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Ecole Centrale de Lyon / Université Claude-Bernard Lyon 1, ECL, BP 163,

69131 Ecully Cedex, France
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Marangoni convection in a differentially heated binary mixture is studied numerically
by continuation. The fluid is subject to the Soret effect and is contained in a two-
dimensional small-aspect-ratio rectangular cavity with one undeformable free surface.
Either or both of the temperature and concentration gradients may be destabilizing;
all three possibilities are considered. A spectral-element time-stepping code is adapted
to calculate bifurcation points and solution branches via Newton’s method. Linear
thresholds are compared to those obtained for a pure fluid. It is found that for large
enough Soret coefficient, convection is initiated predominantly by solutal effects and
leads to a single large roll. Computed bifurcation diagrams show a marked transition
from a weakly convective Soret regime to a strongly convective Marangoni regime
when the threshold for pure fluid thermal convection is passed. The presence of many
secondary bifurcations means that the mode of convection at the onset of instability
is often observed only over a small range of Marangoni number. In particular,
two-roll states with up-flow at the centre succeed one-roll states via a well-defined
sequence of bifurcations. When convection is oscillatory at onset, the limit cycle is
quickly destroyed by a global (infinite-period) bifurcation leading to subcritical steady
convection.

1. Introduction
The ability of temperature-induced surface tension gradients to drive a flow was

established by Block (1956) and by Pearson (1958). Correcting an error that had lasted
half a century, these authors established that the hexagonal convection cells observed
by Bénard (1901) and explained by Rayleigh (1916) as being driven by thermal buoy-
ancy, were in fact due instead to temperature-dependent surface tension. Convection
driven by surface tension gradients is now called Marangoni convection (after an ear-
lier observation) or Marangoni–Bénard convection, in contrast to buoyancy-driven
Rayleigh–Bénard convection. Marangoni convection arises in many physical contexts
involving multiphase flow. It has a significant influence on convective mass transport
during the solidification of a liquid metal in floating zone configuration, particularly in
a microgravity environment where buoyancy-driven convection is almost suppressed.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

26
14

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098002614


144 A. Bergeon, D. Henry, H. BenHadid and L. S. Tuckerman

Since the quality of the crystal depends on the concentration distribution in the liquid
phase, it is important to understand and to control Marangoni convection.

In a typical configuration, a temperature gradient is imposed between two parallel
bounding surfaces, one rigid and one free, of a fluid layer. A temperature perturbation
along the free surface will cause the fluid to move along the surface away from regions
of lower surface tension, and the perturbation will be damped or amplified according
to the temperature of the fluid brought from the interior to conserve mass. Since
the driving mechanism must overcome viscosity and thermal diffusion, the imposed
temperature gradient, characterized by the dimensionless Marangoni number Ma,
must exceed a critical value for convection to occur.

The classical experiments in Marangoni convection are those of Koschmieder. In
a series of papers spanning many years and geometries, Koschmieder and coworkers
(Koschmieder 1967; Koschmieder & Prahl 1990; Koschmieder & Switzer 1992) de-
scribed transitions in silicone oil to rolls, hexagons, or other planforms, depending
on the shape (circular or square) and the thickness of the layer. Quantitative dis-
agreements between experiment and theory have indicated that gravity or free surface
deformation might play a significant role. Nield (1964), Davis (1969), Davis & Homsy
(1980), Kraska & Sani (1979), Castillo & Velarde (1978, 1982), Cloot & Lebon (1984)
and Oron & Rosenau (1989) have addressed the effects of gravity by studying the
combined effects of surface tension and of buoyancy – Rayleigh–Bénard–Marangoni
convection – using energy or variational stability analyses and weakly nonlinear
analyses. Scriven & Sternling (1964), Smith (1966) and Goussis & Kelly (1990) have
refined Pearson’s model by incorporating a more realistic interface.

Most of the above-mentioned theoretical work followed Pearson in assuming an-
alytically tractable, horizontally infinite layers. The containers of finite size which
are the subject of the present study must be treated numerically. We can distinguish
further between free-slip sidewalls, whose main effect is to discretize the possible
wavelengths, and more realistic rigid walls. A linear and weakly nonlinear study of
Marangoni convection in cylindrical and rectangular containers with free-slip side-
walls was carried out by Rosenblat, Davis & Homsy (1982). The linear problem of a
rectangular container with rigid sidewalls was studied by Van de Vooren & Dijkstra
(1989), and extended to three dimensions by Dijkstra (1995).

The investigations which are closest in spirit to ours are those of Winters, Plesser &
Cliffe (1988) and of Dijkstra (1992). These studies produced bifurcation diagrams by
numerical continuation of fully nonlinear Rayleigh–Bénard–Marangoni convection in
two-dimensional rectangular containers. Both emphasized the role of lateral boundary
conditions and symmetry. When the sidewalls are rigid, pitchfork (symmetry-breaking)
and transcritical (symmetry-preserving) bifurcations occur in alternation as either as-
pect ratio or Marangoni number is increased, and the spatial structure of each
eigenvector changes continuously. When the sidewalls are free-slip, all bifurcations
are pitchforks and each eigenvector retains its spatial structure. Dijkstra calculated a
number of secondary bifurcations and oscillatory states, as well as codimension-two
bifurcations where two bifurcations coincide. Finally, Dauby & Lebon (1997) and
Thess & Orszag (1995) have carried out numerical bifurcation studies for represen-
tative three-dimensional containers whose horizontal cross-section is rectangular or
periodic, respectively.

The major focus of our study is the effect on Marangoni convection of the addition
of a second fluid. Convection in binary fluids is considerably more complicated than
that in pure fluids. Both temperature and concentration gradients contribute to the
initiation of convection and each may be stabilizing or destabilizing. Even when a
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concentration gradient is not externally imposed (the thermosolutal problem) it can be
created by the applied thermal gradient via the Soret effect. Thermosolutal and Soret-
induced Rayleigh–Bénard convection have been shown to be formally equivalent by
Knobloch (1980) when identical boundary conditions are imposed on temperature
and concentration.

Rayleigh–Bénard convection in binary mixtures has been the subject of intense
investigation over the last few decades. Early theoretical studies, e.g. Nield (1967),
Veronis (1968), Hurle & Jakeman (1971), Legros, Platten & Poty (1972), Lhost &
Platten (1989) and Schechter, Prigogine & Hamm (1972) calculated critical Rayleigh
numbers Ra, wavenumbers, and frequencies as a function of a Soret coefficient S (or
some equivalent parameter). They predicted oscillations at onset and possibly subcriti-
cal steady convection when a stabilizing concentration gradient opposes a destabilizing
temperature gradient, i.e. for Ra positive and S sufficiently negative. Steady convec-
tion is predicted when the concentration gradient is destabilizing, i.e. when Ra and S
are of the same sign, with a critical wavenumber of zero for |S | sufficiently large.

These interesting features led Rayleigh–Bénard convection with Soret effect to be
adopted as a paradigm for new developments in the theory of dynamical systems and
pattern formation in the 1980s. Brand, Hohenberg & Steinberg (1984) and Knobloch
(1986) considered the simultaneous onset of oscillatory and stationary instabilities
as a codimension-two point, and Cross (1988) studied the effect of confinement of
travelling waves. During the same period, experiments were performed (e.g. Walden,
Kolodner & Passner 1985; Rehberg & Ahlers 1985; Moses, Fineberg & Steinberg
1987; Heinrichs, Ahlers & Cannell 1987; Bensimon et al. 1990; Zimmermann, Muller
& Davis 1992) which displayed the phenomena predicted and analyzed by theorists,
such as vanishing frequencies, multistability, defects, and localized or chaotic travelling
waves. One obstacle faced in comparing theory and experiment is the notorious
difficulty of determining the Soret coefficient; this is addressed in theoretical studies
by Henry & Roux (1988) and Knobloch & Moore (1988). The current state of
knowledge concerning Rayleigh–Bénard convection with Soret effect is summarized
in a comprehensive study by Barten et al. (1995).

This vast literature contrasts with the paucity of studies on Marangoni convection
in binary mixtures. Stability analyses in horizontally infinite layers of thermosolutal
Marangoni convection have been carried out by McTaggart (1983) and Ho & Chang
(1988) and of Marangoni convection with Soret effect by Castillo & Velarde (1978,
1982) and by Bergeon, Henry & BenHadid (1995). These analyses were extended
to include other effects, such as weak gravity (Chen & Chen 1994), a transient
concentration profile (Van Vaerenbergh et al. 1991), and surface deflection (Joo
1995). These studies indicate that, in spite of the very different physical mechanisms
involved, surface-tension-driven Marangoni convection in a binary mixture with Soret
effect shares many of the features of its buoyancy-driven analogue. In particular, as
will be reviewed in § 4, the critical wavenumber for steady convection is zero when
the solutal contribution to the surface tension is sufficiently destabilizing and the first
instability is a Hopf bifurcation to traveling or standing waves when a sufficiently
stabilizing solutal contribution opposes a destabilizing thermal contribution.

In preliminary investigations of bounded cavities, Bergeon, Henry & BenHadid
(1994a) and Bergeon et al. (1994b) observed the finite-size analogues of phenomena
predicted in horizontally infinite layers. In particular, Bergeon et al. (1994b) observed
a roll which is as large as the container permits, and Bergeon et al. (1994a) computed
a time-periodic flow in which infinitesimal rolls appeared, grew, and displaced other
rolls. However, to our knowledge, there exists no comprehensive survey of nonlinear

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

26
14

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098002614


146 A. Bergeon, D. Henry, H. BenHadid and L. S. Tuckerman

z

w

u

1

x

u = w = 0

=       = 0

u = w = 0

u = w = T+1
2 = 0 A

∂T
∂x

w = 0

∂C
∂x

=
∂T
∂z

∂C
∂z

=       = 0
∂T
∂x

∂C
∂x

∂u
∂z

1
Pr

∂T
∂z =

∂T
∂z

∂C
∂z

= 1

= + SM
∂T
∂x

∂C
∂x0 1

Figure 1. Cavity configuration.

Marangoni convection in a binary fluid with Soret effect in bounded cavities. The
purpose of this paper is to bridge this gap by computing thresholds and bifurcation
diagrams for a wide variety of Soret coefficients. We will consider a fluid with the
moderate Prandtl number and high Schmidt number typical of molten salts or liquid
metals. The precise values (Pr = 0.6, Sc = 60) will be those of the AgI–KI mixture
described in Henry & Roux (1988).

We have simplified the geometry in two important ways. First, the cavity is two-
dimensional. This is realistic for containers with a small width compared to the length,
where two-dimensional patterns are indeed observed (Davis 1987). In addition, the
study of two-dimensional patterns provides a stepping stone to a better understanding
of the three-dimensional case. Secondly, the free surface is considered undeformed by
the flow. This assumption is justified when the surface tension and gravity may resist
the flow-induced free surface deformation, but may fail far from the threshold when
the flow intensity becomes large.

We bring to bear on this problem a full range of numerical methods, all based on
the same spectral element temporal-integration code. This code is adapted to carry
out Newton’s method, first, to calculate bifurcations from the conductive state, and
second, to calculate stable and unstable branches of steady states. Linear stability
analysis and time-integration complete the picture by locating Hopf bifurcations and
computing oscillatory states.

The paper is organized as follows. In § 2, the equations for Marangoni convection
in a binary mixture with Soret effect are presented, and the relevant dimensionless
parameters defined. In § 3, we describe our numerical methods, in particular the
implementation of Newton’s method which is our primary tool. In § 4, we present
convection thresholds calculated for a variety of aspect ratios and Soret coefficients,
and compare them to thresholds obtained in horizontally infinite layers and in the
limiting cases of a pure thermal and a pure solutal problem. In § 5, we present
bifurcation diagrams for representative Soret coefficients and compare them to the
bifurcation diagrams for the pure thermal case. In our conclusion, § 6, we summarize
the general principles that have emerged from our study.

2. Governing equations
We consider a binary fluid layer contained in a rectangular cavity of length L and

height H (see figure 1). A constant and uniform normal heat flux q is applied to the
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upper free surface. The lower rigid boundary is maintained at a constant temperature
T0.

The inclusion of the Soret effect means that the mass flux is the sum of temperature
and concentration gradients (De Groot & Mazur 1969). (We neglect the Dufour effect,
by which the concentration gradient would contribute to the heat flux.) The fluxes
are then:

JC = −ρD∇C − ρDS∇T , (2.1a)

JT = −DT∇T , (2.1b)

where ρ is the density, and D,DS , DT are the mass diffusion coefficient, the Soret
diffusion coefficient and thermal conductivity, respectively. The applied heat flux
generates a temperature difference ∆T = −qH/DT and, via the Soret effect, a
concentration difference ∆C = −DS∆T/D over the height of the layer. At mid-layer,
the temperature is Tm = T0 + ∆T/2 and the concentration is the initial mass fraction
Cm. The Soret diffusion coefficient DS is in principle proportional to C(1−C), but we
approximate C(1− C) ≈ Cm(1− Cm), assuming that the Soret effect is weak.

The free surface is flat and subject to surface tension. The surface tension σ is
assumed to vary linearly with the temperature and the mass fraction:

σ(T ,C) = σm [1 + γT (T − Tm) + γC (C − Cm)] (2.2)

with γT and γC constant. The surface tension is characterized by two non-dimensional
quantities: the usual Marangoni number Ma, and the Marangoni Soret parameter
SM , which we define by analogy to the separation constant for buoyancy-driven
convection and which represents the ratio of the solutal contribution to the thermal
contribution to the surface tension. These are given by

Ma =
∆THσmγT

ρνκ
and SM =

−DSγC
DγT

, (2.3)

where ν is the kinematic viscosity and κ is the thermal diffusion coefficient.
The velocity field is U = (u, 0, w). Distance, time, and velocity are non-

dimensionalized by H , H2/ν, and Ma ν/H , respectively. (The reason for this
non-standard choice of non-dimensionalization is the convenience for numerical
continuation of having Ma appear in the equations rather than in the boundary
conditions; see § 3.2.) The dimensionless temperature and concentration are taken to
be (T − Tm)/∆T and (C − Cm)/∆C , hereafter denoted by T and C . The equations
by which U , T , C and the pressure p evolve result from the conservation laws for an
incompressible fluid:

∂U

∂t
= −Ma (U · ∇)U + ∇2U − ∇p, (2.4a)

∂T

∂t
= −Ma (U · ∇)T +

1

Pr
∇2T , (2.4b)

∂C

∂t
= −Ma (U · ∇)C +

1

Sc

(
∇2C − ∇2T

)
, (2.4c)

0 = ∇ ·U , (2.4d)

where Pr = ν/κ and Sc = ν/D are the Prandtl and the Schmidt number, respectively.
Throughout this paper, we fix Pr = 0.6 and Sc = 60.

The aspect ratio of the cavity is A = L/H . We impose no-slip boundary conditions
along the rigid bottom and lateral walls. The lateral walls are insulating, while a
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constant temperature is maintained on the bottom. Across all the rigid boundaries,
the normal mass flux is zero. Along the lateral walls x = 0, A, we thus obtain

u = w =
∂(C − T )

∂x
=
∂T

∂x
= 0 (2.5a)

and along the rigid bottom z = 0,

u = w =
∂(C − T )

∂z
= 0, T = −0.5. (2.5b)

Along the free surface, the normal velocity w is zero and the stress equilibrium
gives the boundary condition for the horizontal velocity u. The normal heat flux is
constant and the normal mass flux is zero. The resulting boundary conditions at z = 1
are

∂u

∂z
− 1

Pr

(
∂T

∂x
+ SM

∂C

∂x

)
= w =

∂(C − T )

∂z
= 0

∂T

∂z
= 1. (2.5c)

3. Numerical methods
We used two numerical methods to investigate this problem: time integration and

continuation. The time integration scheme uses a spectral element method and is
described in the following first sub-section. The continuation method, described in
the next three sub-sections, is based on the time integration scheme. We use it to
follow solution branches as a function of Marangoni number, as well as to directly
calculate critical Marangoni numbers as a function of the Marangoni Soret parameter
SM and the aspect ratio A.

3.1. Time stepping

The fields are discretized via the spectral element method (Patera 1984), i.e. as values
on the Gauss–Lobatto–Chebyshev points and also as series of Chebyshev polynomials.

The linear terms are integrated implicitly and the nonlinear terms explicitly:

U (n+1) −U (n)

∆t
= −Ma

(
U (n) · ∇

)
U (n) − ∇p(n+1) + ∇2U (n+1), (3.1a)

T (n+1) − T (n)

∆t
= −Ma

(
U (n) · ∇

)
T (n) +

1

Pr
∇2T (n+1), (3.1b)

C (n+1) − C (n)

∆t
= −Ma

(
U (n) · ∇

)
C (n) +

1

Sc

(
∇2C (n+1) − ∇2T (n+1)

)
. (3.1c)

After the nonlinear terms have been computed, a Poisson problem is formulated for
the pressure, using the boundary conditions given by Karniadakis, Israeli & Orszag
(1991). This Poisson problem, as well as the Helmholtz problems which constitute the
final implicit step of the scheme are solved using a variational formulation.

The first-order time-stepping scheme (3.1) will be adapted for steady-state solving
as described in the next sub-section. When time-stepping itself is the goal, as in the
computation of a limit cycle, the second- or third-order accurate schemes described
in Karniadakis et al. (1991) are used.

3.2. Steady-state solving

The time-stepping code is modified as described in Tuckerman (1989) and Mamun
& Tuckerman (1995) to compute steady states by Newton’s method. We begin by
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re-writing (3.1) in the abbreviated form

X (n+1) − X (n)

∆t
= MaNX (n) + LX (n+1). (3.2)

Here, X represents all of the spatially discretized fields (U (u, w), T , C), N and L
represent the spatially discretized nonlinear and linear operators, and Ma is the
Marangoni number. (The pressure does not appear in X because it does not obey a
time evolution equation but instead can in principle be computed from the variables in
X by imposing incompressibility of the velocity.) The time-stepping scheme (3.2) can,
after some algebra (see Tuckerman 1989; Mamun & Tuckerman 1995), be rewritten
as

X (n+1) − X (n)

∆t
= (I − ∆tL)−1(MaN + L)X (n). (3.3)

Now we consider the steady-state problem

0 = MaNX + LX . (3.4)

To use Newton’s method on (3.4), at each step we must solve

(MaNX + L) δX = − (MaN + L)X , (3.5)

X ← X + δX ,

where NX is the Jacobian of N evaluated at X . Instead of solving (3.5), we solve

(I − ∆tL)−1 (MaNX + L) δX = −(I − ∆tL)−1 (MaN + L)X . (3.6)

For large ∆t, the operator P ≡ (I −∆tL)−1 serves as a preconditioner (i.e. approximate
inverse) for MaN + L, greatly accelerating iterative inversion. In practice, we use
∆t = 105.

If we solve the linear system (3.6) by an iterative conjugate gradient method, we
need only provide the right-hand side and the action of the matrix-vector product
constituting the left-hand side. Referring to (3.3), we see that the right-hand side of
(3.6) can be obtained by carrying out a time step, and the matrix-vector product by
carrying out a linearized time step. We emphasize that the Jacobian matrix is never
constructed or stored. We solve equation (3.6) with the biconjugate gradient squared
(BCGS) algorithm from the NSPCG (Oppe, Joubert & Kincaid 1989) software library.

3.3. Continuation

In the above, the unknowns X = (U , T , C) are determined as a function of a fixed
Ma. At a saddle-node or pitchfork bifurcation, X ceases to be a function of Ma; in
order to follow a solution branch, we must be prepared to calculate a more general
curve in (X ,Ma). When any component X l varies faster than some threshold, we treat
this as an imminent bifurcation by fixing X l and allowing Ma to vary. One Newton
step for solving (3.4) becomes MaNX + L N X

eTl 0

 δX

δMa

 = −

 (MaN + L)X

0

 , (3.7)

X ← X + δX ,

Ma← Ma+ δMa.
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The last equation of the linear system (3.7), containing the transpose of the lth
unit vector, merely states that δX l = 0 so that X l remains fixed. Because δX l = 0
is imposed, the unknowns are effectively a truncated δX containing all but its lth
component, and δMa. Thus the number of unknowns remains the dimension of X ,
which allows virtually all of the structure of the time-stepping code to be preserved.

System (3.7) can be preconditioned in the same way as (3.5). We obtain P (MaNX + L) PNX

eTl 0

 δX

δMa

 = −

 P (MaN + L)X

0

 . (3.8)

This preconditioned system can now be solved rapidly by conjugate gradient iteration.
As before, both the right-hand side and the matrix-vector product in (3.8) are easily
obtained by minor modification of the time integration scheme. (See Mamun and
Tuckerman 1995 for more details.) The predictor – i.e. the initial guess for the Newton
iteration – is evaluated by quadratic or linear extrapolation along the solution branch.

3.4. Direct calculation of bifurcation points

Once we have identified a bifurcation point with critical Marangoni number Mac,
we will be interested in tracing its evolution as we vary other parameters, here the
Marangoni Soret parameter SM and the aspect ratio A. In fact, primary bifurcation
points can be directly calculated by a variant of the continuation method we have
just described.

At a steady bifurcation point, X is a solution to (3.4) and the Jacobian is singular,
with a null vector h whose lth component will be normalized to 1:

(MaN + L)X = 0, (3.9a)

(MaNX + L) h = 0, (3.9b)

hl − 1 = 0. (3.9c)

For a primary bifurcation point, X is the known conductive solution, and so (3.9a)
need not be solved. One Newton step for solving (3.9b, c) is: MaNX + L NXh

eTl 0

 δh

δMa

 = −

 (MaNX + L) h

0

 , (3.10)

h← h+ δh,

Ma← Ma+ δMa,

which is identical to (3.7) except for the replacement of NX by NXh. The system (3.10)
is preconditioned and solved by adapting the time integration scheme for conjugate
gradient iteration, exactly as described for steady-state solving and for continuation.

3.5. Leading eigenvalues

Finally, in order to determine if a solution is stable or unstable, we will occasion-
ally calculate leading eigenvalues – those with largest real part and thus responsible
for initiating instability – and their corresponding eigenvectors. To do so, we use
the adaptation of Arnoldi’s method described in Mamun & Tuckerman (1995). By
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Figure 2. Bifurcation diagram for Marangoni convection in a pure fluid with Pr = 8 and A = 1.
Critical Marangoni numbers for primary pitchfork and transcritical bifurcations are MaP = 161.6
and MaT = 450.4; those for secondary pitchfork and saddle-node bifurcations are MaS = 642.0 and
MaSN = 933.

time-stepping the linearized equations, we are able to construct a small matrix which
represents the action of the Jacobian (L+MaNX ) on the subspace of leading eigenvec-
tors. Diagonalization of this matrix yields the leading eigenvalues and eigenvectors.
We have computed up to two real or complex leading eigenvalues to 1% accuracy.

3.6. Accuracy and resolution

To check the accuracy of the code we have computed the bifurcation diagram for a
pure fluid with A = 1 and Pr = 8, and compared it with that computed by Dijkstra
(1992). Figure 2 shows the velocity (u)l at a representative point as a function of
Marangoni number Ma. Using a resolution 11×11, we observe a pitchfork bifurcation
P , a transcritical bifurcation T (hysteresis not visible), saddle-node bifurcations SN,
and a secondary pitchfork bifurcation S . We will present a number of bifurcation
diagrams of this type in § 5, and so we postpone a detailed description of the notation
and phenomena on figure 2. Here we merely note that the critical Marangoni numbers
for all of these bifurcations differ by less than 3% from those presented in Dijkstra
(1992).

We have used spatial resolutions ranging from 11 × 11 up to 29 × 15 where
necessary. We have validated the spectral element code by comparing its results with
those calculated by an entirely independent time-stepping code (BenHadid & Roux
1992) whose spatial discretization uses Hermitian finite differences on a 101×21 grid.
For time stepping, we used ∆t = 10−2.

4. Linear stability analysis
In this section, we present linear stability results for a number of cases. We will first

summarize analytic results obtained previously (Bergeon et al. 1995) for an infinite
horizontal layer. This is followed by the detailed numerical study of bounded two-
dimensional cavities, first for a pure fluid and then for binary mixtures. Our goal
is to follow the evolution of convection thresholds from the pure thermal problem
(SM = 0) to a solutal-dominated regime (SM larger).

The equations which will be considered throughout this section are obtained by
linearizing equations (2.4)–(2.5) about the conductive solution T̄ = C̄ = −0.5 + z.
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The resulting eigenvalue problem is

λU = ∇2U − ∇p, (4.1a)

λT = −Maw +
1

Pr
∇2T , (4.1b)

λC = −Maw +
1

Sc
∇2(C − T ), (4.1c)

0 = ∇ ·U , (4.1d)

with boundary conditions

u = w = T =
∂(C − T )

∂z
= 0 at z = 0, (4.2a)

w =
∂T

∂z
=
∂(C − T )

∂z
= 0 at z = 1, (4.2b)

∂u

∂z
− 1

Pr

(
∂T

∂x
+ SM

∂C

∂x

)
= 0 at z = 1, (4.2c)

u = w =
∂T

∂x
=
∂(C − T )

∂x
= 0 at x = 0 and x = A. (4.2d)

4.1. Infinite layer

For a horizontally infinite layer, we replace the boundary condition (4.2d) at the
lateral walls by periodic boundary conditions of imposed wavenumber k. We seek
steady bifurcations, i.e. λ = 0.

After the following change of variables (Hurle & Jakeman 1971, Bergeon et al.
1994a):

C ′ =
C − T
Sc

, T ′ =
T

Pr
, (4.3a)

U ′ = MaU , p′ = Ma p (4.3b)

equations (4.1)–(4.2c) become

0 = ∇2U ′ − ∇p′, (4.4a)

0 = −w′ + ∇2T ′, (4.4b)

0 = −w′ + ∇2C ′, (4.4c)

0 = ∇ ·U ′, (4.4d)

with boundary conditions

u′ = w′ = T ′ =
∂C ′

∂z
= 0 at z = 0, (4.5a)

w′ =
∂T ′

∂z
=
∂C ′

∂z
= 0 at z = 1, (4.5b)

∂u′

∂z
−Ma(1 + SM)

(
∂T ′

∂x
+
Sc

Pr

SM

1 + SM

∂C ′

∂x

)
= 0 at z = 1. (4.5c)

This formulation makes it clear that the linear stability problem depends only on
two combinations of the four parameters Ma, SM, P r, Sc, which we choose as

Ma ≡ Ma(1 + SM) and ψM ≡
Sc

Pr

SM

1 + SM
. (4.6)
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–0.10 0

2

1

0
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kc

Figure 3. Linear stability analysis for steady bifurcations in an infinite horizontal domain for
Pr = 0.6, Sc = 60. Heavy solid curves: critical wavenumber kc as a function of SM . For SM < 0,
upper (lower) curve represents Ma > 0 (Ma < 0). Note that kc = 0 for SM < 0,Ma < 0 and for
SM > 0.0989, called the solutal-dominated regime. Thin curves: critical Marangoni number Mac
as a function of SM . The thin dashed curve is the relation MacSM = 48Pr/Sc obeyed by the
thresholds in the solutal-dominated regime. The thin solid curve represents the thresholds outside
of the solutal-dominated regime, delimited by the dotted line at SM = 0.0989. Triangles represent
bifurcation diagrams to be presented in later sections.

Upon substituting a horizontal dependence eikx, a system is obtained which can be
solved analytically in terms of hyperbolic functions in z. Each value of ψM and k
yields a value of Ma; minimization over k yields the critical values kc and Mac for
each ψM .

The key point found by Bergeon et al. 1995 is that the critical wavenumber kc is
zero for ψM > 9 and for ψM < 0. In the limit as k → 0, w′ and T ′ vanish, while u′

and C ′ remain finite. The first and third terms in equation (4.5c) balance one another,
and there remains only one parameter ψMMa = MaSMSc/Pr, whose critical value is
found to be 48. We call this the solutal-dominated regime.

To facilitate comparison with the remainder of the article, we translate to the usual
parameters Ma and SM . Figure 3 shows kc and Mac as a function of SM for our
values of Pr = 0.6, Sc = 60. For SM > 0.0989,Ma > 0 and for SM < 0,Ma < 0 we
have kc = 0 and MacSM = 48Pr/Sc = 0.48 This is the solutal-dominated regime.
For SM < 0.0989,Ma > 0, the critical wavenumber kc is finite. Note that this domain
contains both positive and negative values of SM . However, for SM < 0,Ma > 0, the
steady-state bifurcation is preceded by a Hopf bifurcation at lower Ma; this regime
will be discussed in § 4.3.2.

Figure 3 is qualitatively similar to that calculated for Rayleigh–Bénard convection
in binary mixtures, originally by Hurle & Jakeman (1971) and by Nield (1964), and
subsequently by many other authors (see Barten et al. 1995).

The triangles in figure 3 represent detailed cases that will be studied in this paper.
Bifurcation diagrams will be presented for the values of SM designated by the triangles.
Triangles located above and below the abscissa represent positive or negative values
of Ma, respectively.

4.2. Pure fluid

We next consider the stability problem of Marangoni convection of a pure fluid in a
finite container. Setting SM = 0 decouples (U , T ) from the concentration field C . We
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(3)

Figure 4. Critical Marangoni numbers for first four bifurcations in a pure fluid as a function
of aspect ratio. Integers indicate the number of rolls of the bifurcating eigenvector. Solid and
dash-dotted curves indicate bifurcations to an odd number of rolls. Short-dashed and long-dashed
curves indicate bifurcations to an even number of rolls. Note that the number of rolls (but not the
parity) changes continuously along a curve.

continue to seek steady bifurcations λ = 0. Equations (4.1)–(4.2) then become

0 = ∇2U − ∇p, (4.7a)

0 = −Maw +
1

Pr
∇2T , (4.7b)

0 = ∇ ·U , (4.7c)

with boundary conditions

u = w = T = 0 at z = 0, (4.8a)

∂u

∂z
− 1

Pr

∂T

∂x
= w =

∂T

∂z
= 0 at z = 1, (4.8b)

u = w =
∂T

∂x
= 0 at x = 0 and x = A. (4.8c)

Solutions to (4.7)–(4.8) are found using the technique described in § 3.4.
Figure 4 displays the dependence of the first four bifurcation points on aspect

ratio. (Similar figures are shown by Winters et al. 1988 and by Dijkstra 1992.) As we
shall see explicitly in § 5, only the first (lowest Mac) bifurcation leads directly to a
stable flow. Subsequent (higher Mac) bifurcations are responsible for the creation of
branches which are initially unstable, but which may be stabilized at yet higher Ma.
From the analysis presented in § 4.1, we know that the limit of Mac for infinite aspect
ratio is 80, a result first established by Pearson (1958).

Many of the features of figure 4 result from the symmetry of the equations
and boundary conditions under x-reflection, i.e. reflection through x = A/2. All
eigenvectors are either symmetric or antisymmetric in x. Symmetric eigenvectors
contain an even number of cells whereas antisymmetric eigenvectors contain an
odd number of cells. As a consequence of the horizontal reflection symmetry, the
number of rolls on a bifurcation curve remains either odd or even and cannot change
parity. Curves representing eigenvectors of opposite parity cross at codimension-two
bifurcation points; those of the same parity do not. Figure 4 clearly shows the
phenomenon of avoided crossings, whereby same-parity curves approach one another
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150

Mac 0

–150
–0.25 0 0.25

(a)

150

Mac 0

–150
–0.25 0 0.25

(b)

SM

Figure 5. Critical Marangoni numbers for steady bifurcations from the conductive state as a function
of Soret coefficient for A = 2 (a) and A = 4 (b). In (a), solid, dashed, and long-and-short-dashed
curves correspond to one-roll, two-roll, and three-roll structures, respectively. Additional long-dashed
curve in (b) corresponds to four-roll structure.

and then recede. Near their point of closest approach, the eigenvectors along the
curves exchange qualitative attributes – in this case, simply the number of rolls. In
figure 4, this means that the number of rolls, indicated along the curves, changes
via the creation and annihilation of rolls which are initially infinitesimally small. As
argued by Winters (Cliffe & Winters 1986, Winters et al. 1988, Riley & Winters 1989)
and others (e.g. Hirschberg & Knobloch 1996) this is characteristic of convection
problems with no-slip lateral boundaries. The situation is very different when the
lateral boundaries are free-slip, as in the study of Rosenblat et al. (1982) and Dauby
et al. (1993). In the free-slip case, each mode possesses a different translational
symmetry, which allows any paths to cross (Riley & Winters 1989).

4.3. Binary mixture

We now turn to the steady coupled thermal-solutal problem, i.e. the solution of
equations (4.1)–(4.2) with λ = 0. Figure 5 depicts the dependence of the critical
Marangoni numbers Mac on the Soret coefficient SM . We plot critical Marangoni
numbers corresponding to the first three or four bifurcations for two different aspect
ratios: A = 2 and A = 4.

We see that |Mac| decreases with |SM | for each bifurcation. This is because the
destabilizing solutal contribution to the surface force increases with |SM |. The linear
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Figure 6. Enlargement of figure 5(b) for SM ≈ 0. Number of rolls corresponding to each of the four
curves is indicated by four stacked integers. These change when curves cross or when the solution
evolves along a curve.

stability analysis for the infinite domain (Bergeon et al. 1995) has shown that the
dependence of critical Marangoni number Ma on wavenumber k becomes increasingly
flat as SM is increased. In the finite domain, this effect is seen as the accumulation
of the curves associated with the different bifurcations as SM is increased; successive
bifurcations to structures with different numbers of rolls occur at nearly the same
value of Ma.

In most of the parameter range studied, the bifurcations encountered in order of
increasing Mac are to one-roll, two-roll, and three-roll structures. This sequence is not
respected for A = 4, 0 < SM < 0.018 (figure 6). In this range, bifurcation curves cross,
for the following reason: As SM is increased from 0, the critical wavenumber in an
infinite domain decreases from kc = 2 to kc = 0. For A = 4, this gives a favoured
configuration of 8/π = 2.5 rolls for SM = 0 and one large roll for SM large. A change in
the number of rolls should take place approximately when kc = 1.5π/A = 1.2, which is
near SM = 0.018. In addition, the number of rolls (but not the parity) corresponding
to a given curve changes continuously with SM . Thus, the solid curve in figure 6
corresponds to a three-roll structure for SM 6 0 which evolves continuously to a one-
roll structure as SM is increased. This bifurcation has the lowest critical Marangoni
number when SM 6 0, but in the small range 0 < SM < 0.018, delimited by two
crossings of curves, bifurcation to a two-roll structure occurs for lower Mac.

4.3.1. Solutal-dominated regime

The existence of a solutal-dominated regime in horizontally infinite layers motivates
us to define a solutal-dominated regime for cavities of finite aspect ratio as well. We
recall from § 4.1 that in the infinite layer, the temperature and vertical velocity of the
critical mode vanish when the critical wavenumber becomes zero. The flow is then
driven exclusively by the solutal contribution to the surface tension. The criterion
of zero wavenumber clearly cannot be satisfied in cavities of finite aspect ratio. We
can, however, seek circumstances under which the thermal contribution to the surface
tension is small and dominated by the solutal contribution.

Our goal is to derive a pure solutal problem analogous to the pure thermal problem
of § 5.1. Returning to system (4.4)–(4.5), we see that it is possible to decouple (U ′, C ′)
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from T ′ if we can neglect the thermal contribution to the surface tension in the
boundary condition (4.5c). This is achieved for |ψM | large if C ′ is approximately of
the same order as, or larger than, T ′. Equations (4.4b, c) imply that C ′ and T ′ are
indeed of the same order. Thus, in the limit of large |ψM |, system (4.4)–(4.5) reduces
to one coupling only U ′ and C ′.

If we now wish to rewrite the (U ′, C ′) system in terms of the original variables, we see
from the definitions (4.3a) of C ′ and T ′ that if C ′ ∼ T ′, then C ∼ (1 +Sc/Pr)T . If we
make the additional hypothesis that Sc/Pr is large, as in our case where Sc/Pr = 100,
then C � T so that in fact C ′ ≈ C/Sc. Using both of these approximations, i.e. using
|ψM | � 1 to justify neglecting the thermal contribution to the surface tension and
using Sc/Pr � 1 to justify C � T , we rewrite system (4.4)–(4.5) in the original
variables, and obtain what we shall call the pure solutal problem:

0 = ∇2U − ∇p, (4.9a)

0 = −Maw +
1

Sc
∇2C, (4.9b)

0 = ∇ ·U , (4.9c)

with boundary conditions

u = w =
∂C

∂z
= 0 at z = 0, (4.10a)

∂u

∂z
− SM

Pr

∂C

∂x
= w =

∂C

∂z
= 0 at z = 1, (4.10b)

u = w =
∂C

∂x
= 0 at x = 0 and x = A. (4.10c)

The interpretation of the pure solutal problem (4.9)–(4.10) is more problematic than
that of the pure thermal problem. Since concentration gradients are established by the
Soret effect, the thermal gradient is necessary in order to establish the concentration
gradient of the conductive state. However, we can then consider the pure solutal
problem as one in which the temperature field is ‘frozen’ to its conductive profile as
a consequence of Sc � Pr. Perturbations of T are damped far more rapidly than
those in C − T . Thus perturbations of T will not become neutrally stable; instead,
neutrally stable modes of (4.1)–(4.2) will consist primarily of perturbations of C −T ,
i.e. of C . The requirement |ψM | large serves to ensure that whatever small component
of T is present in the mode contributes negligibly to the surface tension.

We shall define the solutal-dominated regime for the finite-size domain as the regime
over which the thermal-solutal problem can be well approximated by the pure solutal
problem. In practice, if we require |ψM | > 9, by analogy with the infinite layer, then
the solutal-dominated regime for Sc/Pr = 100 consists of the ranges SM > 0.0989
and SM < −0.0826.

System (4.9)–(4.10) remains a valid approximation even when Sc/Pr is not large,
as long as |ψM | is large and C is replaced by C − T . But in this case, its significance
is much more restrictive. Rather than implying that the concentration perturbations
drive the instability, the condition |ψM | � 1 requires SM near −1, i.e. a coincidence of
parameters governing the Soret effect and surface tension; see (2.3). Again requiring
|ψM | > 9, then (4.9)–(4.10) for (U , C−T ) holds for Sc/Pr = 1 if −1.125 < SM < −0.9.
Such cases will not be included in our definition of the solutal-dominated regime.

We solve equations (4.9)–(4.10) numerically by the technique described in § 3.4. It is
easily seen that the solutal problem depends only on the single parameter MaSMSc/Pr
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Figure 7. MacSM for the pure solutal problem as a function of aspect ratio A for Sc/Pr = 100.
Integers indicate the number of rolls associated with each bifurcation curve. Dashed line is the
relation MacSM = 48Pr/Sc obtained analytically for the solutal-dominated regime in a horizontally
infinite cavity.

(i.e. MaψM in the variables of (4.6)), along with the aspect ratio A. Fixing Sc/Pr = 100,
the product MacSM at the convective threshold is a function of A. In figure 7 we
plot the dependence of MacSM on A for the first four bifurcations, corresponding to
one-, two-, three- and four-roll flows. All four curves decrease monotonically with
A and approach the limiting value MacSM = 48Pr/Sc = 0.48 derived in § 4.1 for a
horizontally infinite layer. The curves do not cross.

Figure 7 highlights a crucial difference between the pure solutal and the pure ther-
mal problem, whose thresholds are shown in figure 4. Because the preferred thermal
configuration consists of slightly elongated rolls (kc = 2 for infinite aspect ratio) the
number of rolls increases with A. The thresholds oscillate as A is increased through
multiples of the preferred roll size. In contrast, the preferred solutal configuration is
the widest possible roll (kc = 0 for infinite aspect ratio). The first bifurcation is always
to a one-roll structure. This leads to a monotonic decrease of the threshold with A as
the roll widens and the preferred size is approached.

We now compare the pure solutal thresholds with those of the thermal-solutal
problem in figure 8. The aspect ratio is A = 4, for which thresholds have already been
shown in figure 5(b), and Sc/Pr = 100. Positive values of SM,Ma are shown in figure
8(a); negative SM,Ma values are shown in figure 8(b). Note that the thermal-solutal
thresholds for SM,Ma positive (negative) are lower (higher) than the pure solutal
thresholds, because the thermal contribution is destabilizing (stabilizing).

We see that the pure solutal and the thermal-solutal thresholds are quite close
together in the range shown, i.e. |SM | > 0.05, especially for the first bifurcation. For
SM = 0.09 and A = 4, a case which we will study in detail in § 5 and which we
shall include within the solutal-dominated regime, the first bifurcation of the thermal-
solutal problem occurs at Ma = 5.44, whereas the threshold for the pure solutal
problem is Ma = 5.62, a difference of only about 3%.

4.3.2. Stabilizing solutal contribution: oscillation

We now turn to the case in which a stabilizing solutal contribution counteracts
a destabilizing thermal contribution. It is well known that the first bifurcation is a
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Figure 8. Comparison of thresholds Mac for the pure solutal problem and for the thermal-solutal
problem as a function of SM for A = 4 and Sc/Pr = 100. Thermal-solutal thresholds (labelled by
number of rolls) are those shown in figure 5(b), pure solutal thresholds (nearby solid curves) are
computed from values on figure 7. Thermal contribution neglected in pure solutal problem leads to
higher thermal-solutal thresholds for SM negative (a) and to lower |Mac| thermal-solutal thresholds
for SM positive (b). Agreement is best for the first bifurcation. Solutal-dominated regime defined as
range of SM for which the two thresholds differ by less than 5%.

Hopf bifurcation if SM is sufficiently negative. (The value of SM below which this is
true depends on Sc/Pr, but in our case of a liquid with large Sc/Pr, it is very close
to zero.) Hopf bifurcation points, at which the eigenvalues have zero real part but
non-zero imaginary part, are found by calculating the leading eigenvalues λ of the
problem (4.1)–(4.2) by the method described in section 3.5.

Figure 9(a) displays the critical Marangoni numbers for the first two Hopf bifur-
cations H and H ′ and the first three steady bifurcations, to one-, two-, and three-roll
flows, for aspect ratio A = 2. Note that the critical Marangoni number for each
Hopf bifurcation is almost independent of SM (MaH varies only between 94 and 96
in the range of SM shown), whereas that for the steady bifurcations varies greatly.
Steady bifurcation curves corresponding to different numbers of rolls cross, as was
already seen in figure 6 for A = 4. Each of the two Hopf bifurcation curves calculated
terminates at a small negative value of SM on a steady bifurcation curve with a similar
spatial structure. That is, the complex conjugate pair of eigenvectors belonging to
the first Hopf bifurcation H are antisymmetric in x and contain a single roll; those
belonging to H ′ are symmetric and contain two rolls.

The frequency at the first Hopf bifurcation is depicted in the inset on figure 9(b).
The frequency decreases to zero with SM , or equivalently, the period diverges. This
is a trademark of the disappearance of the Hopf bifurcation at a codimension-two
point. We note that Rayleigh–Bénard convection with Soret effect also features a
codimension-two point at small negative SM; see e.g. Brand, Hohenberg & Steinberg
(1984), Knobloch (1986). Knobloch & Moore (1988) have remarked that in an
infinite layer, the wavenumbers of the steady and Hopf bifurcations are different,
so that the codimension-two point is absent. Thus, the infinite period characterizing
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Figure 9. Critical Marangoni numbers for steady and Hopf bifurcations for negative SM and A = 2.
Solid, dashed, and long-and-short dashed curves indicate steady bifurcations to one-, two-, and
three-roll flows, as seen in the corresponding streamfunction contours. Heavy dashed lines indicate
Hopf bifurcations. Both Hopf bifurcation curves terminate by joining steady bifurcation curves at
very small negative values of SM . Inset: frequency f (times 2π) of first Hopf bifurcation.
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Figure 10. Real part of most unstable eigenvalues as a function of Ma for SM = −0.002, A = 2.
Hopf bifurcations H and H ′ occur at MaH = 94.01 and MaH ′ = 128.5, steady bifucations P and T
at MaP = 132.4 and MaT = 160.0.

a codimension-two point can be observed only in a sufficiently small aspect ratio
container, where the spatial structure of the flow is constrained.

Figure 10 depicts the intricate interlacing between the real and complex unstable
eigenvalues. The real part of the most unstable eigenvalues is shown as a function
of Marangoni number for the values A = 2, SM = −0.002. After crossing zero at the
Hopf bifurcation point H , the unstable complex conjugate pair splits into two real
eigenvalues. One of these continues to increase with Ma, while the other decreases,
vanishing at a steady bifurcation P to a one-roll state. The second complex conjugate
pair of eigenvalues undergoes the same process, with the decreasing real eigenvalue
crossing zero at a bifurcation T to a two-roll state.
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Figure 11. Bifurcation diagram for a pure fluid (SM = 0) with A = 1. Insets are streamfunction
contours. P , T , and S indicate primary pitchfork, transcritical, and secondary pitchfork bifurca-
tions at MaP = 161.7,MaT = 450.6,MaS = 581.6, respectively. Solid curves indicate stable states,
long-dashed line the unstable portion of the conductive branch, and short-dashed curves unstable
convective states. Resolution is 13× 13.

5. Nonlinear study
We present bifurcation diagrams for Marangoni convection, first in a pure fluid

(SM = 0), and then in a binary mixture with Soret effect, for various combinations of
stabilizing and destabilizing thermal and solutal contributions. Many of the features
of the diagrams are dictated by the symmetry of the problem (e.g. Crawford &
Knobloch 1991). Flows with an even number of rolls are invariant under horizontal
reflection: a bifurcation to such a flow is transcritical. Flows with an odd number of
rolls occur in pairs: the corresponding bifurcation is a pitchfork. The variable (u)l
plotted along the ordinate of our bifurcation diagrams is the vertical velocity at a fixed
spatial location. For each diagram, the location is chosen to best portray the features
of the bifurcation diagram; a typical choice is x = A/8, z = 3/4. This projection has
the important advantage of allowing both pitchfork and transcritical bifurcations to
be represented on the same figure (a global quantity such as the total kinetic energy
or maximum velocity would not distinguish between two asymmetric flows related
by x-reflection). Note that pitchfork bifurcations do not appear symmetric in this
representation and that the diagrams contain intersections which are not bifurcations
but merely coincident values of (u)l at the chosen spatial location. Finally, we recall
that velocity has been non-dimensionalized by Maν/H . Thus the nearly constant
value to which (u)l tends with Ma in some cases when the bifurcating branches
are well-established means that the velocity in conventional units actually increases
linearly with Ma.

5.1. Pure fluid

We have computed the bifurcation diagrams for integer aspect ratios varying from
A = 1 to A = 4.

The bifurcation diagram for A = 1 presented in figure 11 (for Pr = 0.6) is
qualitatively identical to that of figure 2 (for Pr = 8). The first primary bifurcation is
a pitchfork P to a one-roll structure, while the second one is a transcritical bifurcation
T to a two-roll structure. Since the primary steady bifurcation points are independent
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Figure 12. Bifurcation diagram for a pure fluid with A = 2. Insets are streamfunction con-
tours. P , T , and S indicate primary pitchfork, transcritical, and secondary pitchfork bifurcations
at MaP = 93.76,MaT = 126.08,MaS = 130.3 respectively. Solid curves indicate stable states,
long-dashed line the unstable portion of the conductive branch, and short-dashed curves unstable
convective states. Resolution is 15× 13.

of Prandtl number, the threshold values are equal to those obtained with Pr = 8
(figure 2).

For a fixed Marangoni number, the two solutions along the branches resulting
from the pitchfork bifurcation P are dynamically equivalent: the solutions on one
branch are obtained from those on the other by reflection in x. One consequence is
that both branches undergo saddle-node bifurcations at the same Marangoni number.
With increasing Ma, a counter-rotating roll grows in the corner at which the velocity
is upwards. As we continue to follow each branch around its saddle-node bifurcation,
the new roll continues to grow. Eventually, at one value of Ma, the new and original
rolls are of exactly the same size and shape; the flow is reflection-symmetric in x.
At this point, our two branches meet a third branch and disappear via a secondary
subcritical pitchfork bifurcation, labelled S .

This third branch, containing two-roll states with up-flow at the centre (‘up-flowing
branch’), originates from the transcritical bifurcation. Although it branches leftwards
towards Ma < MaT at onset, it quickly undergoes a saddle-node bifurcation and
reverses direction. The range of hysteresis between the transcritical and saddle-node
bifurcations is too small to be visible on the figure. Another branch of two-roll states
with down-flow at the centre (‘down-flowing branch’) also emerges supercritically
from T . Since T occurs after P , in order of increasing Ma, both branches of two-roll
states are unstable at onset. The up-flowing branch is stabilized by the secondary
pitchfork bifurcation S; for higher Ma, it is the only stable branch on this figure.

This type of interaction between symmetric and asymmetric states via primary
pitchfork, transcritical, and secondary pitchfork bifurcations P , T , and S will re-
occur throughout our study. The hysteresis associated with transcritical bifurcations
remains too small to be seen in any of the bifurcation diagrams we will present, and
we shall not refer to it in discussing these diagrams.

The results for the aspect ratio A = 2 are presented in figure 12. The only
qualitative difference with the previous A = 1 case is that the asymmetric branches
do not undergo saddle-node bifurcations, and so the secondary pitchfork bifurcation
at which they terminate is supercritical.
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Figure 13. Bifurcation diagram for a pure fluid and A = 3. Insets are streamfunction con-
tours. P , P ′ and T ,T ′ indicate primary pitchfork and transcritical bifurcations, respectively, at
MaT = 87.5,MaP = 110.9,MaP ′ = 128.0, and MaT ′ = 175.6. S, S ′ and H indicate secondary
pitchfork and Hopf bifurcations, respectively, with MaH = 162.0. Solid curves represent stable
conductive or two-roll states. Dotted and short-dashed curves are branches containing unstable
three- and one-roll states. Long-dashed curves represent unstable four-roll states and the unstable
portion of the conductive branch. The dashed-and-dotted curve represents a portion of the
down-flowing two-roll branch which has been destabilized by H . Each three-roll branch under-
goes three saddle-node bifurcations before terminating on S . Resolution is 21× 13.

For A = 3 (figure 13), the order of the primary bifurcations is reversed: T precedes
P , as can also be seen on figure 4. The pitchfork bifurcation P is now slightly
subcritical and associated with three-roll structures. The three-roll branches emerging
from P each undergo three successive saddle-node bifurcations, giving the bifurcation
diagram a complicated appearance. However, the basic scenario is as before: these
branches terminate at a secondary pitchfork bifurcation S with a two-roll branch
emerging from T .

In this case, A = 3, it is the down-flowing supercritical two-roll branch that
is involved in, and destabilized by S . Along this branch occurs a secondary Hopf
bifurcation (labelled H). This bifurcation is probably subcritical, since time-dependent
simulations slightly above H display growing oscillations that terminate on the steady
up-flowing two-roll branch. Another occurrence of the basic scenario is seen in figure
13, whereby branches of one-roll states emerging from P ′ annihilate at S ′ with a
branch of four-roll states emerging from T ′ (see also figure 4). All of the branches
emerging from P ′ or T ′ remain unstable. Just as for the lower aspect ratios, it is the
up-flowing two-roll branch that remains as the sole stable steady state at the highest
end of our Marangoni number range.

The bifurcation diagram for A = 4 is presented in figure 14. As in the case A = 3,
a transcritical bifurcation to two-roll flows is followed by a pitchfork bifurcation to
three-roll flows. Here, these are very closely spaced in Ma (see also figure 4). Because
the secondary pitchfork destabilizes the branch of down-flowing two-roll states, for
Ma > MaS , only the up-flowing branch is stable. The up-flowing branch is in turn
destabilized by another secondary pitchfork bifurcation S ′. Each of the branches of
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Figure 14. (a) Bifurcation diagram for a pure fluid and A = 4. Insets are streamfunction contours.
P and T ,T ′ indicate primary pitchfork and transcritical bifurcations, respectively, at MaT = 87.26,
MaP = 88.46, and MaT ′ = 113.68. S, S ′ and H indicate secondary pitchfork and Hopf bifur-
cations, respectively, at MaS = 91.8, MaS ′ = 108.16, MaH = 116.27. Solid curves represent sta-
ble conductive, two-roll, and asymmetric two-roll branches. Short-dashed curves represent unsta-
ble four-roll branches. Long-dashed curve represents unstable portion of the conductive branch.
Long-and-short-dashed curve represents asymmetric up-flowing two-roll branches which have been
destabilized by Hopf bifurcations H . (b) Enlargement of (a). Transcritical bifurcation T to two-roll
branches is closely followed by pitchfork bifurcation P to three-roll branches. These are destroyed at
a secondary pitchfork bifurcation S which destabilizes the down-flowing two-roll branch. Resolution
is 21× 13.

asymmetric two-roll states created is subsequently destabilized by a Hopf bifurcation.
The resulting stable oscillatory flow has been described in Bergeon et al. (1994a). Both
the down-flowing and up-flowing two-roll branches evolve into four-roll states as Ma
is increased. For the down-flowing branch, this evolution is straightforward. For the
up-flowing branch, this process is rather tortuous: after acquiring two additional
small rolls at the centre, the branch undergoes a saddle-node bifurcation and then
intersects the conductive branch a second time in another transcritical bifurcation T ′.
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Figure 15. Bifurcation diagram for SM = 0.0054, A = 2. Insets show streamfunction, temperature,
and concentration contours. P , T , and S indicate primary pitchfork, transcritical, and secondary
pitchfork bifurcations, respectively, at MaP = 51.96, MaT = 80.46, and MaS = 129.0. Note the
change in slope near Ma = 94, the threshold for pure thermal convection. Resolution is 15× 13.

(We have confirmed this intersection by verifying that the four rolls reverse direction
of rotation as the branch crosses the axis.)

5.2. Binary mixture

We will describe representative scenarios from different quadrants of the (Ma, SM)
parameter plane (see figure 3). These correspond to stabilizing or destabilizing thermal
and solutal contributions.

5.2.1. SM > 0 and Ma > 0: Soret and Marangoni regimes

In this quadrant, both thermal and solutal contributions are destabilizing. We will
present two cases, one with a small solutal contribution (SM = 0.0054) and one in the
solutal-dominated regime (SM = 0.09).

For SM = 0.0054 and aspect ratio A = 2, the bifurcation diagram depicted in
figure 15 contains the same basic features as figure 12 for a pure fluid: a pitchfork,
a transcritical, and a secondary pitchfork bifurcation. The bifurcation thresholds
for the binary fluid are considerably below those for the pure fluid; between the
two thresholds, the vertical velocity component plotted along the ordinate varies
slowly and remains small. Near the pure fluid threshold Ma ≈ 94, the slopes of the
bifurcating branches change abruptly. In figure 16 we superpose the two diagrams
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Figure 16. Superposition of bifurcation diagrams for SM = 0.0054 (dashed curves) and SM = 0 (solid
curves) for A = 2. The thresholds for SM = 0.0054 are considerably lower than the pure thermal
thresholds. However, above the pure thermal thresholds, the branches from the two diagrams almost
coincide.

and observe that, above the bifurcation thresholds for the pure fluid, the branches for
the pure and binary fluid coincide quite well.

In order to explain this, we examine the structure of the velocity, temperature, and
concentration fields along each branch in figure 15. The concentration fields are far
more distorted by the flow than are the temperature fields because the large ratio
Sc/Pr = 100 indicates that temperature diffuses much faster than concentration.

We can distinguish two regimes. Just above the convective threshold, the velocity
is small. The temperature gradients ∂T/∂x at the free surface are much smaller than
the concentration gradients ∂C/∂x, but the contributions ∂T/∂x and SM∂C/∂x to the
driving term in (2.5c) are of the same order. For example, in figure 15, for Ma = 60,
the maximum values along the surface are (∂T/∂x)max = 0.005, (∂C/∂x)max = 0.5, and
SM(∂C/∂x)max = 0.003. A weakly convecting regime also exists in buoyancy-driven
convection (Barten et al. 1995). There, it is called the Soret regime, and we will adopt
this nomenclature for the Marangoni case as well.

When the thermal threshold is reached, a much stronger convective motion is
triggered by the now-unstable vertical temperature gradient. Much greater mixing of
the solute ensues. The concentration field is nearly uniform over much of the container,
with boundary layers and plumes whose spatial resolution is the most demanding
feature of these computations. The contribution ∂T/∂x to the driving term in (2.5c)
is now much larger than SM∂C/∂x. For example, in figure 15, for the one-roll
flow at Ma = 100, the maximum values along the surface are (∂T/∂x)max = 0.1,
(∂C/∂x)max = 0.75, and (SM∂C/∂x)max = 0.004. We will call this the Marangoni
regime, by analogy to the strongly convecting Rayleigh regime (Barten et al. 1995)
seen in buoyancy-driven convection.

Note that the Soret regime is defined for a given SM to be the portion of the
nonlinear convective branch for Ma between the thermal-solutal and the pure thermal
thresholds, where convection is weak. In contrast, the solutal-dominated regime denotes
a range of SM such that the linear threshold of the thermal-solutal problem Mac is
given approximately by that of the pure solutal problem of § 4.3.1.

We now turn to a case within the solutal-dominated regime, SM = 0.09 and aspect
ratio A = 4. The bifurcation diagram shown in figure 17 is qualitatively very similar
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Figure 17. Bifurcation diagram for SM = 0.09, A = 4 in the solutal-dominated regime. Insets are
streamfunction contours. Primary bifurcations are pitchfork (P ) to one-roll states (solid curve) at
MaP = 5.44, and transcritical bifurcation (T ) to two-roll states (dotted curve) at MaT = 6.16.
Secondary subcritical pitchfork (S) at MaS = 6.36 stabilizes up-flowing two-roll branch (solid
curve). Dashed curves denote asymmetric unstable convective states. Saddle-node bifurcations
occur at MaSN = 24.3. Resolution is 29× 15.

to those previously discussed. The flow is driven primarily by the solutal contribution
to the surface force. In contrast to the pure fluid case of figure 14 for the same aspect
ratio, the first bifurcation P here is to a one-roll state. This was already seen in figure
5 and is expected from the results of §§ 4.1 and 4.3.1. The next bifurcations, T , which
creates a pair of two-roll branches, and S , which stabilizes the up-flowing two-roll
branch, occur very close in Ma. As a consequence, there is bistability over most of the
range of existence of the one-roll branches. Finally, a pair of saddle-node bifurcations
destroys the one-roll states, leaving the up-flowing two-roll state as the only stable
steady state. From figure 5 it can be seen that other primary bifurcations occur in the
range of values of figure 17; we have not computed the unstable branches resulting
from these subsequent bifurcations.

As discussed previously for the case SM = 0.0054, we expect the flow intensity to
increase sharply and the solution to resemble that obtained for a pure fluid when
the Marangoni number exceeds the pure thermal threshold of Ma = 87 (not shown
in figure 17), i.e. when we pass from the Soret to the Marangoni regime. We have
verified that this is indeed the case.

5.2.2. SM < 0 and Ma < 0: stabilizing thermal gradient

We now investigate pattern selection when a destabilizing solutal force is coun-
teracted by a stabilizing thermal force. In this quadrant of the (Ma, SM) parameter
plane, all convective states belong to the Soret regime, since pure thermal convection
cannot occur. The first instability is always to a one-roll structure (see figure 5).

Figure 18 depicts the bifurcation diagram for SM = −0.09 and A = 4, a case in the
solutal-dominated regime. This diagram is qualitatively similar to that obtained for
SM = 0.09 and Ma > 0; in particular, three stable solutions exist over a large range
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Figure 18. Bifurcation diagram for SM = −0.09, A = 4 in the solutal-dominated regime. In-
sets are streamfunction contours. Primary bifurcations are pitchfork P to one-roll states (solid
curve) at MaP = −5.81, and transcritical bifurcation T to two-roll states (short-dashed curve) at
MaT = −7.18. Secondary subcritical pitchfork (S) at MaS = −12.71 stabilizes up-flowing two-roll
branch (solid curve). Saddle-node bifurcations occur at MaSN = −69.98. Dotted curves denote
asymmetric unstable convective states. Resolution is 29× 15.
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Figure 19. Bifurcation diagram for SM = −0.009, A = 2. Pitchfork bifurcation P at Ma = −288
creates a pair of one-roll states. Resolution is 29× 15.

of Marangoni number. The absolute values of the thresholds |MaP |, |MaT | are larger
for SM = −0.09 than for SM = 0.09 because the thermal contribution is stabilizing.

The bifurcation diagram for a smaller |SM | (SM = −0.009) is presented in figure
19 for A = 2. This case is well outside the solutal-dominated regime: the critical
Marangoni number for the pure solutal problem can be calculated from figure 7 to
be Mac ≈ −70, whereas the actual thermal-solutal threshold is seen from figure 19 to
be Ma = −288 due to the stabilizing contribution of the temperature. The one-roll
branches created at this pitchfork bifurcation remain stable beyond Ma = −800,
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Figure 20. Bifurcation diagram for SM = −0.002, A = 2. Insets are contours of streamfunction,
temperature, and concentration fields along the branches indicated by arrows. Primary bifurcations
in order of increasing Ma are two supercritical Hopf bifurcations H at MaH = 94.01 and H ′

at MaH ′ ≈ 128.5 to limit cycles consisting primarily of one-roll and two-roll states, respectively,
followed by pitchfork and transcritical bifurcations P and T at MaP = 132.4 and MaT = 160
to pairs of one- and two-roll states, respectively. Also on this diagram are a pair of saddle-node
bifurcations (MaSN = 95.16) stabilizing the one-roll branches created at P , a global bifurcation
G(MaG ≈ 98) in which the limit cycle created at H is destroyed in a collision with the unstable
one-roll steady states, and a secondary pitchfork bifurcation S (MaS = 130.4) which terminates the
pair of one-roll steady states and stabilizes the upflowing two-roll steady state. Resolution is 21×15.

and they are also the only solutions in this range. The flow remains weak and
the concentration unmixed despite the high values of |Ma|; this is typical of the
Soret regime. The temperature gradients ∂T/∂x are much smaller than those of
the concentration ∂C/∂x, as was the case in the Soret regime for SM = 0.0054.
Here, for SM = −0.009, their contributions to the surface tension (equation (2.5c))
are approximately equal and opposite: For example, at Ma = −300, (∂T/∂x)max =
5× 10−4, (∂C/∂x)max = 8× 10−2, and SM(∂C/∂x)max = −7× 10−4.

5.2.3. SM < 0 and Ma > 0: oscillations

We have investigated the effect of a small stabilizing solutal contribution (SM =
−0.002) for aspect ratio A = 2. We recall that linear stability analysis of the conductive
solution shows that the first and second primary bifurcations are Hopf bifurcations;
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(a) (b) (c) (d )

Figure 21. Limit cycle at Ma = 95, SM = −0.002, and A = 2. Only half a period is included; the
other half is obtained by reflection in x. Contours of the streamfunction (top), temperature (middle),
and concentration (bottom) fields are shown. The first snapshot (a) shows a large clockwise-turning
roll being invaded by a new small counter-clockwise roll. In the subsequent three snapshots (b–d),
the counter-clockwise roll occupies the entire cavity and distorts the concentration contours. The
temperature field is less distorted and reacts much faster to changes in the velocity field. In the next
half-period, the counter-clockwise roll will in turn be destroyed by a new clockwise roll emerging at
the left boundary.

Ma
Hopf Saddle-node Heteroclinic

(global)

Figure 22. Phase portraits associated with the first bifurcations of figure 20 for SM = −0.002.
Hopf bifurcation destabilizes the conductive state and gives rise to a limit cycle shown in figure 21.
Saddle-node bifurcations then form pairs of symmetrically related stable and unstable steady states
(saddles). At the global bifurcation, the limit cycle includes the two saddles and has infinite period.
For higher Ma, the limit cycle no longer exists, and trajectories converge to one of the two stable
steady states.

see figure 9. The bifurcation diagram is depicted in figure 20. The first Hopf bifurcation
H at MaH = 93.95 is supercritical. The resulting limit cycle is shown for Ma = 95 in
figure 21. A cycle consists of two long phases, each resembling a one-roll steady state,
separated by two short phases in which a small counter-rotating roll appears in the
upper down-flowing corner, and grows quickly, replacing the large roll. A physical
interpretation of a similar periodic flow is given in Bergeon et al. (1994a).

This limit cycle is closely related to the steady one-roll solutions, which appear
at a pair of saddle-node bifurcations at MaSN = 95.16. It is by colliding with the
unstable one-roll solutions that the limit cycle disappears. This process is depicted via
schematic phase portraits in figure 22. As Ma is increased from its value MaH ≈ 94
at the Hopf bifurcation, the limit cycle spends an increasing amount of time in the
vicinity of each of the one-roll solutions, until, at a value MaG ≈ 98, a global saddle-
connection bifurcation occurs. At this value, the limit cycle is a heteroclinic orbit, i.e.
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it contains both one-roll solutions and is of infinite period. For higher values of Ma
the limit cycle no longer exists; transition will take place to one of the one-roll states.
This transition is slightly hysteretic, occurring at MaG ≈ 98 for increasing Ma and at
MaSN ≈ 95 for decreasing Ma. The range 94 6 Ma 6 98 over which the limit cycle
exists is itself quite small.

We turn now to the steady states, which follow a variant of the usual scenario. One-
roll branches emerge from the conductive branch via a primary pitchfork bifurcation
P at MaP = 132.4. This bifurcation differs from those seen in the SM > 0 cases in that
the one-roll solutions branch towards Ma < MaP . (The bifurcation is nevertheless
supercritical because the critical eigenvalue increases in the direction of branching: it
is negative for Ma > MaP and positive for Ma < MaP , as shown in figure 10. This
feature was also observed by DaCosta, Knobloch & Weiss (1981) in buoyancy-driven
double-diffusive convection.) Two-roll branches emerge at a transcritical bifurcation
T at MaT = 160, in a similar fashion. Except for the very small interval between T
and its accompanying saddle-node bifurcation (not visible on the figure), both the
two-roll solutions branch towards values Ma < MaT ; see figures 9, 10 and 20. (T is
preceded by another Hopf bifurcation H ′, much as P is preceded by H , which gives
rise to an oscillation between two-roll states. Because this limit cycle is unstable, we
have not investigated it and shall not discuss it further, except to conjecture that it too
terminates via a global bifurcation.) The unstable one-roll branches are stabilized at
the saddle-node bifurcations SN and terminate at a secondary pitchfork bifurcation
at MaS = 130.4, which in turn stabilizes the upflowing two-roll branch. The sequence
of stable solutions observed as Ma is increased is thus: limit cycle alternating between
one-roll states; either of the one-roll states; up-flowing two-roll state.

This bifurcation scenario is widely observed in buoyancy-driven convection in
binary fluids, e.g. by Platten & Chavepeyer (1973, 1975) for Rayleigh–Bénard convec-
tion with Soret effect, and by DaCosta et al. (1981) for double-diffusive convection.
In these particular cases, saddle-node bifurcations precede the Hopf bifurcation in
control parameter (Ra rather than Ma). This means that, while the transition sequence
with increasing control parameter is similar to that we have described, the oscillatory
regime is bypassed when the control parameter is decreased.

In order to deepen our understanding of the SM = −0.002 case, we carry out
two comparisons with other values of SM . In figure 23, we superpose the steady
solutions with those obtained for a pure fluid, as was previously done in figure 16
for SM > 0. The prominent saddle-node bifurcations in the SM = −0.002 diagram are
quite close to the pure thermal thresholds, and the stable portions of the one- and
two-roll branches closely coincide with their pure thermal analogues. The difference
between the SM < 0 and the pure thermal case is the much higher thresholds for
the primary steady bifurcations, accompanied by the extensive leftward-branching
unstable portions of the one- and two-roll branches, We can extend our previous
definition of the Soret regime to include these unstable weakly convective states
existing between the pure thermal threshold and the thermal-solutal threshold. The
Marangoni regime is extended to include the stable convective states created by the
saddle-node bifurcations.

Figure 24 compares the real part of the leading eigenvalues as a function of Ma for
three values of SM: SM = −0.002, SM = 0 and SM = 0.002. Based on this diagram, we
can classify the eigenvalues as solutally or thermally dominated. For SM = 0.002, the
leading eigenvalue undergoes a sudden change in slope at the pure thermal threshold
Ma ≈ 94. This eigenvalue can be considered as solutally dominated for Ma < 94,
where it is small, and thermally dominated for Ma > 94, where it approaches closely
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Figure 23. Superposition of bifurcation diagrams for SM = −0.002 (dashed curves) and SM = 0
(solid curves) for A = 2. Despite the important qualitative differences between the two bifurcation
diagrams, the branches of steady states are remarkably close, except for the leftward-branching
steady states of SM = −0.002.
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Figure 24. Real part of the most unstable eigenvalues for A = 2 as a function of Ma for SM = 0.002
(dotted-and-dashed curve), SM = 0 (solid curve) and SM = −0.002 (dashed curves). For SM = −0.002,
the complex conjugate pair divides into two real eigenvalues at Ma = 101.2. Portions of eigenvalue
curves approaching the SM = 0 eigenvalue curve, i.e. SM = 0.002,Ma > 90 and upper curve for
SM = −0.002,Ma > 101, are associated primarily with the thermal problem, eigenvalue curves with
smaller slope, i.e. SM = 0.002,Ma < 90 and lower curve for SM = 0.002,Ma > 101, are associated
primarily with the solutal problem. Complex conjugate pair is mixed solutal-thermal.

the leading eigenvalue for the pure thermal problem. For SM = −0.002, the situation
is more complicated. The complex conjugate pair of eigenvalues which are the first to
bifurcate can be considered to be a mixed solutal-thermal pair. When these split into
two real eigenvalues, the larger one rises towards the pure thermal eigenvalue and the
smaller one decreases towards zero and can be considered as solutally dominated. The
relative magnitude of the thermally dominated eigenvalues is determined by SM: for
the same value of Ma, the eigenvalue is larger (smaller) when the solutal contribution
is destabilizing (stabilizing).

Finally, we mention that we have also studied cases with more negative SM .
For SM = −0.006, similar results are obtained, i.e. a supercritical Hopf bifurcation
leading to an oscillatory one-roll flow and leftward branching primary bifurcations
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to steady states. The unstable solutal branches and their connection with the steady
bifurcation points are more complex since, for this value of SM , the steady primary
bifurcation points are interchanged: the transcritical bifurcation to two-roll states
precedes the pitchfork bifurcation to one-roll states (see figure 6). For SM = −3,
Ma = 100, and A = 4, we find oscillations throughout which the flow retains
reflection symmetry in x. The configuration alternates between two and four rolls, as
cells are periodically created and annihilated at the centre and at the sidewalls; see
Bergeon et al. (1994a). We have not conducted a detailed study, but a few simulations
indicate that oscillations take place over a larger range in Ma. This is to be expected
when we are farther from the codimension-two point at which the frequency of the
Hopf bifurcation is zero.

6. Conclusions
Our numerical investigation of Marangoni convection with Soret effect has yielded

a number of general conclusions. As in the case of Rayleigh–Bénard convection,
linear stability analysis demonstrates the existence of a solutal-dominated regime in
a horizontally infinite domain for which the critical Marangoni number for steady
convection is inversely proportional to SM and the critical wavenumber is zero.
Qualitatively, it is clear that in a finite domain, a zero wavenumber corresponds to
a single large roll and that thresholds are larger since the pattern must adapt to the
container. Quantitatively, we have been able to extend the applicability of the solutal-
dominated regime to a finite domain by defining and solving a pure solutal problem
which is the asymptotic limit of the thermal-solutal (Marangoni–Soret) problem for
large Sc/Pr and |SM | not too small.

We have calculated bifurcation diagrams both for pure fluids and for binary fluids
with Soret effect, for aspect ratios ranging from A = 1 to A = 4 and various values of
SM . Although the details are specific to each case, the bifurcation diagrams do share
a number of general features.

In most of the cases we have studied, the initial bifurcation is to a one-roll state,
even outside the solutal-dominated regime. As Ma is increased, the one-roll states
are succeeded by a two-roll state with upflow in the centre of the cell. This occurs
via an interaction between the one- and two-roll branches, specifically a secondary
bifurcation which annihilates the one-roll branches and stabilizes the upflowing two-
roll branch. Within this broad framework, there may or may not be bistability between
the one- and the two-roll branches, depending on whether the bifurcations are super-
or subcritical.

The favoured outcome of an upflowing two-roll state highlights an important
difference between our case and that of Rayleigh–Bénard convection governed by the
Boussinesq equations. The Boussinesq approximation guarantees reflection symmetry
in z as well as in x. As a consequence, all primary bifurcations (to a single layer of
rolls) are pitchforks. The bifurcation scenario linking our one- and upflowing two-roll
branches is ruled out because up-flow and down-flow are strictly equivalent. While
we do not expect one- and two-roll branches to play as important a role in larger
aspect ratios, we do expect similar bifurcation scenarios involving interplay between
branches arising from successive pitchfork and transcritical bifurcations.

In figure 25, we summarize the ways in which the bifurcation diagram for thermal
convection in a pure fluid (figures 25b and 12) is modified by inclusion of the Soret
effect.

For small positive SM (figures 25c and 15) we distinguish two distinct convective

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

26
14

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098002614


174 A. Bergeon, D. Henry, H. BenHadid and L. S. Tuckerman

(a) (b) (c) (d )
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Figure 25. Upper figures: evolution of bifurcation diagrams and Mac with SM for Ma > 0. (a)
SM < 0. Steady bifurcation branches leftward. Soret regime (weakly convecting unstable branches)
and Marangoni regime (strongly convecting stable branches) separated by saddle-node bifurcation
near the pure thermal threshold. (b) SM = 0. Pure thermal convection. (c) Small SM > 0. Pure thermal
threshold divides Soret regime (weak convection) from Marangoni regime (strong convection). (d)
Larger SM > 0. Initially bifurcating branches terminate for Ma below pure thermal threshold;
transition to Marangoni regime occurs for subsequent branch. Dashed curves on (a), (c), and
(d) reproduce pure thermal branch from figure (b). Crosses indicate primary bifurcation points,
including Hopf bifurcation in (a). Lower figures: thresholds Mac as a function of SM . Steady
bifurcation threshold shown as solid curve, Hopf bifurcation threshold as dashed curve. Crosses on
each graph match bifurcations on corresponding diagrams above.

regimes. For Ma between the thermal-solutal and the thermal thresholds, a weak
convective flow exists: this is the Soret regime. For Ma higher than the pure thermal
threshold, the much stronger flow resembles convection in a pure fluid and the
concentration field is mixed: this is the Marangoni regime. For larger SM (figures 25d
and 17), the branches which are the first to bifurcate may terminate while still in the
Soret regime. In this case, the transition to the Marangoni regime is seen on other
branches.

The case SM < 0,Ma > 0, where a stabilizing solutal influence competes with a
destabilizing thermal influence, is of particular interest (figures 25a and 20). The first
instability is a Hopf bifurcation, leading to oscillations. For A = 2, these oscillations
exist only over a very small range of Ma before being destroyed by global bifurcations.
Except over this very small interval, the usual sequence is observed: one-roll steady
states, succeeded by the upflowing two-roll steady state. For larger A, we expect
features of this scenario – the interval over which there are oscillations, the number
of rolls – to change quantitatively. We can again distinguish Soret and Marangoni
regimes along the steady convective branches. However for negative SM , the distinction
is more complicated than for positive SM: the Soret branches are unstable and co-
exist with stable Marangoni branches to which they are connected by saddle-node
bifurcations.

Detailed study of the spectrum in the SM < 0,Ma > 0 quadrant reveals several
interesting features. In addition to the usual classification of the eigenmodes as
symmetric or antisymmetric with respect to x-reflection, a more physical division of
the spectrum also exists: under some circumstances, eigenmodes can be classified as
thermal or as solutal. Whereas modes of different symmetry are uncoupled, modes
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of different physical origin are free to mix. In particular, the Hopf bifurcations
involve one thermal and one solutal eigenmode, giving a concrete and quantitative
interpretation to the often-stated idea that the oscillations arise from coupled solutal
and thermal effects.

In summary, we have conducted the first comprehensive study of Marangoni
convection with Soret effect in finite domains. By adapting a spectral-element time-
integration code to perform steady-state solving and direct calculation of bifurcation
points, we have been able to obtain convection thresholds and bifurcation diagrams
over a large range of aspect ratios A and Marangoni Soret coefficients SM . Com-
plementing these calculations with temporal integration and calculation of the most
unstable eigenmodes, we have been able to locate Hopf bifurcations, compute limit
cycles, and confirm stability or instability of the calculated branches. We have com-
pared our results to those from various simplified model problems – infinite aspect
ratio, pure thermal, and pure solutal problems – to obtain insight into the mechanisms
responsible for convection.

This research was carried out within the framework of the Centre National d’Etudes
Spatiales (CNES) microgravity program and the European Human Capital and
Mobility (HCM) program on Heat and Mass Transfer in Microgravity Systems. Part
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Aubry, M. Schatz, H. L. Swinney, and E. Titi for fruitful discussions. Computations
were carried out on the Cray YMP C98 and C94 of the Institut du Développement
et des Ressources en Informatique Scientifique (IDRIS) sponsored by the Centre
National de Recherche Scientifique (CNRS).

REFERENCES
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