In gas kinetic modelling, the streaming operator remains unchanged, while
the BCO is replaced by simpler expressions, not only making the problems tractable,
but also reducing the computational cost. For example, in the deterministic solver, the
computational complexity of the BCO solved by the fast spectral method is approximately
O(M2N3 log N), where N is the number of the discretised velocity grid in each velocity
direction, and M2 ∼ N is the number of the discretised solid angle (Wu et al. 2013).
However, the computational cost for the kinetic models is only O(N3).

Several basic considerations are taken into account when simplifying the BCO
(Struchtrup 2005). First, the conservation laws of mass, momentum and energy must be
satisfied. Second, the VDF must be reduced to the Maxwellian equilibrium distribution
when the gas system reaches equilibrium. Third, transport coefficients such as the
viscosity and thermal conductivity derived from the kinetic model equation should
coincide with those from the Boltzmann equation. Fourth, the H-theorem, which states
that the production of entropy is always positive and vanishes only if the system is in
equilibrium, should be satisfied. Note that the first two are basic physical requirements,
and the third is crucial as it yields consistent solutions with the Boltzmann equation in the
continuum flow regime (governed by the Navier–Stokes–Fourier equations). The fourth
requirement determines whether the kinetic model works in a physical way and influences
the stability/robustness, although it does not necessarily guarantee the accuracy of the
kinetic model. Due to the complexity in mathematical analysis, there is often no strict
proof of the H-theorem for existing kinetic models, e.g. the Shakhov (1968a,b) kinetic
model where the H-theorem has not been proved in nonlinear cases. Nevertheless, the
Shakhov model works well in many cases and is one of the most popular kinetic models.

In the Boltzmann equation, if the total cross-section is finite (either through the cut-off
of impact parameter or from the quantum calculation), the collision operator can be
decomposed into the gain term, Q+, and loss term, νf , as Q = Q+ − νf . Therefore, the
modelled collision operator is often formulated in the relaxation-time approximation,

Q = ν[ fr(t, v, x) − f (t, v, x)], (1.1)

where t is the time, x = (x1, x2, x3) is the spatial coordinate, v = (v1, v2, v3) is the
molecular velocity, ν is the collision frequency (inverse relaxation time) and fr is the
target VDF. Therefore, the two terms to be modelled are fr and ν, which are connected
with the gain and loss terms of the BCO, respectively. Many relaxation-type kinetic
models assume ν to be a constant throughout the molecular velocity space and concentrate
on the modelling of fr. Three popular kinetic models of this kind are the BGK model
(Bhatnagar, Gross & Krook 1954), the ESBGK model (Holway 1966) and the Shakhov
model (Shakhov 1968a). The BGK model cannot recover the shear viscosity and thermal
conductivity simultaneously, hence it will not be discussed in this paper. The ESBGK
model satisfies the H-theorem, while the Shakhov model satisfies the H-theorem only in
linearised flows. Nevertheless, the ESBGK model by no means absolutely outperforms the
Shakhov model: the Shakhov model is better in simulating the shock wave, Couette flow
and Poiseuille flow, while the ESBGK model is better in some heat transfer problems (Liu
& Zhong 2014; Chen, Xu & Cai 2015; Ambruş, Sharipov & Sofonea 2020).

It is noted that although these models assume velocity-independent collision frequency,
the collision frequency of the BCO depends on the molecular velocity and this dependence
influences the rarefied gas dynamics (Cercignani 2000; Zheng & Struchtrup 2005).
For example, in the linearised Poiseuille flow and thermal transpiration, the Boltzmann
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equation yields different solutions for different intermolecular potentials even when the
viscosity is same (Sharipov & Bertoldo 2009; Takata & Funagane 2011; Wu, Reese &
Zhang 2014; Wu et al. 2015a). However, the ESBGK model and the Shakhov model do
not have this capability: after linearisation their collision operators are only determined by
the value of shear viscosity at some reference temperature.

To increase the accuracy of kinetic models, it would be highly desirable to add
more information to the collision frequency and target VDF. Based on the eigenvalues
and eigenfunctions of the linearised BCO for Maxwellian molecules, Gross & Jackson
(1959) proposed a systematic way to construct kinetic models with arbitrary order of
accuracy. However, this is only limited to the linearised flow of Maxwellian gas. To
be more general, the relaxation model (1.1) with velocity-dependent collision frequency
becomes a natural consideration. To this end, kinetic models based on eigenfunctions
of the linearised Boltzmann operator combined with variable collision frequency have
been proposed by Cercignani (1966) and Loyalka & Ferziger (1967, 1968); however,
flows considered in the above studies are limited to the simple velocity and temperature
slip problems where the variation of collision frequency has very limited influence on
the slip coefficients. Relevant work has also been done by Larina & Rykov (2007),
but the linearised variable-collision-frequency model performs even worse than the
constant-collision-frequency one. For the nonlinear case, Krook (1959) and Cercignani
(1975) have mentioned a BGK-type model with velocity-dependent collision frequency
and Maxwellian-type fr. This model is further developed by Struchtrup (1997) and
Mieussens & Struchtrup (2004), where the collision frequency ν is some power-law
function of the molecular velocity and the model is called the ν-BGK model. The ν-BGK
model, however, fails to satisfactory predict the normal shock wave and the Couette flow.
Zheng & Struchtrup (2005) then developed the ν-ESBGK model, where a more physically
meaningful collision frequency derived from the BCO is applied. It performs better than
the ν-BGK in the normal shock wave, but shows worse accuracy than the standard ESBGK
model in the Couette flow. We also mention the recent work of Xu, Chen & Xu (2021),
where a velocity-dependent collision frequency has been used in the particle-based unified
gas-kinetic scheme and improved results in supersonic flows are observed.

Besides the relaxation-time approximations, the Fokker–Planck model (Jenny, Torrilhon
& Heinz 2010; Gorji, Torrilhon & Jenny 2011; Gorji & Jenny 2013) is another popular
kinetic model. This model is applied to rarefied gas dynamics because, when compared
with the direct simulation Monte Carlo method (DSMC) (Bird 1994), it allows a much
larger time step in the near-continuum flow regime where the Knudsen number (Kn, the
ratio of molecular mean free path to characteristic flow length) Kn � 1, and hence reduces
the computational cost significantly. In terms of the model accuracy, despite its more
complicated formulation, the Fokker–Planck model does not to have absolute advantage
over relaxation-type models in the transition flow regime where Kn ∼ 1. For instance, in
the simulation of normal shock waves, it is found that the Fokker–Planck model works
well for argon gas where the viscosity index is ω = 0.81, but its predication capability
deteriorates for hard-sphere (HS) and Maxwell molecules (Liu et al. 2019; Fei et al. 2020),
where ω = 0.5 and 1, respectively. Moreover, like the BGK, ESBGK and Shakhov models,
this model does not distinguish between the influence of intermolecular potentials in the
simulation of Poiseuille flow and thermal transpiration (Sharipov & Bertoldo 2009), as
well as the Rayleigh–Brillouin scattering (Wu et al. 2015b).

In view of the above facts, we aim to further develop the relaxation model (1.1) with
velocity-dependent collision frequency to recover more details of the BCO, while keep
the computation complexity in an affordable level. The ν-model we propose adopts the
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velocity-dependent collision frequency based on the equilibrium collision frequency of
the BCO with empirical modification. The influence of intermolecular potential (Sharipov
& Bertoldo 2009) is appropriately accounted for, including the Lennard-Jones potential
which is accurate in a wide range of temperatures. To recover the correct Prandtl number,
considering that in our most concerned cases the Shakhov model outperforms the ESBGK
model (Liu & Zhong 2014; Chen et al. 2015; Ambruş et al. 2020), a Shakhov-type target
VDF is employed. With these two critical improvements, we find that the model accuracy
is greatly improved; moreover, the multiscale numerical method that is efficient from the
continuum to free-molecular flow regimes can be adopted, and the computational cost only
increases slightly when compared with conventional kinetic models.

The rest of the paper is organised as follows. The Boltzmann equation, as well as
the transport coefficients and equilibrium collision frequency, are introduced in § 2. In
§ 3, different kinetic models with velocity-independent or velocity-dependent collision
frequency are introduced, and our ν-model is proposed. Section 4 describes the numerical
method used to solve the proposed model equation. In §§ 5 and 6, the accuracy of our
kinetic model is assessed by numerous canonical test cases and the underlying mechanisms
on how the ν-model improves the results are discussed. Summaries and outlooks are given
in § 8.

2. The Boltzmann equation

A kinetic model is proposed to imitate the behaviour of the Boltzmann equation.
Therefore, some basic properties of the Boltzmann equation, including the differential
cross-section, the intermolecular potential, the link to transport coefficients and the
equilibrium collision frequency are introduced. These form the theoretical basis of
constructing kinetic models.

A fundamental theory at the mesoscopic level that bridges the microscopic and
mesoscopic behaviours is much required to describe the rarefied gas dynamics. As we are
not interested in the individual dynamics of gas molecules but their collective behaviours,
the VDF f (t, x, v) is introduced to describe the state of the gas. It is defined in such a
way that the quantity f (t, x, v) dx dv is the molecular number in the phase-space volume
dx dv. Therefore, macroscopic quantities such as the molecular number density n(t, x),
flow velocity u(t, x), temperature T(t, x), pressure tensor pij(t, x) and heat flux q(t, x) can
be calculated as

[n, u, T, pij, q] =
∫ [

1,
v

n
,

m
3kBn(t, x)

c2, mcicj,
m
2

c2c
]

f (t, x, v) dv, (2.1)

where c = v − u is the peculiar velocity, kB is the Boltzmann constant, and m is the
molecular mass. Note that the ideal gas law holds for dilute gas, where the gas pressure is
p = nkBT . Also, we introduce the pressure deviation tensor σij as σij = pij − pδij, where δ

is the Kronecker delta.
In the absence of external force, the Boltzmann equation reads

∂f
∂t

+ v · ∂f
∂x

=
∫∫

B(|vr|, θ)[ f (t, x, v′
∗)f (t, x, v′) − f (t, x, v∗)f (t, x, v)] dΩ dv∗, (2.2)

where the term in the right-hand side is the BCO. The subscript ∗ represents the
second molecule in the binary collision, the superscript ′ stands for quantities after
the collision, vr = v − v∗ is the relative precollision velocity and θ is the deflection
angle. The postcollision molecular velocities are given by v′ = v + (|vr|Ω − vr)/2 and
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v′∗ = v∗ − (|vr|Ω − vr)/2, with Ω being the unit vector in the direction of the solid
angle. The deflection angle θ between the precollision and postcollision relative velocities
satisfies cos θ = Ω · vr/|vr|, 0 ≤ θ ≤ π.

The collision kernel B(|vr|, θ) in the BCO is a product of the differential cross-section
σD and the relative collision speed,

B(|vr|, θ) = σD|vr| ≡ b|db|
sin θ |dθ | |vr|, (2.3)

which is always non-negative. Note that the calculation of σD follows the classical
mechanics, since when the gas temperature is not too low, both the classical mechanics
and quantum mechanics yield the same transport coefficients (Sharipov & Benites 2017).
Given the intermolecular potential φ, the deflection angle is calculated based on the impact
parameter b and the relative velocity |vr|, as follows:

θ(b, vr) = π − 2
∫ W1

0

[
1 − W2 − 4φ(r)

mv2
r

]−1/2

dW, (2.4)

where W = b/r with r being the intermolecular distance and W1 is positive root of the term
in brackets. In gas kinetic theory, the inverse power-law potentials are normally considered,

φ(r) = K
η − 1

r1−η, (2.5)

although the Lennard-Jones potential is more realistic (it is widely used in the molecular
dynamics simulation),

φ(r) = 4ε

[(
dLJ

r

)12

−
(

dLJ

r

)6
]

, (2.6)

where ε is the potential depth, and dLJ is the distance between two molecules where the
potential is zero. The power-law potentials are called hard- and soft-potentials when η > 5
and η < 5, respectively. Maxwell molecules have the potential with η = 5. Another special
case is the HS gas, where the repulsive potential is infinity (and zero) when r is less (larger)
than the molecular diameter σ .

For the power-law potential, it is seen from (2.4) that the deflection angle is only a
function of

s =
[

m(η − 1)

4K

]1/(η−1)

bv2/(η−1)
r . (2.7)

That is, θ = θ(s). Thus, the differential cross-section is

B(|vr|, θ) =
[

m(η − 1)

4K

]2/(1−η)

v(η−5)/(η−1)
r × s ds

sin θdθ︸ ︷︷ ︸
Θ(θ)

. (2.8)

For Maxwell molecules, the collision kernel is independent of the relative collision speed,
while for HS gas the collision kernel is independent of the deflection angle: B(|vr|, θ) =
(σ 2/4)|vr|.
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2.1. Transport coefficients and modelled collision kernel
The collision kernel B(|vr|, θ) determines the transport coefficients such as the
shear viscosity and thermal conductivity. In the continuum flow regime, the
Navier–Stokes–Fourier equations can be derived from the Chapman–Enskog expansion of
the Boltzmann equation, where the shear viscosity, when the leading order in the Sonnie
expansion is considered, is given by (Chapman & Cowling 1970)

μ = 5
√

πmkBT
8D

, D = 2π

(
m

4kBT

)4 ∫ ∞

0

∫ π

0
v7

r σDsin3θ exp
(

− mv2
r

4kBT

)
dθ dvr. (2.9)

The corresponding thermal conductivity is given by

κ = 15
4

kB

m
μ, (2.10)

which results in a Prandtl number of Pr = (5kB/2m)(μ/κ) = 2
3 .

Therefore, for the inverse-power potential, we have μ ∝ Tω, where

ω = η + 3
2(η − 1)

, (2.11)

is the viscosity index; for the Lennard-Jones potential, the viscosity is not a power-law
function of the temperature, since D is approximated by (Wu et al. 2013)

D

d2
LJ

= b1

(
kBT
ε

)−0.4

+ b2

(
kBT
ε

)−0.45

+ b3

(
kBT
ε

)−0.5

, (2.12)

where b1 = 407.4, b2 = −811.9 and b3 = 414.4; each term can be viewed as the
inverse power-law potential with the viscosity indices ω1 = 0.9, ω2 = 0.95 and ω3 = 1,
respectively. Note that this approximation is accurate when 1 < kBT/ε < 25.

In the DSMC method (Bird 1963) and the fast spectral approximation of the BCO (Wu
et al. 2013), the modelled collision kernels such as the variable HS and variable soft-sphere
models are used: the transport coefficients are recovered, but the detailed form of Θ(θ)

in (2.8) is modified to make the computation simple. For example, in the inverse power-law
and Lennard-Jones potentials, the modelled collision kernel are, respectively,

B = 5
√

πmkBT0(4kBT0/m)(1−α)/2

64πμ(T0)Γ [(3 + α + γ )/2]Γ (2 − γ /2)
sinα+γ−1

(
θ

2

)
cos−γ

(
θ

2

)
|vr|α,

B = d2
LJ

8π

3∑
j=1

(m/4ε)(αj−1)/2

Γ

(
3 + αj

2

) bj sinαj−1
(

θ

2

)
|vr|αj,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.13)

where Γ is the gamma function, μ(T0) is the shear viscosity at the reference temperature
T0,

α = η − 5
η − 1

= 2(1 − ω), (2.14)

and α1 = 0.2, α2 = 0.1 and α3 = 0. Note that γ is a free parameter, the different value
of which leads to different value of equilibrium collision frequency but always the same
value of shear viscosity.
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2.2. Equilibrium velocity distribution and collision frequency
It is well known that in equilibrium the BCO vanishes, and the VDF takes the form of the
Maxwellian distribution

Feq = n
(

m
2πkBT

)3/2

exp
(

− mc2

2kBT

)
. (2.15)

If the total cross-section is finite (either through the cut-off of impact parameter or from
the quantum calculation of differential cross-section), the BCO can be separated into a gain
term Q+ and a loss term νf as Q( f , f∗) = Q+ − ν(|v|)f , where the collision frequency is

ν(|v|) =
∫∫

B(|vr|, θ)f (v∗) dΩ dv∗. (2.16)

For inverse power-law potentials, the equilibrium collision frequency corresponding to
the collision kernel (2.8) and equilibrium VDF (2.15) is (Struchtrup 2005)

νeq(|v|)=2π
η−1

3η−7
ν0
η

∫ ∞

0

ξ∗
ξ

exp(−ξ2
∗ )[(ξ + ξ∗)(3η−7)/(η−1) − |ξ − ξ∗|(3η−7)/(η−1)] dξ∗︸ ︷︷ ︸

ν0
eq

,

(2.17)

where

ν0
η =

[
m(η − 1)

4K

]2/(1−η) 2n√
π

√
2kBT

m

(η−5)/(η−1) ∫
s ds,

ν0
HS = n

√
2kBT
mπ

σ 2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.18)

and ξ = c/vm with

vm =
√

2kBT
m

, (2.19)

being the most probable speed at temperature T .
Specifically, for Maxwellian molecules with η = 5, the collision frequency is

independent of the molecular velocity, and independent of the temperature: νeq = π3/2ν0
5 ,

while for HS molecules,

νeq(|v|) = n

√
2πkBT

m
σ 2

[
exp(−ξ2) +

√
π

2

(
1
ξ

+ 2ξ

)
erf(ξ)

]
︸ ︷︷ ︸

2ν0
eq/3

, (2.20)

where erf(x) is the Gauss error function.

3. Kinetic models

In this section we first introduce the popular kinetic models with velocity-independent
collision frequency and the history of kinetic models with velocity-dependent collision
frequency, which helps to understand the line of thought in constructing the present kinetic
model. Then we give details of our new variable-collision-frequency kinetic model. All
models involved share the same form of (1.1).
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3.1. Velocity-independent collision frequency
From (1.1) we can see that, in the velocity-independent collision-frequency model, the only
term to be modelled is the target VDF fr, which is connected with the gain term of the BCO
and directly determines the velocity distribution of the postcollision molecules. The BGK
model (Bhatnagar et al. 1954) adopts the local Maxwellian Feq to approximate fr and is the
simplest kinetic model being widely used. One can verify that it satisfies the conservation
laws. Also, in the equilibrium where the collision operator vanishes, f = Feq, which fulfils
the second requirement of kinetic modelling. The H-theorem can also be proved. However,
from the Chapman–Enskog expansion, it can be found that the shear viscosity and thermal
conductivity are

μ = p
ν
, κ = p

ν

5kB

2m
, (3.1a,b)

which results in a Prandtl number of unity. That is to say, the BGK model cannot recover
the viscosity and thermal conductivity simultaneously. Therefore, many kinetic models
have been proposed to correct the Prandtl number, among which the ESBGK model
(Holway 1966) and the Shakhov model (Shakhov 1968a,b) are two of the most popular
kinetic models.

In the ESBGK model of Holway (1966), the target VDF is obtained by maximising
the entropy function H = − ∫

f lnf dv under the given information of mass, momentum,
energy and the stress tensor. This can be finished by the Lagrange multipliers method and
the target VDF finally has a form of an anisotropic Gaussian,

f ES
r = n√

det[2πλij]
exp

(
−1

2
λ−1

ij cicj

)
, (3.2)

where

λij = kBT(1 − b)

m
δij + bpij

nm
= pδij + bσij

nm
, (3.3)

with a constant b. If b = 0, λij becomes diagonal, and the BGK model is recovered.
According to the Chapman–Enskog expansion, the transport coefficients are

μ = p
ν(1 − b)

, κ = p
ν

5kB

2m
. (3.4a,b)

Therefore, b should take the value of −1
2 to produce a Prandtl number of 2

3 for monatomic
gas.

The ESBGK model satisfies the mass, momentum and energy conservations, as well
as the H-theorem (Andries et al. 2000). At first sight it may appear that the VDF is
guided towards the target one which is not the equilibrium distribution. However, in
spatial-homogeneous problems we have

∂σij

∂t
= − p

μ
σij, (3.5)

which means that the deviational stress will decay to zero. Thus, the route to equilibrium
of the ESBGK model is as follows: as f approaches f ES

r , f ES
r itself approaches Feq as per

(3.2) and (3.3); eventually f = Feq when the equilibrium state is reached. Therefore, the
ESBGK model satisfies all the four requirements of kinetic modelling detailed in § 1, and
it has attracted much attention.
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In contrast to the ESBGK model where the stress tensor is introduced in the target VDF,
in the Shakhov model the heat flux is introduced on top of the BGK model (Shakhov
1968a,b) through the Hermite polynomial,

f S
r = Feq

[
1 + (1 − Pr)

2mq · c
5n(kBT)2

(
mc2

2kBT
− 5

2

)]
, (3.6)

where the two transport coefficients are

μ = p
ν
, κ = 1

Pr
5kB

2m
p
ν
. (3.7a,b)

Thus, the correct value of the Prandtl number is recovered. The route to equilibrium of
the Shakhov model is as follows: as f approaches f S

r , f S
r itself approaches Feq since in

spatial-homogeneous problems the heat flux decays to zero according to the equation

∂q
∂t

= −2
3

μ

p
q. (3.8)

Eventually f = Feq when the equilibrium state is reached.
Comparing with the ESBGK model, the Shakhov model has two shortcomings. First,

the H-theorem can be proved only for linearised flows, while one can neither prove nor
disprove the H-theorem in nonlinear flows. Second, the VDF may become negative, which
is not physical. However, despite the two deficiencies, the Shakhov model has been widely
used, and it outperforms the ESBGK model in some cases.

3.2. Velocity-dependent collision frequency
Kinetic models with velocity-dependent collision frequency have been investigated
in very early years. For the linearised Boltzmann equation, Cercignani (1966) and
Loyalka & Ferziger (1967, 1968) presented variable-collision-frequency models based
on eigenfunctions of the linearised operator. These models are applied to simple
velocity and temperature slip problems, and a limited influence on the slip coefficient
due to the variation of collision frequency has been found. Larina & Rykov (2007)
have also developed a linearised model with velocity-dependent collision frequency,
but in the simulation of normal shock waves, their model performs even worse than
its constant-collision-frequency counterpart. For the nonlinear case, Krook (1959) and
Cercignani (1975) have mentioned a variable-collision-frequency model where the target
VDF is approximated as a Maxwellian with modified density, velocity and temperature
determined by the collision conservation condition. Further investigations about this
model have been done by Struchtrup (1997) and Mieussens & Struchtrup (2004), where
the collision frequency is some power-law function of the molecular velocity; the model
is called the ν-BGK model, but the numerical results for normal shock wave are not
satisfactory.

It is interesting to note that although the original motivation of developing kinetic
models with velocity-dependent collision frequency is to correct the Prandtl number of the
standard BGK model, it is found that setting ν to be the equilibrium collision frequency
of the Boltzmann equation in the ν-BGK model leads to an approximate unit Prandtl
number (Mieussens & Struchtrup 2004). This suggests that the wrong Prandtl number
of the standard BGK model is mainly due to the error in target VDF fr (the gain term),
but not the error of collision frequency (the loss term). Therefore, it is less important to
adjust the Prandtl number through modifying the collision frequency ν. In contrast, one
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should modify the target VDF to guarantee a correct Prandtl number while applying a
physically meaningful collision frequency. This has been done by Zheng & Struchtrup
(2005) in their ν-ESBGK model, where the equilibrium collision frequency is applied
and an ESBGK-type target VDF is adopted to adjust the Prandtl number. The ν-ESBGK
model performs better than the ν-BGK and ESBGK models in shock wave simulations,
but performs worse than standard ESBGK in Couette flow (Zheng & Struchtrup 2005).

3.3. New kinetic model with velocity-dependent collision frequency
Here we propose a new kinetic model with velocity-dependent collision frequency, that we
call the ν-model. We design the target VDF as

fr =
[
�̂ + Γ̂ c2 + γici + β

2mq · c
5n(kBT)2

(
mc2

2kBT
− 5

2

)]
Feq, (3.9)

where �̂, Γ̂ and γi are velocity independent, which can be solved directly from the
conservation condition. Note that in the ν-BGK model (Mieussens & Struchtrup 2004),
Γ̂ and γi appear in the exponential function so Newton’s iteration method should be
applied; here we put them in the brackets to avoid the use of Newton’s iteration method
in the numerical simulation. The heat flux term as in the Shakhov model is used, and
the velocity-independent parameter β is used to adjust the Prandtl number. Thus, the
collision frequency can be an arbitrary function of the molecular velocity. When ν is
velocity-independent, this model will be reduced to the Shakhov (1968a,b) model.

We choose an isotropic velocity-dependent collision frequency ν(|v|). Applying the
Chapman–Enskog expansion, the VDF to the first-order approximation reads

f = Feq(�̂ + Γ̂ c2 + γici) + Feqβ
2mq · c

5n(kBT)2

(
mc2

2kBT
− 5

2

)

− Feq

ν(|v|)
{

m
kBT

∂u〈i
∂xj〉

c〈icj〉 + 1
T

∂T
∂xi

ci

(
mc2

2kBT
− 5

2

)}
, (3.10)

where �̂ = 1, Γ̂ = 0 and

γi = 8
3
√

π

1
T

∂T
∂xi

∫ ∞

0

ξ4

ν(ξ)

(
ξ2 − 5

2

)
exp(−ξ2) dξ. (3.11)

Therefore, the shear viscosity and thermal conductivity are

μ = 16p
15

√
π

∫ ∞

0

ξ6

ν(ξ)
exp(−ξ2) dξ,

κ = 1
1 − β

16p
15

√
π

5kB

2m

∫ ∞

0

ξ4
(

ξ2 − 5
2

)2

ν(ξ)
exp(−ξ2) dξ.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.12)

Thus, to recover the viscosity, an arbitrary positive collision frequency function v′(ξ) can
be used in the ν-model with the normalisation

ν(ξ) = A
p
μ

ν′(ξ), A = 16
15

√
π

∫ ∞

0

1
ν′(ξ)

ξ6 e−ξ2
dξ, (3.13)
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and to recover the thermal conductivity, the parameter β can be calculated based on the
Prandtl number

β = 1 − Pr

∫ ∞

0

ξ4

ν′(ξ)

(
ξ2 − 5

2

)2

exp(−ξ2) dξ∫ ∞

0

ξ6

ν′(ξ)
exp(−ξ2) dξ

. (3.14)

As for the velocity-dependent collision frequency ν(ξ), as analysed above there are many
forms to be chosen. In the current work, a half-theoretical and half-empirical formula has
been established for ν(ξ), which will be discussed in § 5.1.

It is clear that the ν-model satisfies the conservation laws. Also, the VDF can be properly
relaxed to the Maxwellian distribution (2.15), because when the equilibrium is reached the
heat flux vanishes in a way similar to (3.8), meanwhile according to (3.11) there will be
�̂ = 1, Γ̂ = 0, γi = 0, and finally the target VDF (3.9) turns to a Maxwellian. On the other
hand, as is similar to the situation of the Shakhov model, we can neither prove nor disprove
the H-theorem for the ν-model. Nevertheless, according to (3.12), the ν-model recovers the
correct viscosity and thermal conductivity, and thus naturally satisfies the H-theorem in
flows with small Knudsen number.

4. Numerical method

For practical calculations, it is convenient to introduce the following dimensionless
variables:

f̃ = v3
m

n0
f , x̃ = x

L
, (ṽ, ũ, c̃) = (v, u, c)

vm
, t̃ = vm

L
t,

ñ = n
n0

, T̃ = T
T0

, p̃ij = pij

n0kBT0
, q̃ = q

n0kBT0vm
,

⎫⎪⎪⎬
⎪⎪⎭ (4.1)

where n0 is the average number density of gas molecules, L is the characteristic flow
length, vm = √

2kBT0/m is the most probable speed at the reference temperature T0. For
simplicity, the tildes on normalised quantities will be omitted hereafter.

Under these normalisations, the Boltzmann equation for inverse power-law potentials
takes the following form:

∂f
∂t

+ v · ∂f
∂x

= 1
Kn′

∫∫
sinα+γ−1

(
θ

2

)
cos−γ

(
θ

2

)
vα

r [f (v′
∗)f (v

′) − f (v∗)f (v)] dΩ dv∗,

(4.2)

where

Kn′ = 64
√

2
α

5
Γ

(
α + γ + 3

2

)
Γ

(
2 − γ

2

)
Kn, (4.3)

with

Kn = μ(T0)

n0L

√
π

2mkBT0
, (4.4)

being the unconfined Knudsen number, with n0 the reference molecular number
density, and T0 the reference temperature. For the Lennard-Jones potential, the term
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sinα+γ−1(θ/2) cos−γ (θ/2)vα
r /Kn′ in (4.2) should be replaced by

5
3∑

j=1

bj(kBT0/2ε)(αj−1)/2 sinαj−1(θ/2)v
αj
r /Γ

(
αj + 3

2

)

64
√

2Kn
3∑

j=1

bj(kBT0/ε)
(αj−1)/2

. (4.5)

Considering the above normalisation, the normalised macroscopic quantities are related
to the normalised VDF as [n, u, T, pij, qi] = ∫

[1, 1/n, (4/3n)|c|2, 2cicj, |c|2ci]f dv, and
the ideal gas law is p = nT . The collision operator for the ν-model with the collision
frequency (5.1) or (5.2) becomes

Q =
√

π

2Kn
× μ(T0)

n0kBT0
× ν

( c
T

)

×
{[

�̂ + Γ̂ c2 + γici + β
4q · c
5nT2

(
c2 − 5

2

)]
n

(πT)3/2 exp
(

−c2

T

)
− f

}
. (4.6)

A multiscale numerical method is proposed to solve the ν-model deterministically,
the merit of which is that the streaming and collision are handled simultaneously, so (i)
the numerical cell size can be much larger than the molecular mean free path while keeping
the numerical dissipation small (Wang et al. 2018) and (ii) the time step is not limited
by the Courant–Friedrichs–Lewy (CFL) condition. Comparing with the corresponding
method with constant collision frequency (Yuan & Zhong 2019), the main improvements
of the current algorithm are: (i) the velocity-dependent collision frequency is updated for
every discrete velocity point at every cell centre and cell interface; (ii) the three variables
�̂, Γ̂, γ in the target VDF (3.9) are interpolated to calculate the target VDF at the cell
interface; (iii) after the discrete VDF has been updated, �̂, Γ̂, γ are updated through
a simple algorithm satisfying the conservation laws in the discrete level. The detailed
computation process is described in Appendix A.

5. Numerical results in supersonic flows

In this section, the collision frequency of the ν-model is determined by comparing its
solution of the normal shock wave with that of the Boltzmann equation. Then, the
space-homogeneous relaxation is simulated to demonstrate the improved performance
of the ν-model in recovering the relaxation rates of high-order moments. Finally, the
ν-model is compared with the DSMC in the simulation of two-dimensional supersonic
flows passing through a circular cylinder.

5.1. Normal shock waves

5.1.1. Inverse power-law potential
Figure 1 compares the shock wave structures obtained from the Boltzmann equation,
the Shakhov model and the ESBGK model, when the upstream Mach number is 5.
Different inverse power-law potentials, reflected through the viscosity index ω in (2.11),
are considered. The Boltzmann equation is solved by the fast spectral method (Wu et al.
2013). For the Maxwellian gas with ω = 1, it is found that the Shakhov model gives a
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very good prediction of the shock structure, while the ESBGK model overpredicts the
temperature and heat flux in the upstream part. When the viscosity index decreases to
0.75 and eventually to 0.5 of the HS gas, the Shakhov model still predicts the density
and velocity profiles well but significantly overpredicts the temperature and heat flux in
the upstream part: the smaller the value of ω, the larger the deviation. For the ESBGK
model, the deviations of temperature and heat flux from those of the Boltzmann equation
are large for all values of ω, and similarly the overprediction of the upstream temperature
and heat flux can be clearly observed. The better performance of the Shakhov model over
the ESBGK model suggests the importance of including the heat flux in the gain term of
the modelled collision operator (3.9).

To determine the velocity-dependent collision frequency ν(ξ) in the ν-model, we
first use the equilibrium collision frequency νeq(ξ) defined in (2.17) and (2.20) with
the normalisation (3.13), and find that the upstream temperature is underestimated
(not shown). Therefore, a flatter collision frequency curve is required; after a few
trial-and-errors we find that good agreement in the shock structures can be achieved (see
figure 1) when the following semiempirical formula is used:

νω(ξ) = A
p
μ

[ν0
eq(ξ) + 2ν0

eq(0)], (5.1)

where A is determined from (3.13). Note that the velocity-independent parameter ν0
η in

(2.17) is automatically eliminated after the normalisation (3.13) so we directly use ν0
eq in

(5.1).
The collision frequency (5.1) for typical inverse power-law potential is shown in figure 2.

In numerical simulations, ν0
eq(ξ) can be calculated by fitting functions and the parameters

for typical values of viscosity index are summarised in table 1. The term 2ν0
eq(0) is an

empirical parameter, which makes the collision frequency curve flatter and accounts for
the deviation of collision frequency in non-equilibrium state from that in the Maxwellian
distribution. The semiempirical formula (5.1) is implemented in all of the test cases
performed in this paper. It will be demonstrated that this semiempirical formula works
well not only in normal shock waves, but also in other test cases and has a certain degree of
universality. It is also worth noting that for Maxwellian molecules the collision frequency
ν(ξ) is velocity-independent, so the ν-model reduces to the Shakhov model.

5.1.2. Lennard-Jones potential
The ν-model for the Lennard-Jones potential can be proposed straightforwardly, where
the velocity-dependent collision frequency is designed to be a linear combination of those
based on the inverse power-law potentials, in accordance with (2.12),

νLJ(v) = ALJ

3∑
j=1

bj

(
kBT
ε

)0.5−ωj

× νωj(ξ), (5.2)

and ALJ can be determined from (3.13). Figure 2 shows the typical collision frequency
curves calculated by (5.2) for the Lennard-Jones potential. Unlike the inverse power-law
potential, the shape of the collision frequency curve is different at different temperatures
for the Lennard-Jones potential.

For the normal shock wave with Mach number 5 and upstream temperature T0 = 300 K,
the downstream temperature is 2604 K. For argon with potential depth ε = 119.2kB
in (2.6), the viscosity given by (2.9) and (2.12) works well when the temperature is
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Figure 1. The Mach 5 shock wave structures for molecules interacting through inverse power-law potentials:
Shakhov model, blue dashed line; ESBGK model, green dash-dotted lines; Boltzmann equation, red
circles; ν-model, Asterisks. Note that the characteristic length is chosen to be the mean free path L =
(16/5π)

√
π/2mkBT0(μ(T0)/n0) in the upstream part of the normal shock wave, so we take Kn = 5π/16 in

the numerical simulation. The shock density centre is at x2 = 0. (a) Maxwell gas, ω = 1; (b) inverse power-law
potential, ω = 0.75; and (c) HS gas, ω = 0.5.

between 100 and 3000 K. Figure 3 shows the macroscopic variable distributions along the
flow direction calculated by different kinetic models. It is seen that the ν-model yields
consistent results with those from the Boltzmann equation, while the Shakhov model
significantly overpredicts the temperature and heat flux in the upstream area. Note that Wu
et al. (2013) have shown that the density, velocity and temperature from the Boltzmann
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Figure 2. Molecular-velocity-dependent collision frequency based on the semiempirical formulae (5.1) and
(5.2) for different intermolecular potentials. The Lennard-Jones potential for argon with the potential depth
ε = 119.2kB is considered.

ω c4 c3 c2 c1 c0 A β

0.50 0.0145 −0.2019 1.0561 0.0753 2.9774 0.0871 0.3486
0.55 0.0132 −0.1793 0.8826 0.0863 2.8180 0.0944 0.3470
0.60 0.0117 −0.1557 0.7261 0.0929 2.6691 0.1022 0.3453
0.65 0.0101 −0.1320 0.5859 0.0950 2.5300 0.1107 0.3436
0.70 0.0085 −0.1089 0.4615 0.0926 2.3999 0.1197 0.3419
0.75 0.0069 −0.0867 0.3522 0.0859 2.2782 0.1293 0.3403
0.80 0.0054 −0.0659 0.2571 0.0752 2.1642 0.1395 0.3387
0.85 0.0039 −0.0467 0.1753 0.0608 2.0572 0.1505 0.3372
0.90 0.0025 −0.0292 0.1059 0.0432 1.9566 0.1622 0.3358
0.95 0.0012 −0.0137 0.0477 0.0227 1.8619 0.1747 0.3345

Table 1. Numerical fitting of the equilibrium collision frequency by the quartic function ν0
eq(ξ) = ∑4

j=0 cjξ
j,

when ξ ≤ 5, as well as the constants A in (3.13) and β in (3.14). When ξ > 5, the collision frequency ν0
eq can be

approximated when the first-order Taylor expansion is applied to (2.17), resulting in ν0
eq = (2 − ω)

√
πξ2(1−ω).

In the calculation of β we take the Prandtl number to be Pr = 2/3, while the collision frequency is given
by (5.1).

equation with the collision kernel (4.5) agree with those from the molecular dynamics
simulations of Valentini & Schwartzentruber (2009).

To further assess the accuracy of different kinetic models, figure 4 compares the
marginal velocity distributions, especially the thermal energy distribution

Fthermal =
∫∫ ∞

−∞
c2f dv1 dv3, (5.3)
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Figure 3. The Mach 5 normal shock wave in argon, using the Lennard-Jones potential: solid lines, Boltzmann
solutions with the collision kernel (4.5); asterisks, the ν-model with the collision frequency (5.2); blue dashed
lines, Shakhov model.

at the upstream locations x2/L = −5 and −7, where the deviations in temperature and
heat flux are large. It can be found that the number density distributions are nearly
the same for different collision models, while the thermal energy distributions exhibit
large discrepancy. The latter is analysed as follows. At x2/L = −5 and −7, comparing
with the Boltzmann solution, an extra bump around v2 = −3 for the thermal energy
curve of the ν-model and Shakhov model is observed. This energy peak soon diminishes
going upstream in the ν-model, while in the Shakhov model there still exists an obvious
energy peak even at the very upstream location x2/L = −7. This suggests that, in the
Shakhov model, molecules with large negative velocities arising from the high temperature
postshock gas can travel a very long distance from downstream to upstream, which
significantly heats the gas therein. This is why the Shakhov model (and also for the ESBGK
model) overpredicts the temperature and heat flux in the upstream.

Table 2 further quantifies the number density and thermal energy occupied by molecules
with v2 < 0. Although the number of molecules with v2 < 0 are small (less than 3.76 %),
they carry quite a part of the energy (up to 34.28 %). In the upstream region x2/L < −5,
the proportion of thermal energy carried by molecules with v2 < 0, predicted by the
Shakhov model, is much larger than those of the ν-model and Boltzmann equation.

Based on the above analysis, in order to fix the overprediction of temperature and heat
flux on top of the Shakhov model, the collision frequency of molecules with large speed
should be increased to prevent high-speed molecules travelling too far to the upstream.
Therefore, in our ν-model, we design the velocity-dependent collision frequency based
on the equilibrium collision frequency (2.17), where high-speed molecules have higher
collision frequency (figure 2), which effectively suppresses the heating of upstream gas
due to the high speed v2 < 0 molecules from the shock downstream.

At the end of this subsection, to show that our ν-model works for other values of Mach
number, the reciprocal shock thickness is calculated by different kinetic equations in a
wide range of Mach number, as shown in figure 5. The discrepancy between the Boltzmann
solution and the experimental results in Ma > 6 is because the approximation (2.12) for
the Lennard-Jones potential is only applicable between 100 and 3000 K (Wu et al. 2013).
Here we mainly focus on the difference between the Boltzmann solution and the results of
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Figure 4. Marginal VDFs in the argon normal shock wave of Ma = 5, using the Lennard-Jones potential.
(a,b) Number density distribution

∫
f dv1 dv3 and (c,d) thermal energy distribution

∫
c2f dv1 dv3. Solid lines,

Boltzmann solutions; asterisks, ν-model with the collision frequency (5.2); blue dashed lines, Shakhov model.

Proportions of Boltzmann ν-model Shakhov

x2/L = −9 Number density 0.03 % 0.07 % 0.25 %
Thermal energy 1.01 % 3.45 % 9.93 %

x2/L = −7 Number density 0.13 % 0.18 % 0.45 %
Thermal energy 4.20 % 7.62 % 14.85 %

x2/L = −5 Number density 0.68 % 0.55 % 0.97 %
Thermal energy 15.66 % 16.26 % 21.94 %

x2/L = −3 Number density 3.76 % 3.11 % 3.61 %
Thermal energy 34.28 % 32.09 % 32.84 %

Table 2. Proportions of the molecular number density
∫
v2<0 f dv/

∫
f dv and thermal energy∫

v2<0 c2f dv/
∫

c2f dv occupied by molecules with v2 < 0, in the argon normal shock wave with Ma = 5.

kinetic models. For the density-based thickness, the deviation between the results of the
Shakhov model and the Boltzmann solution is around 7 %–20 %. However, the deviation of
the results predicted by the ν-model is much smaller. For the temperature-based thickness,
the results of the ν-model are quite consistent with the Boltzmann solution in a wide
range of Mach number, with a maximum deviation around 3 %. The Shakhov model,
however, predicts significantly thicker shock waves in the large Mach number. This shows
the ν-model can yield more accurate temperature distribution than the Shakhov model in
the large Mach number.
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Figure 5. Reciprocal shock thickness in argon normal shock wave. δρ = (ρ1 − ρ0)/max(dρ/dx) and δT =
(T1 − T0)/max(dT/dx), where ρ0, T0 and ρ1, T1 are the upstream and downstream quantities, respectively.
Results of molecular dynamics (MD) simulations are adopted from Valentini & Schwartzentruber (2009).
Experimental results are adopted from Alsmeyer (1976) and Schmidt (1969). (a) Density-based thickness and
(b) temperature-based thickness.

5.2. Space-homogeneous relaxation of bimodal distribution function
A space-homogeneous relaxation is further performed to investigate the evolution of
bimodal VDF (typical in shock waves) as well as high-order moments. The initial
distribution function is set as a blend of two different Maxwellian distributions, and with
the normalisation (4.1) the initial VDF has the form

f = 1
13

(
2
π

)3/2

exp{−2[(vx − 3)2 + v2
y + v2

z ]}

+ 12
13

(
2
π

)3/2

exp

{
−2

[(
vx + 1

4

)2

+ v2
y + v2

z

]}
, (5.4)

which corresponds to the macroscopic state n = 1, u = 0 and T = 1. As shown in figure 4,
such a bimodal distribution characterises the VDF in front of the shock wave where strong
non-equilibrium effects exist. The Lennard-Jones potential is used. The time evolutions of
the distribution function and the collision integrals obtained by different kinetic models
are compared with the Boltzmann solution in figures 6 and 7. It is shown that both kinetic
models cannot completely recover the relaxation behaviour of the Boltzmann operator.
Nevertheless, as shown in figure 7, the collision integrals for different moments obtained
from the ν-model are more accurate than those from the Shakhov model, especially for
collision integrals about the viscous stress and the heat flux where the ν-model agrees
perfectly well with the Boltzmann equation. This improvement is because, as shown in
figure 6, the ν-model has relatively faster relaxation of high-speed molecules than that of
the Shakhov model, and hence faster (more accurate) relaxation of the moments.

5.3. Supersonic flow around a circular cylinder
The supersonic flow around a circular cylinder is simulated to further assess the
performance of our ν-model. The inverse power-law potentials with ω = 0.81 and ω = 0.5
are implemented. It is demonstrated that the results of ω = 0.81 from the ν-model share
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Figure 6. Space-homogeneous relaxation of bimodal distribution function. Evolution of (a) the reduced
number density distribution

∫
f dvy dvz and (b) the thermal energy distribution

∫
c2f dvy dvz. The time,

normalised by μ/p, corresponding to each line (in the direction towards Maxwellian distribution) is t =
0, 1.2, 2.4, 3.6.
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Figure 7. Evolution of the collision integrals for different moments in the space-homogeneous relaxation of
bimodal distribution function: (a) Cσxx = 2

∫
(c2

x − |c|2/3)Q dv; (b) Cq = ∫
cx|c|2Q dv; (c) C4 = ∫

c4
xQ dv;

(d) C6 = ∫
c6

xQ dv. The time t is normalised by μ/p.

a similar accuracy with those of ω = 0.5, so only the results of ω = 0.5 (the HS gas) are
shown here to save space. Four free stream conditions, Ma = 5, 20 and KnHS = 0.1, 1 are
considered, where the Knudsen number KnHS is defined by the cylinder radius r and the
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mean free path LHS of the HS model, i.e.

LHS = 16
5

μ(T∞)

ρ
√

2πRT∞
. (5.5)

The full diffuse reflection condition is imposed on the cylinder surface and the wall
temperature is fixed at the free stream temperature: Tw = T∞. For the discretisation of
physical space, a structured mesh in polar coordinates is used. The mesh size in the normal
direction is refined approaching the cylinder surface, with the minimum mesh height set
as 0.004r for Ma = 5 and 0.0006r for Ma = 20 to ensure the grid independence of surface
stress and heat flux. Due to the multiscale and implicit nature of our numerical scheme,
the computational cost is kept small. For the discretisation of velocity space, 90 × 90 × 50
uniform points in the velocity range [−15a∞, 15a∞] and 160 × 160 × 128 uniform points
in the velocity range [−55a∞, 55a∞] are adopted for Ma = 5 and Ma = 20, respectively,
where a∞ is the free stream acoustic velocity.

Numerical results of the flow variable distributions along the central horizontal line are
shown in figure 8. It is seen that the ν-model predicts quite satisfactory results consistent
with the DSMC results calculated by the DS2V code (Bird 2005). For the Shakhov model,
the accuracy in velocity profiles deteriorates slightly, and the upstream temperature is
significantly overpredicted. Figure 9 shows that the temperature distributions around the
cylinder obtained from the ν-model agree well with the DSMC results, while the Shakhov
model exhibits large deviation, especially in the upstream of bow shock.

To further investigate the mechanism of such an improvement of the ν-model for
temperature prediction, the thermal energy distributions in the upstream of the bow shock
for Ma = 5 are shown in figure 10. For this set of figures we sum up the following notable
points.

(i) Molecules with vx < 0 form an obvious energy peak, especially in the case of
KnHS = 1. As a supplement to the data shown in figure 10 when Ma = 5, at Ma = 20
in the temperature early-rising region, the Shakhov model predicts the proportions of
thermal energy occupied by molecules with vx < 0 to be 42.03 % when KnHS = 0.1
and 61.62 % when KnHS = 1, while in the ν-model these data are 9.38 % and
37.18 %, respectively. This suggests that the high speed (large peculiar velocity)
vx < 0 molecules arising from the postshock gas have a big impact on the thermal
energy of the upstream preshock gas and cause a significant heating.

(ii) The thermal energy peak due to the high speed vx < 0 molecules predicted by the
ν-model is much lower than that predicted by the Shakhov model. This is because
that in the ν-model the velocity-dependent collision frequency (5.1) is adopted,
where the molecule with larger peculiar velocity has higher collision frequency;
and intensive collisions prevent them from transporting upstream too far, and thus
the overprediction of upstream temperature observed in the Shakhov model is
suppressed in the ν-model. This also suggests that, when the viscosity index ω

approaches 0.5 and when the Mach number gets larger, temperature overprediction
by the Shakhov model will become more severe due to the steeper collision
frequency curve (figure 2) and higher peculiar velocity of vx < 0 molecules.

Distributions of the shear stress and heat flux on the cylinder surface are shown in
figure 11. When Ma = 5, the ν-model and the Shakhov model predict almost the same
results and they both agree well with DSMC. This is because for the high-temperature
postshock gas, there are few molecules with large peculiar velocity and the collision
frequency in the Shakhov model is comparable to that in the ν-model. When Ma = 20,
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Figure 8. Density, velocity and temperature variables along the central horizontal line in the front of cylinder,
in supersonic flows of HS gas around a circular cylinder: (a) Ma = 5, KnHS = 0.1; (b) Ma = 5, KnHS = 1;
(c) Ma = 20, KnHS = 0.1; (d) Ma = 20, KnHS = 1.

a certain degree of discrepancy exists between the results of the Shakhov and ν-models,
and the ν-model shows better agreement with DSMC. The drag coefficient Cd and heat
transfer coefficient Ch for the cylinder at Ma = 20 are further shown in table 3, where it
can be found that the ν-model predicts slightly more consistent results than the Shakhov
model, although in general the difference among the three sets of results is small.

6. Numerical results in microflows

In this section we assess the accuracy of the ν-model in canonical rarefied microflows,
with the velocity-dependent collision frequency determined from the strong normal shock
waves.

6.1. Planar Couette flow
Unlike the normal shock wave that is dominated by the effects of compressibility, the
Couette flow is shear dominated. It is a typical rarefied gas flow since the heat flux parallel

942 A13-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

35
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.350


R. Yuan and L. Wu

1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6 6.1 6.6 7.1 7.6 8.1 8.6

10 20 30 40 50 60 70 80 90 100 110 120
T/T∞

5 15 25 35 45 55 65 75 85 95 105
T/T∞

T/T∞T/T∞

(a) (b)

(c) (d)

Figure 9. Temperature contours in supersonic flows of HS gas around a circular cylinder. Colour bands,
ν-model; black dashed lines, Shakhov model; black solid lines, DSMC results. Here (a) Ma = 5, KnHS = 0.1;
(b) Ma = 5, KnHS = 1; (c) Ma = 20, KnHS = 0.1; (d) Ma = 20, KnHS = 1.

KnHS = 0.1 KnHS = 1

Cd Ch Cd Ch

DSMC 2.755 0.4691 3.403 1.165
ν-model 2.768 0.4739 3.419 1.170
Shakhov 2.777 0.4788 3.447 1.181

Table 3. Drag coefficient Cd and heat transfer coefficient Ch in supersonic flows of HS gas of Ma = 20 around
a circular cylinder. Here Cd = D/( 1

2 ρ∞u2∞r), Ch = H/( 1
2 ρ∞u3∞r), where D and H are the total stress and the

total heat flux on the cylinder surface, respectively. The numerical errors for the results of kinetic models are
estimated as 0.2 % for Cd and 0.45 % for Ch.

to the plates is not zero, in sharp contrast to the Navier–Stokes–Fourier equations. Here
we consider the Couette flow between two parallel plates with temperature T0, where the
wall speed is equal to the most probable speed of gas molecules at T0, i.e. Ma = √

1.2.
The case of a much lower Mach number Ma = 0.1

√
1.2 has also been performed and

942 A13-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

35
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.350


Gas kinetic model with velocity-dependent collision frequency

(a) (b)

–5 –50

0

5

5

10vx/a∞
v y/a ∞

–5

–5
0

0

5

5

10

vx/a∞ v y/a ∞

Figure 10. Thermal energy distributions
∫

c2f dvz in supersonic flows of HS gas of Ma = 5 around a circular
cylinder, at locations before the bow shock: (a) KnHS = 0.1 at (x, y) = (−2.2r, −0.055r), molecules with
vx < 0 occupy 15.38 % and 5.65 % of the total thermal energy in the Shakhov model and ν-model, respectively;
(b) KnHS = 1 at (x, y) = (−4.4r, −0.11r), molecules with vx < 0 occupy 23.63 % and 14.70 % of the total
thermal energy in the Shakhov model and ν-model, respectively. Grey surface, ν-model; wire frame, Shakhov
model.
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Figure 11. Distributions of the shear stress and heat flux along the cylinder surface, in supersonic flows of HS
gas around a circular cylinder: (a) Ma = 5, KnHS = 0.1; (b) Ma = 5, KnHS = 1; (c) Ma = 20, KnHS = 0.1;
(d) Ma = 20, KnHS = 1.
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the comparison of results from different kinetic models is similar to the case shown here.
For simplicity we only consider the Maxwellian and HS gases, since for other gases with
viscosity index 0.5 ≤ ω ≤ 1, the results fall between those of Maxwellian and HS gases.
The characteristic flow length L in (4.4) is chosen to be the distance between the two plates.

For the Maxwellian gas, when Kn = 0.1, figure 12(a) shows that the Shakhov model
produces close results to those of the Boltzmann equation, while the ESBGK model
has slight errors in temperature and heat flux. When Kn = 1, the difference between
the Shakhov/ESBGK model and the Boltzmann equation increases, but we see that the
Shakhov model is better than the ESBGK model, in velocity, temperature and heat flux.
However, when the HS gas is considered, figure 12(b) shows that the Shakhov model is
better than the ESBGK model in terms of temperature, but is worse in heat flux.

When the ν-model is used, we find that its heat flux agrees well with the solution of
the Boltzmann equation. However, there is no improvement in the temperature profile
as compared with the Shakhov model; nevertheless, the relative error in temperature to
that of the Boltzmann equation is within 3 %. It is also worth noting that the ν-BGK
and ν-ESBGK models (Mieussens & Struchtrup 2004; Zheng & Struchtrup 2005) predict
even worse results than the standard ESBGK, and they are not suggested for Couette flow
(Zheng & Struchtrup 2005).

6.2. Thermal transpiration
Another typical phenomenon in rarefied gas dynamics is thermal transpiration, where the
gas moves towards a hotter region even in the absence of a pressure gradient (Maxwell
1879; Reynolds 1879). Harnessing this unique property leads to the design of the Knudsen
compressor that pumps the gas without any moving mechanical parts (Vargo et al. 1999;
Gupta & Gianchandani 2008). This problem is a good test case since even when the
value of viscosity is the same, different intermolecular potentials yield a different thermal
slip velocity (Wang, Su & Wu 2020) and mass flow rate (Sharipov & Bertoldo 2009;
Wu et al. 2015a); and this can be captured neither by the relaxation model (1.1) with
velocity-independent collision frequency, nor by the Fokker–Planck model.

Here we assess the performance of our ν-model in thermal transpiration between two
parallel plates and focus on the steady-state solutions. The governing equation reads

v2
∂f
∂x2

= Q + source, (6.1)

where the source term is −a0v1(c2 − 5/2)Feq, with a0 being a small constant related to
the temperature gradient along the solid wall. The induced flow velocity due to rarefaction
effects is proportional to a0, and the final result will be further normalised by a0.

Figure 13 shows the induced velocity for Maxwell and HS gases. Numerical solutions
of the Boltzmann equation with different values of the viscosity index ω are different.
However, the viscosity index does not affect the solution in the Shakhov and ESBGK
models. This is because the gas temperature does not change in the direction perpendicular
to the solid wall, so that the coefficient in the collision operator (4.6) has nothing to do
with the viscosity index ω. That is,

√
π

2Kn
× μ(T0)

n0kBT0
× ν

( c
T

)
=

√
π

2Kn
. (6.2)

Thus, the Shakhov and ESBGK models with molecular-velocity-independent collision
frequency do not have the degree of freedom to describe the change of intermolecular
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Figure 12. Couette flow: panels (i–iii), Kn = 0.1; panels (iv–vi), Kn = 1. The abscissas x2 are for the spatial
coordinate, which is in the direction perpendicular to the two plates and normalised by the wall distance. The
two plates are located in x2 = 0 and x2 = 1. Variables are under the normalisation of (4.1). The heat flux is
parallel to the wall velocity. Due to symmetry, only the half-spatial region is shown. (a) Maxwell gas and (b)
HS gas.
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Figure 13. Velocity profiles in the thermal transpiration between two parallel plates. Abscissas are for the
spatial coordinate x2 which is perpendicular to the two plates and normalised by the wall distance. The two
plates are located in x2 = 0 and 1. Due to symmetry, only half-spatial region is shown. Note that the Shakhov
and ESBGK models do not distinguish the influence of intermolecular potential, and the ν-model is reduced to
the Shakhov model for Maxwellian gas. Here (a) Kn = 0.01; (b) Kn = 0.1; (c) Kn = 1.

potential, while for the ν-model the intermolecular potential has an impact on the
velocity-dependent collision frequency (5.1) and it predicts different results.

When Kn = 0.01, it is seen from figure 13(a) that the Shakhov model well predicts the
velocity profile of the Maxwell gas (i.e. the thermal slip velocity and the Knudsen layer
function are all captured (Wang et al. 2020)), while the ESBGK model predicts a slight
low velocity. However, both kinetic models cannot predict the velocity profile of HS gas.
This problem is fixed in the ν-model. When the Knudsen number is increased to 0.1, the
Shakhov and ESBGK models predict a close velocity profile to that of the Maxwell and HS
gas, respectively. When the ν-model is used, good agreement with the Boltzmann equation
solution is observed. When the Knudsen number further increases, the ν-model always
predicts better velocity profiles than the Shakhov and ESBGK models. We also solve
the thermal transpiration using the Lennard-Jones potential. The fast spectral solution is
obtained from Wu et al. (2015a), while the ν-model uses the collision frequency (5.2). It
can be seen in figure 14 that the ν-model has good accuracy for the Knudsen number up
to approximately unity.

From this test case we can clearly see that there are more degrees of freedom in the
ν-model to recover more details of the intermolecular collision, and thus yield more
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Figure 14. Mass flow rate 2
∫ 1

0 u1 dx2 versus the rarefaction parameter in the thermal transpiration of argon
when the Lennard-Jones potential is used. The wall temperature is 300 K. The reference result is the Boltzmann
solution calculated by the fast spectral method (FSM).

accurate results than the standard Shakhov and ESBGK models with velocity-independent
collision frequency.

6.3. Thermal transpiration in cavity
We further investigate the thermal transpiration of an HS gas in a two-dimensional cavity
with a length-to-width ratio of 5. The temperature at the right-hand wall is set to be twice
that of the left-hand wall, while the temperature of the top and bottom walls varies linearly
along the channel. The Knudsen number Kn is defined at the average temperature of the
left-hand and right-hand walls, the average molecular number density n, and the cavity
height L. Due to symmetry, only the half-spatial region 0 ≤ y ≤ L/2 is considered.

The temperature fields and the streamlines obtained from the Boltzmann equation,
Shakhov model, ESBGK model and ν-model are compared in figure 15, when Kn = 0.5.
All kinetic models predict a good temperature field with the Boltzmann solution, but
not for velocity. For the Boltzmann solution the flow is characterised by three vortexes:
the left-hand vortex, the bottom vortex and the right-hand vortex adjoining the left-hand
wall, the bottom wall and the right-hand wall, respectively. For the Shakhov and ESBGK
models their streamlines deviate largely from the Boltzmann solution in a different
trend. The Shakhov model predicts a larger bottom vortex but smaller right-hand and
left-hand vortexes, while the ESBGK model predicts a much larger left-hand vortex with a
significantly shrunken bottom vortex and the right-hand vortex completely disappears. By
contrast, the ν-model predicts nearly the same flow pattern with the Boltzmann solution.
The velocity and normal stress profiles are further shown in figure 16, when Kn = 0.1
and 0.5. The profiles coincide with the above observations about the flow field data that
all kinetic models predict similar normal stress profiles agreeing well with the Boltzmann
solution, but quite different velocity profiles where only those from the ν-model show
good agreement with the Boltzmann solution at different Kn numbers.

7. The computational efficiency

As previously stated, the main motivation for constructing a kinetic model is to reduce
the computational cost while imitating as closely as possible the behaviour of the
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Figure 15. Thermal transpiration of HS gas in a rectangular cavity of aspect ratio 5: temperature fields and
streamlines (in half of the channel) calculated by Boltzmann equation and different kinetic models. The
Knudsen number is 0.5.
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Figure 16. Thermal transpiration of HS gas in a rectangular cavity: velocity and normal stress profiles
calculated by Boltzmann equation and different kinetic models. The cavity aspect ratio is 5, Knudsen numbers
are 0.1 (results passing through circles) and 0.5, respectively.

Boltzmann equation. This means that for any kinetic model there must be a trade-off
between accuracy and efficiency. In previous sections, the improved accuracy of the
ν-model has been demonstrated and here the efficiency of the ν-model will be investigated
through benchmark cases.
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Shakhov ν-model

Case Velocity space Steps Time (s) Steps Time (s) Added cost

Re = 1000 20 × 20 × 20 929 5854 864 6572 12.3 %
Kn = 0.1 50 × 50 × 20 185 7712 185 9038 17.2 %
Kn = 10 80 × 80 × 20 189 19495 188 23055 18.3 %

Table 4. Computational time of the multiscale implicit scheme (see the Appendix A) to reach the residual
10−9 for the lid-driven cavity flow simulation. The spatial mesh is 61 × 61. Computation is executed on a
single core of the computer with Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz.

Shakhov ν-model

Case Steps Time (s) Steps Time (s) Added cost

Kn = 0.1 169 2725 175 3302 21.2 %
Kn = 1 169 2869 169 3363 17.2 %

Table 5. Computational time of the multiscale implicit scheme (see the Appendix A) to reach the residual
10−9 for the Mach 5 flow around a circular cylinder. The spatial mesh is 50 × 128 and the velocity space is
discretised as 90 × 90 × 50. Parallel computing is used for these calculations on 40 cores of a computer with
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz.

The multiscale implicit scheme described in Appendix A is used to do the numerical
simulations, with the ν-model and the Shakhov model applied, respectively. The
convergence criterion for the numerical tests is that the global root mean square residuals
are less than 10−9, where the residual vector is defined as (see (A11) for definitions of the
variables)

Ri = − 1
Vi

∑
j∈N(i)

AijF ij. (7.1)

In all the tests argon gas is assumed and the inverse power-law potential with viscosity
index ω = 0.81 is applied.

The first benchmark case is the lid-driven cavity flow. Three conditions including
Re = 1000 and Kn = 0.1, 10 are considered and the Mach number is around 0.16. The
computational time required to reach convergence is shown in table 4. The second
benchmark case is Mach 5 flow around a circular cylinder. Two conditions, Kn = 0.1 and
1 (based on the radius of the cylinder) are considered. The computational time is shown
in table 5. It can be found that in different test cases the additional computational cost
for the ν-model relative to the Shakhov model ranges from 12.3 % to 21.2 %. Considering
the significant accuracy improvement of the ν-model detailed in the previous sections, an
extra computation cost of 20 % is acceptable.

We would like to also mention about the DSMC method which is widely employed
in the rarefied flow simulation. The current kinetic model combined with the multiscale
numerical scheme described in Appendix A mainly has two advantages over the DSMC
method.

(i) The present method is a deterministic method and can efficiently yield smooth
results for low-speed microflow. In contrast, as a stochastic simulation method,
DSMC requires much more computing time to reduce the statistical noise to capture
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small variations of flow variables in the low-speed flow. As a reference, John, Gu
& Emerson (2011) have studied the cavity flow at Kn = 10, 1, 0.075 by DSMC,
and the results have been obtained through intensive parallel computation on the
supercomputer Blue Gene/P (BGP) with hundreds of processors. In the present
study, the similar numerical results have been obtained by a single CPU core in a
few hours, as shown in table 4.

(ii) The present method applies to all flow regimes. While for DSMC, the cell size and
time step are, respectively, limited by the mean free path and mean collision time,
and the particle number per cell has some inherent constraints. This makes DSMC
inapplicable to the continuum flow simulation. The case of cavity flow at Re = 1000
shown in table 4 is unrealistic for DSMC.

On the other hand, DSMC shows superiority in the high-speed rarefied flow simulation,
where the discretisation of the velocity phase space consumes plenty of memory for
the deterministic discrete velocity method. Some comparisons about the accuracy and
efficiency between the deterministic kinetic method and DSMC can be found in Huang,
Xu & Yu (2012) and Zhu, Zhong & Xu (2017).

8. Conclusions

The ν-model has been developed to better approximate the BCO while keeping the
computational cost at the same level as traditional gas kinetic models. The new model
takes the relaxation-time approximation, where the target VDF to which the VDF relaxes
is as simple as that in the Shakhov model, and the collision frequency is a function of the
molecular velocity. A multiscale numerical method is used to solve the proposed model
equation deterministically.

Based on the numerical simulation of normal shock waves, semiempirical formulae
for the collision frequency are proposed for different intermolecular potentials, which
showed certain universality for other rarefied gas flows. Specifically, in supersonic flows,
the overprediction of temperature and heat flux in the upstream of shock wave caused by
the heating of high-speed reflected molecules is suppressed or even eliminated; in thermal
transpiration, the ν-model captures more derails of the intermolecular collision and
predicts better results, while the Shakhov and ESBGK models with velocity-independent
collision frequency cannot distinguish the influence of intermolecular potential.

In summary, the ν-model is able to recover more details of the intermolecular collision
and predicts satisfactory results in a wide range of flow cases with various intermolecular
potentials. In view of its good accuracy and easy implementation, we expect that it can be
extended to better model rarefied flows of polyatomic gas and gas mixtures.

Funding. This work is supported by the National Natural Science Foundation of China under the grant
number 12172162 and the Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics
and Engineering Applications in China under grant 2020B1212030001.
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Appendix A. Multiscale implicit scheme for steady state solution of the ν-model

Discretising the physical space by the finite volume method, applying the implicit
backward Euler formula for the time, and discretising the velocity space into discrete
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Gas kinetic model with velocity-dependent collision frequency

velocity points, the implicit discrete equation for the ν-model can be written as
Vi

Δtn+1
i

(f n+1
i,k − f n

i,k) +
∑

j∈N(i)

(Aijvk · nijf n+1
ij,k ) = Viν

n+1
i,k (f n+1

r,i,k − f n+1
i,k ), (A1)

where i, n, k correspond to the discretisation in physical space, time and velocity space,
respectively; j denotes the neighbouring cell of cell i and N(i) is the set of all of the
neighbours of i; ij denotes the variable at the interface between cell i and j; Aij is the
interface area, nij is the outward normal unit vector of interface ij relative to cell i, and
Vi is the volume of cell i; Δtn+1

i is the local time step and can be handled by various of
traditional implicit time step control techniques.

Equation (A1) can be rearranged into incremental form as(
Vi

Δtn+1
i

+ Viν
n+1
i,k

)
Δf n+1

i,k +
∑

j∈N(i)

Aijvk · nijΔf n+1
ij,k

= Viν
n+1
i,k (f n+1

r,i,k − f n
i,k) −

∑
j∈N(i)

Aijvk · nijf n
ij,k, (A2)

where terms on the left-hand side of the equal sign are the increments and will converge
to zero when the steady state is reached. In the following paragraphs, the terms on the
right-hand side of (A2) are determined first, and then the increment of the distribution
function Δf n+1

i,k can be worked out to update the variables for one time step.
It is well known that the conventional discrete velocity method will suffer from excessive

numerical viscosity and yield over-dissipating results in the case of small Kn number. To
avoid this problem and ensure good accuracy both in the collisionless limit as well as the
hydrodynamic limit, the calculation of the interface distribution function f n

ij,k should be
carefully handled. Here, the construction of the interface distribution function proposed
by Yuan & Zhong (2019) is adopted to ensure the multiscale property of the scheme:

fij,k = 1
1 + νij,khij

f (xij − vkhij, vk) + νij,khij

1 + νij,khij
fr,ij,k, (A3)

where

f (xij − vkhij, vk) =
{

fi,k + (xij − xi − vkhij) · ∇fi,k, vk · nij ≥ 0,

fj,k + (xij − xj − vkhij) · ∇fj,k, vk · nij < 0.
(A4)

The calculation of the terms in the above equations is detailed as follows: ∇f n+1
i,k and

∇f n+1
j,k are gradients of the VDF and can be obtained by reconstruction based on the initial

VDF data; fr,ij,k is the target VDF at the cell interface, and according to (3.9) the target
VDF should be determined by the macroscopic variables including the conserved variables
W = (ρ, ρu, ρE)T , the heat flux q, and the parameters w = (�̂, Γ̂, γ )T . For qij and wij at
the interface ij, they are simply calculated via interpolation, as follows:

qij = Vj

|Vi + Vj|qi + Vi

|Vi + Vj|qj, wij = Vj

|Vi + Vj|wi + Vi

|Vi + Vj|wj. (A5a,b)

For the conserved variable W ij, it is calculated based on the idea of upwind splitting

W ij =
∫
v·nij≥0

ψFl
eq,ij dv +

∫
v·nij<0

ψFr
eq,ij dv, (A6)
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where ψ = (2, 2v, v2)T is the vector of moments, Fl
eq,ij and Fr

eq,ij are Maxwellian
distributions determined by the conserved variables on the left-/right-hand sides of the
interface, and these conserved variables are obtained by data reconstruction. Here hij =
min(hi, hj) in (A3) is the physical local time step to evolve the interface distribution fij,k to
match the scale of the local cell size, and is calculated by the local CFL condition as

hi = Vi

max
k

⎛
⎝ ∑

j∈N(i)

(
vk · nijAijH[vk · nij]

)⎞⎠
CFL, (A7)

where H[x] is the Heaviside function. The collision frequency νij,k in (A3) is calculated
considering the artificial viscosity to stabilise the scheme in the region of the discontinuity,

νij,k = νij,k,physical

1 + Kij,artificial
, (A8)

where νij,k,physical is the collision frequency calculated from (3.13) based on the interface
conserved variables W ij. Meanwhile Kij,artificial is calculated as

Kij,artificial =
|pl

ij − pr
ij|

|pl
ij + pr

ij|
hijνij,k,physical, (A9)

in which pl
ij and pr

ij are the reconstructed pressure values on the two sides of the interface.
More details including the idea of constructing such a interface distribution function are
discussed in Yuan & Zhong (2019).

For the target VDF f n+1
r,i,k at the (n + 1)th step on the right-hand side of (A2), it is handled

by the macroscopic variable prediction technique (Zhu, Zhong & Xu 2016) to guarantee
fast convergence of the scheme in both rarefied and continuum flow regimes. As stated
above, the target VDF fr should be determined by W , q and w. Here, a predicted value
f̃ n+1
r,i,k is used to approximate f n+1

r,i,k on the right-hand side of (A2), which is calculated by qn
i ,

wn
i and a predicted conserved variable W̃ n+1

i . To calculate the predicted W̃ n+1
i , taking the

moment of the ν-model for ψ , the corresponding discrete macroscopic governing equation
can be expressed as

Vi

Δtn+1
i

(W n+1
i − W n

i ) +
∑

j∈N(i)

AijFn+1
ij = 0. (A10)

Then replacing W n+1
i with the predicted W̃ n+1

i , and rearranging (A10) into incremental
form,

Vi

Δtn+1
i

ΔW̃ n+1
i +

∑
j∈N(i)

AijΔF̃n+1
ij = −

∑
j∈N(i)

AijFn
ij, (A11)

where the symbol ∼ denotes the predicted variables for the (n + 1)th step. The flux Fn
ij

on the right-hand side of (A11) is obtained by the numerical integration of the interface
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distribution function f n
ij,k in the discrete velocity space, i.e.

Fn
ij =

∑
k

ψkvk · nijf n
ij,kΔvk, (A12)

where the interface distribution function f n
ij,k is just calculated by (A3). The variation of

the flux ΔF̃n+1
ij on the left-hand side of (A11) is handled as in the traditional macroscopic

implicit scheme based on the Navier–Stokes equation, i.e.

ΔF̃n+1
ij = F̃n+1

ij − Fn
ij, (A13)

where Fij has the form of the well known Roe’s flux function

Fij = 1
2 (Fij(W i) + Fij(W j) + 𝔯ijW i − 𝔯ijW j). (A14)

Here Fij(W ) is the Euler flux

Fij(W ) =
⎛
⎝ ρu · nij

ρuu · nij + pnij
(ρE + p)u · nij

⎞
⎠ (A15)

and 𝔯ij is

𝔯ij = |uij · nij| + aij + 2
μij

ρij|xi − xj| , (A16)

in which aij is the acoustic speed. Substituting (A13) and (A14) into (A11), and noting
that

∑
j∈N(i) AijFij(W i) = 0 holds, the equation for the increment ΔW̃ n+1

i can be then
expressed as⎛

⎝ Vi

Δtn+1
i

+ 1
2

∑
j∈N(i)

𝔯n
ijAij

⎞
⎠ΔW̃ n+1

i = −
∑

j∈N(i)

AijFn
ij + 1

2

∑
j∈N(i)

𝔯n
ijAijΔW̃ n+1

j

− 1
2

∑
j∈N(i)

Aij(Fij(W̃ n+1
j ) − Fij(W n

j )). (A17)

Equation (A17) is solved by the symmetric Gauss–Seidel (SGS) method, or also known as
the point relaxation symmetric Gauss–Seidel (PRSGS) method (Rogers 1995; Yuan 2002).
The SGS method includes several iterations of forward/backward sweep from the first/last
cell to the last/first cell, during which the conserved variable W̃ n+1

i (or the increment
ΔW̃ n+1

i ) of the cell i is always updated by the latest data of its neighbouring cells by
(A17), and after several iterations an estimation for W̃ n+1

i can be obtained with certain
accuracy. After W̃ n+1

i is determined, the predicted target VDF f̃ n+1
r,i,k can be calculated, and

a prediction for the collision frequency ν̃n+1
i,k can be calculated for (A2) as well.

Since the terms on the right-hand side of (A2) have all been determined, we can
approximate the variation of the interface distribution function Δf n+1

ij,k on the left-hand
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side by the first-order upwind scheme, and then the equation for the increment Δf n+1
i,k can

be written as

⎛
⎜⎝ Vi

Δt
+ Viν̃

n+1
i,k +

∑
j∈N+

k (i)

Aijvk · nij

⎞
⎟⎠Δf n+1

i,k = Viν̃
n+1
i,k (f̃ n+1

r,i,k − f n
i,k)

−
∑

j∈N(i)

Aijvk · nijf n
ij,k −

∑
j∈N−

k (i)

Aijvk · nijΔf n+1
j,k , (A18)

where N+
k (i) is the set of cell i’s neighbours satisfying vk · nij ≥ 0 while for N−

k (i) it
satisfies vk · nij < 0. Likewise, (A18) is solved by the SGS method. After several iterations
of SGS, the increment Δf n+1

i,k can be obtained and the distribution function f n+1
i,k for the

next time step can be updated. Once f n+1
i,k has been determined, the conserved variable

W n+1
i and the heat flux qn+1

i can also be updated through numerical integration in the
velocity space (2.1), and the remaining procedure required is the update of the parameter
wn+1

i . This can be finished by solving the collision conservation constraint equation at the
discrete level, i.e. ∑

k

ϕkν
n+1
i,k (f n+1

r,i,k − f n+1
i,k )Δvk = 0, (A19)

where ϕ is defined as ϕ = (1, �c, �c2)T . Substituting the expression of the target VDF (3.9)
into (A19) will yield

(∑
k

ϕkϕ
T
k νn+1

i,k Fn+1
eq,i,kΔvk

)
wn+1

i

=
∑

k

ϕkν
n+1
i,k

(
f n+1
i,k − β

4qn+1
i · ck

5nn+1
i (Tn+1

i )
2

(
c2

k

Tn+1
i

− 5
2

)
Fn+1

eq,i,k

)
Δvk, (A20)

which is actually a linear set of five equations and can be easily solved. The
above conservation treatment can guarantee the conservation laws in the discrete
level (Mieussens 2000a,b), which can significantly reduce the requirement for the
discrete velocity point number. Furthermore, according to the conservative compensation
technique proposed by Yuan & Zhong (2019), there is also an alternative approach to
calculate wn+1

i . That is, first calculate the moments of the target VDF f n+1
r,i as

∫
ϕνn+1

i f n+1
r,i dv =

∑
ϕkν

n+1
i,k f n+1

i,k Δvk +
∫
ϕνn

i f n
r,i dv −

∑
ϕkν

n
i,kf n

r,i,kΔvk, (A21)

where the last two terms on the right-hand side are just the integral error for the moments
of the target VDF due to the discretisation of the velocity space. Then according to the
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analytical integral of the target VDF (3.9), wn+1
i can be solved easily as explicit expressions

�̂n+1
i =

√
π

4nn+1
i

(
ε2

ε0ε2 − ε2
1

∫
νn+1

i f n+1
r,i dv − ε1

ε0ε2 − ε2
1

1

Tn+1
i

∫
c2νn+1

i f n+1
r,i dv

)
,

Γ̂ n+1
i =

√
π

4nn+1
i

(
ε0

ε0ε2 − ε2
1

1

(Tn+1
i )

2

∫
c2νn+1

i f n+1
r,i dv − ε1

ε0ε2 − ε2
1

1

Tn+1
i

∫
νn+1

i f n+1
r,i dv

)
,

γ n+1
i = 1

nn+1
i Tn+1

i

(
3
√

π

4ε1

∫
cνn+1

i f n+1
r,i dv − β

2
5

(2ε2 − 5ε1)

ε1

1

Tn+1
i

qn+1
i

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A22)

where [ε0, ε1, ε2] = ∫ ∞
0 [ξ2, ξ4, ξ6]ν(ξ) exp(−ξ2) dξ .

When the whole algorithm converges, (A21) will turn into∑
ϕkνi,kfi,kΔvk −

∑
ϕkνi,kfr,i,kΔvk = 0, (A23)

which is in fact the same as (A19). Thus this compensation approach, (A21) combined
with (A22), is just as accurate as (A19) with less computational cost.

In summary, the computation procedure from the time step n to n + 1 is listed as follows.

Step 1. Reconstruct the data and calculate f n
ij,k at the interface by (A3).

Step 2. Calculate the flux Fn
ij on the right-hand side of (A17) based on the numerical

integration of f n
ij,k in the discrete velocity space.

Step 3. Solve (A17) by SGS iterations to get the predicted W̃ n+1
i .

Step 4. Calculate f̃ n+1
r,i,k and ν̃n+1

i,k in (A18) based on the predicted W̃ n+1
i .

Step 5. Solve (A18) by SGS iterations to obtain f n+1
i,k at the (n + 1)th time step.

Step 6. Integrate f n+1
i,k numerically in the discrete velocity space to obtain W n+1

i and qn+1
i

at the (n + 1)th time step.
Step 7. Calculate wn+1

i by (A19) or (A21).
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