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We obtain some new exact multiplicity results for the Dirichlet boundary-value
problem

¢ u + ¶ f(u) = 0 for x 2 Bn ; u = 0 for x 2 @Bn

on a unit ball Bn in Rn . We consider several classes of nonlinearities f(u), including
both positive and sign-changing cases. A crucial part of the proof is to establish
positivity of solutions for the corresponding linearized problem. As an application we
obtain exact multiplicity results for the Holling{Tanner population model.

1. Introduction

We study positive solutions of the Dirichlet boundary-value problem depending on
a positive parameter ¶ ,

¢u + ¶ f (u) = 0 for x 2 Bn, u = 0 for x 2 @Bn (1.1)

on the unit ball Bn in Rn, n > 2. From the well-known result of Gidas et al . [6],
any positive solution of (1.1) is radially symmetric, i.e. u = u(jxj), and hence (1.1)
reduces to an ordinary di¬erential equation of the form (2.2) below.

The set of positive solutions of (1.1) (or, equivalently, of (2.2)) consists of simple
curves in the function space R + £ X = f( ¶ ; u)g, where X = C2;¬ ( ·Bn), and each
solution curve can be parametrized by the maximal value of the solution (see [12]
or [18]). To determine the exact shape of the solution curve, and to count the
number of solutions for each given ¶ > 0, it is important to study the singular
points on the solution curve. The singular points are where the curve makes a turn
(so we called them the turning points), and at a turning point ( ¶ ; u), the linearized
equation

¢z + ¶ f 0(u)z = 0 for x 2 Bn, z = 0 for x 2 @Bn (1.2)

has a non-trivial solution z. A bifurcation theorem of Crandall and Rabinowitz [2]
can be applied to (1.1) near a turning point, providing a bifurcation theory approach
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to the exact multiplicity results, which was developed and re­ ned in [9,11,12,18,19].
The key to the bifurcation theory approach is

(1) prove, for any turning point ( ¶ ; u), z can be chosen to be positive; and

(2) prove that if z is positive, then there is at most one turning point.

The second part involves an estimate of the integral
R

Bn f 00(u)z3 dx, so both the
positivity of z and the convexity properties of f are relevant (see lemma 2.5). The
­ rst part usually involves comparison arguments of Sturm’s type, and the choice of
suitable comparison functions is critical and delicate.

In this paper, we mainly use a comparison function v(r) = rur(r)+(n ¡ 2)u(r)+ ·
for some unspeci­ ed constant · , and it results in a condition on the nonlinearity
f (u),

2[f 0(u)]2 ¡ nf (u)f 00(u) > 0 for all u > 0 (or c > u > 0): (1.3)

Under (1.3) and some other conditions on f , we are able to show the positivity of z,
and consequently we obtain some new exact multiplicity results for (1.1). The test
function v and the condition (1.3) also appeared in [10], where the problem (1.1)
with a nonlinearity f satisfying f(0) < 0 was studied. We will consider the non-
linearities f satisfying (a) f (0) > 0, and f is asymptotically superlinear; (b) there
is a constant c > 0 such that f (u) > 0 for u 2 (0; c) and f (c) = 0; and (c) there
exists c > b > 0 such that f(u) < 0 for u 2 (0; b), f (u) > 0 for u 2 (b; c) and
f (0) = f (b) = f (c). In all of these cases, we assume f(u) to satisfy (1.3).

In x 3, we apply the exact multiplicity results to the Holling{Tanner population
model,

¢u + ¶

³
mu ¡ u2 ¡ ku

1 + u

´
= 0 for x 2 Bn, u = 0 for x 2 Bn; (1.4)

with constants k; m > 0. The solutions of (1.4) are the steady-state solutions of the
corresponding reaction{di¬usion equation,

ut = ¢u + ¶

³
mu ¡ u2 ¡ ku

1 + u

´
for x 2 Bn;

u(x; t) = 0 for x 2 @Bn;

u(x; 0) = u0(x) for x 2 Bn:

9
>>>=

>>>;
(1.5)

When k = 0, f0(u) = mu ¡ u2 and (1.4) is the well-known di¬usive logistic equation,
which has wide applications in population biology modelling. When k > 0, the
term ¡ ku=(1 + u) is one example of a predation term. Here, u is considered to be a
population of prey, whose growth rate is decreased because of the existence of some
predators. The predation term ¡ ku=(1 + u) was introduced by Holling and Tanner
(see, for example, [7]). We prove that condition (1.3) is satis­ ed for nonlinearity
here when 1 6 n 6 4 and we completely classify the bifurcation diagrams for all
parameters k > 0, m > 0 and 1 6 n 6 4. Our results allow us to characterize the
attractor of (1.5) for any possible combination of parameters.

We mention that Du and Lou [5] have studied the bifurcation curve of solutions
of an elliptic system with Holling{Tanner-type interaction of two species, and, for
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some parameters, they obtained an exact S-shaped solution curve. The test function
v(r) = rur(r) + (n ¡ 2)u(r) + · was also used in [10]. But the special case of
v(r) = rur(r) + (n ¡ 2)u(r) was well known (see [13, 17, 19]), and, on the other
hand, when n = 2, Du and Lou [4] used a test function v(r) = rur(r) + · in
studying a problem from combustion theory. When n = 1, Schaaf [20] also obtained
some exact multiplicity results, with f satisfying similar properties as (1.3). More
previous results on using test functions to obtain the exact multiplicity results
for (1.1) can be found in [9,11,12,14,18,19].

Throughout the paper, ¶ 1 is the principal eigenvalue of the Laplacian on Bn and
¿ (x) > 0 the corresponding eigenfunction. Also, a solution of (1.1) is always meant
a positive solution of (1.1).

2. Exact multiplicity results

We consider the positive solutions of the Dirichlet problem

¢u + ¶ f (u) = 0 for x 2 Bn, u = 0 for x 2 @Bn (2.1)

on the unit ball Bn in Rn, n > 2. By the well-known result of Gidas et al . [6], any
positive solution of (2.1) is radially symmetric, and hence it satis­ es

u00 +
n ¡ 1

r
u0 + ¶ f (u) = 0 for 0 < r < 1, u0(0) = u(1) = 0; (2.2)

where r = jxj. The corresponding linearized problem is

¢z + ¶ f 0(u)z = 0 for x 2 Bn, z = 0 for x 2 @Bn; (2.3)

and if u is a positive radially symmetric solution of (2.1), then it was shown by Lin
and Ni [15] that any solution of (2.3) is also radially symmetric, and thus it satis­ es

L[z] ² z00 +
n ¡ 1

r
z0 + ¶ f 0(u)z = 0 for r < 1, z0(0) = z(1) = 0: (2.4)

Recall that a solution u of (2.2) is called unstable if the principle eigenvalue · 1

of L[z] + · z = 0, z 0(0) = z(1) = 0 is negative, otherwise we say it is stable.
When · 1 < 0, the number of negative eigenvalues is called the Morse index of u.
When · 1 = 0, the solution is degenerate, that is, equation (2.4) has a non-trivial
solution, the corresponding eigenfunction z is of one sign and it can be chosen to be
positive. For determining the precise bifurcation diagram of (2.2), it has been shown
(see [9, 11, 12, 18, 19]) the importance of proving · 1 = 0 at a degenerate solution
(instead of · k = 0 for k > 1). This is equivalent to excluding the possibility of a
higher Morse index solution of (2.2).

The main tool for proving z > 0 is a comparison lemma.

Lemma 2.1. Suppose L[z](t) = 0, z 6² 0. If there exists v 2 C2[a; b] such that
L[v](t) ¢v(t) 6 ( 6²) 0, then z has at most one zero in [a; b]. In addition, if z0(a) = 0,
then z does not have any zero in [a; b].

For the proof, we refer to [10,18]. Our ­ rst result in proving · 1 = 0 (or z > 0) is
the following.
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Lemma 2.2. Assume that the function f (u) 2 C2[0; 1) satis¯es f (0) > 0, condi-
tion (1.3) for all u > 0 and

f 0(u) > 0 for all u > 0: (2.5)

Then any non-trivial solution z of the linearized problem (2.4) is of one sign, i.e. we
may assume that z(r) > 0 for all r 2 [0; 1).

Proof. We consider a test function v = ru0(r) + (n ¡ 2)u(r) + ¬ with a constant ¬
to be speci­ ed. Recall that we denote the left-hand side of the linearized equation
for (2.4) by L[z]. Compute

L[v] = ¶ [(n ¡ 2)uf 0(u) ¡ nf (u) + ¬ f 0(u)] ² ¶ g ¬ (u(r)): (2.6)

The sign of the test function v(r) is governed by the function

¬ = h(r) ² ¡ ru0(r) ¡ (n ¡ 2)u(r):

Indeed, v > 0 (< 0) when h(r) < ¬ (> ¬ ). Similarly, the sign of g ¬ (u) is governed
by

¬ = j(r) ² nf (u(r)) ¡ (n ¡ 2)uf 0(u(r))

f 0(u(r))
:

This time, in view of (2.5), g ¬ (u) > 0 (< 0), provided ¬ > j(r) ( ¬ < j(r)). Notice
that h(0) = ¡ (n ¡ 2)u(0) 6 0, h(1) = ¡ u0(1) > 0 and

h0(r) = ¡ ru00 ¡ (n ¡ 1)u0 = ¶ rf(u) > 0; (2.7)

since, by our conditions, f (u) is positive. Also, j(1) > 0 and

j 0(r) 6 0; (2.8)

in view of the condition (1.3). It follows that only two cases are possible.

Case 1. The functions h(r) and j(r) intersect exactly once on [0; 1), say at r = r0.
We select ¬ = h(r0) = j(r0). Then, on the interval [0; r0), we have v > 0 and
L[v] < 0, while on the interval (r0; 1) the opposite inequalities hold. Lemma 2.1
implies that z(r) cannot have any roots and hence is of one sign on [0; 1).

Case 2. j(r) > h(r) for all r 2 [0; 1). This time we select ¬ = h(1) = maxr 2 [0;1] h(r)
to obtain v > 0 and L[v] < 0 on the entire interval [0; 1). We again conclude that
z(r) is of one sign.

Remark 2.3. In several previous works on the exact multiplicity results for (2.2),
the function Kf (u) = uf 0(u)=f(u) also played an important role when proving
results of lemma 2.2 type. Kf (u) can be thought of as an indicator of the growth
rate of f (u), for example, Kf (u) = p if f (u) = up. It was shown in [19] that if
f (u) > 0 for u > 0, Kf (u) is decreasing or Kf (u) 6 n=(n ¡ 2), then any non-trivial
solution z(r) of (2.4) is of one sign. We point out that the condition (1.3) is also
related to Kf . In fact, condition (1.3) is equivalent to saying that the function

A(u) =
nf (u) ¡ (n ¡ 2)uf 0(u)

f 0(u)

https://doi.org/10.1017/S0308210500001323 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500001323


New exact multiplicity results 1171

is increasing and, since A(u) = u[nK¡1
f (u) ¡ (n ¡ 2)], we have

A0(u) =
n ¡ 2

Kf (u)

µ
n

n ¡ 2
¡ Kf (u)

¶
¡

nuK 0
f (u)

K2
f (u)

:

So (1.3) holds if Kf (u) is decreasing and Kf (u) 6 n=(n ¡ 2). Also, if (1.3) holds,
then, for any u > 0, either Kf (u) is decreasing or Kf (u) 6 n=(n ¡ 2). This obser-
vation will be useful in the proof of lemma 2.15 later.

Remark 2.4. Condition (1.3) also implies some asymptotic growth restriction on
f . In fact, condition (1.3) is equivalent to

³
f

f 0

´0
¡ n ¡ 2

n
> 0; (2.9)

and, by integration, we obtain

f(u) 6 aebu (n = 2) and f (u) 6 a(u + b)n=(n¡2) (n > 3) (2.10)

for all u > 0 and some a; b > 0.

If the solution z of the linearized equation (2.4) is shown to be of one sign,
there is a well-established theory on the set of positive solutions of (2.2), which we
brie®y review here. The details (and also the proof of all quoted facts) can be found
in [9,11,12,18,19].

From the uniqueness of ordinary di¬erential equations, for any s > 0, there is
at most one ¶ (s) > 0 such that (2.2) has a positive solution u(¢; s) with ¶ = ¶ (s)
and u(0) = s. So the set of positive solutions of (2.2) can be globally parametrized
by s = u(0), thus the solution set is a curve of the form f( ¶ (s); s)g, where s > 0
belongs to a certain admissible set. If ¶ 0(s) 6= 0, then the corresponding solution
u(¢; s) is non-degenerate, while if ¶ 0(s) = 0, then the solution is degenerate. At a
degenerate solution, we can show that

¶ 00(s) =
¡ ¶ (s)

R 1

0
rn¡1f 00(u(r))z3(r) dr

R 1

0
rn¡1f (u(r))z(r) dr

; (2.11)

where z is a non-trivial solution of (2.4). Here we assume that z(r) > 0 for r 2 [0; 1).
For the denominator in (2.11), we can show (see [18] or [9]) that

Z 1

0

rn¡1f (u(r))z(r) dr =
1

2¶ (s)
u0(1)z0(1) > 0 (2.12)

if u0(1) < 0 and z0(1) < 0, which are both true if f (0) > 0. So the direc-
tion of the turn of the bifurcation curve is mainly determined by the integralR 1

0 rn¡1f 00(u(r))z3(r) dr. Here we recall the following results from [19].

Lemma 2.5. Suppose that ( ¶ (s); u(s)) is a degenerate solution of (2.2), z is the
corresponding solution of linearized equation (2.4) and z(r) > 0 for r 2 [0; 1).

(1) If f 00(u) > 0 for u > 0, then ¶ 00(s) < 0.

(2) If f 00(u) < 0 for u > 0, then ¶ 00(s) > 0.
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l

u(0)

Figure 1. Theorem 2.6.

(3) If f (0) > 0 and there exists ­ > 0 such that f 00(u) < 0 for u in (0; ­ ),
f 00(u) > 0 for u in (­ ; 1) and u(0) > ­ , then ¶ 00(s) > 0.

(4) If f(0) 6 0, and there exists ­ > 0 such that f 00(u) > 0 for u in (0; ­ ),
f 00(u) < 0 for u in (­ ; 1) and u(0) > ­ , then ¶ 00(s) < 0.

Combining lemmas 2.2 and 2.5, we have the following exact multiplicity result.

Theorem 2.6. Assume f(u) > 0 for u > 0, f 00(u) > 0, limu ! 1 f (u)=u = 1
and f satis¯es (1.3) and (2.5). Then there exists a constant ¶ 0 > 0 such that
problem (2.2) has no solution for ¶ > ¶ 0, exactly two solutions for ¶ < ¶ 0 and
exactly one solution for ¶ = ¶ 0. Moreover, all solutions lie on a unique smooth
solution curve (see ¯gure 1).

Proof. Since f (0) > 0, then u = 0 is a non-degenerate solution of (2.2) when
¶ = 0 and, by the implicit function theorem, for any small ¶ > 0, there is a unique
solution u( ¶ ; ¢) of (2.2) near u = 0. Furthermore, u( ¶ ; ¢) is positive by the maximum
principle. From the remarks before lemma 2.5, u( ¶ ; ¢) can also be parametrized by
u( ¶ ; 0). So a solution curve § = ( ¶ (s); u(s)) emerges from ( ¶ ; u) = (0; 0) and moves
to the right as s increases. On the other hand, problem (1.1) has no positive solution
for ¶ > 0 large. In fact, if we multiply (1.1) by ¿ , the principal eigenfunction of
¢ ¿ + ¶ ¿ = 0, ¿ (x) = 0 for x 2 @Bn, then we have

¶ 1

Z

Bn

u¿ dx = ¶

Z

Bn

f (u) ¿ dx > ¶ a

Z

Bn

u¿ dx; (2.13)

where a = minu> 0 f(u)=u > 0. Thus (1.1) has a positive solution only if ¶ 6 ¶ 1a¡1.
Thus the solution curve cannot continue to ¶ = 1. Let

¶ ¤ = supf ¶ > 0 : problem (2.2) has a positive solution with this ¶ g:

Then 0 < ¶ ¤ 6 ¶ 1a¡1.
We claim that there is a turning point (degenerate solution) on the solution

curve § . Suppose there are no turning points, then ¶ 0(s) > 0 for all s > 0 and
lims ! 1 ¶ (s) = ¶ ¤ . Since s = u(0) is a global parameter for all positive solutions,
it follows that there are no positive solutions other than those on § . In particular,
problem (2.2) has a unique positive solution for ¶ 2 (0; ¶ ¤ ) and no positive solution
for ¶ > ¶ ¤ . However, since f satis­ es the growth condition (2.10) and f (0) > 0, by a
result of Lions [16, theorem 2.1 and remark 1.1], for the case n > 2, the problem (1.1)
has at least two positive solutions for 0 < ¶ < ¶ ¤ , which is a contradiction. For
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l

u(0)

Figure 2. Theorem 2.9.

the case n = 2, we use theorem 2.3 in [3] to conclude the existence of at least two
positive solutions for 0 < ¶ < ¶ ¤ . (Since in [3] it was assumed that f (0) = 0, the
following modi­ cation is needed: to prove existence of the second solution, we apply
the mountain pass lemma, using the solution bifurcating from zero (rather than the
trivial solution) as a minimizer.) Thus there is a turning point on § .

At any turning point, by lemma 2.2, z can be chosen as positive and hence, by
lemma 2.5, ¶ 00(s) < 0, so the curve turns to the left and, after passing the turning
point, the curve travels to the left. There are no other turning points, since at
any turning point, the solution curve turns to the left, but when § moves to the
left, it has to approach a possible turning point from the right. Therefore, § is
monotone ( ¶ 0(s) < 0) above the turning point. Let ·¶ = lims ! 1 ¶ (s). Then ·¶ > 0.
Since, from [16], problem (2.2) has at least two solutions for all 0 < ¶ < ¶ ¤ , then
·¶ = 0.

Example 2.7. As a very particular case, we recover the well-known result of Joseph
and Lundgren [8] for the case f (u) = eu and n = 2 (actually, we get some extra
information even in this case).

Example 2.8. We have another application of lemma 2.2. In [1], Adimurthi gives
an ingenious proof that the problem

¢u + ¶ ueu = 0 for B2, u = 0 for x 2 @B2 (2.14)

on a ball B2 in R2 has at most one positive solution. We have a more detailed result.
Let ¶ 1 denote the principal eigenvalue of the Laplacian on the unit ball in R2.

Theorem 2.9. The set of positive solutions of (2.14) consists of a smooth solution
curve, which bifurcates (to the left) at ¶ = ¶ 1 from the trivial solution u = 0, and
continues for all 0 < ¶ < ¶ 1, tending to in¯nity as ¶ ! 0 (see ¯gure 2).

Proof. It is well known that the bifurcation at ¶ = ¶ 1 occurs. First we claim that
the bifurcation is subcritical. In fact, we can compute ¶ 0(0) and

¶ 0(0) =
¡ ¶ 0f 00(0)

R 1

0
rn¡1 ¿ 3(r) dr

2f 0(0)
R 1

0
¿ 2(r) dr

; (2.15)

so ¶ 0(0) < 0 as f 00(0) > 0, f 0(0) > 0 and ¿ > 0. Thus § travels to the left initially
near ¶ = ¶ 1. Since the nonlinearity is convex, while, by lemma 2.2, any non-trivial
solution of the linearized problem is of one sign, it follows by lemma 2.5 that the
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solution curve continues to the left without any turning point (degenerate solution).
It follows from theorem 2.3 of [3] that the solution curve cannot go to in­ nity at a
positive ¶ , while for ¶ = 0 in­ nity is the only place the curve can go. (The result
in [3] implies that for any su¯ ciently small ¶ , problem (2.14) has a positive solution.
If the solution curve were to go to in­ nity at some positive ¶ 0, then all possible
values of u(0; ¶ ) would have been taken, and hence no positive solutions could exist
for 0 < ¶ < ¶ 0, which is a contradiction.)

Example 2.10. As our last example for lemma 2.2, we point out that for
f (u) = e¡1=(u + ") and " > 0, problem (1.3) is satis­ ed for n = 2. In fact, Du and
Lou [4] used the test function v(r) = rur(r) + ¬ to prove z > 0 for that special
example.

Next, we turn to the results for f not always increasing. Lemma 2.2 can be
modi­ ed as follows.

Lemma 2.11. Assume that the function f (u) 2 C2[0; 1) satis¯es f (0) > 0,
f (u) > 0 for 0 < u < c and there exists b 2 (0; c) such that

f 0(u) > 0 for 0 < u < b, f 0(u) < 0 for b < u < c; (2.16)

and f satis¯es (1.3). Then any non-trivial solution z of the linearized problem (2.4)
is of one sign, i.e. we may assume that z(r) > 0 for all r 2 [0; 1).

Proof. Let u be a degenerate solution of (2.2). If 0 < u(0) < b, then f 0(u(r)) > 0 for
r 2 (0; 1), and we can just use the proof of lemma 2.2. So we assume that u(0) > b,
and so there exists r0 2 (0; 1) such that u(r0) = b. Then, as in lemma 2.2, h(0) 6 0,
h(1) > 0 and h0(r) > 0. On the other hand, for r 2 [0; r0), L[v(r)] = ¶ g ¬ (u(r)) < 0
for any ¬ > 0 since f 0(u) < 0 for u 2 (b; c). For r 2 (r0; 1), from (1.3), we still
have j 0(r) 6 0 and j(1) > 0. Observe also that j(r) ! +1 as r # r0. So only the
following two cases are possible.

Case 1. The functions h(r) and j(r) intersect exactly once on (r0; 1), say at r = r1.
We select ¬ = h(r1) = j(r1) > 0. Then on the interval [0; r1) we have v > 0 and
L[v] < 0, while on the interval (r0; 1) the opposite inequalities hold. So we can
proceed as in lemma 2.2.

Case 2. j(r) > h(r) for all r 2 (r0; 1). Again, we select

¬ = h(1) = max
r 2 [0;1]

h(r) > 0

to obtain v > 0 and L[v] < 0 on the entire interval [0; 1). Thus we have z 6= 0 for
r 2 [0; 1).

Applying lemma 2.11, we obtain two exact multiplicity results as follows.

Theorem 2.12. Assume f(0) = 0, f 0(0) > 0 and f (u) > 0 for u 2 (0; c), where
0 6 c 6 1. Assume f satis¯es (1.3) and, for some c > ­ > 0, we have

f 00(u) > 0 for 0 6 u < ­ , f 00(u) < 0 for ­ < u < c: (2.17)

If c = 1, we also assume limu! 1 f(u)=u = 0. De¯ne ¶ 0 = ¶ 1=f 0(0). Then there
exists a constant ¶ ¤ < ¶ 0 such that problem (2.2) has no solution for ¶ < ¶ ¤ , exactly
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u(0)

Figure 3. Theorem 2.12.

two solutions for ¶ 0 > ¶ > ¶ ¤ and exactly one solution for ¶ = ¶ ¤ and ¶ > ¶ 0.
Moreover, all solutions lie on a unique smooth solution curve (see ¯gure 3).

Proof. It is well known that if f (0) = 0 and f 0(0) > 0, then ¶ 0 = ¶ 1=f 0(0) is a bifur-
cation point for (1.1) and there is a solution curve bifurcating from ( ¶ ; u) = ( ¶ 0; 0).
Similar to theorem 2.6, the solution curve § = ( ¶ (s); u(s)) has a global parameter
s = u(0). And, similar to theorem 2.9, ¶ 0(0) < 0 and § travels to the left initially
near ¶ = ¶ 0.

Next we prove that (1.1) has no positive solution for small ¶ > 0. In fact, from
the conditions on f , there exists a > 0 such that f (u) 6 au for all u > 0. If we
multiply (1.1) by u and integrate, then

¶ 1

Z

Bn

u2 dx 6
Z

Bn

jruj2 dx = ¶

Z

Bn

f (u)u dx 6 ¶ a

Z

Bn

u2 dx; (2.18)

so ¶ > ¶ 1a¡1. Hence § cannot continue left to ¶ = 0; it cannot blow up to s = 1
either, since s = u(0) < c, as follows from the maximum principle for the case
c < 1, and by an easy a priori estimate for the case c = 1. So it has to bend back
at some turning point.

By the assumptions, f satis­ es either (2.5) or (2.16), so z > 0 by lemmas 2.2
or 2.11. Similar to theorem 2.6, there is a unique turning point on § from lemma 2.5
(the fourth case) and, at the turning point, the curve bends to the right. Above
the turning point, ¶ 0(s) > 0, and so § moves to the right monotonously. By an
argument in [11] (see also [19]), we can show that there are no other branches and,
for the solutions on § , when ¶ ! 1, the solution uniformly converges to c for any
compact subset of (0; 1).

Example 2.13. An example for theorem 2.12 is f (u) = ¡ u(u ¡ 2)(u + 1) and
n = 2; 3. It is easy to check that f satis­ es (2.16) and (2.17) for u > 0 with
b = 1

3 (1 +
p

7), c = 2 and ­ = 1
3 . For (1.3), we obtain

2[f 0]2 ¡ nff 00 ² B(u)

= 2[(9 ¡ 3n)u4 + (4n ¡ 12)u3 + (5n ¡ 8)u2 + (8 ¡ 2n)u + 4]:
(2.19)

When n = 3, we have B(u) = 22u2 + 2u + 4 > 0 for all u > 0, and when n = 2, we
have B(u) = 6u4 ¡ 8u3 + 24u2 + 8u + 4 > 0 for all u > 0.
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Figure 4. Theorem 2.14.

Theorem 2.14. Assume f (0) = 0, f 0(0) = 0 and f(u) > 0 for u 2 (0; c),
where c 6 1. Assume f satis¯es (1.3) and (2.17). If c = 1, we also assume that
limu ! 1 f (u)=u = 0. Then there exists a constant ¶ ¤ > 0 such that problem (2.2)
has no solution for ¶ < ¶ ¤ , exactly two solutions for ¶ > ¶ ¤ and exactly one solu-
tion for ¶ = ¶ ¤ . Moreover, all solutions lie on a unique smooth solution curve (see
¯gure 4).

The proof of this result is same as that of theorem 1.3 of [18], except here we
use a di¬erent way to prove the positivity of z, as in lemma 2.11. So we refer the
reader to [18] and omit the proof here.

Finally, we consider a problem with sign-changing f .

Lemma 2.15. Assume that the function f (u) 2 C2[0; 1) satis¯es f (0) = 0, and
there exists b 2 (0; c) such that

f (u) < 0 for 0 < u < b; f(u) > 0 for b < u < c; (2.20)
R c

0
f (u) du > 0 and f satis¯es (1.3) and (2.17). In addition, we assume that n > 3.

Then any non-trivial solution z of the linearized problem (2.4) is of one sign, i.e. we
may assume that z(r) > 0 for all r 2 [0; 1).

Proof. Since
R c

0
f (u) du > 0, there exists a unique ³ 2 (b; c) such that

F ( ³ ) =

Z ³

0

f (u) du = 0:

For any solution u of (2.2), we have u(0) > ³ . In fact, multiplying (2.2) by u0 and
integrating over (0; 1), we obtain

1
2 [u0(1)]2 + (n ¡ 1)

Z 1

0

[u0(r)]2

r
dr ¡ ¶ F (u(0)) = 0; (2.21)

where F (u) =
R u

0
f (t) dt. Thus F (u(0)) > 0, and so there exists r1 2 (0; 1) such

that u(r1) = ³ . From the result of [14] (see also lemma 4.9 of [19]), z(r) 6= 0 for
r 2 [r1; 1). Next we show that z has at most one zero on (0; r1]. For r 2 (0; r1),
f (u(r)) > 0, so the proof of lemma 2.11 can be carried over to here without changes.
But we can only conclude that z has at most one zero in (0; r1], since in the case
of lemma 2.11 we obtain that z has at most one zero in (0; 1], while z(1) = 0.

Suppose that z has exactly one zero at some r = r2. We exclude this possibility
by several steps. Let u(r2) = u2. First we prove u2 < ­ . If this is not true, then
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u(r2) > ­ , and there exists r3 > r2 such that u(r3) = ­ . Consider the comparison
function v1(r) = f (u(r)). It is easy to verify that L[v1] = f 00(u(r))u2

r(r). So, in
[0; r3], v1(r) > 0 and L[v1](r) 6 0, and, by lemma 2.1, z has no zero in [0; r3], which
contradicts with r2 2 [0; r3].

Next we prove that Kf (u2) > n=(n ¡ 2). Suppose this is not true. Then
Kf (u2) 6 n=(n ¡ 2). We claim that Kf (u) 6 n=(n ¡ 2) for all u 2 [u2; u(0)]. In fact,
from the remark after the proof of lemma 2.2, since f satis­ es (1.3), then, for any
u 2 (0; c), either Kf (u) 6 n=(n ¡ 2) or K 0

f (u) 6 0. So, if there exists u3 2 [u2; u(0)]
such that Kf (u3) > n=(n ¡ 2), then, for some u4 2 (u2; u3), Kf (u4) > n=(n ¡ 2)
and K 0

f (u4) > 0, which contradicts with (1.3). Thus Kf (u) 6 n=(n ¡ 2) for all
u 2 [u2; u(0)]. De­ ne v2(r) = rur(r) + (n ¡ 2)u(r) and v3(r) = r¡1v2(r). We
calculate that

L[v2] = ¶ [(n ¡ 2)uf 0(u) ¡ nf (u)] = ¶ f (u)(n ¡ 2)

µ
K(u) ¡ n

n ¡ 2

¶
;

L[v3] = ¶

µ
n ¡ 2

r
(uf 0(u) ¡ f(u)) ¡ (n ¡ 3)

v2

r3

¶
:

Since v0
2(r) = ru00(r) + (n ¡ 1)u0(r) = ¡ ¶ rf(u) < 0 and v2(0) > 0, v2(1) < 0, there

exists r4 2 (0; 1) such that v2(r) > 0 in (0; r4) and v2(r) < 0 in (r4; 1). There are
two cases to consider.

Case 1. r4 > r2. On [0; r2], v2(r) > 0 and L[v2](r) 6 0, since Kf (u) 6 n=(n ¡ 2)
for all u 2 [u2; u(0)]. But this implies that z has no zero in [0; r2], which contradicts
with z(r2) = 0.

Case 2. r4 < r2. On [r2; 1), v3(r) < 0 and L[v3](r) > 0, since u2 = u(r2) < ­ , then
f 00(u(r)) > 0, which implies uf 0(u) ¡ f (u) > 0 for r 2 [r2; 1). This implies that z
has at most one zero in [r2; 1], which contradicts with z(r2) = z(1) = 0.

Therefore, Kf (u2) > n=(n ¡ 2), and then K 0
f (u2) 6 0 by problem (1.3). Let

® = Kf (u2). Then, for any u > u2, Kf (u) < ® , otherwise Kf (u) would have to
be increasing somewhere above the ® level, and hence there is u4 > u2 such that
Kf (u4) > n=(n ¡ 2) and K 0

f (u4) > 0, which contradicts with (1.3). This implies
uf 0(u) ¡ ® f(u) 6 0 for u > u2. Similarly, uf 0(u) ¡ ® f (u) > 0 for u 2 [b; u2].
Furthermore, for u 2 [0; b], we also have uf 0(u) ¡ ® f (u) > 0, since ® > 1 and
uf 0(u) ¡ ® f (u) > uf 0(u) ¡ f (u) > 0. (The latter inequality holds since f 00(u) > 0,
for the case ­ > b. For the case ­ 6 b, the lemma follows easily by the remarks in
the second paragraph of the present proof.) Hence we obtain that

u(r)f 0(u(r)) ¡ ® f (u(r)) 6 0 for r 2 [0; r2]; (2.22)

u(r)f 0(u(r)) ¡ ® f (u(r)) > 0 for r 2 [r2; 1] (2.23)

and z(r) > 0 in [0; r2), z(r) < 0 in (r2; 1). Combining, we obtain
Z 1

0

rn¡1[u(r)f 0(u(r)) ¡ ® f (u(r))]z(r) dr < 0: (2.24)

However, on the other hand, from a calculation in [18, lemma 2.3], we have
Z 1

0

rn¡1[u(r)f 0(u(r)) ¡ ® f (u(r))]z(r) dr =
1

2 ¶
(1 ¡ ® )u0(1)z0(1) > 0; (2.25)
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Figure 5. Theorem 2.16.

since u0(1) < 0, z0(1) > 0 and 1 ¡ ® < 0. This is a contradiction, and z cannot have
exactly one zero in [0; 1). Therefore, z must be of one sign in [0; 1).

Theorem 2.16. Suppose that f satis¯es the conditions of lemma 2.15. If c = 1,
we also assume limu ! 1 f (u)=u = 0. Then there exists a constant ¶ ¤ > 0 such that
problem (2.2) has no solution for ¶ < ¶ ¤ , exactly two solutions for ¶ > ¶ ¤ and
exactly one solution for ¶ = ¶ ¤ . Moreover, all solutions lie on a unique smooth
solution curve (see ¯gure 5).

The proof of theorem 2.16 is same as the results in [11,12, 18], except that now
we use lemma 2.15 to prove z > 0. So we omit the proof. Some arguments in the
proof of lemma 2.15 are similar to the proof in [14,18].

3. Applications to a population growth model

We now apply our exact multiplicity results to the Holling{Tanner population
model (1.4). The lines m = k and k = 1 divide the parameter plane (m > 0; k > 0)
into four regions. For three of these regions and a part of the fourth we are able to
give exact multiplicity results for 1 6 n 6 4. Notice that the roots of f (u) are

0 and 1
2
[(m ¡ 1) §

p
(m ¡ 1)2 + 4(m ¡ k)];

so that the line m = k separates the regions where f (u) has one or two positive roots.
As an application of theorems 2.12, 2.14 and 2.16, our result for the population
model (1.4) is as follows.

Theorem 3.1. Suppose that m > 0, k > 0 and 1 6 n 6 4, and de¯ne ¶ 0
1 =

¶ 1=(m ¡ k) for the case m ¡ k > 0.

(i) If m > k > 0 and 1 > k, then (1.4) has a unique solution for ¶ > ¶ 0
1 and has

no solution for ¶ 0
1 > ¶ > 0 (see ¯gure 6).

(ii) If m > k > 1, then there exists ¶ ¤ 2 (0; ¶ 0
1) such that (1.4) has exactly two

solutions for ¶ 0
1 > ¶ > ¶ ¤ , has exactly one solution for ¶ = ¶ ¤ and ¶ > ¶ 0

1

and has no solution for ¶ ¤ > ¶ > 0 (see ¯gure 3).

(iii) If n 6= 2, k > m > 0, ( 1
4
)(m + 1)2 > k > 1 and

F (u + ) > 0 for u + = 1
2 [(m ¡ 1) +

p
(m + 1)2 ¡ 4k]; (3.1)
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Figure 6. Theorem 3.1(i).

1

(1)

(2)

(3)

(4)

m

k

Figure 7. Theorem 3.1.

where

F (u) =

Z u

0

f (t) dt = 1
2 mu2 ¡ 1

3 u3 ¡ ku + k ln(1 + u);

then (1.4) has exactly two solutions for ¶ > ¶ ¤ , has exactly one solution for
¶ = ¶ ¤ and has no solution for 0 < ¶ < ¶ ¤ (see ¯gures 4 and 5).

(iv) If (k; m) 2 R + £ R + , but not in the regions described above, then (1.4) has
no solution for ¶ > 0.

We begin with a lemma.

Lemma 3.2. Assume that 1 6 n 6 4, 1
4(m + 1)2 > k > 1 and f(u) = mu ¡ u2 ¡

ku=(1 + u). Then 2[f 0(u)]2 ¡ nf (u)f 00(u) > 0 for 0 6 u 6 u + if u + > 0, where u +

is de¯ned in (3.1).

Proof. Note that u + is the largest zero of f (u) if 1
4
(m + 1)2 > k > 1, so f (u) < 0

for u > u + . First we compute

f 0(u) = m ¡ 2u ¡ k

(1 + u)2
; f 00(u) = ¡ 2 +

2k

(1 + u)3
; f 000(u) = ¡ 6k

(1 + u)4
:

If m > k, then f 0(0) = m ¡ k > 0 and so f(u) > 0 for 0 < u < u + . If k 6 1,
then f 00(u) 6 0 for all 0 < u < u + and M (u) ² 2[f 0(u)]2 ¡ nf (u)f 00(u) > 0
for all 0 < u < u + . If k > 1, f 00(u) > 0 for 0 < u <

3
p

k ¡ 1 and f 00(u) < 0 for
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3
p

k ¡ 1 < u < u + , then again M (u) > 0 for
3
p

k ¡ 1 < u < u + . For 0 < u 6 3
p

k ¡ 1,
M 0(u) = (4 ¡ n)f 0f 00 ¡ nff 000 > 0 and M (0) = 2[f 0(0)]2 > 0, then M (u) > 0 for
0 < u 6 3

p
k ¡ 1.

If m < k, then f 0(0) < 0, and we have u + > 0 only if 1
4 (m + 1)2 > k > 1. In such

a case, there exists u1 2 (0; u + ), such that f(u) < 0 for 0 < u < u1 and f (u) > 0
for u1 < u < u + . For u1 < u < u + , we can proceed the same way as in the last
paragraph to show that M(u) > 0. For 0 < u 6 u1, if f 00(u) > 0 for all u 2 (0; u1),
then M (u) > 0. So we assume that there exists ­ 2 (0; u1) such that f 00(u) > 0 for
0 < u < ­ and f 00(u) < 0 for ­ < u < u1. For 0 < u < ­ , M(u) > 0, since f < 0
and f 00 > 0. For ­ < u < u1, M 0(u) = (4 ¡ n)f 0f 00 ¡ nff 000 < 0, since f 0(u) > 0
and M (u1) = 2[f 0(u1)]2 > 0, so M (u) > 0 for ­ 6 u < u1.

Proof of theorem 3.1. We ­ rst mention that the solution z of (2.4) can always be
chosen as positive if n = 1, so the corresponding results in theorems 2.12, 2.14
and 2.16 (where n > 2) are all true for n = 1.

We start by dividing the ­ rst quadrant of the (m; k)-plane into four parts using
the lines m = k and k = 1. De­ ne

I = f(m; k) : m > k; k > 1g;

II = f(m; k) : m > k; k < 1g;

III = f(m; k) : m < k; k > 1g;

IV = f(m; k) : m < k; k < 1g:

9
>>>=

>>>;
(3.2)

We will ­ rst discuss the exact multiplicity for (m; k) in these regions, and then
discuss the cases for the border between them.

(1) From the proof of lemma 3.2, we know that f 0(0) = m ¡ k and f 00(0) = 2(k ¡ 1).
First, if (m; k) 2 IV, then f 0(0) < 0 and f 00(u) < 0 for all u > 0, and hence
f (u) < 0 for all u > 0, so that (1.4) has no positive solution. For (m; k) 2 III,
f (u) < 0 near u = 0 and it is possible that f has one or two zeros in (0; 1).
In fact, the zeros of f (u) are 0 and

u§ = 1
2 [(m ¡ 1) §

p
(m + 1)2 ¡ 4k];

so that, in III, u§ > 0 if and only if m > 1, k > m and (m + 1)2 ¡ 4k > 0. So,
if (m; k) 2 III and (m + 1)2 ¡ 4k 6 0, then f (u) 6 0 for all u > 0 and (1.4)
has no positive solution. Even when (m + 1)2 ¡ 4k > 0 and (m; k) 2 III,
equation (3.1) is a necessary condition for the existence of positive solution,
as follows from (2.21). Indeed, F (u + ) > F (u(0)) > 0. When (m+1)2 ¡ 4k > 0
and (m; k) 2 III, f(u) < 0 for u 2 (0; u¡) and f (u) > 0 for u 2 (u¡; u + ). So,
if there is a solution, then u(0) 2 (u¡; u+ ) and F (u + ) > 0.

(2) If (m; k) 2 III, (m + 1)2 ¡ 4k > 0 and (3.1) is satis­ ed, then all conditions in
lemma 2.15 and theorem 2.16 are satis­ ed, so we can apply theorem 2.16 to
prove part 3 of the theorem.

(3) For (m; k) 2 I , f 0(0) > 0, f 00(u) > 0 for u 2 (0;
3
p

k ¡ 1) and f 00(u) < 0
for u 2 (

3
p

k ¡ 1; 1). From lemma 3.2, f also satis­ es (1.3). So we can apply
theorem 2.12.
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(4) For (m; k) 2 II, f 0(0) > 0, f 00(u) < 0 for all u > 0. Then the result in
theorem 3.1 is well known in this case (see, for example, [19, theorem 6.2]).
Also in this case, the bifurcation diagram is same as the one with k = 0, the
classical logistic equation.

(5) Finally, we handle the borderline cases. For k = 0, it is the classical logistic
equation and the bifurcation curve is same as those for (m; k) 2 II. For m = 0,
it is obvious that f (u) < 0 for all u > 0 and thus there is no solution. For
the border of II and IV, m = k and k < 1, then f 0(0) = 0 and f 00(0) < 0,
so f (u) < 0 for all u > 0 and there is no solution. For the border of I
and II, the bifurcation curve is same as those for (m; k) 2 II, except that
at ( ¶ ; u) = ( ¶ 0

1; 0), ¶ 0(0) = 0, but ¶ 00(0) > 0. (For a formula for ¶ 00(0), see
lemma 2.5 or [21].) For the border of III and IV, it is obvious that f (u) < 0
for all u > 0 and hence there is no solution. For the border of I and III,
f 0(0) = 0, f 00(0) > 0 and the conditions of theorem 2.14 are all satis­ ed, thus
the solution curve is exactly »-shaped.
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