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Let Ω be an open connected cone in Rn with vertex at the origin. Assume that the
operator

Pµ := −∆ − µ

δ2
Ω(x)

is subcritical in Ω, where δΩ is the distance function to the boundary of Ω and
µ � 1/4. We show that under some smoothness assumption on Ω the improved
Hardy-type inequality∫

Ω
|∇ϕ|2 dx − µ

∫
Ω

|ϕ|2

δ2
Ω

dx � λ(µ)
∫

Ω

|ϕ|2

|x|2
dx ∀ϕ ∈ C∞

0 (Ω)

holds true, and the Hardy-weight λ(µ)|x|−2 is optimal in a certain definite sense.
The constant λ(µ) > 0 is given explicitly.
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1. Introduction

There is a huge literature devoted to the study of Hardy-type inequalities. The
traditional point of view on this subject is to prove (using integration by parts,
or the divergence theorem in one way or another) such an inequality, and then
to find the global best constant. In [14] a natural notion of optimal Hardy-type
inequality was introduced, and using a synthetic looking construction (the so-called
supersolution construction), it has been proved that in many cases, this method
provides an optimal Hardy-type inequality in this precise sense. The optimality of
a Hardy-type inequality as introduced in [14] means in particular that the constant
in the inequality is the best possible globally; however, let us emphasize that the
optimality in the sense of [14] is significantly stronger than that. In this paper
the main point is to provide another interesting and important class of examples
for which the supersolution construction provides us with an optimal Hardy-type
inequality. We now briefly explain what motivates this paper, and our results.
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Let P be a symmetric second-order linear elliptic operator with real coefficients,
defined in a domain Ω of Rn, and denote by q its associated quadratic form. Suppose
that q(ϕ) � 0 for all ϕ ∈ C∞

0 (Ω), i.e. P is non-negative (P � 0) in Ω. Then P is
called subcritical in Ω if there exists a non-trivial non-negative weight W such that
the Hardy-type inequality

q(ϕ) � λ

∫
Ω

W (x)|ϕ(x)|2 dx ∀ϕ ∈ C∞
0 (Ω), (1.1)

where λ > 0 is a constant, holds true. If P � 0 in Ω and (1.1) is not true for any
W � 0, then P is called critical in Ω.

Given a subcritical operator P in Ω, there is a huge convex set of weights W � 0
satisfying (1.1). A natural question is to find a weight function W which is ‘as large
as possible’ and satisfies (1.1) (see [1, p. 6]).

In [14] Devyver et al . constructed a Hardy weight W , for a subcritical operator
P , which is optimal in a certain definite sense. For symmetric operators the main
result of [14] reads as follows.

Theorem 1.1 (Devyver et al . [14, theorem 2.2]). Assume that P is subcritical in
Ω. Fix a reference point x0 ∈ Ω, and set Ω� := Ω \ {x0}. There exists a non-zero
non-negative weight W satisfying the following properties.

(a) Denote by λ0 = λ0(P, W, Ω�) the largest constant λ satisfying

q(ϕ) � λ

∫
Ω�

W (x)|ϕ(x)|2 dx ∀ϕ ∈ C∞
0 (Ω�). (1.2)

Then λ0 > 0 and the operator P −λ0W is critical in Ω�; that is, the inequality

q(ϕ) �
∫

Ω�

V (x)|ϕ(x)|2 dx ∀ϕ ∈ C∞
0 (Ω�)

is not valid for any V � λ0W .

(b) The constant λ0 is also the best constant for (1.2) with test functions supported
in Ω′ ⊂ Ω, where Ω′ is either the complement of any fixed compact set in Ω
containing x0 or any fixed punctured neighbourhood of x0.

(c) The operator P − λ0W is null-critical in Ω�; that is, the corresponding Ray-
leigh–Ritz variational problem

inf
ϕ∈D1,2

P (Ω�)

q(ϕ)∫
Ω� W (x)|ϕ(x)|2 dx

(1.3)

admits no minimizer. Here D1,2
P (Ω�) is the completion of C∞

0 (Ω�) with respect
to the norm u �→

√
q(u).

(d) If, furthermore, W > 0 in Ω�, then the spectrum and the essential spectrum
of the Friedrichs extension of the operator W−1P on L2(Ω�, W dx) are both
equal to [λ0,∞).

Definition 1.2. A weight function that satisfies properties (a)–(d) is called an
optimal Hardy weight for the operator P in Ω.
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For related spectral results concerning optimal Hardy inequalities see [13].
One may look at a punctured domain Ω� as a non-compact manifold with two

ends ∞̄ and x0, where ∞̄ denotes the ideal point in the one-point compactification
of Ω. In fact, the results of theorem 1.1 are valid on such manifolds. In [14, theo-
rem 11.6] Devyver et al . extended theorem 1.1 and got an optimal Hardy weight
W in the entire domain Ω, in the case of boundary singularities, where the two
singular points of the Hardy weight are located at ∂Ω ∪ {∞̄} and not at ∞̄ and at
an isolated interior point of Ω as in theorem 1.1. The result reads as follows.

Theorem 1.3 (Devyver et al . [14, theorem 11.6]). Assume that P is subcritical in
Ω. Suppose that the Martin boundary δΩ of the operator P in Ω is equal to the
minimal Martin boundary and is equal to ∂Ω ∪ {ξ0, ξ1}, where ∂Ω \ {ξ0, ξ1} is
assumed to be a regular manifold of dimension (n − 1) without boundary, and the
coefficients of P are locally regular up to ∂Ω \ {ξ0, ξ1}.

Denote by Ω̂ the Martin compactification of Ω, and assume that there exists
a bounded domain D ⊂ Ω such that ξ0 and ξ1 belong to two different connected
components D0 and D1 of Ω̂ \ D̄ such that each Dj is a neighbourhood in Ω̂ of ξj,
where j = 0, 1.

Let u0 and u1 be the minimal Martin functions at ξ0 and ξ1, respectively. Consider
the supersolution u1/2 := (u0u1)1/2 of the equation Pu = 0 in Ω, and assume that

lim
x→ζ0,
x∈Ω

u1(x)
u0(x)

= lim
x→ζ1,
x∈Ω

u0(x)
u1(x)

= 0. (1.4)

Then the weight W := Pu1/2/u1/2 is an optimal Hardy weight for P in Ω. In
particular, if W does not vanish on Ω̂ \{ξ0, ξ1}, then the spectrum and the essential
spectrum of the Friedrichs extension of the operator W−1P acting on L2(Ω, W dx)
are [1,∞).

The following example illustrates theorem 1.3 and motivated the present study.

Example 1.4 (Devyver et al . [14, example 11.1]). Let P = P0 := −∆, and con-
sider the cone Ω with vertex at the origin, given by

Ω := {x ∈ Rn | r(x) > 0, ω(x) ∈ Σ}, (1.5)

where Σ is a Lipschitz domain on the unit sphere Sn−1 ⊂ Rn, n � 2, and (r, ω)
denotes the spherical coordinates of x (i.e. r = |x|, and ω = x/|x|). We assume that
P is subcritical in Ω.

Let φ be the principal eigenfunction of the (Dirichlet) Laplace–Beltrami operator
−∆S on Σ with principal eigenvalue σ = λ0(−∆S , 1, Σ) (for the definition of λ0
see (2.1)), and set

γ± :=
2 − n ±

√
(2 − n)2 + 4σ

2
.

We denote by 1 the constant function taking the value 1 in Ω. Then the positive
harmonic functions

u±(r, ω) := rγ±φ(ω)

are the Martin kernels at ∞ and 0 [32] (see also [5]).
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The function
u1/2 := (u+u−)1/2 = r(2−n)/2φ(ω)

is a supersolution of the equation Pu = 0 in Ω (this is the so-called supersolution
construction for P in Ω with the pair (u+, u−)).

Consequently, the associated Hardy weight is

W (x) :=
Pu1/2

u1/2
=

(n − 2)2 + 4σ

4|x|2 ,

and the corresponding Hardy-type inequality reads as
∫

Ω

|∇ϕ|2 dx � (n − 2)2 + 4σ

4

∫
Ω

|ϕ|2
|x|2 dx ∀ϕ ∈ C∞

0 (Ω). (1.6)

It follows from theorem 1.3 that W is an optimal Hardy weight, in the sense of
definition 1.2. Note that for Σ = Sn−1 we obtain the classical Hardy inequality in
the punctured space. We also remark that the Hardy-type inequality (1.6) and the
global optimality of the constant (n−2)2/4+σ were previously known (see [26,30]),
but again, such a result is significantly weaker than the optimality in the sense of
definition 1.2.

Given the result of theorem 1.3, the following question is natural.

Question. What happens in theorem 1.3 if we drop the hypothesis that the coef-
ficients of P are locally regular up to the boundary?

While it is probably not true that the result of theorem 1.3 holds in full generality
without this regularity hypothesis, it could still hold in some interesting cases.
However, we feel that this is a difficult problem. Therefore, in this paper, we focus
on one natural class of operators that are not regular up to the boundary, for which
we investigate the validity of theorem 1.3. More precisely, let

δ(x) = δΩ(x) := dist(x, ∂Ω)

be the distance function to the boundary of a domain Ω; from the point of view of
Hardy inequalities, one of the most natural and interesting class of operators that
do not satisfy the regularity assumption of theorem 1.3 are operators of the form

Pµ := −∆ − µ

δ2
Ω(x)

in Ω,

where Ω is the cone defined by (1.5). Let us now explain our results, which deal
with this class of operators. Define

µ0 = sup{µ ∈ R; Pµ � 0}.

It turns out that the µ < µ0 case is easier, since in this case (as we will see
in §§ 3 and 4) Pµ satisfies all the assumptions of theorem 1.3, except, of course,
the up to the boundary regularity of the coefficients. The situation for µ = µ0
is more delicate. First, it can happen that Pµ0 is critical in Ω (so the inequality
Pµ0 � 0 cannot be improved). Moreover, in the particular case in which µ0 = 1/4
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and P1/4 is subcritical in Ω, we are not able to characterize the Martin boundary
of P1/4 in Ω. Nevertheless, in this case, under additional smoothness assumptions,
we can still find an optimal Hardy weight by the supersolution construction. We
note that if one assumes that Ω is (weakly) mean convex, then µ0 = 1/4 and
P1/4 is subcritical (proposition 5.8), so the situation is clearer for (weakly) mean
convex cones. Our main results (theorems 5.4 and 5.6) assert that, in the subcritical
case, the conclusion of theorem 1.3 remains true for the operators Pµ on Euclidean
cones given by (1.5). Let us emphasize, however, that our results are not just an
easy variation on theorem 1.3: the fact that the coefficients of Pµ are not regular
up to the boundary introduce intrinsic difficulties that cannot be overcome by a
simple modification of the proof of theorem 1.3; instead, we take advantage of the
particular form of the operators Pµ and of the fact that Ω is a cone.

For some recent results (for example, estimates of the constants, existence of
extremals, and applications to the study of related semilinear partial differential
equations) on various Hardy inequalities with boundary singularities, see, for exam-
ple, [10, 11,17,20,21,24] and references therein.

The outline of the paper is as follows. In § 2 we fix the setting and notation,
and introduce some basic definitions. In § 3 we use an approximation argument to
obtain two positive multiplicative solutions of the equation Pµu = 0 in Ω of the
form u±(r, w) := rγ±θ(ω), while in § 4 we use the boundary Harnack principle of
Ancona [4] and the methods in [25,32] to obtain an explicit representation theorem
for the positive solutions of the equation Pµu = 0 in Ω that vanish (in the potential
theory sense) on ∂Ω\{0}. As a consequence of the results in §§ 3 and 4, the operators
Pµ, µ < µ0, satisfy all the hypotheses of theorem 1.3, except the up to the boundary
regularity of the coefficients. The two linearly independent positive multiplicative
solutions obtained are the building blocks of the supersolution construction that
is used in § 5 to prove our main result, which extends theorem 1.3 to the class of
operators Pµ on cones. In § 6 we consider a family of Hardy inequalities in the half-
space Rn

+ obtained by Filippas et al . [19], and we show (using similar methods as in
the first five sections), for the appropriate case, the optimality of the corresponding
weight.

We conclude the paper in § 7 by proving a closely related Hardy-type inequality
with the best constant for the (non-negative) operator Pµ in Ω, where Ω is a domain
in Rn such that 0 ∈ ∂Ω, and δΩ satisfies (in the weak sense) the linear differential
inequality

−∆δΩ +
n − 1 +

√
1 − 4µ

|x|2 (x · ∇δΩ − δΩ) � 0 in Ω. (1.7)

Finally, we note that parts of the results of this paper were announced in [15].

2. Preliminaries

In this section we fix our setting and notation, and introduce some basic definitions.
We write R+ := (0,∞), and

Rn
+ := {(x1, x2, . . . , xn) ∈ Rn | x1 > 0}.

Throughout the paper Ω is a domain in Rn, where n � 2. The distance function to
the boundary of Ω is denoted by δΩ . We write Ω′ � Ω whenever Ω is open and Ω′ is
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compact with Ω′ ⊂ Ω. By an exhaustion of Ω we mean a sequence {Ωk} of smooth,
relatively compact domains such that x0 ∈ Ω1, Ωk � Ωk+1, and

⋃∞
N=1 Ωk = Ω.

Let f, g : Ω → [0,∞). We write f 
 g in Ω if there exists a positive constant C
such that C−1g � f � Cg in Ω. Also, we write f � 0 in Ω if f � 0 in Ω but f �= 0
in Ω. Br(x) is the open ball of radius r centred at x. If Ω is a cone and R > 0, we
denote by AR the annulus

AR := {z ∈ Ω | 1
2R � |z| � 2R}.

In this paper we consider a second-order linear elliptic operator P defined on a
domain Ω ⊂ Rn, and let W � 0 be a given function. We write P � 0 in Ω if the
equation Pu = 0 in Ω admits a positive (super)solution. Unless otherwise stated,
it is assumed that P � 0 in Ω.

Throughout the paper it is assumed that the operator P is symmetric and locally
uniformly elliptic. Moreover, we assume that coefficients of P and the function W
are real valued and locally sufficiently regular in Ω (see [14]). For such an operator
P , potential W , and λ ∈ R, we write Pλ := P − λW .

The following well-known Agmon–Allegretto–Piepenbrink (AAP) theorem holds
(see, for example, [2] and references therein).

Theorem 2.1 (the AAP theorem). Suppose that P is symmetric, and let q be the
corresponding quadratic form. Then P � 0 in Ω if and only if q(ϕ) � 0 for every
ϕ ∈ C∞

0 (Ω).

We recall the following definitions.

Definition 2.2. Let q be the quadratic form on C∞
0 (Ω) associated with a sym-

metric non-negative operator P in Ω. We say that a sequence {ϕk} ⊂ C∞
0 (Ω) of

non-negative functions is a null sequence of the quadratic form q in Ω if there exists
an open set B � Ω such that

lim
k→∞

q(ϕk) = 0 and
∫

B

|ϕk|2 dx = 1.

We say that a positive function φ ∈ Cα
loc(Ω) is an (Agmon) ground state of the

functional q in Ω if φ is an L2
loc(Ω) limit of a null-sequence of q in Ω.

Definition 2.3. Let K � Ω, and let u be a positive solution of the equation
Pw = 0 in Ω \ K. We say that u is a positive solution of minimal growth in a
neighbourhood of ∞̄ in Ω if for any K � K ′ � Ω with smooth boundary and any
(regular) positive supersolution v ∈ C((Ω \ K ′) ∪ ∂K ′) of the equation Pw = 0 in
Ω \ K ′ satisfying u � v on ∂K ′, we have u � v in Ω \ K ′.

Theorem 2.4 (Pinchover and Tintarev [34]). Suppose P is a non-negative sym-
metric operator in Ω, and let q be the corresponding quadratic form. Then the
following assertions are equivalent.

(i) The operator P is critical in Ω.

(ii) The quadratic form admits a null-sequence and a ground state φ in Ω.
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(iii) The equation Pu = 0 admits a unique positive supersolution φ in Ω.

(iv) The equation Pu = 0 admits a positive solution in Ω of minimal growth in a
neighbourhood of ∞̄ in Ω.

In particular, any ground state is the unique positive (super)solution of the equation
Pu = 0 in Ω, and it has minimal growth in a neighbourhood of ∞̄.

Let P and W � 0 be as above. The generalized principal eigenvalue is defined by

λ0 := λ0(P, W, Ω) := sup{λ ∈ R | Pλ = P − λW � 0 in Ω}. (2.1)

We also define

λ∞ = λ∞(P, W, Ω) := sup{λ ∈ R | ∃K ⊂⊂ Ω such that Pλ � 0 in Ω \ K}.

Recall that if the operator P is symmetric in L2(Ω, dx), and W > 0, then λ0 (respec-
tively, λ∞) is the infimum of the L2(Ω, W dx)-spectrum (respectively, L2(Ω, W dx)-
essential spectrum) of the Friedrichs extension of the operator P̃ := W−1P (see,
for example, [2] and references therein). Note that P̃ is symmetric on L2(Ω, W dx),
and has the same quadratic form as P .

Definition 2.5. Let Ω � Rn be a domain. We say that Ω is weakly mean convex
if δΩ is weakly superharmonic in Ω.

Recall that δΩ ∈ W 1,2
loc (Ω). Also, any convex domain is of course weakly mean

convex, and if ∂Ω ∈ C2, then Ω is weakly mean convex if and only if the mean
curvature at any point of ∂Ω is non-negative (see, for example, [36]).

Throughout the paper we fix a cone

Ω := {x ∈ Rn | r(x) > 0, ω(x) ∈ Σ}, (2.2)

where Σ is a Lipschitz domain in the unit sphere Sn−1 ⊂ Rn, n � 2. For x ∈ Σ, we
will denote by dΣ(x) the (spherical) distance from x to the boundary of Σ. Note
that δΩ is clearly a homogeneous function of degree 1, that is,

δΩ(x) = |x|δΩ

(
x

|x|

)
= rδΩ(ω). (2.3)

Since the distance function to the boundary of any domain is Lipschitz continuous,
Euler’s homogeneous function theorem implies that

x · ∇δΩ(x) = δΩ(x) almost everywhere in Ω. (2.4)

In fact, Euler’s theorem characterizes all sufficiently smooth positive homogeneous
functions. Hence, (2.4) characterizes the cones in Rn. For spectral results and Hardy
inequalities with homogeneous weights on Rn, see [23].

We note that if Σ is C2, then

δΩ(ω) = sin(dΣ(ω)) near the boundary of Σ. (2.5)

Indeed, for ω ∈ Σ, let z ∈ ∂Ω such that |z − ω| = δΩ(ω), and let y ∈ ∂Σ realize
dΣ(ω). Since Σ is C2, if ω is close enough to ∂Σ, then z is unique and not equal to 0,
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and the points 0, z, y are collinear. Moreover, the acute angle between the vectors−→
0y and

−→
0ω is equal to dΣ(ω). Given that

−→
0z is orthogonal to −→ωz, by elementary

trigonometry in the triangle 0, ω, y, one gets that δΩ(ω) = sin(dΣ(ω)).
Let ∆S be the Laplace–Beltrami operator on the unit sphere S := Sn−1. Then

in spherical coordinates, the operator

Pµ := −∆ − µ

δ2
Ω

has the following skew-product form:

Pµu(r, ω) = −∂2u

∂r2 − n − 1
r

∂u

∂r
+

1
r2

(
−∆Su − µ

u

δ2
Ω(ω)

)
, r > 0, ω ∈ Σ. (2.6)

For any Lipschitz cone the Hardy inequality holds true (as in the case of a suffi-
ciently smooth bounded domain [27]). We have

Lemma 2.6. Let Ω be a Lipschitz cone, and let µ0 := λ0(−∆, δ−2
Ω , Ω). Then

0 < µ0 � 1
4 . (2.7)

In other words, the Hardy inequality∫
Ω

|∇ϕ|2 dx � µ0

∫
Ω

|ϕ|2
δ2
Ω

dx ∀ϕ ∈ C∞
0 (Ω), (2.8)

where 0 < µ0 � 1/4 is the best constant, holds true.
Moreover, if Ω is a weakly mean convex domain, then µ0 = 1/4.

Proof. Using Rademacher’s theorem, it follows that ∂Ω admits a tangent hyper-
plane almost everywhere in ∂Ω. Hence, [27, theorem 5] implies that

µ0 = λ0(−∆, δ−2
Ω , Ω) � λ∞(−∆, δ−2

Ω , Ω) � 1
4 .

We claim that µ0 > 0. Indeed, denote by ΩR the truncated cone

ΩR := {x ∈ Rn | 0 < r < R, ω ∈ Σ}; (2.9)

then
0 < λ0,R := λ0(−∆, δ−2

ΩR
, ΩR)

(see, for example, [27, 31]). By comparison,

µ0 � λ0(−∆, δ−2
Ω , ΩR) and 0 < λ0,R � λ0(−∆, δ−2

Ω , ΩR).

It is well known that if {Ωk} is an exhaustion of Ω, then

lim
k→∞

λ0(P, W, Ωk) = λ0(P, W, Ω).

Hence,
lim

R→∞
λ0(−∆, δ−2

Ω , ΩR) = µ0.

On the other hand, since δΩ is homogeneous of order 1, it follows that

λ0(−∆, δ−2
Ω , ΩR)
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is R-independent. Therefore,

0 < λ0,1 � λ0(−∆, δ−2
Ω , Ω1) = λ0(−∆, δ−2

Ω , ΩR) = lim
R→∞

λ0(−∆, δ−2
Ω , ΩR) = µ0.

Consequently,
µ0 = λ0(−∆, δ−2

Ω , ΩR) > 0.

Assume furthermore that Ω is a convex cone, or even a weakly mean convex cone.
Then it is well known that µ0 = 1/4 (see, for example, [8, 27]).

Remark 2.7. Clearly, Pµ is subcritical in Ω for all µ < µ0, and by proposition 5.8,
P1/4 is subcritical in a weakly mean convex cone. We show in theorem 5.6 that if
µ0 < 1/4 and Σ ∈ C2, then the operator Pµ0 is critical in the cone Ω (cf. [27,
theorem II]).

3. Positive multiplicative solutions

As above, let Ω be a Lipschitz cone. By lemma 2.6 the generalized principal eigen-
value µ0 := λ0(−∆, δ−2

Ω , Ω) satisfies 0 < µ0 � 1/4. We have the following theorem.

Theorem 3.1. Let µ � µ0. Then the equation Pµu = 0 in Ω admits positive solu-
tions of the form

u±(x) = |x|γ±φµ

(
x

|x|

)
, (3.1)

where φµ is a positive solution of the equation(
−∆S − µ

δ2
Ω(ω)

)
φµ = σ(µ)φµ in Σ, (3.2)

− (n − 2)2

4
� σ(µ) := λ0

(
−∆S − µ

δ2
Ω

, 1, Σ

)
, (3.3)

and

γ± :=
2 − n ±

√
(n − 2)2 + 4σ(µ)

2
. (3.4)

Moreover, if σ(µ) > −(n−2)2/4, then there are two linearly independent positive
solutions of the equation Pµu = 0 in Ω of the form (3.1), and Pµ is subcritical
in Ω.

In particular, for any µ � µ0 we have σ(µ) > −∞.

Proof. We first note that if u is a positive solution of the form (3.1), then clearly
φµ > 0 and φµ solves (3.2), and γ± satisfies (3.4).

Fix a reference point x1 ∈ Ω ∩Sn−1, and consider an exhaustion {Σk}∞
k=1 ⊂ Σ ⊂

Sn−1 of Σ (i.e. {Σk}∞
k=1 is a sequence of smooth, relatively compact domains in Σ

such that x1 ∈ Σk � Σk+1 for k � 1, and
⋃∞

k=1 Σk = Σ).
Fix µ � µ0. For k � 1, define the cone

Wk := {x ∈ Rn | r > 0, ω ∈ Σk}.

Consider the convex set K0
Pµ

(Wk) of all positive solutions u of the equation Pµu = 0
in Wk satisfying the Dirichlet boundary condition u = 0 on ∂Wk \ {0}, and the
normalization condition u(x1) = 1.

https://doi.org/10.1017/S0308210516000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000056


98 B. Devyver, Y. Pinchover and G. Psaradakis

Clearly, for µ � µ0 we have

µ � λ0(−∆, δ−2
Ω ,Wk) = sup{λ ∈ R | K0

Pµ
(Wk) �= ∅}.

Moreover, Pµ is subcritical in Wk, and has Fuchsian-type singularities at the origin
and at ∞. Hence, in view of [32, theorem 7.1], it follows that K0

Pµ
(Wk), which is a

convex compact set in the compact-open topology, has exactly two extreme points.
Next, we characterize the two extreme points of K0

Pµ
(Wk) using two different

approaches.

First method We use the results of [25, § 8]. Consider the multiplicative group
G := R� of all positive real numbers. Then G acts on Wk\{0} (and also on Ω̄\{0}) by
homotheties x �→ sx, where s ∈ G and x ∈ Wk \{0}. This is a compactly generating
(cocompact) abelian group action, and Pµ is an invariant elliptic operator with
respect to this action on Wk. In spherical coordinates, a positive G-multiplicative
function on Wk is of the form

f(r, ω) = rγφ(ω), (3.5)

where γ ∈ R. We remark that positive solutions in K0
Pµ

(Wk) satisfy a uniform
boundary Harnack principle on ∂Wk \ {0}. Recall that K0

Pµ
(Wk) has exactly two

extreme points. Hence, by [25, theorems 8.7 and 8.8], λ0(−∆, δ−2
Ω ,Wk) > µ, and

the two extreme points in K0
Pµ

(Wk) are positive G-multiplicative solutions of the
equation Pµu = 0 in Wk, and therefore they have the form

u±,k(r, ω) = rγ±,kφ±,k(ω). (3.6)

In particular, φ±,k vanish on Σk.
Using the spherical coordinates representation (2.6) of Pµ, it follows that φ±,k

are positive in Σ, satisfy φ±,k(x1) = 1, and solve the eigenvalue Dirichlet problem
(

−∆S − µ

δ2
Ω(ω)

)
φ±,k = (γ2

±,k + γ±,k(n − 2))φ±,k in Σk,

φ± = 0 on ∂Σk.

⎫⎪⎬
⎪⎭ (3.7)

On the other hand, since the operator −∆S −µδ−2
Ω has up to the boundary regular

coefficients in Σk, it admits a unique (Dirichlet) eigenvalue σk with a positive
eigenfunction φk satisfying φk(x1) = 1. Moreover, σk is simple. In other words, σk

and φk are respectively the principal eigenvalue and eigenfunction of −∆S − µδ−2
Ω

in Σk.
Hence, φ±,k are equal to φk, and

σk := σk(µ) = (γ2
±,k + γ±,k(n − 2)).

By the strict monotonicity with respect to bounded domains of the principal
eigenvalue of second-order elliptic operators with up to the boundary regular coef-
ficients, it follows that σk(µ) > σk+1(µ).

On the other hand, since

u±,k(r, ω) = rγ±,kφk(ω) > 0, (3.8)
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it follows that γ−,k �= γ+,k, and γ±,k are given by

γ±,k :=
2 − n ±

√
(n − 2)2 + 4σk

2
.

In particular,

γ−,k < γ−,k+1 <
2 − n

2
< γ+,k+1 < γ+,k and σk > − (n − 2)2

4
.

Second method We only indicate briefly the second approach. We use the results
of [29]. By (2.6), the subcritical elliptic operator Pµ has a skew-product form in
Wk = R+ × Σk and satisfies the conditions of [29, theorem 1.1]. Therefore, the
equation Pµu = 0 admits two Martin functions of the form (3.6).

Now, let k → ∞. Then σk ↘ σ � −(n−2)2/4, and up to a subsequence φk → φµ

locally uniformly in Σ. Clearly, σ does not depend on the exhaustion of Σ. Recall
also that for any non-negative second-order elliptic operator L in a domain D and
any exhaustion {Dk} of D we have

λ0(L, W, D) = lim
k→∞

λ0(L, W, Dk).

Hence, σ = σ(µ) = λ0(−∆S − µδ−2
Ω , 1, Σ).

Consequently, γ±,k → γ±, where γ− � −(n − 2)/2 � γ+. Hence, we have that

lim
k→∞

u±,k(r, ω) = lim
k→∞

rγ±,kφk(ω) = rγ±φµ(ω).

If γ− < −(n − 2)/2 < γ+ (or equivalently, σ(µ) > −(n − 2)2/4), then we obtain
two linearly independent G-multiplicative positive solutions of the equation Pµu = 0
in Ω. In particular, Pµ is subcritical in Ω.

Remark 3.2. Note that for n = 2, Σ = S1, and µ = µ0 = 0, we obtain σ(0) = 0,
γ± = 0, and P0 = −∆ is critical in the cone R2 \ {0}.

Remark 3.3. Let Σ be a bounded domain in a smooth Riemannian manifold M ,
and let dΣ be the Riemannian distance function to the boundary ∂Σ. If Σ is smooth
enough, then the Hardy inequality with respect to the weight (dΣ)−2 holds in Σ
with a positive constant CH [37]. A sufficient condition for the validity of such a
Hardy inequality is that Σ is boundary distance regular, and this condition holds
true if Σ satisfies either the uniform interior cone condition or the uniform exterior
ball condition (see the definitions in [37]). For other sufficient conditions for the
validity of the Hardy inequality on Riemannian manifolds, see, for example, [28].

Hence, if the cone Ω � Rn \ {0} is smooth enough, then Σ ⊂ Sn−1 is boundary
distance regular. So, for such Σ ⊂ Sn−1, there exists C > 0 such that −∆S−Cd−2

Σ �
0 in Σ. Note that dΣ(ω) 
 δΩ(ω)|Σ in Σ, and therefore −∆S −C1δ

−2
Ω � 0 in Σ for

some C1 > 0.

In what follows we shall need the following lemma concerning the criticality of
the operator Lµ := −∆S − µδ−2

Ω − σ(µ) in Σ.
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Lemma 3.4. Consider the operator Lµ = −∆S − µδ−2
Ω − σ(µ) on Σ.

(1) We have

µ0 = λ0

(
−∆S +

(n − 2)2

4
, δ−2

Ω , Σ

)
. (3.9)

(2) Assume that Σ ∈ C2, and µ0 < 1/4. Then σ(µ0) = −(n − 2)2/4, and Lµ0 is
critical in Σ with ground state φµ0 ∈ L2(Σ, δ−2

Ω dS).

(3) Assume that Σ ∈ C2, and µ0 = 1/4. Then L1/4 is critical in Σ with ground
state φ1/4 ∈ L2 (Σ, δ−2

Ω log(δΩ)−(1+ε)dS), where ε is any positive number.

(4) Assume that µ < µ0. Then Lµ is positive critical in Σ, that is, Lµ admits a
ground state φµ in Σ, and φµ ∈ L2(Σ).

In particular, in all the above cases, φµ is (up to a multiplicative constant) the
unique positive (super)solution of the equation Lµu = 0 in Σ, and φµ ∈ L2(Σ).

Proof. (1) To prove (3.9) we note that theorem 3.1 implies that for µ � µ0 there
exists a positive solution φµ of

Lµu =
(

−∆S − µ

δ2
Ω

− σ(µ)
)

u = 0 in Σ,

and, since for any µ � µ0 we have σ(µ) � −(n − 2)2/4, it follows that φµ is a
positive supersolution of the equation

Lµu =
(

−∆S − µ

δ2
Ω

+
(n − 2)2

4

)
u = 0 in Σ.

Thus, by the AAP theorem (theorem 2.1) we obtain

µ0 � λ0

(
−∆S +

(n − 2)2

4
, δ−2

Ω , Σ

)
.

Let us now take µ > µ0, and assume by contradiction that −∆S+(n−2)2/4−µδ−2
Ω �

0 in Σ. Then, by definition, there is a positive solution φµ of the equation
(

−∆S − µ

δ2
Ω

+
(n − 2)2

4

)
u = 0 in Σ.

If one defines

ψ(x) = |x|(2−n)/2φµ

(
x

|x|

)
,

then it is immediate to check that ψ is a positive solution of(
−∆ − µ

δ2
Ω

)
u = 0 in Ω.

This implies that
λ0(−∆, δ−2

Ω , Ω) � µ > µ0,
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which is a contradiction. Thus, the operator −∆S + (n − 2)2/4 − µδ−2
Ω cannot be

non-negative in Σ for µ > µ0, and this implies that

µ0 � λ0

(
−∆S +

(n − 2)2

4
, δ−2

Ω , Σ

)
.

Hence, (3.9) is proved.

(2) Since
dΣ(x) ∼ δΩ(x) as x ∈ Σ, dΣ(x) → 0,

and in light of the proof of [27, theorem 5], our assumption that Σ is C2 implies
that

λ∞(−∆S , δ−2
Ω , Σ) = 1

4 ,

which in turn implies that

λ∞

(
−∆S +

(n − 2)2

4
, δ−2

Ω , Σ

)
= 1

4 .

On the other hand, by (1) we have

λ0

(
−∆S +

(n − 2)2

4
, δ−2

Ω , Σ

)
= µ0.

Hence, our assumption that µ0 < 1/4 implies that there is a spectral gap between
the bottom of the L2(Σ, δ−2

Ω dS)-spectrum and the bottom of the essential spectrum
of the operator −∆S + (n − 2)2/4 in Σ. Consequently, the operator −∆S + (n −
2)2/4 − µ0δ

−2
Ω is critical in Σ, with ground state φµ0 ∈ L2(Σ, δ−2

Ω dS). Clearly, the
criticality of −∆S + (n − 2)2/4 − µ0δ

−2
Ω in Σ implies that

σ(µ0) = − (n − 2)2

4
,

and the second part of the lemma is proved.

Before proving (3), we prove (4).

(4) The assumption that µ < µ0 clearly implies that λ∞(−∆S − µδ−2
Ω , 1, Σ) = ∞.

Hence,

− (n − 2)2

4
� σ(µ) = λ0

(
−∆S − µ

δ2
Ω

, 1, Σ

)
< λ∞(−∆S − µδ−2

Ω , 1, Σ) = ∞.

Since λ0 (respectively, λ∞) is the bottom of the L2-spectrum (respectively, essential
L2-spectrum) of the operator −∆S − µδ−2

Ω in Σ, it follows that the operator Lµ

is critical in Σ, and σ(µ) is the principal eigenvalue of the operator −∆S − µδ−2
Ω

with principal eigenfunction φµ ∈ L2(Σ). Hence, the operator Lµ is positive critical
in Σ.

(3) The proof uses a modification of Agmon’s trick (see [3, theorem 2.7] and also [27,
lemma 7]). In order to prove that λ∞(−∆S − 1/(4δ2

Ω), 1, Σ) = ∞, we will show
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that for suitable positive constants c, ε, the function δ
1/2
Ω − δΩ/2 is a positive

supersolution of the equation(
−∆S − 1

4δ2
Ω

− c

δε
Ω

)
u = 0 (3.10)

in a sufficiently small neighbourhood of the boundary of Σ.
We start by denoting a tubular neighbourhood of ∂Σ having width β > 0 by

Σβ := {ω ∈ Σ | dΣ(ω) < β}.

Recall that since Σ is C2, there exists β∗ > 0 such that dΣ ∈ C2 in Σβ∗ . In
particular, −∆SdΣ is bounded on Σβ∗ . Also |∇SdΣ | = 1 and δΩ = sin(dΣ) (by
(2.5)), both on Σβ∗ . We may thus compute

−∆SδΩ = − cos(dΣ)∆SdΣ + sin(dΣ) on Σβ∗ ,

which implies that ∆SδΩ is also bounded on Σβ∗ . In particular, we have

−∆SδΩ(ω) � −h for all ω ∈ Σβ∗ , (3.11)

for some h > 0. Now let c, ε > 0 and compute on Σβ∗ ,(
−∆S − 1

4δ2
Ω

− c

δε
Ω

)(
δ
1/2
Ω − δΩ

2

)

= − 1

4δ
3/2
Ω

(1 − |∇SδΩ |2) − 1

2δ
1/2
Ω

(1 − δ
1/2
Ω )∆SδΩ +

1
8δΩ

− cδ
1/2−ε
Ω +

cδ1−ε
Ω

2

� −δ
1/2
Ω

4
− h

2δ
1/2
Ω

(1 − δ
1/2
Ω ) +

1
8δΩ

− cδ
1/2−ε
Ω +

cδ1−ε
Ω

2
,

where we have used the fact that 1 − |∇SδΩ |2 = sin2(dΣ) = δ2
Ω on Σβ∗ and also

(3.11). Clearly, by fixing ε in (0, 3/2) we obtain that this estimate blows up to +∞
as ω ∈ Σβ∗ approaches the boundary of Σ. Thus, for a smaller β∗ > 0 if necessary,
we proved that δ

1/2
Ω − δΩ/2 is a positive supersolution of (3.10) in Σβ∗ . The APP

theorem (theorem 2.1) implies that∫
Σβ∗

(
|∇u|2 − 1

4δ2
Ω

)
ϕ2 dS � c

∫
Σβ∗

ϕ2

δε
Ω

dS ∀ϕ ∈ C∞
0 (Σβ∗), (3.12)

which together with limdΣ(ω)→0 δ−ε
Ω (ω) = ∞ implies that

λ∞

(
∆S − 1

4δ2
Ω

, 1, Σ

)
= ∞.

As in the proof of (2), one concludes that L = ∆S − 1/(4δ2
Ω)−σ(µ) is critical, with

ground state φ1/4 ∈ L2(Σ).
It remains to show that in fact, φ1/4 ∈ L2(Σ, δ−2

Ω log−(1+ε)(δΩ) dS). In fact, the
arguments used in the proof of [27, lemma 9] show that, as ω ∈ Σ and δΩ(ω) → 0,

φ1/4(ω) 
 δ
1/2
Ω (ω).

This implies that φ1/4 ∈ L2(Σ, δ−2
Ω log−(1+ε)(δΩ) dS) for any ε > 0.
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Proposition 3.5. Let σ(µ) = λ0(−∆S − µδ−2
Ω , 1, Σ). Then:

(1) σ(µ) � −(n − 2)2/4 for any µ � µ0, and if Σ ∈ C2 and µ0 < 1/4, then
σ(µ0) = −(n − 2)2/4;

(2) σ(µ) = −∞ for any µ > 1/4;

(3) if Σ ∈ C2, then σ(µ) > −∞ for all µ � 1/4.

Proof. (1) Recall that by lemma 2.6 we have that 0 < µ0 � 1/4, and by theorem 3.1
σ(µ) � −(n−2)2/4 for all µ � µ0. Moreover, by lemma 3.4, if Σ ∈ C2 and µ0 < 1/4,
then σ(µ0) = −(n − 2)2/4. In particular, for such a µ we have that σ(µ) is finite.

(2) Let µ > 1/4, and suppose that σ(µ) is finite. Then one can find a positive
function φ satisfying

(−∆S − µδ−2
Ω − σ(µ))φ = 0 in Σ.

Take ε > 0 such that µ − ε > 1/4. Clearly,

lim
ω→∂Σ

δ−2
Ω (ω) = ∞ and lim

ω→∂Σ

δΩ(ω)
dΣ(x)

= 1,

where dΣ is the Riemannian distance to the boundary of Σ. Hence, φ is a positive
supersolution of the equation

(−∆S − (µ − ε)d−2
Σ )u = 0

in a neighbourhood of ∞ in Σ.
On the other hand, as in [27], if Σ is a Lipschitz domain, then λ∞(−∆S , d−2

Σ , Σ) �
1/4. Consequently, for such ε, one gets a contradiction to λ∞(−∆S , d−2

Σ , Σ) � 1/4.

(3) Suppose first that µ < 1/4. Recall that since Σ ∈ C2, we have

λ∞(−∆S , δ−2
Ω , Σ) = λ∞(−∆S , d−2

Σ , Σ) = 1/4.

Take ε > 0 such that µ + ε < 1/4. Let φ be a positive solution of the equation

(−∆S − (µ + ε)δ−2
Ω )u = 0

in a neighbourhood of ∞ in Σ, and let φ̃ be a nice positive function in Σ such
that φ̃ = φ in a neighbourhood of ∂Σ. Then, for σ large enough, φ̃ is a positive
supersolution of the equation (−∆S −µδ−2

Ω +σ)u = 0 in Σ. Hence, σ(µ) > −∞ for
all µ < 1/4.

Suppose now that µ = 1/4. By (3.10), ψ := δ
1/2
Ω −δΩ/2 is a positive supersolution

of (
−∆S − 1

4δ2
Ω

− c

δε
Ω

)
u = 0

outside a compact set Kε � Σ. Let ψ̃ be a nice positive function in Σ such that ψ̃ =
ψ in a neighbourhood of ∂Σ. Hence, for σ large enough, ψ̃ is a positive supersolution
of the equation (−∆S − 1/4δ2

Ω + σ)u = 0 in Σ. Hence, σ(1/4) > −∞.
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Remark 3.6. In lemma 3.4 and proposition 3.5 it is assumed that Σ ∈ C2. The
extension of the proposition to the class of Lipschitz domains remains open. We
recall that by the recent result of Barbatis and Lamberti [7, proposition 1], the
Hardy constant of a bounded domain is Lipschitz continuous as a function of bi-
Lipschitz maps that approximate the domain. It seems that finding for a given Lip-
schitz domain a uniform bi-Lipschitz smooth approximation is a non-trivial prob-
lem: we note that in [12, theorem 1] Daneri and Pratelli proved that bi-Lipschitz
homeomorphisms can be approximated by smooth ones in the W 1,p topology for
p < ∞. However, to apply the results in [7], we would need W 1,∞-approximations.

We conclude this section with the following general result that provides us with
a sufficient condition for the criticality of a Schrödinger operator on a precompact
domain. For a general sufficient condition, see [33].

Lemma 3.7. Let P = −∆+V be a non-negative Schrödinger operator on a compact
Riemannian manifold with boundary M , endowed with its Riemannian measure
dx. Denote by δ = δM the distance function to the boundary of M . Assume that
M ∈ C2, V is smooth in the interior of M , and that the equation Pu = 0 in M
admits a positive solution φ ∈ L2(M, δ−2 log−2(δ) dx). Then P is critical in M with
ground state φ and, furthermore, there exists a null-sequence {φk}∞

k=0 for P , which
converges locally uniformly and in L2 to ϕ.

Proof. If q denotes the quadratic form of P , then using the ground state transform
(see, for example, [14]) we have for every ϕ ∈ C∞

0 (M),

q(φϕ) =
∫

M

φ2|∇ϕ|2 dx.

This formula extends easily to every Lipschitz continuous function ϕ that is com-
pactly supported in M . For k � 2, let us define vk : R+ → [0, 1] by

vk(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 0 � t � 1/k2,

1 +
log(kt)
log k

1/k2 < t < 1/k,

1 t � 1/k.

Note that 0 � vk(δ) � 1, and {vk(δ)}k�2 converges pointwise to the constant
function 1 in M . Define

φk := vk(δ)φ.

Then, using that φ ∈ L2
loc, one sees that {φk}∞

k=0 converges locally uniformly, and
hence in L2

loc to φ. We now prove that {φk}∞
k=2 is a null-sequence for P , which

implies that P is critical with ground state φ. If K � M is a fixed precompact open
set, then, clearly, there is a positive constant C such that, for k big enough,∫

K

φ2
k dx 
 1.

Thus, in order to prove that {φk}∞
k=2 is a null-sequence for P , it is enough to prove

that
lim

k→∞

∫
M

φ2|∇vk(δ)|2 dx = 0. (3.13)
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Since |∇δ(x)| � 1 almost everywhere in M , it is enough to show that

lim
k→∞

∫
M

φ2|v′
k(δ)|2 dx = 0.

We compute
∫

M

φ2|v′
k(δ)|2 dx =

∫
{1/k2<δ<1/k}

(
φ

δ log(k)

)2

dx � 4
∫

{δ<1/k}

(
φ

δ log(δ)

)2

dx.

By our hypothesis, the function φ2δ−2 log−2(δ) is integrable on {δ < 1/2}, and
hence

lim
k→∞

∫
{δ<1/k}

(
φ

δ log(δ)

)2

dx = 0,

which shows (3.13). Thus, {φk}k�2 is a null-sequence for P .

4. The structure of K0
Pµ

(Ω)

As above, let Ω be a Lipschitz cone. By lemma 2.6, the generalized principal eigen-
value µ0 := λ0(−∆, δ−2

Ω , Ω) satisfies 0 < µ0 � 1/4.
For µ � µ0, denote by K0

Pµ
(Ω) the convex set of all positive solutions u of the

equation Pµu = 0 in Ω satisfying the normalization condition u(x1) = 1, and the
Dirichlet boundary condition u = 0 on ∂Ω\{0} in the sense of the Martin boundary.
That is, any u ∈ K0

Pµ
(Ω) has minimal growth on ∂Ω \ {0}. For the definition of

minimal growth on a portion Γ of ∂Ω, see [32].
If µ0 < 1/4 and Σ is C2, then in theorem 5.6 (to be proved in what follows) we

show that the operator Pµ0 is critical in Ω, and therefore the equation Pµ0u = 0 in Ω
admits (up to a multiplicative constant) a unique positive supersolution. Moreover,
by theorem 3.1, the unique positive solution is a multiplicative solution of the
form (3.1).

The following theorem characterizes the structure of u ∈ K0
Pµ

(Ω) for any µ < µ0.

Theorem 4.1. Let µ < µ0 � 1/4. Then K0
Pµ

(Ω) is the convex hull of two linearly
independent positive solutions of the equation Pµu = 0 in Ω of the form

u±(x) = |x|γ±φµ

(
x

|x|

)
, (4.1)

where φµ is the unique positive solution of the equation
(

−∆S − µ

δ2
Ω(ω)

)
φµ = σ(µ)φµ in Σ, (4.2)

− (n − 2)2

4
< σ(µ) := λ0

(
−∆S − µ

δ2
Ω

, 1, Σ

)
, (4.3)

and

γ± :=
2 − n ±

√
(2 − n)2 + 4σ(µ)

2
. (4.4)
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Proof. The assumption that µ < µ0 implies that the operator Pµ is subcritical in
Ω. In particular, µ < 1/4, and therefore there exists ε > 0 such that the operator
Pµ+ε is subcritical in a small neighbourhood of a given portion of ∂Ω \ {0}. Since
the operator Pµ and the cone Ω are invariant under scaling, it follows from the local
Harnack inequality, and from the boundary Harnack principle of Ancona for the
operator Pµ in Ω [4] (see also [6]), that the following uniform boundary Harnack
principle holds true in the annulus AR ⊂ Ω. There exists C > 0 (independent of
R) such that

C−1 v(x)
v(y)

� C−1 u(x)
u(y)

� C
v(x)
v(y)

∀x, y ∈ AR, (4.5)

for any u, v ∈ K0
Pµ

(Ω) and R > 0.
Hence, we can use directly the arguments in [32] to obtain that in the subcritical

case the convex set K0
Pµ

(Ω) has exactly two extreme points. Moreover, we can use
directly the method of [25, § 8], to obtain that u is an extreme point of K0

Pµ
(Ω) if

and only if it is a positive multiplicative solution in K0
Pµ

(Ω). Thus, the two extreme
points of K0

Pµ
(Ω) are of the form

u±(x) = |x|γ±φ±

(
x

|x|

)
,

where φ± > 0 in Σ, and solves the equation(
−∆S − µ

δ2
Ω(ω)

)
φ± = σ±φ± in Σ, (4.6)

− (n − 2)2

4
� σ± � σ(µ) := λ0

(
−∆S − µ

δ2
Ω

, 1, Σ

)
(4.7)

and

γ± :=
2 − n ±

√
(n − 2)2 + 4σ±

2
. (4.8)

If γ+ = γ−, then (4.5) implies that u+ 
 u−. Since u±(x) are two extreme points,
and K0

Pµ
(Ω) has exactly two extreme points, it follows that γ+ �= γ−. Therefore,

σ± = σ, where −(n − 2)2/4 < σ � σ(µ) and γ± satisfy

γ± :=
2 − n ±

√
(n − 2)2 + 4σ

2
. (4.9)

Moreover, since φ± solve the same equation in Σ, and K0
Pµ

(Ω) has exactly two
extreme points, it follows that φ± = φ.

Note that by lemma 3.4, φ is a positive solution of minimal growth near ∂Σ if
and only if σ = σ(µ). On the other hand, u± have minimal growth near ∂Ω \ {0}.
Therefore, φ = φµ and σ = σ(µ), where φµ is a ground state satisfying (4.2), and
σ(µ) and γ± satisfy (4.3) and (4.4), respectively.

5. The main result

This section is devoted to our main result concerning the existence of an optimal
Hardy weight for the operator Pµ, which is defined in a cone Ω. In theorem 5.4 we
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prove the case in which µ < µ0 and Ω is a Lipschitz cone, while in theorem 5.6 we
prove the µ = µ0 case under the assumption that Σ ∈ C2.

Let us recall that by theorem 3.1, if µ � µ0, then

σ(µ) := λ0

(
−∆ − µ

δ2
Ω

, 1, Σ

)
� − (n − 2)2

4
,

and there exists a positive solution φµ of the equation(
−∆S − µ

δ2
Ω

− σ(µ)
)

u = 0 in Σ.

Furthermore, by lemma 3.4, the operator

L := Lµ = −∆S − µ

δ2
Ω

− σ(µ)

is critical (for any µ < µ0, and also for µ = µ0 if in addition Σ ∈ C2), and φµ is
the ground state of L.

We first prove the following proposition.

Proposition 5.1. Let Ω be a Lipschitz cone. Let µ � µ0, and let

λ(µ) :=
(2 − n)2 + 4σ(µ)

4
. (5.1)

Then λ(µ) � 0, and the following Hardy inequality holds true in Ω:
∫

Ω

|∇ϕ|2 dx − µ

∫
Ω

|ϕ|2
δ2
Ω

dx � λ(µ)
∫

Ω

|ϕ|2
|x|2 dx ∀ϕ ∈ C∞

0 (Ω). (5.2)

Proof. The fact that λ(µ) � 0 follows from σ(µ) � −(n − 2)2/4, which has been
proved in theorem 3.1. Define

ψ(x) = |x|(2−n)/2φµ

(
x

|x|

)
.

Then, taking into account that(
−∆S − σ(µ) − µ

δ2
Ω

)
φµ = 0 in Σ,

and writing Pµ in spherical coordinates (2.6), it follows that ψ is a positive solution
of the equation

(Pµ − λ(µ)|x|−2)u = 0 in Ω.

Thus, the operator Pµ − λ(µ)|x|−2 is non-negative in Ω, and so (5.2) holds by the
AAP theorem (theorem 2.1).

Remark 5.2. In the µ < µ0 case, the Hardy inequality (5.2) can be obtained using
the supersolution construction of [14]: indeed, by theorem 4.1, the equation Pµu = 0
has two linearly independent, positive solutions in Ω, of the form

u±(x) = |x|γ±φµ

(
x

|x|

)
.
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By the supersolution construction (see [14, lemma 5.1]), the positive function

u1/2 := (u+u−)1/2 = |x|(2−n)/2φµ

(
x

|x|

)

is a solution of (
Pµ − |∇(u+/u−)|2

4(u+/u−)2

)
u = 0 in Ω.

It is easy to check that
|∇(u+/u−)|2
4(u+/u−)2

=
λ(µ)
|x|2 ,

and by the AAP theorem, the Hardy inequality (5.2) holds.

Remark 5.3. In the µ � µ0 case, the Hardy inequality (5.2) can also be obtained
using spherical coordinates, Fubini’s theorem, and the well-known one-dimensional
Hardy inequality

∫ ∞

0
(v′)2tn−1 dt �

(
n − 2

2

)2 ∫ ∞

0
v2tn−3 dt, (5.3)

valid for all functions v ∈ H1(R+) that vanish at ∞.
Indeed, suppose that ϕ ∈ C∞

c (Ω). Then we have that ϕΣr
, the restriction of ϕ

on Σr, is in C∞
c (Σ). Consequently, by the definition of σ(µ), it follows that for all

ϕ ∈ C∞
c (Ω) and each r > 0 we have

∫
Σr

|∇ωϕ|2 dSr − µ

∫
Σr

ϕ2

δ2
Ω(ω)

dSr � σ(µ)
∫

Σr

ϕ2 dSr.

Multiplying this by r−2 and integrating in R+ with respect to r, we arrive at
∫ ∞

0

∫
Σr

|∇ωϕ|2
r2 dSr dr − µ

∫ ∞

0

∫
Σr

ϕ2

r2δ2
Ω(ω)

dSr dr � σ(µ)
∫ ∞

0

∫
Σr

ϕ2

r2 dSr dr.

Recall that in spherical coordinates we have

|∇ϕ|2 =
|∇ωϕ|2

r2 + ϕ2
r,

and taking into account (2.3), the last inequality is written as
∫

Ω

|∇ϕ|2 dx − µ

∫
Ω

ϕ2

δ2
Ω(x)

dx � σ(µ)
∫

Ω

ϕ2

|x|2 dx +
∫

Σ

∫ ∞

0
ϕ2

rr
n−1 dr dS,

where we have used Fubini’s theorem on the last term. Applying (5.3) in the inner
integral of the last term and using Fubini’s theorem again, we obtain (5.2).

We now investigate the optimality of the Hardy inequality (5.2) when µ < µ0.

Theorem 5.4. Let Ω be a Lipschitz cone, and let µ < µ0. Then λ(µ) > 0. Fur-
thermore, the weight W := λ(µ)|x|−2 is an optimal Hardy weight for the operator
Pµ in Ω in the following sense.
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(1) The operator Pµ − λ(µ)|x|−2 is critical in Ω, i.e. the Hardy inequality
∫

Ω

|∇ϕ|2 dx − µ

∫
Ω

|ϕ|2
δ2
Ω

dx �
∫

Ω

V (x)|ϕ|2 dx ∀ϕ ∈ C∞
0 (Ω)

holds true for V � W if and only if V = W . In particular,

λ0

(
Pµ,

1
|x|2 , Ω

)
= λ(µ).

(2) The constant λ(µ) is also the best constant for (5.2) with test functions sup-
ported either in ΩR or in Ω \ ΩR, where ΩR is a fixed truncated cone of the
form (2.9). In particular,

λ∞

(
Pµ,

1
|x|2 , Ω

)
= λ(µ).

(3) The operator Pµ − λ(µ)|x|−2 is null critical at 0 and at ∞ in the following
sense: for any R > 0 the (Agmon) ground state of the operator Pµ −λ(µ)|x|−2

given by

v(x) := |x|(2−n)/2φµ

(
x

|x|

)

satisfies ∫
ΩR

(
|∇v|2 − µ

|v|2
δ2
Ω

)
dx =

∫
Ω\ΩR

(
|∇v|2 − µ

|v|2
δ2
Ω

)
dx = ∞.

In particular, the variational problem

inf
ϕ∈D1,2

Pµ
(Ω)

∫
Ω

|∇ϕ|2 dx − µ
∫

Ω
(|ϕ|2/δ2

Ω) dx∫
Ω

(|ϕ|2/|x|2 dx)

does not admit a minimizer.

(4) The spectrum and the essential spectrum of the Friedrichs extension of the
operator W−1Pµ = λ(µ)−1|x|2Pµ on L2(Ω, W dx) are both equal to [1,∞).

Remark 5.5. As was pointed out in remark 5.2, if µ < µ0, then the Hardy inequal-
ity (5.2) can be obtained by applying the supersolution construction from [14]. Thus,
theorem 5.4 extends theorem 1.1 to the particular singular case, where Ω is a cone
and Pµ is the Hardy operator (which is singular on ∂Ω).

Proof of theorem 5.4. In light of our assumption that µ < µ0 � 1/4, it follows that
the operator Pµ is subcritical in Ω. Moreover, by theorem 4.1, σ(µ) > −(n− 2)2/4,
so λ(µ) > 0. For such a µ, consider the operator L = Lµ on Σ ⊂ Sn−1 defined by

L = −∆S − µ

δ2
Ω

− σ(µ),

with the corresponding non-negative quadratic form

qL(ψ) =
∫

Σ

(
|∇ωψ|2 − µ

|ψ|2
δ2
Ω

− σ(µ)|ψ|2
)

dS, where ψ ∈ C∞
0 (Σ).
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Notice that by lemma 3.4, L is critical in Σ with the ground state φµ ∈ L2(Σ). We
normalize φµ so that

∫
Σ

φ2
µ dS = 1.

On the other hand, it is well known that the operator

R := − ∂2

∂r2 − n − 1
r

∂

∂r
− (n − 2)2

4r2

is critical on R+, and r(2−n)/2 is its ground state. Indeed, the corresponding quad-
ratic form qR of R (endowed with the measure rn−1 dr) is given by

qR(u) =
∫ ∞

0

[
(u′)2 − (n − 2)2

4
u2

r2

]
rn−1 dr, u ∈ C∞

0 (R+),

and gives rise to the critical operator R on R+.
Recall that in spherical coordinates Pµ − W has the skew-product form

Pµ − W = R ⊗ IΣ −
IR+

r2 ⊗ L =
∂2

∂r2 − n − 1
r

∂

∂r
− (n − 2)2

4r2 +
1
r2 L,

where IA is the identity operator on A. Consequently, it is natural to construct a
null-sequence for Pµ − W of the product form

{ϕk(r, ω)}∞
k=1 = {uk(r)φk(ω)}∞

k=1

that converges locally uniformly to r(2−n)/2φµ(ω), and by theorem 2.4, this implies
that the operator Pµ − W is critical and r(2−n)/2φµ(ω) is its ground state.

Let {uk(r)}∞
k=1 be a null sequence for the critical operator R on R+, converging

locally uniformly to r(2−n)/2. So,

qR(uk) → 0,

∫ 2

1
(uk)2rn−1 dr = 1.

On the other hand, let {φk(ω)}∞
k=1 be (up to the normalization constants) the

sequence of ground states defined by (3.7) on Σk, so that∫
Σ

φ2
k dS = 1 and qL(φk) = (σk(µ) − σ(µ))

∫
Σ

φ2
k dS → 0.

Note that the normalization of φk is different from the one used in the proof of
theorem 3.1. Recall that the operator Lµ0 = −∆S − µ0δ

−2
Ω − σ(µ0) is non-negative

on Σ. Therefore,

µσ(µ0)
µ0

∫
Σ

φ2
k dS + µ

∫
Σ

|φk|2
δ2
Ω

dS � µ

µ0

∫
Σ

|∇ωφk|2 dS. (5.4)

On the other hand,∫
Σ

|∇ωφk|2 dS = σk

∫
Σ

φ2
k dS + µ

∫
Σ

φ2
k

δ2
Ω

dS. (5.5)

By (5.4) and (5.5) we get(
1 − µ

µ0

) ∫
Σ

|∇ωφk|2 dS �
(

σk − µσ(µ0)
µ0

) ∫
Σ

φ2
k dS � σ1 − µσ(µ0)

µ0
. (5.6)
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Since µ < µ0, one gets that {φk} is bounded in W 1,2
0 (Σ), and therefore (up to a

subsequence) {φk} converges, in L2 and locally uniformly, to φ, a positive solution
of Lu = 0 in Σ with

∫
Σ

φ2 dS = 1. Since L is critical in Σ, φ = φµ. Hence, by the
Harnack inequality, ∫

Σ1

φ2
k dS 
 1,

and therefore {φk} is a null-sequence.
We claim that there exists a subsequence {kl} ⊂ N such that {ul(r)φkl

(ω)} is
a null-sequence for the operator Pµ − W in Ω that converges locally uniformly to
r(2−n)/2φµ(ω).

Indeed, fix the pre-compact open set B := {(r, ω) | r ∈ (1, 2), ω ∈ Σ1}. Note
that for the quadratic form Q of Pµ − W in Ω, if u = u(r) is compactly supported
in R+ and ψ = ψ(ω) is compactly supported in Σ, we have

Q(u(r)ψ(ω)) = qR(u)‖ψ‖2
2 +

( ∫ ∞

0
u2(r)rn−3 dr

)
qL(ψ).

For each k, notice that by the definition of a null-sequence, uk is compactly sup-
ported in R+. So, for l � 1, let {kl}∞

l=1 be a subsequence such that

qR(ul)‖φkl
‖2
2 = qR(ul) <

1
l

and ( ∫ ∞

0
u2

l (r)r
n−3 dr

)
qL(φkl

) <
1
l
.

Thus, liml→∞ Q(ul(r)φkl
(ω)) = 0.

On the other hand, {ul(r)φkl
} converges uniformly in B to r(2−n)/2φµ(ω), and

hence
∫

B
(ul(r)φkl

(ω))2 dx 
 1.
Therefore, {ul(r)φkl

(ω)}∞
l=1 is indeed a null-sequence for Pµ − W . It follows that

Pµ − W is critical in Ω with the ground state r(2−n)/2φµ(ω). Moreover, since R is
null critical around 0 and ∞ it follows that Pµ − W is in fact null-critical around
0 and ∞.

Next we prove that the spectrum of W−1Pµ is [1,∞). Let us keep our assumption
that φµ is normalized so that ‖φµ‖2 = 1. If ξ ∈ R, then it easily checked (cf. [14])
that (

R − (n − 2)2ξ2

|x|2

)
(rn−2)iξ−1/2 = 0,

and therefore (
Pµ −

(
1 +

(n − 2)2

λ(µ)
ξ2

)
W

)
((rn−2)iξ−1/2φµ(ω)) = 0. (5.7)

Define the subspace E of L2(Ω, W dx) that consists of all functions of the form
u(r)φµ(ω), where u ∈ L2(R+, rn−1λ(µ)/r2 dr). We are going to define a spectral
representation of W−1Pµ restricted to the subspace E . Notice that the measure on
E is rn−1λ(µ)/(r2) dr ⊗ dS, so that

E = L2
(

R+, rn−1 λ(µ)
r2 dr

)
⊗ span{φµ}.
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Recall that the classical Mellin transform is the unitary operator M : L2(R+) →
L2(R) defined by

Mf(ξ) =
1√
2π

∫ ∞

0
f(r)riξ−1/2 dr.

Consider the composition C of the unitary operator

U : L2
(

R+, rn−1 λ(µ)
r2 dr

)
→ L2(R+)

given by

f(r) �→
√

λ(µ)
n − 2

f(r1/(n−2)),

with the Mellin transform M. Define

T : E �→ L2(R); T (u(r)φµ(ω)) = (Cu)(ξ) = (M(U(u)))(ξ).

So, T is a unitary operator. By (5.7), the operator T (W−1Pµ)T −1 is the multipli-
cation by the real function (1 + (n − 2)2ξ2/λ(µ)) on L2(R), with values in [1,∞).
Therefore, the spectrum of W−1Pµ, restricted to E , is [1,∞). So, the spectrum of
W−1Pµ on L2(Ω, W dx) contains [1,∞). But the Hardy inequality (5.2) implies
that the spectrum of W−1Pµ must be included in [1,∞). Hence, the spectrum of
W−1Pµ on L2(Ω, W dx) is [1,∞).

For k � 2, define the subspace Ek (respectively, E1/k) of L2(Ω, W dx) con-
sisting of functions of the form u(r)φ(ω), where u ∈ L2((k,∞), rn−1λ(µ)/r2 dr)
(respectively, u ∈ L2((0, 1/k), rn−1λ(µ)/r2 dr)). Denote by Pk (respectively, P1/k)
the restriction of Pµ to Ek (respectively, E1/k), with Dirichlet boundary conditions
at {k} × Σ (respectively, at {1/k} × Σ). Notice that by symmetry considerations
(under x �→ x−1), the spectrum of W−1Pk and the spectrum of W−1P1/k are
equal. Moreover, by the fact that the essential spectrum is stable under compactly
supported perturbations, and since the discrete spectrum of W−1Pµ is empty, the
spectrum of W−1Pµ is equal to the union of the spectrum of W−1Pk, and of the
spectrum of W−1P1/k. Thus, the spectra of W−1Pk and W−1P1/k are both equal
to [1,∞).

Also, the best constant C0 for the validity of the Hardy inequality
∫

V0

(
|∇ϕ|2 − µ

δ2
Ω

ϕ2
)

dx � C0

∫
V0

Wϕ2 dx ∀ϕ ∈ C∞
0 (V0),

in V0, an arbitrarily small neighbourhood of zero, is equal to the bottom of the
essential spectrum of W−1P1/k (for any k � 2). Thus, it is equal to 1. Similarly,
using W−1Pk instead, one concludes that the best constant C∞ for the validity of
the Hardy inequality

∫
V∞

(
|∇ϕ|2 − µ

δ2
Ω

ϕ2
)

dx � C∞

∫
V∞

Wϕ2 dx ∀ϕ ∈ C∞
0 (V∞),

in V∞, an arbitrarily small neighbourhood at ∞, is equal to 1. This finishes the
proof of theorem 5.4.
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We now turn to the µ = µ0 case, for which we need to assume more regularity
on Σ.

Theorem 5.6. Assume that Σ ∈ C2.

(1) If µ0 < 1/4, then λ(µ0) = 0, and the operator Pµ0 is critical in Ω, and
null-critical around 0 and ∞. In particular, the Hardy inequality

∫
Ω

|∇ϕ|2 dx � µ0

∫
Ω

ϕ2

δ2
Ω

dx ∀ϕ ∈ C∞
0 (Ω)

cannot be improved.

(2) If µ0 = 1/4 and λ(1/4) = 0, then the operator P1/4 is critical in Ω, and
null-critical around 0 and ∞. In particular, the Hardy inequality

∫
Ω

|∇ϕ|2 dx � 1
4

∫
Ω

ϕ2

δ2
Ω

dx ∀ϕ ∈ C∞
0 (Ω)

cannot be improved.

(3) If µ0 = 1/4 and λ(1/4) > 0, then the weight W1/4 := λ(1/4)|x|−2 is optimal
in the sense of theorem 5.4. In particular, the Hardy inequality (5.2) cannot be
improved. Moreover, the spectrum and the essential spectrum of the Friedrichs
extension of the operator (W1/4)−1P1/4 on L2(Ω, W1/4dx) are both equal to
[1,∞).

Proof. Define W (x) := λ(µ0)|x|−2. Let us start by proving that in all cases, Pµ0−W
is critical. Recall that in spherical coordinates Pµ0 − W has the following skew-
product form:

Pµ0 − W = R ⊗ IΣ −
IR+

r2 ⊗ L =
∂2

∂r2 − n − 1
r

∂

∂r
− (n − 2)2

4r2 +
1
r2 Lµ0 .

So, as in the first part of the proof of theorem 5.4, it is natural to construct a
null-sequence for Pµ0 − W of the product form

{ϕk(r, ω)}∞
k=1 = {uk(r)φk(ω)}∞

k=1

that converges locally uniformly to r(2−n)/2φµ0(ω).
As in the proof of theorem 5.4, let {uk(r)}∞

k=1 be a null sequence for the critical
operator R on R+, converging locally uniformly to r(2−n)/2. So,

qR(uk) → 0,

∫ 2

1
(uk)2rn−1 dr = 1.

However, the definition of {φk} differs from the one of theorem 5.4. Let us nor-
malize φµ0 so that

∫
Σ

φ2
µ0

dS = 1 (by lemma 3.4, φµ ∈ L2(Σ)). By lemmas 3.4
and 3.7, there exists a null sequence {φk} for Lµ0 , converging locally uniformly and
in L2(Σ) to φµ0 . Thus, normalizing φk so that∫

Σ

φ2
k dS = 1,

https://doi.org/10.1017/S0308210516000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000056


114 B. Devyver, Y. Pinchover and G. Psaradakis

one has for k large enough, by the Harnack inequality,∫
Σ1

φ2
k dS 
 1.

Let B = {(r, ω) | r ∈ (1, 2), ω ∈ Σ1}. We now choose the subsequence {kl} ⊂ N as
in the proof of theorem 5.4: let {kl}∞

l=1 be a subsequence such that

qR(ul)‖φkl
‖2
2 = qR(ul) <

1
l

and ( ∫ ∞

0
u2

l (r)r
n−3 dr

)
qL(φkl

) <
1
l
.

The same computation made in the proof of theorem 5.4 shows that

lim
l→∞

Q(ul(r)φkl
(ω)) = 0 and

∫
B

(ul(r)φkl
(ω))2 dx 
 1,

so that {ul(r)φkl
(ω)}∞

l=1 is indeed a null sequence for Pµ−W . It follows that Pµ−W
is critical in Ω with a ground state r(2−n)/2φµ(ω). Moreover, since R is null critical
around 0 and ∞ it follows that Pµ − W is in fact null-critical around 0 and ∞.

(1) Assume now that µ0 < 1/4. By the first part of the proof, the operator Pµ0 −
λ(µ0)|x|−2 is critical, and null-critical around 0 and ∞. By lemma 3.4, σ(µ0) =
−(n − 2)2/4, so λ(µ0) = 0. It follows that Pµ0 is critical, and null-critical around 0
and ∞.

(2) Suppose that µ0 = 1/4, and λ(1/4) = 0. Then by the first part of the proof, the
operator P1/4 = P1/4 − λ(1/4)|x|−2 is critical, and null-critical around 0 and ∞.

(3) Assume that µ0 = 1/4, and λ(1/4) > 0. Then, following the proof of theorem 5.4,
one concludes that W is an optimal weight for P1/4.

In the particular case of the half-space, we can compute the constants appearing
in theorems 5.4 and 5.6.

Example 5.7 (see [14, example 11.9] and [19]). Let Ω = Rn
+, let µ � µ0 = 1/4

and consider the subcritical operator Pµ := −∆−µx−2
1 in Ω. Let α+ be the largest

root of the equation α(1 − α) = µ, and let

η(µ) := n − 1 +
√

1 − 4µ = n − 2 + 2α+.

Then
v0(x) := x

α+
1 , v1(x) := x

α+
1 |x|−η(µ)

are two positive solutions of the equation Pµu = 0 in Ω that vanish on ∂Ω \ {0}.
Therefore, λ(µ) = η2(µ)/4, and for µ � µ0 = 1/4 we have the following optimal

Hardy inequality
∫

Rn
+

|∇ϕ|2 dx − µ

∫
Rn

+

ϕ2

x2
1

dx � η2(µ)
4

∫
Rn

+

ϕ2

|x|2 dx ∀ϕ ∈ C∞
0 (Rn

+).
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In particular, the operator −∆ − µx−2
1 − λ(µ)|x|−2 is critical in Rn

+ with the ground
state ψ(x) := x

α+
1 |x|−η(µ)/2. Note that for µ = 0 we obtain the well-known (optimal)

Hardy inequality (see [30])

∫
Rn

+

|∇ϕ|2 dx � n2

4

∫
Rn

+

ϕ2

|x|2 dx ∀ϕ ∈ C∞
0 (Rn

+),

while for µ = µ0 = 1/4 we obtain the optimal double Hardy inequality (see [19])

∫
Rn

+

|∇ϕ|2 dx − 1
4

∫
Rn

+

1
x2

1
ϕ2 dx � (n − 1)2

4

∫
Rn

+

ϕ2

|x|2 dx ∀ϕ ∈ C∞
0 (Rn

+). (5.8)

It turns out that in the weakly mean convex case, λ(1/4) is always positive.

Proposition 5.8. Assume that Σ ∈ C2 and Ω is weakly mean convex. Then
λ(1/4) > 0.

Proof. Since Ω is weakly mean convex (i.e. −∆δΩ � 0 in Ω), it follows that δ
1/2
Ω is

a positive supersolution of P1/4u = 0 in Ω. We proceed by contradiction: assume
that λ(1/4) = 0. Then by theorem 5.6 the operator P1/4 is critical, and therefore
δ
1/2
Ω is a positive solution of P1/4u = 0 in Ω. Thus, necessarily −∆δΩ = 0 in the

sense of distributions. Since δΩ ∈ W 1,2
loc (Ω) (or directly by Weyl’s lemma) we have

that δΩ is harmonic and in particular δΩ ∈ C∞(Ω). This means that the singular
set of δΩ ,

Sing(δΩ) := {x ∈ Ω | δΩ(x) is achieved by more than one boundary point}
= {x ∈ Ω | δΩ is not differentiable}

(see, for example, [16, theorem 3.3]), is empty. In light of Motzkin’s theorem [38,
theorem 1.2.4], Rn \ Ω is convex. We may without loss of generality assume that
0 ∈ ∂Ω. By considering a supporting hyperplane of Rn \ Ω at 0, we find that
necessarily Rn \ Ω is included in a half-space. This implies that Σ contains a half-
sphere. If this half-sphere is strictly contained in Σ, then K := Rn \ Ω is a closed
convex cone not containing a line (i.e. K is pointed). Hence, its dual cone K∗, and
thus its polar cone Ko = −K∗ ⊂ Ω, has non-empty interior (see, for instance, [9,
p. 53]). Clearly, δΩ(x) = |x| whenever x ∈ Ko, but this contradicts the harmonicity
of δΩ in Ω.

Hence, Σ is precisely a half-sphere, and thus Ω is a half-space. But by example 5.7,
in the half-space {x1 > 0} we have λ(1/4) = (n − 1)2/4 > 0, and we have arrived
at a contradiction.

Assume that Ω is a domain admitting a supporting hyperplane H at zero. With-
out loss of generality, we may assume that H = ∂Rn

+. Recall that in this case
λ0(−∆, δ−2

Ω , Ω) � 1/4 [27, theorem 5]. Also, δΩ � δH in Ω. Consequently, for
appropriate test functions ϕε supported in a relative small neighbourhood of the
origin in Ω, we have that for 0 � µ � 1/4 the corresponding Rayleigh–Ritz quo-
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tients satisfy the inequality
∫

Ω
(|∇ϕε|2 − µ(|ϕε|2/δ2

Ω)) dx∫
Ω

(|ϕε|2/|x|2) dx
�

∫
H

(|∇ϕε|2 − µ(|ϕε|2/δ2
H)) dx∫

H
(|ϕε|2/|x|2) dx

=
(n − 1 +

√
1 − 4µ)2

4
+ o(1),

where o(1) → 0 as ε → 0. Thus, example 5.7 implies the following corollary.

Corollary 5.9. Suppose that a domain Ω admits a supporting hyperplane at zero,
and let Pµ = −∆ − µδ−2

Ω , where 0 � µ � 1/4. Then

λ0(Pµ, |x|−2, Ω) � (n − 1 +
√

1 − 4µ)2

4
.

6. On the optimality of an inequality by Filippas et al .

In this section we generalize examples 1.4 and 5.7 concerning the half-space Rn
+.

We consider the following family of Hardy inequalities in Rn
+, obtained by Filippas

et al . [19]:
∫

Rn
+

|∇ϕ|2 dx �
∫

Rn
+

(
β1

x2
1

+
β2

x2
1 + x2

2
+ · · · +

βn

x2
1 + · · · + x2

n

)
ϕ2 dx

∀ϕ ∈ C∞
0 (Rn

+). (6.1)

According to [19, theorem A], the Hardy inequality (6.1) holds if and only if the
βis are of the form

β1 = −α2
1 + 1

4 , βi = −α2
i + (αi−1 − 1

2 )2, i = 2, . . . , n, (6.2)

where the αi, i = 1, . . . , n, are arbitrary real numbers. Without loss of generality,
we can – and will – assume that the αi, i = 1, . . . , n, in (6.2) are non-positive.
Define

V (β1, . . . , βj) =
(

β1

x2
1

+
β2

x2
1 + x2

2
+ · · · +

βj

x2
1 + · · · + x2

j

)
, j = 1, . . . , n.

Let 2∗ = 2n/(n−2) be the Sobolev exponent. In [19, theorem B], it was shown that
(6.1) can be improved by adding to the right-hand side a Sobolev term of the form
C(

∫
Rn

+
|ϕ|2∗

dx)2/2∗
if and only if αn < 0. Notice that, β1, . . . , βn−1 being fixed,

taking αn = 0 corresponds to taking the greatest βn possible in (6.2).
Our aim in this section is to show that when αn = 0 (and under an extra

assumption on the αi, i = 1, . . . , n − 1), not only can one not add a Sobolev
term, but in fact one cannot even add any term of the form

∫
Rn

+
Wϕ2 dx, W � 0,

to the right-hand side of (6.1). In other words, if αn = 0, the operator −∆ −
V (β1, . . . , βn) is critical in Rn

+. This implies in particular (see [35]) that (6.1) cannot
be improved by adding to the right-hand side any weighted Sobolev term of the form
C(

∫
Rn

+
ρ|ϕ|2∗

dx)2/2∗
, where ρ � 0; an improvement of the result obtained in [19].
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Theorem 6.1. Consider the Hardy inequality (6.1), where the βi, i = 1, . . . , n, are
defined in terms of non-positive αi, i = 1, . . . , n, by (6.2). Assume that αn = 0
and that α1, . . . , αn−1 are either all distinct or all negative. Then the operator
P := −∆−V (β1, . . . , βn) is critical in Rn

+, i.e. the Hardy inequality (6.1) cannot be
improved. Furthermore, the weight βn|x|−2 is an optimal weight for the subcritical
operator −∆ − V (β1, . . . , βn−1) in Rn

+.

Proof. Define Xk(x) := (x1, . . . , xk, 0, . . . , 0). Let (βi)n
i=1 satisfy (6.2), and define

ψ(x) := |X1|−γ1 |X2|−γ2 · · · |Xn|−γn ,

where γi are defined by

γ1 = α1 − 1
2 , γi = αi − αi−1 + 1

2 , i = 2, . . . , n.

Then

β1 = −γ1(1 + γ1), βi = −γi

(
2 − i + γi + 2

i−1∑
k=1

γk

)
, i = 2, . . . , n,

and, according to [19, (2.3)],

−∆ψ

ψ
= V (β1, . . . , βn).

Hence, ψ is a positive solution of the equation Pu = 0 in Rn
+. By the AAP theorem,

this implies the validity of (6.1).
For x = (x1, . . . , xn) ∈ Rn

+ \ {0}, define

r = |x|, ω =
x

|x| , ωi =
xi

r
, 1 � i � n.

Notice that ω ∈ S+ := Sn−1 ∩ {x1 > 0}. Since αn = 0 we have

ψ(x) = φ(ω)r−
∑n

i=1 γi = φ(ω)r(2−n)/2,

where
φ(ω) := ψ|S+ = ω−γ1

1 (ω2
1 + ω2

2)−γ2/2 · · · (ω2
1 + · · · + ω2

n)−γn/2.

Define
W (ω) :=

β1

ω2
1

+ · · · +
βn−1

ω2
1 + · · · + ω2

n−1
,

and let

L := −∆Sn−1 − W (ω) − βn +
(n − 2)2

4
and

R := − ∂2

∂r2 − n − 1
r

∂

∂r
− (n − 2)2

4r2 .

Then, in spherical coordinates, P has the skew-product form

P = R +
1
r2 L.

Recall that R is critical on (0,∞), and its ground state is r(2−n)/2.
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Lemma 6.2. The operator L is critical on S+, with ground state φ ∈ L2(S+).

Once lemma 6.2 is proved, the rest of the proof of theorem 6.1 follows along the
lines of the proof of theorem 5.4.

Proof of lemma 6.2. We have

Pψ = 0 = φRr(2−n)/2 + r−(n+2)/2Lφ.

Since
Rr−(n−2)/2 = 0 in R+,

one concludes that
Lφ = 0 in S+.

For x ∈ S+, let ρ be the spherical distance function to ∂S+ = {ω ∈ S+ | ω1 = 0},
the boundary of S+. Let dS be the Riemannian measure on S+. We claim that

∫
S+∩{ρ�1/2}

(
φ(ω)

ρ log(ρ)

)2

dS < ∞. (6.3)

Clearly, (6.3) implies that φ ∈ L2(S+) and, moreover, by lemma 3.7, (6.3) implies
that L is critical, with ground state φ. In fact, since φ is smooth in the interior of
S+ and

ρ(ω) ∼ ω1(ω) as ω ∈ S+ and ρ(ω) → 0,

(6.3) is equivalent to
∫

S+∩{ω1�1/2}

(
φ(ω)

ω1 log(ω1)

)2

dS < ∞. (6.4)

For i = 1, . . . , n − 1, define

Ei = {ω ∈ S+ | ω1 � ε, . . . , ω2
i � ε, ω2

i+1 > ε}.

Then all the Ei are disjoint, and if ε < 1/n, one can write the ε-neighbourhood
S+ ∩ {ω1 � ε} of ∂S+ as the disjoint union

S+ ∩ {ω1 � ε} = E1 ∪ · · · ∪ En−1.

Notice that on Ei,

φ(ω) � Cεω
−γ1
1 (ω2

1 + ω2
2)−γ2/2 · · · (ω2

1 + · · · + ω2
i )−γi/2.

Hence,
∫

Ei

(
φ(ω)

ω1 log(ω1)

)2

dS � Cε

∫
Ei

log−2(ω1)ω−2
1 ω−2γ1

1 · · · (ω2
1 + · · · + ω2

i )−γi dS.

If ε is small enough, then on Ei,

dS � dω1 ⊗ · · · ⊗ dωi ⊗ dν(ω1, . . . , ωi),
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where dν(ω1, . . . , ωi) is the standard Hausdorff measure on the (n − i − 1)-sphere
ω2

i+1 + · · · + ω2
n = σ2, with σ2 = 1 − (ω2

1 + · · · + ω2
i ). Thus,

∫
Ei

(
φ(ω)

ω1 log(ω1)

)2

dS

� C̃ε

∫
[0,ε]i

log−2(ω1)ω−2
1 ω−2γ1

1 · · · (ω2
1 + · · · + ω2

i )−γi dω1 · · · dωi. (6.5)

For λ1, . . . , λi real numbers and k integer, define

Ii(λ1, . . . , λi, k) :=
∫

[0,ε]i
log−2(ω1)ω−2

1 ω−2λ1
1 · · · (ω2

1 + · · · + ω2
i )−λi

× |logk(ω2
1 + · · · + ω2

i )| dω1 · · ·dωi.

One has the elementary fact

Ii(λ1, . . . , λi, k) � Cε

⎧⎪⎪⎨
⎪⎪⎩

Ii−1(λ1, . . . , λi−2, λi−1 + λi − 1/2, k), λi > 1/2,

Ii−1(λ1, . . . , λi−1, k), λi < 1/2,

Ii−1(λ1, . . . , λi−1, k + 1), λi = 1/2.

(6.6)

Case 1 (assume the αk, k = 1, . . . , n − 1, are all distinct). Then, for every 2 �
j � k � i,

γj +
k∑

l=j+1

(γl − 1
2 ) = αk − αj−1 + 1

2 �= 1
2 .

Moreover,

−2 − 2γ1 − 2
k∑

j=2

(γj − 1
2 ) = −2 − 2αk − (k − 2) + (k − 1) = −2αk − 1. (6.7)

Thus, by using (6.6) i times in (6.5), and (6.7), one gets

∫
Ei

(
φ(ω)

ω1 log(ω1)

)2

dS � C

i∑
k=1

∫ ε

0
log(ω1)−2ω

−2−2γ1−2
∑k

j=2(γj−1/2)
1 dω1

� C

i∑
k=1

∫ ε

0
log(ω1)−2ω−2αk−1

1 dω1,

where by convention the sum
k∑

j=2

(γj − 1/2)

is zero when k = 1. By hypothesis, αk � 0, and therefore log(ω1)−2ω−2αk−1
1 is

integrable at zero, and thus one concludes the validity of (6.3).
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Case 2 (assume αk < 0, for all k = 1, . . . , n − 1). Then, by using (6.6) i times in
(6.5), and (6.7), one gets

∫
Ei

(
φ(ω)

ω1 log(ω1)

)2

dS � C

i∑
k=1

∫ ε

0
|logn(k)(ω1)|ω

−2−2γ1−2
∑k

j=2(γj−1/2)
1 dω1

� C

i∑
k=1

∫ ε

0
|logn(k)(ω1)|ω−2αk−1

1 dω1,

where n(k) is an integer. Since αk < 0, the function |logn(k)(ω1)|ω−2αk−1
1 is inte-

grable at zero, and therefore (6.3) holds.

Remark 6.3. We believe that theorem 6.1 should hold in the general case, without
any extra assumption on α1, . . . , αn−1. We leave this for future investigation.

7. A differential inequality

Throughout this section, Ω denotes a domain in Rn such that 0 ∈ ∂Ω, and
Pµ = −∆ − µδ−2

Ω . Our aim is to obtain a Hardy-type inequality with the best
constant for the (non-negative) operator Pµ in Ω, assuming that δΩ satisfies the
linear differential inequality

−∆δΩ +
n − 1 +

√
1 − 4µ

|x|2 (x · ∇δΩ − δΩ) � 0 in Ω. (7.1)

The above differential inequality certainly holds true for any µ � 1/4 if Ω is a
weakly mean convex cone (see definition 2.5); it also holds for µ = 1/4 if Ω is a ball
touching the origin (see remark 7.2).

For µ = 1/4, (7.1) is equivalent to the differential inequality

−|x|n−1 div(|x|1−n∇δΩ) − n − 1
|x|2 δΩ � 0 in Ω.

It is worth mentioning here that Filippas et al . [18, theorem 3.2] obtained an
improved Hardy inequality under the assumption that Ω is a bounded domain such
that 0 ∈ Ω, and δΩ satisfies the differential inequality

− div(|x|2−n∇δΩ) � 0 in Ω,

while Gkikas [22] proved the Hardy inequality in an exterior domain Ω such that
0 ∈ Rn \ Ω̄, and δΩ satisfies the differential inequality

− div(|x|1−n∇δΩ) � 0 in Ω.

Let
η(µ) := n − 1 +

√
1 − 4µ. (7.2)

Recall that for Ω = Rn
+, we obtained in example 5.7 that λ0(Pµ, |x|−2, Ω) =

η2(µ)/4. The following theorem shows that if Ω is a domain such that δΩ is
a positive supersolution of a certain second-order linear elliptic equation, then
λ0(Pµ, |x|−2, Ω) � η2(µ)/4.
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Theorem 7.1. Let Ω be a domain in Rn such that 0 ∈ ∂Ω. Fix µ � 1/4, and let
η(µ) be as in (7.2). Suppose that δΩ satisfies the differential inequality

−∆δΩ +
η(µ)
|x|2 (x · ∇δΩ − δΩ) � 0 in Ω (7.3)

in the sense of distributions. Then the following improved Hardy inequality holds:∫
Ω

|∇ϕ|2 dx − µ

∫
Ω

|ϕ|2
δ2
Ω

dx � η2(µ)
4

∫
Ω

|ϕ|2
|x|2 dx ∀ϕ ∈ C∞

0 (Ω). (7.4)

Assume, furthermore, that Ω admits a supporting hyperplane at zero and µ � 0;
then

λ0(Pµ, |x|−2, Ω) =
η2(µ)

4
.

Proof. As in example 5.7, we write α+ for the largest root of the equation α(1−α) =
µ, and ψ := δ

α+
Ω |x|−η(µ)/2. We will show that ψ is a supersolution of the equation

(Pµ − (η(µ)/2)2|x|−2)u = 0 in Ω,

and then (7.4) follows from the AAP theorem (theorem 2.1). By direct computation
we obtain(

Pµ − η2(µ)
4|x|2

)
ψ = α+

(
−∆δΩ +

η(µ)
|x|2 x · ∇δΩ

)
δ

α+−1
Ω |x|−η(µ)/2

+
η(µ)

2
(n − 2 − η(µ))δα+

Ω |x|−η(µ)/2−2

= α+

(
−∆δΩ +

η(µ)
|x|2 (x · ∇δΩ − δΩ)

)
δ

α+−1
Ω |x|−η(µ)/2

� 0,

where for the second equality we have used the fact that n − 2 − η(µ) = −2α+,
which follows from our choice of α+.

Assume that Ω is a domain admitting a supporting hyperplane H at zero. With-
out loss of generality, we may assume that H = ∂Rn

+. Then by corollary 5.9 we
have that λ0(Pµ, |x|−2, Ω) � η2(µ)/4. Thus, λ0(Pµ, |x|−2, Ω) = η2(µ)/4.

Remark 7.2. (1) By (2.4), inequality (7.3) holds true for any µ � 1/4 if Ω is a
weakly mean convex cone.

We claim that (7.3) holds true also for µ = 1/4 in any ball B with 0 ∈ ∂B, and
consequently, the Hardy inequality (7.4) is valid in this case.

Indeed, let B = BR(x0) be an open ball in Rn centred at x0 such that |x0| = R.
Then for x ∈ B we have δB(x) = R − |x0 − x|, and simple computations show that
for any x ∈ B \ {x0},

∇δB(x) =
x0 − x

|x0 − x| and − ∆δB(x) =
n − 1

|x0 − x| .

Thus, for (7.3) to be true it is enough that for any x ∈ B \ {x0} we have

−∆δB +
η(µ)
|x|2 (x · ∇δB − δB) =

n − 1
|x0 − x| +

n − 1
|x|2

(
x · (x0 − x)

|x0 − x| − R + |x0 − x|
)

� 0.
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After some cancellations this is equivalent to

|x|2 � (R|x0 − x| − x0 · (x0 − x)) ∀x ∈ B. (7.5)

Some further simple computations imply that (7.5) is equivalent to

(x0 − x) · x � R2 − R|x0 − x| ∀x ∈ B.

This is true since

2(x0 − x) · x = R2 − |x|2 − |x0 − x|2 � R2 − |x0 − x|2 � 2(R2 − R|x0 − x|),

where in the last inequality we have used α2 − β2 � 2(α2 − αβ) for all α, β ∈ R.

(2) If the origin is an isolated point of ∂Ω, then the classical Hardy inequality
near 0 and theorem 2.1 imply that inequality (7.3) cannot hold.

(3) It would be interesting to characterize the domains for which (7.3) holds true.
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