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Abstract

Most past approaches to data mining have been based on association rules. However, the simple application of association
rules usually only changes the user’s problem from dealing with millions of data points to dealing with thousands of rules.
Although this may somewhat reduce the scale of the problem, it is not a completely satisfactory solution. This paper presents
a new data mining technique, called knowledge cohesion (KC), which takes into account a domain ontology and the user’s
interest in exploring certain data sets to extract knowledge, in the form of semantic nets, from large data sets. The KC
method has been successfully applied to mine causal relations from oil platform accident reports. In a comparison with
association rule techniques for the same domain, KC has shown a significant improvement in the extraction of relevant
knowledge, using processing complexity and knowledge manageability as the evaluation criteria.
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1. INTRODUCTION

We live in a world of fast generation and distribution of enor-
mous amounts of information. One way of dealing with that is
simply to randomly pick a manageable amount of informa-
tion and react to it. However, this strategy is not well suited
to the business world, given that knowledge is crucial to sur-
vival in a competitive environment. This creates a need for
automated information extraction techniques.

Any engineering field creates artifacts such as products or
processes. During an artifact’s life cycle a great deal of data is
produced, starting with an initial set of specifications and
continuing through maintenance reports. Many of these docu-
ments are textual. Data management technology has evolved
and has provided the means for organizing and storing infor-
mation. Having information available is a necessary, but not
sufficient, condition for learning. People must be able to re-
trieve and digest information to craft new knowledge from
the stored information. Unfortunately, making sense of engi-
neering project data, even for a specific domain area or com-
pany, overwhelms human capabilities. Decision-making pro-
cesses improve whenever successful and unsuccessful cases
are understood, revealing flawed decision patterns that should
be avoided (Maher & Garza, 1995; Soibelman & Kim, 2000).

Despite the difficulties, the importance of learning from
the past has led researchers to carefully look for analytic tech-

niques to handle large amounts of engineering data. In this
scenario, the use of data mining (DM) techniques has become
an attractive alternative to classic mathematical models when
applied to specific tasks such as problem diagnosis and fail-
ure prediction (Varde et al., 2007). DM is the process of dis-
covering relevant knowledge from large data repositories
(Fayyad et al., 1996). Although this assertion is broadly ac-
cepted, making this process work is still a challenge. There
are many DM algorithms that differ in the type of information
they extract, ranging from association rules to classifications
or patterns. One of the most popular DM strategies is the as-
sociation rules technique (Agrawal & Srikant, 1994), which
takes a data set of items, and generates IF–THEN rules based
on relations of co-occurrence between elements. Unfortu-
nately, association rule techniques still fail to produce a man-
ageable amount of relevant information, usually producing
too many results, which include much redundancy.

A large amount of research has been done on DM, most of
it applied to classification tasks, such as identifying patterns
of good and bad maintenance strategies, knowledge transfer
from maintenance to design (Jadhav et al., 2007), identifying
calibration models in building structural components (Saitta
et al., 2005), and eliciting the customer’s project requirements
(Lo et al., 2007).

Refrat et al. (2004) investigated the benefits of using DM
techniques to assist facility managers in the identification of
potential building maintenance problems given data from
building air handling units and thermostatic mixing valves.
Maintenance data were organized in a database. Five thousand
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work orders for a specific building, collected during a period
of approximately 2 years, were used. Classic statistical
methods and different DM techniques such as association
rules, clustering algorithms, and decision trees were applied.
They concluded that DM techniques support the identifica-
tion of critical cost issues, as well as the creation of predictive
plans.

Jadhav et al. (2007) used classification DM techniques to
identify the causes of high severity events that lead to major
financial losses in aeroengine artifacts. They focused on pro-
viding answers to a predefined set of maintenance questions
that could improve posterior design. Information was orga-
nized in a data warehouse, which makes the mining process
easier because such data contains no noise.

Saitta et al. (2005) investigated an innovative use of DM
for system identification, also known as model calibration,
in structural engineering. Classic approaches (Modak et al.,
2002; Koh et al., 2003) have been based on calculations of
structural stiffness coefficients to predict structural behavior.
They took a different approach, using DM techniques to re-
veal properties of good models that could explain observa-
tions of structural behavior and create models from these ob-
servations.

Chen et al. (2003) claimed that product design would ben-
efit from prior customer feedback and marketing analysis.
They investigated the use of neural networks to elicit user re-
quirements for the design of wooden golf clubs. Their ap-
proach requires an input matrix of previously recorded graded
imposed constructs that reflect the perception of the product,
with an emphasis on requirements originating from multicul-
tural differences among users.

1.1. The problem

The main challenge for knowledge engineers when using the
association rules technique is tuning syntactic metrics, such
as support and confidence. These parameters prune the result
set, reducing it to a manageable size (Silberschatz & Tuzhilin,
1995). However, there might be relevant data patterns with
low statistical significance that will remain hidden. Relaxing
the pruning task to allow these patterns to appear will often
lead to an unmanageable result set, and a strict cut might
cause relevant knowledge to be discarded from the result
set. This is the well-established trade-off analysis of balanc-
ing precision and recall. We believe that a semantic-oriented
pruning technique that increases the number of relevant ex-
tracted knowledge items while decreasing irrelevant out-
comes is in order.

1.2. The knowledge cohesion (KC) hypothesis

We use the association rules DM technique (AC) as a research
baseline, because of its large acceptance by the artificial intel-
ligence (AI) community. As in any AC algorithm, frequent
data ensembles become seeds for finding relevant patterns.

However, instead of finding IF–THEN rules that exceed a cer-
tain confidence threshold, we take a semantic approach, gen-
erating instantiated semantic nets as the output of the mining
process. We claim that the inclusion of available domain
knowledge and emphasis on the relations leads to a more
manageable result set and more significant mined patterns.
Our premises are the following:

1. In general, before analyzing data from a domain, knowl-
edge engineers investigated the field by looking at
documents or interviewing experts in order to build
up a minimum amount of domain understanding that
helps interpret results. For example, soda is a refrigerant
in a supermarket domain.

2. The knowledge engineer may want to steer the search
toward specific combinations, for instance, an itemset,
which contains the elements people and major failure
(not necessarily a frequent pair of information items
in the source data).

Based on these two premises, we created a new DM tech-
nique called KC. The KC technique is dependent on a domain
ontology: the better the ontology, the more efficient the tech-
nique. KC has two components: from the domain ontology,
we calculate the semantic distance (SD) between two ele-
ments, and from the user’s preferences and own view of the
domain, we obtain the relevance assessment (RA) of the
item pairs.

SD and RA are the two domain-dependent components
that guide the KC method during itemset selection phase.
In addition, instead of creating IF–THEN rules, the KC
method produces instantiated semantic nets as its outcome,
which facilitates the understanding of the results.

1.3. Paper outline

This paper continues by providing background information
on domain ontologies, followed by a detailed description
of the KC approach. A scenario using a syntactic database
illustrates the working of the KC method, and a compara-
tive analysis provides support for our claim that KC brings
a considerable advantage to DM techniques. Data results
from applying KC to oil field accident reports’ data set and
a performance comparison to association rule techniques
are presented in the discussion section.

2. BACKGROUND KNOWLEDGE

In this section we present the background necessary to under-
stand our proposed DM technique. Because we consider
the existence of a formal domain description, we present
the concept of domain ontology and introduce the AC DM
technique.
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2.1. Domain ontology

Ontology is a broad concept with different meanings. Phil-
osophers use the term to refer to the general study of the na-
ture of being. Since the late 1980s, computer scientists have
applied the concept of ontology to knowledge acquisition
fields. Thus, in his seminal work in this area, Gruber
(1993) refers to ontology as a specification of a conceptuali-
zation. This definition narrows the representation power of a
domain ontology because it neglects the fact that an ontology
represents a group’s view of a domain, fits a set of tasks, and
may change with time and use, as in any knowledge represen-
tation (Shirky, 2007). In our work we adopt a more specific
definition to emphasize these three issues. We define ontol-
ogy as a description of a domain negotiated by a community
that will use it for specific purposes such as computational re-
use or human shared understanding. The description, which
may change over time, includes a list of terms and the rela-
tions between them. Each term contains a name, a list of per-
tinence rules, exceptions, and comments. A relation contains
a name, the number of terms included in the relationship (the
relation’s arity), and the prescribed behavior resulting from
applying the relation to the terms.

Ontology has long been a means for sharing domain data,
information, and knowledge among system development
group members. For example, Lenat et al. (1990) tried to
build a single ontology for everything, but at that time, they
could not envision the challenge this task presents, as it in-
volves keeping up to date knowledge that, by definition,
evolves with time.

Although ontology was at first primarily associated with
knowledge-based systems (KBS) development, currently, it
has become embedded in many other systems. Its importance
soared as it was increasingly used in Web information re-
trieval systems (Etzkorn, 2006; Li & Ramani, 2007). How-
ever, ontology is not a panacea, for it can only represent a

group view of a domain to be used for predefined tasks. To
determine the applicability of an ontology we need evaluation
metrics (Sirim et al., 2003), such as cohesion, which mea-
sures the modular relatedness between concepts of a domain
ontology (Yao, 2005).

In addition to building systems, ontologies have been used
for evaluating software quality, based on the degree of cou-
pling among ontologies used in the software. Orme et al.
(2006) claim that the more coupled the ontologies, the harder
it will be to maintain the software bug-free.

Generally, an ontology has a graphical representation as
illustrated in Figure 1, which describes a marketplace. An in-
terpretation of the figure would be,

A market basket contains groceries and clothing. Clothing
may be formal or sports clothing, and tennis shoes are a
type of sports shoes, which are a type of sports clothing.
Beverages and food are groceries, and appetizer and salad
are types of food. Olives are a type of appetizer.

Although we acknowledge that an ontology may get out of
date because of changes in the world it represents, we
believe that for engineering domains it satisfactorily repre-
sents the meaning of things in a domain for at least a 3-year
time frame. Consequently, a domain ontology may function
as additional knowledge in the DM process, providing a
good basis to guide the search process. However, as in all
heuristic search methods, the hints provided by the knowl-
edge within a domain ontology accelerate the process, but
might also prune relevant knowledge, depending on its repre-
sentativeness.

Given that an ontology can be represented as a graph in a
Euclidian world, there is always a measurable distance be-
tween two directly or indirectly connected terms. Intuitively,
we can infer whether a pair of terms is closer than another pair

Fig. 1. A sample ontology for the marketplace.
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of terms. Because the terms of the graph are connected by se-
mantic links, we assume it is possible to at least partially
quantify a semantic link, even when it might not be a precise
quantification.

Our assumption is based on observations made over 10
years of building ontologies for domains related to petroleum
engineering, such as oil process plant design, oil pumping
equipment failure detection, and oil production failure diag-
nosis. Our process of building ontologies consists of gather-
ing concepts, eliciting their meanings, negotiating a proper
terminology, negotiating the relation among concepts, break-
ing or unifying concepts, and clustering or splitting groups of
concepts. Concept relations are carefully designed; there are
no random assignments. We only assign an is-a relationship
to two concepts when our whole group agrees that the con-
cepts share most of the properties expected by the meaning
of the is-a relationship.

For example, in the domain description illustrated in
Figure 1, we can intuitively consider that the terms “cocktail”
and “olive” are closer than the terms “cocktail” and “shoes.”
The challenge is thus to create an objective metric to estimate
the SD between the two terms. Rather than defining a specific
measurement, we want to be able to compare groups of con-
cepts and discriminate closer pairs from more distant ones.

Building a domain ontology requires a great deal of effort
to ensure that all the concepts needed for the envisioned task
are properly described. “Properly” is a qualitative and subjec-
tive metric that transfers the responsibility for verifying the
ontology quality to the group of knowledge engineers who
developed it. Kramer and Kaidl (2004) proposed two quanti-
tative metrics, cohesion and coupling, to evaluate the quality
of a domain ontology based on a set of production rules that
reflects the knowledge encoded in a KBS. The set of proper-
ties, or slots, describing a domain concept constitute a frame.
A description is cohesive whenever the degree of member-
ship between frames is a function of the number of common
properties. Kramer and Kaidl claim that KBS rules can be
used to measure cohesion of a frame and, indirectly, the qual-
ity of a domain ontology. According to them, the cohesion of
a frame is a function of the number of its slots that are encoded
in the same the KBS rules. Their proposal is to use knowledge
rules to infer domain ontology quality. We adopt a similar
perspective, but a different approach. We propose to use a
domain ontology to evaluate the quality of knowledge rules
elicited by DM techniques.

2.2. AC DM technique

A database of transactions D is a set of n transactions ft1, . . . ,
tng. The ti values are typical vectors of items of the form
(ti1, . . . , tim), whose components are discrete values, called
features or attributes. Thus, an item tij denotes the values
of the jth feature Tj of the transaction ti. In the following de-
scription, the i subscript will be left out when implied by the
context.

A set of items is referred to as an itemset (or pattern). An
itemset that contains k items is a k-itemset. The set fX, Yg
represents a 2-itemset. The frequency of occurrence of an
itemset is the number of records that contains the itemset.
This frequency is also known as the support of an itemset.
An itemset that has a predefined minimum support (itemset
selection threshold) becomes a relevant candidate pattern.
The number of records required for an itemset to satisfy the
support threshold varies according to the knowledge en-
gineer’s objectives. The objective might be to study frequent
patterns (e.g., in more than 60% of the data collection) or the
objective might be to study high impact patterns that, even
though they may happen only few times, are responsible for
major losses or gains in a company’s investment. High sup-
port values prune recall, but lessen precision. Knowledge en-
gineers select support values considering the tradeoff be-
tween retrieving a human-manageable number of patterns
to be analyzed and allowing relevant patterns emerge.

Although support is a metric to measure the frequency of an
itemset in the database, confidence is a metric to measure the
degree of confidence that a subset will be present in an itemset
when some other subset has been found. Support and confi-
dence metrics form the basis of the AC DM technique.

An association rule R is an expression X! Y, where X (rule
left-hand side or rule antecedent) and Y (rule right-hand side
or rule consequent) are subsets of items.

Extracting an association rule X! Y means that the itemset
containing only the subsets X and Y is frequent enough to be a
candidate rule. In addition, it means that there is a high degree
of confidence in inferring that whenever X is found in a trans-
action there is also a high probability that Y will appear. Rule
confidence and support are represented by Eqs. (1) and (2),
respectively, where nXY is the number of transactions in D
containing X and Y, nX is the number of transactions in D con-
taining only X, and n is the number of transactions in D.

support(R) ¼ nXY

n
, (1)

confidence(R) ¼ nXY

nX
: (2)

Generation of AC is a common approach for mining data
sets because it is easy to understand what a rule is. Unfortu-
nately, this approach usually only changes the problem
from dealing with huge amounts of data to dealing with an
unmanageably large number of rules. Results that include
more than 100,000 rules are not uncommon.

Filtering the outcomes is the main approach to address this
problem (Lenca et al., 2007). It represents a postprocessing
step to be executed on top of the mining method’s results.
Metrics such as degree of novelty (Lavrac et al., 1999) and in-
formation entropy (Lavrac et al. 1999; Dhar et al., 2000)
qualify the outcomes and help filter what should be the final
result.
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We propose a different DM approach. Like AC, it starts
with itemsets as the working elements to create outcomes.
However, instead of generating IF–THEN rules based on con-
ditional probability theory, our method generates semantic
networks layered over a domain ontology. Search is guided
by the knowledge in the ontology. New patterns are anchored
in old known knowledge through a display that overlays the
rules and the ontology, and therefore users understand the
results more easily.

3. THE KC DM TECHNIQUE

Our approach is based on KC. The KC algorithm is an exten-
sion of the AC technique. It is an empirical method that relies
on the existence of a domain ontology to forget two selection
metrics, SD and RA, to substitute for the confidence metric.

3.1. The rationale for the KC method

The KC method stems from our intuition that existing knowl-
edge should be taken into account when searching for new
knowledge in large data sets, because either new knowledge
will make more sense when anchored on old knowledge, or
what is already known can be removed from the search
results. To find a way to transform this intuition into an
objective metric, we started observing how knowledge
engineers (KEs) build domain ontologies. The selected con-
cepts are domain specific, but the relationships between any
two concepts are general (e.g., Is-a, Part-Of, Is-an-attrib-
ute-of, Causes, Time-Follows, and Space-Follows). The rela-
tionship between two concepts is carefully chosen and re-
flects the way KEs envision the domain. Whenever two
concepts are related by an Is-a relationship, it is expected
there is a set–subset relationship. It is also expected the two
concepts share most of the properties that characterize both
concepts. For example, when one says that dog Is-a mammal,
it is expected that dog inherits all identification properties of
mammals such as the way it reproduces and breathes. This
close identity relationship suggests any mined knowledge
containing to concepts connected by an Is-a relationship
has a low probability of aggregating new knowledge to the
analysis.

Following the same reasoning, we verified the semantics of
the Part-of relationship. What does it mean to say that engine
222 is Part-of the Toyota Corolla 2008? The composition re-
lation generally means that the whole needs its parts to be it-
self, that is, there would be no Toyota Corolla 2008 without
engine 222. However, engine 222 may be a part of many
other cars. Consequently, a mined pattern that brings up
two concepts that are bonded by a Part-of relationship brings
up more information than it would if the concepts were only
related by an Is-a relationship, but there is still a low degree of
novelty because the existence of the Toyota would imply the
specific engine.

In contrast, there are other relationships, such as Is-an-
attribute-of, that create less expectation of related concepts

appearing. For example, being cheap may be an attribute of
popular cars, but the concept “being cheap” may relate to a
great variety of other things as well. Consequently, a mined
pattern containing two concepts related by the Is-an-attri-
bute-of relationship has a better chance of being more innova-
tive. We did the same type of qualitative analysis on the
Causes and Follows relationships.

We translate this intuition about the indicators of relation-
ship novelty into an SD calculation. During DM, KEs might
also have intuitions about specific correlated concepts they
might want to check or avoid. To allow the KEs to direct the
search, we have also created RA evaluation criteria.

3.2. SD

In the domain of information systems, SD is a measurement
of word similarity. This measure has been widely used for
document retrieval on the Web. Calculation of SD begins
by considering how the distance between two adjacent con-
cepts reflects their similarity (Roddick Hornsby & de Vries,
2003). The world is represented as a directed graph of terms
in which each node must have a label reflecting its meaning.
Implicitly, a domain is represented as a finite state machine in
which there is a cost to navigate from one concept to another.
SD reflects how related two terms are in a specific domain,
and how much information one term aggregates to another
when they appear together.

Instead of assigning a numeric value to links between
specific terms, we take a broader approach. We consider
an ontology of the domain, represented as a semantic net
in which nodes and links have meaning. We assign to
each semantic link a numeric value that reflects the correla-
tion between two adjacent nodes. Note that the numeric
value is neither a measure of similarity between two adja-
cent concepts nor a reflection of the relation between two
specific concepts. Rather, the value reflects the relationship
weight when connecting two terms. Because the values as-
signed to the correlation between nodes are never precise,
we decided to lose accuracy to gain flexibility to incorpo-
rate more relationships and make the method more applic-
able in actual data sets.

In addition, as terms are connected through semantic links,
the distance between two terms may vary depending on the re-
lationship(s) connecting them. Each semantic link connecting
terms has an associated relationship weight. The numeric value
reflects the amount of information a semantic link brings to the
understanding of a domain. The closer the information nodes,
the smaller the numeric values that map the semantic link.

The semantic relation is directional; that is, when one de-
cides to use the relation Is-a between two terms, there is a
clear understanding about which term is the subset and which
is the superset. This is an important observation because
when evaluating the SD between two terms, the distance
may be different depending on the direction of the path. SD
has the following properties:
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† Asymmetry: SD(A, B) = SD(B, A). The SD between
terms A and B is generally different from B to A. For ex-
ample, take the relation Is-a (cat, mammal). No addi-
tional information is added to mammal when one al-
ready knows that the element in question is a cat.
However, knowing that the element is a cat when all
that is known is that it is a mammal adds a restriction
on what subset of mammal is being referred to.

† Transitivity: SD(A, B)^ SD(B, C)! SD(A, C). This be-
havior is inherited from the fact that the ontology is rep-
resented by a graph.

† Reflexivity: SD(A, A). This behavior denotes a relation be-
tween instances of the same concept. For instance, con-
sider a term called Cause-of-Accident. There may be an
immediate cause, but during investigation we discover a
sequence of events from which one causes the other,
such as “the pump burned” because “the oil flow was
too low” because “the main oil vessel was empty” because
“the automatic pump control did not work properly” be-
cause “equipment maintenance was not performed as
scheduled.” The events are semantically close examples
of things that should have not happened, but they might
have occurred in different times, which may explain an
SD between any the two adjacent instances.

We have created a provisional weight assignment for the
most common semantic links, illustrated in Table 1. The as-
signed values are a subjective measurement that reflects the
expected behavior of the relationship.

† Is-a relation denotes the set–subset relationship. The re-
lation connects elements that are closely related. It in-
cludes the inheritance behavior, through which a subset
inherits the attributes and behaviors of its correlated set.
SD between subset and set is extremely small, mostly in-
significant on the order of 0.5. We have considered the
Is-a relation as the baseline for which SD equals zero.
However, following the same relation in the opposite di-
rection provides additional information, namely, that
they are not the same. It reflects a restriction on the over-
all set. Although the terms are closely related we as-
signed a small extra point, as illustrated in Table 1, to
signal the semantic nuance.

† Part-of relation denotes composition. If A and B are
parts of C, then C is only present if A and B are present.
The elements are not from the same semantic, but are
fairly close. We consider that when the whole is present,
the parts are present as well. As a result, the additional
information, provided by the parts, is small. However,
the whole and its parts are of a different nature; conse-
quently, the SD between them must be greater than the
one associated with the Is–a relationship. For example,
knowing that there is a car reminds us that there must
be a wheel. In contrast, knowing that there is a wheel
does not necessarily lead to the image of a car.

† Is-attribute-of relation denotes properties of an object,
such as color or price of a car. Properties describe ob-
jects or concepts of a domain. For example, it is ex-
pected that a car object will have properties that describe
it, such as its color, price, and brand. However, color is a
concept related to objects other than cars.

† Cause–Effect relation denotes the causality relationship
between two terms. In general, the objects are from dif-
ferent semantic classes such as sickness and symptoms.

† Precedence relationship: precedence, both temporal
and spatial, relates terms from the same domain but hap-
pening in a different time or place. They are semanti-
cally close but must reflect the temporal or spatial dis-
tance.

† Other relations between objects are considered the upper
value. As we adjust the model, other relations may dem-
onstrate enough importance to receive special treatment.
For now, relations different from the ones mentioned
here are treated as others.

After transforming the semantic relationships into weights
on graph relationships, finding the correlation between two
terms implies applying a function that combines all weights
in the path from a starting node to a target node. To simplify,
we consider this function as a simple sum of weights. This
means we are considering the Euclidean distance between
two nodes in the graph.

3.3. RA

Another important concept in our work is the user’s current
interests. The user may query the database to verify the fre-
quency of specific events or even the existence of a specific
correlation between events. Any on-line analytical processing
(OLAP) technique can satisfy this need.

We have used explicit targets with a different perspective.
Unlike an OLAP search in a database, we proceed by finding
(or removing) patterns that contain significant evidence of the
correlations selected. This RA impacts the mining process it-
self because it guides the search.

User-provided target items increase the importance of pat-
terns that contain target elements during the mining process,
thus increasing the chances of emergence of infrequent pat-
terns that may be interesting to the user.

Table 1. Semantic distances

Relation SD(A, B) SD(B, A) SD(A, A)

Is-a 0 0.5 0
Part-of 1.5 1.0 0
Is-attribute 2.5 2.0 0
Causes 2.5 2.5 0.5
Precedes (time) 2.5 2.5 0
Precedes (space) 2.5 2.5 0
Others 3.0 3.0 0
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For example, suppose we have the data set shown in
Table 2. A user might query this data set to obtain the rele-
vance of the correlation between X and Y. The answer reflects
the frequency with which X and Y appear together. The OLAP
approach takes care of this need. In contrast, users might be
misled by the answer. As illustrated in Table 2, X and Y appear
in the context of X–Y–Z–K. In an OLAP intervention, the con-
text in which the pattern X–Y appears is lost; that is, the OLAP
answer does not uncover the fact that X–Y pattern may be pre-
sent only within a macro pattern X–Y–Z–K.

Using RA, the pattern X–Y–Z–K will be returned. RA is a
qualitative measurement assigned to pairs of concepts. We
consider three levels of RA:

1. Low RA (1) means that the user is not interested in pat-
terns that contain this pair of concepts.

2. Average RA (2) is the default measure for any pair of
concepts.

3. High RA (4) means that the user is interested in patterns
containing this pair of concepts.

We have mapped this qualitative measurement to the nu-
meric values presented inside the parentheses.

3.4. KC calculation algorithm

As explained above, KC is based on the knowledge of the do-
main, represented by domain ontology, and the user’s estima-
tions of the relevance assessment of co-occurring concepts.
The first provides the degree of soundness and surprise that a
given pattern may generate, whereas the second reflects the re-
finements in the domain representation caused by the different
perspectives different analysts may have about the world.

KC takes the domain knowledge as input to calculate the
SD between terms described in the ontology. Initially, rela-
tion weights are as shown in Table 1. The SD between any
two terms equals the Euclidian distance considering the mini-
mum path connecting them. As domain understanding grows,
the weights of the relation might change.

In our first implementation, a Dijkstra method is used to
calculate the minimum path between any two terms. An n�
n matrix is created to store distances between terms (where
n is the number of terms). Each cell of this matrix contains
the SD between the term in the line and the term in the col-
umn, that is, cellij contains the SD between the term described
in matrix linei and the term described in matrix columnj.

The second piece of input information guiding the KC
mining process is the degree of relevance assessment. Any
pair of terms is considered of medium relevance assessment
unless a user says otherwise. For instance, assume biologists
dealing with events that describe feeding behaviors in ani-
mals. It might be the case that the correlation between date
and place is known and obvious for them. Consequently, it
seems reasonable that they will want to minimize their atten-
tion to patterns that include date–time relationship. This lack
of interest, when disclosed, helps filter irrelevant patterns. On
the other hand, it becomes possible for low-frequency term
correlations to appear, because of users’ assignment of high
relevance assessment to them.

KC starts by generating itemset candidates from the data set.
As in any Apriori-based algorithm (Agrawal & Srikant, 1994),
it considers only itemsets with enough support, that is, itemsets
that appear with a certain frequency in the data set. However,
frequency is only used to provide an initial cut. Frequent
itemsets compose an unordered list of candidate solutions.
Each candidate itemset is further analyzed using the KC metric.
Whenever an itemset KC is greater than the minimum KC, the
candidate itemset is considered a sound piece of knowledge to
be displayed using the ontology as a mask that provides extra
information, such as the relation between terms in the itemset.
We define the KC of an itemset as shown in Eq. (3):

itemset ¼ term1, term2, term3, . . . , termn:

length(itemset) ¼ n

[C] ¼ C2
length(itemset)

KC(itemset) ¼
log(length(itemset))

[C]

�
X[C]

i

RA(ItemPairi)
SD(ItemPairi)

(3)

where

† Itemset is the set of items that together might form a
pattern.

† Length(itemset) is the number of items in an itemset.
† [C ] is the number of combinations containing two dif-

ferent items composing the itemset. Each possible com-
bination is called ItemPair.

† ItemPairi is one of the possible combination of two
elements forming the itemset.

† SD(ItemPairi) is the SD between the two elements in
ItemPairi.

Table 2. Example data set

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8

X Y A B Z K
A B C
X Y C D Z K
B C
X Y C F Z K
X Y F Z K
X Y G Z K
X Y Z K
A B
A C D
Y K
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† RA(ItemPairi) is the attractiveness degree assigned by
users to the ItemPairi.

† KC(itemset) is the KC degree of the itemset.

The number of elements is included in the formula to re-
flect our preference for larger itemsets; that is, we prefer
more specific to more general knowledge inferences. Instead
of directly using the number of elements, we use log(number
of elements) to create a scale from 0 to 1 in KC. KC is an em-
pirical formula that reflects known knowledge from the
world. The results have been promising, but we are still look-
ing for a more robust formulation.

For example,

itemset ¼ {A, B, C}

length(itemset) ¼ 3

[C] ¼ C2
3 ¼ 3, that is, 3 pairs{AB, AC, BC}

KC(ABC) ¼ log 3
3

RA(AB)
SD(AB)

þ RA(BC)
SD(BC)

þ RA(AC)
SD(AC)

� �

Thus, the KC algorithm is composed of three steps:

1. Generate candidate patterns using the itemset support
metric.

2. For each candidate itemset,

a. calculate KC (itemset).
b. If KC(itemset) . min KC,

i. itemset is the solution.

3. For each itemset solution,

a. create a solution pattern.
i. Place the itemset solution into the semantic net

created by the domain ontology

This method allows low frequency patterns to emerge be-
cause of their KC values, which in turn enables important
outliers to stand out in a crowded data set.

To evaluate the quality of our metrics, we used the follow-
ing set of conditions prescribed for a good metric (Kitchen-
ham et al., 1995):

† Property validity asks whether it is possible to observe
the property in a deterministic way. We are observing
pairs of items in a given itemset, so the answer is
yes. We are accounting for the distance between pairs
of items considering their relative position within
the domain ontology. All items are members of the on-
tology.

† Instrumental validity asks whether there is a method that
describes the way the measurement should be made.
Ours is an objective method for accounting for the mea-
surement.

† Protocol validity asks if the set of steps described to
measure the attribute prevents double counting. In our
method, there is no possible double counting.

4. APPLICATION DOMAIN: KNOWLEDGE
EXTRACTION FROM OIL FIELD
ACCIDENT REPORTS

In the Brazilian petroleum industry most drilling and produc-
tion are offshore. The offshore oil fields are being exploited
by 64 oil platforms, operated by nearly 40,000 workers.
The large number of workers and the nature of oil platform
operation make this an activity of high economic, environ-
mental, and human risk. A simplified ontology mapping
this domain is shown in Figure 2.

The description associated with this ontology reads as
follows:

An anomaly occurs at a place, in a specific moment, in-
volving people, during an activity, which is part of a pro-
cess. The anomaly may involve equipment and has a spe-
cific cause, which may involve an external agent. This
anomaly has impacts that might be human-related, eco-
nomic, environmental, or any combination of these three,
and may have potential impacts.

There are strict safety regulations for platform operation. One
of the regulations requires the existence of a method to register
unexpected events (usually classified as accidents, incidents, or
deviations), which collects not only information about the peo-
ple involved and consequences for the processing unit, but also
the actions taken to solve the problem and prevent recurrence.
The organizational process for fulfilling this requirement is to
create textual documents containing this information, called
anomaly handling reports. These reports are generated every
time an unexpected event happens (e.g., fire, equipment failure,
injuries, nonobservation of procedures). The reports are electro-
nic files created and stored in a public location, available to all
company employees. The reports are organized in nested fold-
ers, where the folder’s name indicates the subject: an NY sub-
folder of the nonconformity folder contains reports on noncon-
formities events that occurred in the NY unit.

An analysis of this data is important to higher level manage-
ment, as it enables detection of recurring problems and any ex-
isting actions that might mitigating them. Reports are generated
through an automated system that guides the reporting process.
To perform statistical analysis, identify the real cause of acci-
dents, and determine the correlations between platform mea-
surements and accidents, the company usually hires experts
who carefully read and interpret each report and try to con-
solidate the information within them. If the number of reports
is up to 100, a human expert can easily take care of the job.
However, because the number of reports is already over
10,000 and increasing at a rate of dozens a week, extracting
meaning from them requires an automated approach. In this
context, we created the DMRisco system, which applies both
the KC and Apriori methods to deal with the problem of ex-
tracting information from these data sets.

DMRisco is a system to mine textual data. It relies on a do-
main ontology and a manual tagging process that maps the
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anomaly handling report onto the domain ontology concepts.
Therefore, each report is recorded as an itemset, and each item
of this itemset is an instance of a concept in the domain ontol-
ogy. DM is then performed on the itemsets.

An accident report is a document with multiple authors.
The person involved in the accident must report it. Then a
team of experts investigate the case and write down their anal-
ysis of the accident, possible causes, and suggestions for cor-
rective actions. Upper level managers read the accident de-
scription and analysis, and decide what to do, who will be
in charge of doing it, and who will be in charge of checking
the effectiveness of the actions. This information is also writ-
ten in the report. Finally, the person in charge of checking the
effectiveness of the actions closes the report by writing down
the results of the actions. Although each report may seem to
be about a singular event, when accidents keep happening
in very similar ways, DM might reveal patterns.

For the pilot study, we asked a group of 10 users to tag
1500 accident reports from a 2-year period. The time allotted
for this task was 1 week, and at the end of the week, they had
finished 932 reports. Although the task was straightforward,
the users had trouble reconstituting parts of the reports, and
were unable to completely reconstitute 12 reports. In contrast,
users found the tagging task a good opportunity to gather
important information that was missing from the reports.

The tagging task was assigned to trained people who
worked in pairs. Each pair was composed of an expert in
oil production and an expert in safety procedure. Our project
benefited from an organizational decision to change the way
in which accidents are reported by having specifically trained
people in charge of the task.

Tagging required a domain ontology. The accident analysis
ontology was collaboratively constructed by a group of ex-

perts who understood not only the domain but also the ex-
pected outcome of the analysis. They participated in a nego-
tiation process over concepts terminology that lasted over
3 months to build a consolidated ontology for data extraction.
The experts were midlevel managers, who will be using the
system and know what types of interpretations they want to
get out of it. To enable verification of the KC algorithm,
the reports were imported to the system and tagged with the
corresponding ontological elements before processing.

It is important to note that there are three types of experts
involved in our project:

1. the group of experts that generate the ontology,
2. the group of people that tag accident reports, and
3. the group of experts that mine the tagged data, applying

KC to the tagged data set of accident reports.

The first group of experts is composed of senior consul-
tants who have been in the company enough time to under-
stand the domain and the different perspectives that exist in
the community. The second group is composed of people
who work in the operational line. They have a great deal of
experience analyzing accidents and they received training
on tagging. The last group of experts is composed of decision
makers or their direct assistants. They are the ones who will
decide which actions should be taken after investigating acci-
dent patterns. They are the final users of KC and DMRisco.

5. EXPLAINING KC’S BEHAVIOR USING
A SYNTHETIC DATA SET

As explained in Section 4, KC method works on a matrix in
which lines represent different transactions and columns

Fig. 2. The oil platform anomaly ontology (simplified).
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represent the attributes describing the transaction. Each cell
contains a value of the attribute for a given transaction. Gen-
erally, domain data are stored in databases or data sets that
must be translated into matrix representations for KC to work.

In our application domain, the database is generated
through the tagging of accident reports. Because tagging ac-
cident reports requires people to interpret and think about the
facts before actually registering the story, we believe that the
number of mistakes will be low, and that existing mistakes
will have insignificant impact on the final result, because
the database contains a large number of cases. Of course,
DM results will only be as good as the data itself.

To illustrate our method, we present an example with few at-
tributes. Consider a database that registers accidents, as illus-
trated in Table 3. Each transaction (line) represents an accident
story. Each cell in the matrix means the value of the attribute
indicated by the column name for the transaction (accident re-
port) indicated by the line. Each line has a unique identifier. In-
stead of using attribute values, we simplified this example, by
creating columns for each possible value. This means cells
marked with “1” indicate the presence of that attribute (column
name) in the specified record line, “0” means the negation of
the attribute value and “empty” means there is no information
on whether or not the value exists. To further simplify, we have
eliminated columns that have no records for them. For instance,
we included Wednesday afternoon, but we did not include
Wednesday morning or any other weekday because there was
no record of them in the data set.

Following our example, record 1 is fPlant Shutdown, __,
__, John Mayer, Control Room, __g. Tables 4 and 5 show,
respectively, the relevance degree and SD measures between
attributes of the database showed in Table 3.

Both tables are computational representations of domain
knowledge that should be encoded by domain experts before
they can be used in our method. The measurements are repre-
sented by asymmetric matrices, because SD between attri-
butes is not a symmetric measure. In our discussion, we apply
the convention in which A to F represent plant shutdown,

pump, polluted water disposal, John Mayer, control room,
and Wednesday afternoon, respectively. Considering this rep-
resentation, all possible itemsets that combine all items shown
in Table 3, and their respective support values, are shown in
Table 6. Highlighted itemsets have support greater than the
minimum support, which was set at 0.5.

The rules generated using Apriori, with minimum support
equal to 0.5, are shown in Table 7, with their respective con-
fidence rule measure.

The itemsets generated using the KC algorithm, also with
minimum support equal to 0.5, are shown in Table 8, with
their respective KC metric value. If we consider the minimum
KC value 0.5, only itemsets AE and ADE are considered valid
by the KC algorithm. Because ADE contains AE, KC outputs
the graph of ADE, which is equivalent to Plant Shutdown,
John Mayer, Control Room.

When the distance and relevance measurements are ad-
justed correctly, the number of KC-based results, represented
by semantic nets, is lower than the number of Apriori-based
results, represented by association rule, as seen in the pre-
vious example. If we consider the minimum KC value to be
equal to 0.5, only itemsets ACE, ABC, and ACF, are returned
by the KC algorithm.

KC outputs a graph combining all three possible answers,
containing the attributes plant shutdown, pump, polluted wa-
ter disposal, and control room as a semantic net, as shown in
Figure 3.

Considering the number of frequent itemsets that returned, 30
itemsets were returned by the Apriori (Agrawal & Srikant, 1994)
association rule DM technique (shown in Table 8) versus
only three itemsets by KC. Furthermore, itemsets ACE, ABC,
and ACF are much more semantically relevant for anomaly
detection than itemset BEF or DEF. When looking at their
contents,

Table 4. Relevance assessment of elements of the ontology

A B C D E F

A — 2 4 4 2 2
B — 4 1 2 1
C — 4 4 4
D — 2 1
E — 2
F —

Table 3. Sample database

A
Plant

Shutdown
(Impact)

B
Pump

(Equip.)

C
Polluted
Water

Disposal
(Anomaly)

D
John Mayer

(Agent)

E
Control
Room
(Place)

F
Wed.

Afternoon
(Time
Stamp)

1 1 1
1 1 1

1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1

1 1 1 1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1

Table 5. Semantic distances according to the domain ontology

A B C D E F

A — 2 5 4 2 2
B — 1 2 2 2
C — 3 1 1
D — 4 4
E — 2
F —
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† ACE ; plant shutdown (impact), polluted water dis-
posal (anomaly), control room (place);

† ABC ; plant shutdown (impact), pump (equipment),
polluted water disposal (anomaly);

† ACF ; Plant shutdown (impact), polluted water dis-
posal (anomaly), Wednesday afternoon (time stamp);

† BEF ; pump (equipment), control room (place), Wed-
nesday afternoon (time stamp); and

† DEF ; John Mayer (agent), control room (localization),
Wednesday afternoon (time stamp).

Because our initial results with this example data set are ex-
tremely encouraging, we are extending our research with ex-
periments using the complete accident report data collection
as well as XML file repositories.

6. COMPARISON BETWEEN APRIORI AND KC

In this section we present a comparison between KC and
Apriori, based on real data extracted from the domain of oil
processing.

To reiterate, our original hypothesis was that our semantically
driven KC method would yield better results than a regular as-

sociation rule DM technique. We selected the Apriori technique
as our benchmark, as it is a well-known and frequently used DM
method. The null hypothesis thus reads KC results will be no
worse than those yielded by the Apriori algorithm. For our first
analysis, we compare KC and Apriori along two metrics:

1. Algorithm complexity is the number of iterations neces-
sary to run the algorithm, defined in Eq. (4):

AlgoComplexity ¼ O(number of iterations) (4)

2. Knowledge manageability measures how easy it is for
the user to search the result set, as defined in Eq. (5).
For this measurement, we assume that it will be easier
for a user to analyze a smaller result set, ranging from
several dozen to a few hundred, and we assume that
the smaller the set, the better the result.

KnowledgeManageability [ [0::1],

0|{z}
VeryHardSearch

OutcomeUsability
�������������������������!

1|{z}
VeryEasySearch

(5)

The lower the algorithm complexity, the better its performance
will be. The last metric is subjective, as it is dependent on the
evaluator’s experience with the software and the data. We be-
lieve that a small output set containing up to 10 patterns is
highly manageable. It becomes less manageable as the output
set gets bigger, but evaluator training and familiarity with the
techniques may lessen the impact of output size. Although

Table 6. Itemset support measures for at most three elements

No. Items Itemsets

2 AB AC AD AE AF
0, 1 0, 4 0, 2 0, 1 0, 1
BC BD BE BF CD
0, 4 0, 1 0, 1 0, 1 0, 3
CE CF DE DF EF
0, 4 0, 4 0, 1 0, 0 0, 1

3 ABC ABD ABE ABF ACD
0, 5 0, 2 0, 2 0, 2 0, 4
ACE ACF ADE ADF AEF
0, 5 0, 5 0, 2 0, 2 0, 2
BCD BCE BCF BDE BDF
0, 4 0, 4 0, 4 0, 1 0, 1
BEF CDE CDF CEF DEF
0, 2 0, 4 0, 4 0, 4 0, 1

Fig. 3. Knowledge cohesion output.

Table 8. Itemsets generated by KC
and their respective KC measure
with minimum support of 0.5

ACE ABC ACE

0, 52 0, 52 0, 52

Table 7. Rules generated by Apriori’s algorithm with minimum
support of 0.5 and their respective confidence measurements

A! D D! A A! E E! A B! E
1.00 0.63 1.00 0.50 1.00

E! B D! E E! D D! F F! D
0.60 1.00 0.80 0.75 0.75

E! F F! E A! DE D! AE E! AD
0.80 1.00 1.00 0.63 0.50

AD! E AE! D DE! A B! EF E! BF
1.00 1.00 0.63 0.83 0.50

F! EB BE! F BF! E EF! B D! EF
0.63 0.83 1.00 0.63 0.75

E! DF F! DE DE! F EF! D DF! E
0.60 0.75 0.75 0.75 1.00
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subjective, this metric is important, because DM is the process
of helping real people extract relevant knowledge from a data
set.

6.1. Algorithm complexity

A complexity measurement provides an indication of the pro-
cessing time needed by an algorithm to run, because it ac-
counts for the number of iterations to find a solution. The
KC and Apriori approaches are identical with respect to the
speed of frequent itemset calculation.

The AC are obtained from the most frequent itemsets that
present a high certainty factor (confidence). The KC method
uses the frequent itemsets themselves in the semantic net-
works without any further processing. Thus, its complexity
is O( p), where p is the number of frequent itemsets, whereas
Apriori AC are obtained by combining items in O(n!), where
n is the itemset cardinality. After this step, each rule is com-
pared with the database to check the confidence of the rule in
O(m) time where m is the database cardinality. Thus, the
Apriori process has complexity O((n!) * m).

To be fair, we need to take into account the SD calculation
used in the KC method. The best possible complexity for
Dijktra’s algorithm, using a Fibonacci heap, is O(jEj þ jVj
* log(jVj)), where jEj is the numbers of edges and jVj is the
number of vertices of the ontology graph (Barbehenn,
1998). This calculation can be done once and maintained in
memory, as Apriori TID does (Agrawal & Srikant, 1994).
Thus, KC needs to calculate itemsets as Apriori does, but it
does not need to calculate all possible combinations as re-
quired in Apriori’s algorithms. Consequently, we can argue
that KC’s algorithm time complexity will be lower than
Apriori-like algorithms.

6.2. Knowledge manageability

Knowledge manageability is related to the number of results
yielded by the method. To verify our algorithm, we ran it
against a standard Apriori algorithm on a data set containing
1720 textual anomaly handling reports, containing 62 fields
(among categories, numeric, and time stamps), which may
or may not contain data. Actual engineers in oil production
plants generated the reports.

Both Apriori and KC were applied to the same set of data.
We configured the application to generate result sets with at
least five items, with support 20% (i.e., at least 20% of the
data had to conform to that itemset), confidence 80% for
the Apriori algorithm and KC equal to 0.8. Apriori generated
26,334 rules versus 4000 generated by KC.

Figures 4 and 5 show screenshots of DMRisco: Figure 4
shows a KC’s result set screenshot, and Figure 5 shows an
Apriori’s result set screenshot. The screenshots clearly
show the difference in the number of results generated by
each algorithm.

Given that KC outperforms Apriori on both algorithm
complexity (number of iterations) and manageability, we con-

sider that we have strong positive indication that KC is indeed
better than Apriori.

6.3. Pilot study: Generating understanding with
a domain ontology

A first version of the system was shown to four users, with
whom we conducted informal, unstructured interviews to re-
ceive feedback. Apriori generates several itemsets that are es-
sentially the same, as it does not take into account the rela-
tionships between items. Thus, a number of items was
shown which was essentially the same set, repeated several
times (e.g., [A, B, C ], [B, A, C ], [A, C, B], regardless of
whether A ! B, but not B ! A). This happens because
Apriori algorithm generated rules are composed of elements
that occur simultaneously, regardless of the interrelation be-
tween them. The users did not understand why different item-
sets were generated with the same elements and had difficulty
handling the large number of result sets generated.

We considered using KC as a postprocessing step, to re-
duce the result set and restrict interpretation. However, we
first added a visualization panel (see Fig. 6), which uses the
ontology as a template for the display of the generated item-
sets. The ontology brings additional semantics to the data,
helping users interpret what they see. Apriori provides rela-
tionships between item occurrence, and the ontology pro-
vides the relationships between the concepts that the items
relate to, adding domain knowledge and facilitating interpre-
tation. With the added panel, users could more easily under-
stand the result sets, as they were contextualized by the under-
lying ontology.

The smaller number of result sets generated by KC made
the information more manageable to users involved, and the
contextualized display made it simpler to understand the
meaning of the extracted rules.

In addition, DMRisco also allowed the user to specify cer-
tain itemsets to be mined, even when using the Apriori algo-
rithm. Whenever the user did so, results containing the se-
lected itemsets were preferred to others, gaining additional
weight.

7. FINAL REMARKS

In this paper we have presented a novel DM technique, KC,
which takes advantage of existing domain ontology repre-
senting known domain knowledge to guide search for new
knowledge in large data sets. We compared our approach to
a classic DM algorithm and showed its potential benefits.
The premise is that there is always something known in a
domain that might help prune the data set, eliciting novel
and relevant knowledge. This premise also highlights the
weakness of the method: it will only be as good as the un-
derlying ontology. This weakness has two corollaries. First,
because KC crucially relies on previously known knowl-
edge to guide the search, it will be useless for domains

A.C. Bicharra Garcia et al.438

https://doi.org/10.1017/S089006040900016X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040900016X


without such knowledge. Second, when ontologies are in-
correct, KC will provide misleading results. The result it-
self will not necessarily be incorrect, but it will not be as
relevant as desired. In addition, because results are dis-
played layered over the ontology, understanding might be
jeopardized.

In Apriori-based algorithms, AC are extracted from fre-
quent itemsets and accepted if their confidence is greater
than the minimum confidence threshold. For a k-frequent
itemset it is possible to extract AC. Accepted AC may be re-
dundant, irrelevant, or obvious, and the number of really
useful rules is much smaller than the number of generated
rules. In the KC method, frequent itemsets are accepted if
their KC measure is greater than the minimum KC threshold.
In our tests all frequent itemsets with high KC measures are
useful.

The relevance metrics for classical information retrieval
are precision and recall. Precision is obtained from the ratio
between the relevant information retrieved and the retrieved
information. Recall is the ratio between the relevant informa-
tion retrieved and the relevant information in the database.
Certainly these measures are human dependent because rele-

vance is a subjective metric assigned by experts to the out-
comes.

Given the difficulty of analyzing the relevance of the
information retrieved/stored, which would require domain
experts to verify results, precision, recall, and singularity
were not investigated at this stage. The next step in our re-
search will be to conduct formal analyses using human
coders to verify quality and relevance of the results. In addi-
tion, we plan on testing KC against other DM techniques. Re-
gardless, the results obtained so far already show that this is a
feasible method, which produces results better than standard
Apriori methods and generates better understanding of
result sets.

Our experiences with ontology-based DM provide strong
indication of a considerable improvement on precision re-
trieving knowledge from large data repositories that reports
facts on a well-defined domain, such as the oil field accident
report application described in this paper. We believe that this
is a promising approach, which deserves further investiga-
tion. Although the development of an ontology may add a
cost to the project, it quickly pays off in the quality of results
and the domain understanding generated.

Fig. 4. DMRisco screenshot showing knowledge cohesion results. [A color version of this figure can be viewed online at journals.cambridge.
org/aie]
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Fig. 6. A rule shown according to an ontological framework. It is easier for a user to understand the meaning of an itemset when the rela-
tions between the items are explicitly shown. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 5. DMRisco screenshot showing Apriori results. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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