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In this paper we analyse the process of the generation of Tollmien–Schlichting waves
in a laminar boundary layer on an aircraft wing in the transonic flow regime. We
assume that the boundary layer is exposed to a weak acoustic noise. As it penetrates
the boundary layer, the Stokes layer forms on the wing surface. We further assume
that the boundary layer encounters a local roughness on the wing surface in the form
of a gap, step or hump. The interaction of the unsteady perturbations in the Stokes
layer with steady perturbations produced by the wall roughness is shown to lead to
the formation of the Tollmien–Schlichting wave behind the roughness. The ability
of the flow in the boundary layer to convert ‘external perturbations’ into instability
modes is termed the receptivity of the boundary layer. In this paper we first develop
the linear receptivity theory. Assuming the Reynolds number to be large, we use the
transonic version of the viscous–inviscid interaction theory that is known to describe
the stability of the boundary layer on the lower branch of the neutral curve. The linear
receptivity theory holds when the acoustic noise level is weak, and the roughness
height is small. In this case we were able to deduce an analytic formula for the
amplitude of the generated Tollmien–Schlichting wave. In the second part of the paper
we lift the restriction on the roughness height, which allows us to study the flows with
local separation regions. A new ‘direct’ numerical method has been developed for this
purpose. We performed the calculations for different values of the Kármán–Guderley
parameter, and found that the flow separation leads to a significant enhancement of
the receptivity process.

Key words: boundary layer receptivity, boundary layer separation, high-speed flow

1. Introduction

The phenomenon of laminar–turbulent transition has been under the close attention
of researchers for more than a century, and still remains one of the central problems
of fluid dynamics. In addition to its importance from a fundamental viewpoint, a
resolution of this problem is also necessary for practical applications. In particular,
when dealing with aerodynamic applications, one has to predict the ‘position’ of
the laminar–turbulent transition on the aircraft wing, which is impossible without an
accurate description of the receptivity process.

† Email address for correspondence: a.ruban@imperial.ac.uk
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The laminar–turbulent transition is a very complicated phenomenon, and it is
known to proceed differently in different flows. In aerodynamic flows it follows
a classical scenario with a succession of well-defined stages. In the first stage the
external perturbation (such as free-stream turbulence, acoustic noise, wall roughnesses,
wall vibrations, etc.) penetrate the boundary layer and turn into the boundary-layer
instability modes: Tollmien–Schlichting waves, cross-flow vortices or Taylor–Görtler
vortices. In real flight conditions, the external perturbations are very weak – in
fact, significantly weaker compared even to specially designed ‘low-turbulence’ wind
tunnels. Therefore, the initial amplitude of instability modes generated in the boundary
layer is small, and cannot cause laminar–turbulent transition. Before this happens, the
perturbations have to amplify further downstream. This is considered to be the second
stage of the transition process. When the amplitude of the perturbations reaches a
certain level, nonlinear effects come into play (third stage), and then a rapid transition
to a turbulent state is observed. This means that the eN method, currently adopted
by the aerospace industry, is insufficient for accurate prediction of the transition. It
does not account for environmental noise and wing surface roughness, which are well
known to significantly influence the position of the transition. The receptivity theory
aims to establish a link between the external perturbations and the laminar–turbulent
transition, and serves the following purposes: (i) to identify the perturbations that can
easily penetrate the boundary layer and turn into instability modes, (ii) to calculate
the initial amplitude of the instability modes, and (iii) to devise the means to control
the transition process through suppression of the boundary-layer receptivity. The
second of these tasks can be performed using various mathematical tools, including
the numerical solution of the linearised Navier–Stokes equations. However, it is the
asymptotic approach that proves to be instrumental in performing tasks (i) and (iii).

The first paper, where the triple-deck theory was used to study the receptivity of
the boundary layer, was published by Terent’ev (1981). This study considered an
incompressible fluid flow past a flat plate with the basic steady flow given by the
Blasius solution. It was assumed that a short section of the plate surface performed
periodic vibrations in the direction perpendicular to the wall. In order to ensure that
the flow is described by the triple-deck theory, the frequency of the vibrations was
chosen to be ω = O(Re1/4) and the length of the vibrating section 1x = O(Re−3/8).
Terent’ev’s formulation represents a simplified mathematical model of the classical
experiments by Schubauer & Skramstad (1948), where the Tollmien–Schlichting waves
were generated by a vibrating ribbon. Terent’ev was able to determine the amplitude
of the generated Tollmien–Schlichting waves as a function of the amplitude and shape
of the vibrating part of the wall.

The effect of acoustic noise on the boundary layer was first considered by Goldstein
(1983), who studied the Blasius boundary-layer flow on a flat plate and used the fact
that this flow is non-parallel near the leading edge of the plate. He showed that, when
an acoustic wave interacts with the leading-edge region, the Lam–Rott eigensolutions
are generated. Goldstein (1983) noticed, however, that these eigensolutions decay
exponentially before becoming Tollmien–Schlichting waves further downstream.

For effective generation of Tollmien–Schlichting waves, the external perturbations
have to satisfy rather restrictive resonance conditions. Unlike in a simple mechanical
system, say, a pendulum, where the resonance is observed provided that the frequency
of the external forcing is close to the natural frequency of the pendulum oscillations,
in fluid flows resonance implies that, in addition to the frequency, the wavenumber
of the external perturbations should also be close to that of the Tollmien–Schlichting
waves. Ruban (1984) and Goldstein (1985) were the first to demonstrate how this
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double-resonance principle can be used in the receptivity theory. It is known from
Lin (1946) and Smith (1979a,b) that, in the boundary layer in a subsonic flow, the
frequency of the Tollmien–Schlichting waves on the lower branch of the neutral
curve is an O(Re1/4) quantity, and the wavelength is O(Re−3/8). This means that
in the ‘vibrating ribbon’ problem considered by Terent’ev (1981) the two resonance
conditions are satisfied automatically. The situation is more complex in the case of the
boundary-layer receptivity to acoustic noise, which was analysed by Ruban (1984) and
Goldstein (1985). They were interested in the generation of the Tollmien–Schlichting
waves in the boundary layer at a finite distance from the leading edge, where the
Tollmien–Schlichting waves become unstable. To satisfy the first resonance condition,
the frequency of the acoustic wave was chosen to be an O(Re1/4) quantity, but
then the wavelength of the acoustic wave appears to be O(Re−1/4) long, which is
much longer than the wavelength of the Tollmien–Schlichting wave. Hence, the
acoustic wave alone is insufficient for Tollmien–Schlichting wave generation. To
satisfy the resonance condition with respect to the wavenumber, the acoustic wave
has to come into interaction with wall roughnesses, which are, of course, plentiful
on a real aircraft wing. Ruban (1984) and Goldstein (1985) demonstrated that the
interaction of an acoustic wave with such roughnesses produces Tollmien–Schlichting
waves in the boundary layer. An explicit formula for the amplitude of the generated
Tollmien–Schlichting waves was deduced.

A review of subsequent studies in this field can be found in a recent paper of Ruban,
Bernots & Pryce (2013) that is devoted to the analysis of the generation of Tollmien–
Schlichting waves by vibrations of the wing surface.

Here, in the present paper, our attention is with the receptivity of the boundary layer
to acoustic noise in transonic flows; the latter represent the cruise flight conditions of
modern passenger aircraft. In our study we rely on the asymptotic description of the
Tollmien–Schlichting waves in transonic flow, given by Timoshin (1990), by Bowles &
Smith (1993) and more recently by Bogdanov et al. (2010). In addition to developing
the linear receptivity theory, we also study the influence of nonlinear effects on the
generation of the Tollmien–Schlichting waves.

2. Problem formulation
Let us consider the flow of a perfect gas past a flat plate. We shall assume for

simplicity that the plate is parallel to the free-stream velocity, and upstream of the
plate the flow is uniform (see figure 1). We shall further assume that there is a plane
acoustic wave travelling parallel to the plate. The flow analysis will be conducted
using the compressible Navier–Stokes equations, which are presented here retaining
only the main viscous terms in the momentum and energy equations:

ρ̂

(
∂ û
∂ t̂
+ û

∂ û
∂ x̂
+ v̂ ∂ û

∂ ŷ

)
=−∂ p̂

∂ x̂
+ ∂

∂ ŷ

(
µ̂
∂ û
∂ ŷ

)
+ · · · , (2.1a)

ρ̂

(
∂v̂

∂ t̂
+ û

∂v̂

∂ x̂
+ v̂ ∂v̂

∂ ŷ

)
=−∂ p̂

∂ ŷ
+ ∂

∂ ŷ

(
µ̂
∂v̂

∂ ŷ

)
+ · · · , (2.1b)

ρ̂

(
∂ ĥ
∂ t̂
+ û

∂ ĥ
∂ x̂
+ v̂ ∂ ĥ

∂ ŷ

)
= ∂ p̂

∂ t̂
+ û

∂ p̂
∂ x̂
+ v̂ ∂ p̂

∂ ŷ

+ 1
Pr

∂

∂ ŷ

(
µ̂
∂ ĥ
∂ ŷ

)
+ µ̂

(
∂ û
∂ ŷ

)2

+ · · · , (2.1c)
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FIGURE 1. Illustration of the flow structure for the acoustic wave receptivity.

∂ρ̂

∂ t̂
+ ∂(ρ̂û)

∂ x̂
+ ∂(ρ̂v̂)

∂ ŷ
= 0, (2.1d)

ĥ= γ

γ − 1
p̂
ρ̂
. (2.1e)

We shall use Cartesian coordinates with x̂ measured along the plate surface from
the leading edge, and ŷ in the perpendicular direction. The dimensional velocity
components are denoted as (û, v̂) and t̂ is the time. We further denote the gas density
by ρ̂, the pressure by p̂, the enthalpy by ĥ and the dynamic viscosity coefficient by
µ̂; Pr is the Prandtl number and γ is the ratio of specific heats.

Let U∞ be the free-stream velocity and L the distance from the leading edge to
the roughness. The values of the pressure, density and viscosity coefficient in the free
stream are denoted by p∞, ρ∞ and µ∞, respectively. The Reynolds number is defined
as

Re= ρ∞U∞L
µ∞

, (2.2)

and is assumed to be large.
To perform the asymptotic analysis of the Navier–Stokes equations at large values

of Re, one needs to identify the resonance frequency ω of the acoustic wave and
the characteristic length ` of the wall roughness. As has already been mentioned, in
subsonic flow

ω=O(Re1/4), `=O(Re−3/8). (2.3a,b)

To deduce the corresponding estimates for the transonic flow, one can proceed as
follows. It is known that, in subsonic flow, the frequency and the wavelength of the
neural Tollmien–Schlichting wave depend on the Mach number M∞ as follows:

ω∼ Re1/4(1−M2
∞)

1/4, `∼ Re−3/8(1−M2
∞)
−3/8. (2.4a,b)

Keeping this in mind, Timoshin (1990) assumed that M∞ − 1 becomes progressively
smaller and analysed the equations in the three tiers of the triple-deck model. He
found that the triple-deck equations remain unchanged for all 1 − M2

∞ � Re−1/9.
However, when 1−M2

∞ becomes a quantity of order O(Re−1/9), the flow in the upper
deck can no longer be described by the Laplace equation. It has to be replaced by
the transonic small-perturbation equation.
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Consequently, we shall assume that the free-stream Mach number M∞ is such that
(see Timoshin 1990; Bowles & Smith 1993)

M2
∞ = 1+ Re−1/9Q∞, (2.5)

where Q∞ is assumed to be an order-one quantity. It is referred to as the Kármán–
Guderley parameter. Substitution of (2.5) into (2.4) shows that in the transonic flow
the resonance conditions are achieved when

ω∼ Re2/9, `∼ Re−1/3. (2.6a,b)

3. Flow ahead of the wall roughness
Here we shall consider the steady boundary layer that forms on the plate surface,

and the perturbations produced in this flow by a weak acoustic wave travelling along
the plate.

3.1. Steady compressible boundary-layer flow
The solution of the Navier–Stokes equations (2.1) for the steady flow in the boundary
layer is represented in the form of the following asymptotic expansions:

û=U∞U0(x̆, Ȳ)+ · · · , ρ̂ = ρ∞R0(x̆, Ȳ)+ · · · , (3.1a,b)

v̂ =U∞Re−1/2V0(x̆, Ȳ)+ · · · , ĥ=U2
∞H0(x̆, Ȳ)+ · · · , (3.1c,d)

p̂= p∞ + ρ∞U2
∞Re−1/2p′(x̆, Ȳ)+ · · · , µ̂=µ∞µ0(x̆, Ȳ)+ · · · . (3.1e,f )

Here the dimensionless coordinates (x̆, Ȳ) are introduced through the scalings

x̂= Lx̆, ŷ= LRe−(1/2)Ȳ. (3.2a,b)

Substitution of (3.1) and (3.2) into the Navier–Stokes equations (2.1) leads to the
classical boundary-layer equations for compressible flow:

R0U0
∂U0

∂ x̆
+ R0V0

∂U0

∂Ȳ
= ∂

∂Ȳ

(
µ0
∂U0

∂Ȳ

)
, (3.3a)

R0U0
∂H0

∂ x̆
+ R0V0

∂H0

∂Ȳ
= 1

Pr
∂

∂Ȳ

(
µ0
∂H0

∂Ȳ

)
+µ0

(
∂U0

∂Ȳ

)2

, (3.3b)

U0
∂R0

∂ x̆
+ R0

∂V0

∂Ȳ
+ R0

∂U0

∂ x̆
+ V0

∂R0

∂Ȳ
= 0, (3.3c)

H0 = 1
(γ − 1)R0

. (3.3d)

Equations (3.3a,b) are parabolic, and require the following boundary conditions. At the
leading edge of the plate, the flow is still unperturbed, and therefore we can write

U0 = 1, H0 = 1
(γ − 1)

at x̆= 0, Ȳ ∈ [0,∞). (3.4a,b)
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At the outer edge of the boundary layer, the conditions for matching of U0 and H0

with their values in the unperturbed flow outside the boundary layer are

U0 = 1, H0 = 1
(γ − 1)

at Ȳ =∞, x̆ ∈ [0,∞). (3.5a,b)

In addition, the solution has to satisfy the no-slip conditions on the surface of the
plate:

U0 = V0 = 0 at Ȳ = 0, x̆ ∈ [0,∞). (3.6a)

These have to be supplemented with an appropriate thermal condition. Here it will be
assumed that the plate is thermally isolated, in which case

∂H0

∂Ȳ
= 0 at Ȳ = 0, x̆ ∈ [0,∞). (3.6b)

This boundary-value problem (3.3)–(3.6) admits a self-similar solution. However, for
the receptivity analysis, we do not need to know the precise form of this solution. We
only need to know that the solution is smooth near the position of roughness (x̆= 1),
and may be represented by the Taylor expansions

U0(x̆, Ȳ)=U00(Ȳ)+ (x̆− 1)U01(Ȳ)+ · · · ,
R0(x̆, Ȳ)= R00(Ȳ)+ (x̆− 1)R01(Ȳ)+ · · · ,
H0(x̆, Ȳ)=H00(Ȳ)+ (x̆− 1)H01(Ȳ)+ · · · ,
µ0(x̆, Ȳ)=µ00(Ȳ)+ (x̆− 1)µ01(Ȳ)+ · · · ,

 (3.7)

where U00(Ȳ), R00(Ȳ), H00(Ȳ) and µ00(Ȳ) are such that

U00(Ȳ)= τ Ȳ +O(Ȳ4),

R00(Ȳ)= ρw +O(Ȳ2),

H00(Ȳ)= hw +O(Ȳ2),

µ00(Ȳ)=µw +O(Ȳ2),

 as Ȳ→ 0, (3.8a−d)

where τ denotes the skin friction, and hw, µw and ρw are the enthalpy, viscosity and
density on the surface of the plate, respectively. All these quantities are constants.

3.2. Perturbations caused by acoustic noise
We start our analysis with region 1 situated outside the boundary layer (see figure 1).
We shall assume that the acoustic noise is weak, and seek the corresponding solution
of the Navier–Stokes equations (2.1) in the form

û=U∞[1+ Re−1/9u1(t̃, x̄)] + · · · , (3.9a)
ρ̂ = ρ∞[1+ Re−1/9ρ1(t̃, x̄)] + · · · , (3.9b)

p̂= p∞ + ρ∞U2
∞Re−1/9p1(t̃, x̄)+ · · · , (3.9c)
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with the independent variables x̄ and t̃ given by

x̂= L+ LRe−2/9x̄, t̂= L
U∞

Re−2/9 t̃. (3.10a,b)

Substitution of (3.9) and (3.10) into the Navier–Stokes equation (2.1) leads to the
linearised Euler equations:

∂u1

∂ t̃
+ ∂u1

∂ x̄
=−∂p1

∂ x̄
, (3.11a)

∂ρ1

∂ t̃
+ ∂ρ1

∂ x̄
=M2

∞

(
∂p1

∂ t̃
+ ∂p1

∂ x̄

)
, (3.11b)

∂ρ1

∂ t̃
+ ∂ρ1

∂ x̄
+ ∂u1

∂ x̄
= 0. (3.11c)

By eliminating u1 and ρ1, one can reduce the set of equations (3.11) to the
following equation for the pressure perturbations p1:

M2
∞
∂2p1

∂ t̃2
+ (M2

∞ − 1)
∂2p1

∂ x̄2
+ 2M2

∞
∂2p1

∂ x̄∂ t̃
= 0. (3.12)

It admits a travelling-wave solution

pa(t̃, x̄)= ᾱ sin(ω̃t̃+ k̄x̄), (3.13)

where ᾱ is the amplitude of the acoustic wave, ω̃ is the frequency and k̄ =
−ω̃M∞/(M∞ + 1) is the wavenumber.

3.3. Main part of the boundary layer
The steady solution in the boundary layer is represented by the asymptotic expansions
(3.1). Now we shall add the perturbations caused by the acoustic wave:

û=U∞[U0(x̆, Ȳ)+ Re−1/9M∞u2(x̆, Ȳ)pa(t̃, x̄)] + · · · , (3.14a)

v̂ =U∞[Re−7/18ᾱk̄M∞v2(x̆, Ȳ) cos(ω̃t̃+ k̄x̄)] + · · · , (3.14b)

p̂= p∞ + ρ∞U2
∞[Re−1/9p2(x̆, Ȳ)pa(t̃, x̄)] + · · · , (3.14c)

ĥ=U2
∞[H0(x̆, Ȳ)+ Re−1/9h2(x̆, Ȳ)pa(t̃, x̄)] + · · · , (3.14d)

ρ̂ = ρ∞[R0(x̆, Ȳ)+ Re−1/9M2
∞ρ2(x̆, Ȳ)pa(t̃, x̄)] + · · · , (3.14e)

µ̂=µ∞[µ0(x̆, Ȳ)+ Re−1/9µ2(x̆, Ȳ)pa(t̃, x̄)] + · · · , (3.14f )

where the function pa is given by (3.13), the independent variables t̃ and x̄ are given
by (3.10) and Ȳ is defined by (3.2b).

Substituting (3.14) into (2.1) and working with the leading-order terms, we find that

R0

[(
ω̃

k̄
+U0

)
u2 + v2

∂U0

∂Ȳ

]
=− p2

M∞
, (3.15a)

∂p2

∂Ȳ
= 0, (3.15b)
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R0

[(
ω̃

k̄
+U0

)
h2 +M∞v2

∂H0

∂Ȳ

]
=
(
ω̃

k̄
+U0

)
p2, (3.15c)

M∞

(
ω̃

k̄
+U0

)
ρ2 + R0u2 + ∂(v2R0)

∂Ȳ
= 0, (3.15d)

(γ − 1)(h2R0 +M2
∞ρ2H0)= γ p2. (3.15e)

It can be seen that these equations do not contain viscous terms. Thus, instead of the
no-slip condition, the impermeability condition, v2= 0, on the plate surface should be
applied. Consequently, setting Ȳ = 0 in (3.3a,c), and choosing x̆= 1, we can find that
at the bottom of the boundary layer

u2 = 1
ρw(M∞ + 1)

and h2 = 1
ρw

at Ȳ = 0. (3.16a,b)

The solution (3.16) does not satisfy the no-slip condition, which means that we also
need to consider the Stokes layer closer to the plate surface.

3.4. Stokes layer
As the pressure perturbations (3.13) penetrate the boundary layer, they cause the
Stokes layer to form near the surface. The thickness of this layer is easily estimated
by comparing the instantaneous acceleration term with the viscous forces in the
longitudinal momentum equation (2.1a):

ρ̂
∂ û
∂ t̂
∼ ∂

∂ ŷ

(
µ̂
∂ û
∂ ŷ

)
. (3.17)

Taking into account that ρ̂ ∼ ρ∞, µ̂ ∼ µ∞ and the characteristic time is defined by
(3.10b), one can easily deduce from (3.17) that the thickness of the Stokes layer is
ŷ∼ LRe−11/18.

The solution in the Stokes layer is sought in the form

û=U∞Re−1/9u3(t̃, x̄, ȳ)+ · · · ,
v̂ =U∞Re−1/2v3(t̃, x̄, ȳ)+ · · · ,

p̂= p∞ + ρ∞U2
∞Re−1/9p3(t̃, x̄, ȳ)+ · · · ,

ρ̂ = ρ∞[ρw + Re−1/9ρ3(t̃, x̄, ȳ)] + · · · ,
ĥ=U2

∞[hw + Re−1/9h3(t̃, x̄, ȳ)] + · · · ,
µ̂=µ∞[µw + Re−1/9µ3(t̃, x̄, ȳ)] + · · · ,


(3.18)

where ȳ is defined by the equation

ŷ= LRe−11/18ȳ. (3.19)

Substituting (3.18) into the Navier–Stokes equations (2.1) and working with leading-
order terms, we find that the flow in the Stokes layer is described by the equations

ρw
∂u3

∂ t̃
=−∂p3

∂ x̄
+µw

∂2u3

∂ ȳ2
, (3.20a)

∂p3

∂ ȳ
= 0, (3.20b)
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ρw
∂h3

∂ t̃
= ∂p3

∂ t̃
+ µw

Pr
∂2h3

∂ ȳ2
, (3.20c)

∂ρ3

∂ t̃
+ ρw

∂u3

∂ x̄
+ ρw

∂v3

∂ ȳ
= 0, (3.20d)

(γ − 1)(hwρ3 + ρwh3)= γ p3. (3.20e)

It follows from (3.20b) and (3.15b) that the pressure does not change across the
main part of the boundary layer, and it also remains unchanged across the Stokes layer.
This means that p3 is given by (3.13). With known p3, the x momentum equation
(3.20a) separates from the rest of the equations in (3.20). It has to be solved with
the no-slip condition on the surface of the plate and the matching condition with the
solution in region 2:

u3 = 0 at ȳ= 0, (3.21a)

u3 = τ ȳ− k̄
ω̃

pa

ρw
as ȳ→∞. (3.21b)

The solution of the boundary-value problem (3.20a) and (3.21) is written as

u3 = τ ȳ+ d sin(ω̃t̃+ k̄x̄)− de−χ ȳ sin(ω̃t̃+ k̄x̄− χ ȳ), (3.22)

where

d=− k̄ᾱ
ω̃ρw

, χ =
√
ω̃ρw

2µw
. (3.23a,b)

4. Flow in the interaction region
As was stated in the introduction, for effective generation of the Tollmien–

Schlichting waves, the Stokes layer has to come into interaction with the wall
roughness (see figure 2). To satisfy the resonance conditions, we shall assume that
the longitudinal size of the roughness is estimated as

1x̂=O(LRe−1/3), (4.1)

i.e. is comparable with the wavelength of the Tollmien–Schlichting wave. Keeping this
in mind, we shall express the roughness shape by the equation

ŷ= LRe−11/18Ḡ
(

x̂− L
LRe−3/9

)
. (4.2)

The triple-deck region that forms in the vicinity of the roughness is composed of three
tiers: the viscous sublayer of thickness ŷ∼ LRe−11/18, the main part of the boundary
layer with thickness ŷ ∼ LRe−1/2, and the potential flow region that lies outside the
boundary layer; the thickness of the upper tier is estimated as ŷ∼LRe−5/18. Of course,
all three layers have the same longitudinal extent given by (4.1). Correspondingly, an
order-one longitudinal coordinate for the triple-deck region, x̃, is introduced as

x̂= L+ LRe−1/3x̃. (4.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

58
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.587


Linear and nonlinear receptivity of boundary layer in transonic flows 163

FIGURE 2. Triple-deck structure in transonic flow.

Before analysing the flow behaviour in the three tiers, we shall make the following
observation. The size of the roughness is much smaller than the wavelength of the
acoustic wave. Indeed, comparing (4.3) with (3.10a), we can see that

x̄= Re−1/9x̃. (4.4)

Substituting (4.4) into (3.13) and setting Re→∞ with x̃ = O(1), we find that, in
the interaction region, the acoustic pressure perturbations may be expressed by the
equation

pa = ᾱ sin(ω̃t̃)+ Re−1/9ᾱk̄x̃ cos(ω̃t̃)+ · · · . (4.5)

4.1. Lower deck
We start the analysis of the flow in the interaction region with the viscous near-wall
layer, shown as region 4 in figure 1. The characteristic thickness of region 4 is the
same as that of the Stokes layer (region 3). Keeping in mind that the solution in the
Stokes layer is represented by asymptotic expansions (3.18), we seek the solution of
the Navier–Stokes equations in region 4 in the form

û=U∞Re−1/9u4(t̃, x̃, ȳ)+ · · · , v̂ =U∞Re−7/18v4(t̃, x̃, ȳ)+ · · · ,
p̂= p∞ + ρ∞U2

∞{Re−1/9ᾱ sin(ω̃t̃)+ Re−2/9[p4(t̃, x̃, ȳ)+ ᾱk̄ x̃ cos(ω̃t̃)]} + · · · ,
ρ̂ = ρ∞ρw + · · · , µ̂=µ∞µw + · · · , ĥ= h∞hw + · · · ,


(4.6)

with independent variables t̃, x̃ and ỹ defined by

t̂= L
U∞

Re−2/9 t̃, x̂= L+ LRe−1/3x̃, ŷ= LRe−11/18ȳ. (4.7a−c)

Substitution of (4.6) and (4.7) into the Navier–Stokes equations (2.1) shows that
pressure p4 does not change across region 4, and the momentum (2.1a) and continuity
(2.1d) equations assume the form
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ρw

(
∂u4

∂ t̃
+ u4

∂u4

∂ x̃
+ v4

∂u4

∂ ȳ

)
= ᾱk̄ cos(ω̃t̃)− ∂p4

∂ x̃
+µw

∂2u4

∂ ȳ2
, (4.8a)

∂u4

∂ x̃
+ ∂v4

∂ ȳ
= 0, (4.8b)

and decouple from the rest of the equations.
Equations (4.8) have to be solved with the no-slip conditions on the surface of the

roughness,
u4 = v4 = 0 at ȳ= Ḡ(x̃), (4.9a)

and match with the solution (3.22) in the Stokes layer (region 3),

u4 = τ ȳ+ d sin(ω̃t̃)− de−χ ȳ sin(ω̃t̃− χ ȳ) as x̃→−∞. (4.9b)

4.2. Middle deck
The flow in the middle deck (region 5 in figure 1) displays its usual behaviour. Owing
to higher fluid velocity, this region is less sensitive to the pressure perturbation than
the viscous sublayer. As a consequence, the middle deck does not contribute to
the displacement effect of the boundary layer. Instead, it simply ‘transmits’ the
deformations of the streamlines, produced in the viscous sublayer, to the upper
deck. The solution in region 5 is constructed in the same way as was done for the
corresponding subsonic flow (see Ruban 1984). We found that

û=U∞

{
U00(Ȳ)+ Re−1/9

[
M∞ᾱu2(1, Ȳ) sin(ω̃t̃)+ A∗(t̃, x̃)

dU00

dȲ
(Ȳ)
]}
+ · · · , (4.10a)

v̂ =−U∞Re−5/18U00(Ȳ)
∂A∗
∂ x̃
(t̃, x̃)+ · · · , (4.10b)

p̂= p∞ + ρ∞U2
∞{Re−1/9ᾱ sin(ω̃t̃)+ Re−2/9[p5(t̃, x̃)+ ᾱk̄x̃ cos(ω̃t̃)]} + · · · , (4.10c)

ρ̂ = ρ∞
{

R00(Ȳ)+ Re−1/9

[
M2
∞ᾱρ2(1, Ȳ) sin(ω̃t̃)+ A∗(t̃, x̃)

dR00

dȲ
(Ȳ)
]}
+ · · · . (4.10d)

Here A∗(t̃, x̃) is the displacement function. It is not known at this stage of the
analysis, and has to be found together with the pressure perturbation function p5. The
latter does not change across this region, and therefore coincides with corresponding
function p4 in the viscous sublayer.

For future use we need to mention that matching of (4.10a) with the asymptotic
expansion for û in (4.6) shows that the solution of equations (4.8) should satisfy
the following boundary condition at the outer edge of the viscous sublayer layer
(region 4):

u4 = τ [ȳ+ A∗(t̃, x̃)] − k̄
ω̃

ᾱ

ρw
sin(ω̃t̃) as ȳ→∞. (4.11)

We also need to perform the matching with the solution in the upper tier (region 6
in figure 1). Setting Ȳ→∞ in (4.10b) and taking into account that U00(∞)= 1, we
find that at the ‘bottom’ of region 6

v̂ =−U∞Re−5/18 ∂A∗
∂ x̃
. (4.12)
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4.3. Upper deck
Guided by (4.12) we represent the pressure in region 6 in the form of the asymptotic
expansion

p̂= p∞ + ρ∞U2
∞{Re−1/9ᾱ sin(ω̃t̃)+ Re−2/9[p6(t̃, x̃, ỹ)+ ᾱk̄x̃ cos(ω̃t̃)]} + · · · , (4.13)

with the independent variables scaled as

t̂= L
U∞

Re−2/9 t̃, x̂= L+ LRe−1/3x̃, ŷ= LRe−5/18ỹ. (4.14a−c)

The equation for the pressure perturbation function p6 was deduced by Timoshin
(1990). It has the form

2
∂2p6

∂ x̃∂ t̃
+Q∞

∂2p6

∂ x̃2
− ∂

2p6

∂ ỹ2
= 0, (4.15)

where Q∞ is defined by (2.5). Note that, in contrast to what happens in subsonic
and supersonic flows, equation (4.15) retains the time derivative and is hyperbolic if
Q∞ > 0, and elliptic otherwise.

Equation (4.15) requires two boundary conditions. The first is the matching
condition with the solution (4.12) in the middle tier. When written for the pressure
perturbation function p6 it has the form

∂p6

∂ ỹ
= ∂

2A∗
∂ x̃2

at ỹ= 0. (4.16a)

The second condition depends on the perturbation mode considered. If it is ‘subsonic’,
then we will use the attenuation condition

p6→ 0 as ỹ→∞. (4.16b)

If the flow regime is ‘supersonic’, then (4.16b) will be substituted by a causality rule.

4.4. Viscous–inviscid interaction problem
When dealing with the interaction region, one has to solve equations (4.8) in the
viscous sublayer simultaneously with (4.15) in the upper deck. The solution to
equations (4.8) has to be found subject to the boundary conditions (4.9) and (4.11),
while (4.15) has to be solved with the boundary condition (4.16) or its ‘supersonic’
counterpart. Considered together, these equations and boundary conditions constitute
the viscous–inviscid interaction problem. To reduce the number of parameters involved,
we shall perform the following affine transformation of the variables in the viscous
sublayer:

t̃= (ρwµ
−5
w τ

−14)1/9t, x̃= (ρ−3
w µ−3

w τ
−12)1/9x,

ȳ= (ρ−4
w µ2

wτ
−7)1/9[y+ g(x)], p4 = (ρwµ

4
wτ

4)1/9p,

u4 = (ρ−4
w µ2

wτ
2)1/9u, v4 = (ρ−5

w µ7
wτ

7)1/9
[
v + u

dg
dx

]
,

A∗ = (ρ−4
w µ2

wτ
−7)1/9[A− g(x)], Ḡ= (ρ−4

w µ2
wτ
−7)1/9g(x).


(4.17)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

58
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.587


166 A. I. Ruban, T. Bernots and M. A. Kravtsova

Notice that, in addition to affine transformations, the above equations also include (in
square brackets) the Prandtl transposition theorem.

The frequency and amplitude of the acoustic perturbation are scaled as

ω̃= (ρ−1
w µ5

wτ
14)1/9ω, ᾱ = (ρ

4
wµ

7
wτ

16)1/9

k̄
α. (4.18a,b)

Correspondingly, for the upper deck we introduce the following transformations:

p6 = (ρwµ
4
wτ

4)1/9P, ỹ= (ρ−1
w µ−4

w τ
−13)1/9Y. (4.19a,b)

Finally, the Kármán–Guderley parameter is transformed as

Q∞ = (ρ−4
w µ2

wτ
2)1/9K∞. (4.20)

As a result the lower-deck equations (4.8) assume the form

∂u
∂t
+ u

∂u
∂x
+ v ∂u

∂y
= α cos(ωt)− ∂p

∂x
+ ∂

2u
∂y2

, (4.21a)

∂u
∂x
+ ∂v
∂y
= 0, (4.21b)

with boundary conditions (4.9) and (4.11) turning into

u= v = 0 at y= 0, (4.22a)

u= y− α
ω

[
sin(ωt)− e−

√
ω/2y sin

(
ωt−

√
ω

2
y
)]

as x→−∞, (4.22b)

u= y+ A− α
ω

sin(ωt) as y→∞. (4.22c)

The upper-deck equation (4.15) is now written as

2
∂2P
∂x∂t
+K∞

∂2P
∂x2
− ∂

2P
∂Y2
= 0, (4.23)

and the boundary conditions (4.16) assume the form

∂P
∂Y
= ∂

2A
∂x2
− ∂

2g
∂x2

at Y = 0, (4.24a)

P→ 0 as Y→∞. (4.24b)

The statement that the pressure at the ‘bottom’ of region 6 coincides with the
pressure in region 4,

P|Y=0 = p, (4.25)

closes the viscous–inviscid interaction problem.
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5. Linear receptivity
Here we shall assume that the amplitude of the acoustic wave, α, is small, and the

wall roughness is ‘shallow’, namely, we shall write the roughness equation in the form

y= g(x)= hF(x), (5.1)

and apply to the interaction problem (4.21)–(4.25) the limit procedure

α→ 0, h→ 0. (5.2a,b)

The asymptotic solution in the lower deck is sought in the form

u= y+ αUs(t, y)+ hur(x, y)+ αhu′(t, x, y)+ · · · , (5.3a)
v = hvr(x, y)+ αhv′(t, x, y)+ · · · , (5.3b)

p= α sin(ωt)+ hpr(x, y)+ αhp′(t, x, y)+ · · · , (5.3c)
A= hAr(x, y)+ αhA′(t, x, y)+ · · · . (5.3d)

In the asymptotic expansion for u, the leading-order term, u = y, represents the
unperturbed steady boundary layer, and would be the only term if neither the Stokes
layer nor roughness were present. The next term, αUs(t, y) with

Us(t, y)=− 1
ω

[
sin(ωt)− e−

√
ω/2y sin

(
ωt−

√
ω

2
y
)]

, (5.4)

represents the perturbations produced by the Stokes layer. The third term, hur(x, y),
stands for the steady perturbations produced by the wall roughness. Finally, the fourth
term, αhu′(t, x, y), represents the perturbations produced in the boundary layer due to
the interaction of the Stokes layer with the steady flow field around the roughness.

Corresponding to (5.3), the solution in the upper deck is represented as

P= α sin(ωt)+ hPr(x, Y)+ αhP′(t, x)+ · · · . (5.5)

We start with the analysis of steady perturbations produced by the roughness.

5.1. Steady problem
Substituting (5.3) into (4.21) and (4.22), and working with O(h) terms, we find that,
in the viscous sublayer, the steady perturbations are described by the equations

∂ur

∂x
+ ∂vr

∂y
= 0, (5.6a)

y
∂ur

∂x
+ vr =−∂pr

∂x
+ ∂

2ur

∂y2
, (5.6b)

which have to be solved with the boundary conditions

ur = vr = 0 at y= 0, (5.7a)
ur = Ar as y→∞, (5.7b)
ur = 0 as x→−∞. (5.7c)
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Similarly, substitution of (5.5) into (4.23) and (4.20) results in

K∞
∂2Pr

∂x2
− ∂

2Pr

∂Y2
= 0, (5.8a)

∂Pr

∂Y
= ∂

2Ar

∂x2
− ∂

2F
∂x2

at Y = 0, (5.8b)

Pr→ 0 as Y→∞. (5.8c)

The solution of the problem (5.6)–(5.8) may be constructed in the same way as
was done with the problem (4.14) and (4.15) in Ruban et al. (2013). The main
difference is that now (5.8a) changes its type from elliptic in subsonic flow (K∞< 0)
to hyperbolic in supersonic flow (K∞ > 0). In the latter case, the condition (5.8c)
has to be relaxed and substituted by the ‘causality condition’, according to which
the perturbations produced by the roughness can only propagate downstream. As in
Ruban et al. (2013) we apply the Fourier transform to equation (5.8a). With the
Fourier transform of Pr(x, Y) defined as

P̄r(k, Y)=
∫ ∞
−∞

Pr(x, Y)e−ikx dx, (5.9)

we have

k2|K∞|P̄r − d2P̄r

dY2
= 0 if K∞ < 0, (5.10a)

k2|K∞|P̄r + d2P̄r

dY2
= 0 if K∞ > 0. (5.10b)

The boundary condition (5.8b) is written in terms of Fourier transforms as

dP̄r

dY
=−k2(Ār − F̄) at Y = 0. (5.11)

The solution to (5.10) and (5.11) satisfying the disturbance attenuation condition for
K∞ < 0, and the causality condition for K∞ > 0, has the form

P̄r = i|k|(Ār − F̄)~−1|K∞|−1/2ei|k|~√|K∞|Y, (5.12)

where

~ =
{

i if K∞ < 0,
−1 if K∞ > 0.

(5.13)

The solution of the boundary-value problem (5.6) and (5.7) for the viscous sublayer
can now be found in the usual way (see e.g. Ruban et al. 2013). We have

ūr = F̄(k)Φ(z; k,K∞) and v̄r = F̄(k)Ψ (z; k,K∞), (5.14a,b)

where z = (ik)1/3y, F̄ is the Fourier transform of the roughness shape function F(x),
and

Φ(z; k,K∞)= 3i(ik)1/3|k|
i(ik)1/3|k| − 3~Ai′(0)|K∞|1/2

∫ z

0
Ai(s) ds, (5.15a)

Ψ (z; k,K∞)=−(ik)2/3
∫ z

0
Φ(s; k,K∞) ds. (5.15b)

Remember that the analytic branch of (ik)1/3 is chosen by making a branch cut in the
complex k-plane along the positive imaginary semi-axis.
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5.2. Unsteady problem
When dealing with the O(αh) terms in (5.3) and (5.5), we have to solve the following
equations in the viscous sublayer:

∂u′

∂t
+ y

∂u′

∂x
+ v′ +Us

∂ur

∂x
+ vr

∂Us

∂y
=−∂p′

∂x
+ ∂

2u′

∂y2
,

∂u′

∂x
+ ∂v

′

∂y
= 0.

 (5.16)

The boundary conditions for (5.16) are

u′ = v′ = 0 at y= 0,
u′ = A′ as y→∞,
u′ = 0 as x→−∞.

 (5.17)

In the upper deck the pressure perturbations are described by the equation

2
∂2P′

∂x∂t
+K∞

∂2P′

∂x2
− ∂

2P′

∂Y2
= 0. (5.18)

This has to be solved with the boundary conditions

∂P′

∂Y
= ∂

2A′

∂x2
at Y = 0,

P′→ 0 as Y→∞.

 (5.19)

The solution of the boundary-value problem (5.16)–(5.19) is sought in the time-
periodic form:

(u′, v′, p′, P′, A′,Us)= (ũ, ṽ, p̃, P̃, Ã, Ũs)eiωt + c.c., (5.20)

where c.c. denotes the complex conjugate, and

Ũs = i
2ω
[1− e−(i+1)

√
ω/2y]. (5.21)

Substitution of (5.20) and (5.21) into (5.16) and (5.17) turns the boundary-value
problem for the viscous sublayer into

iωũ+ y
∂ ũ
∂x
+ ṽ + Ũs

∂ur

∂x
+ vr

∂Ũs

∂y
=−∂ p̃

∂x
+ ∂

2ũ
∂y2

,

∂ ũ
∂x
+ ∂ṽ
∂y
= 0,

ũ= ṽ = 0 at y= 0,

ũ= Ã as y→∞,
ũ= 0 as x→−∞.


(5.22)

Similarly, the upper-deck boundary-value problem (5.18) and (5.19) takes the form

2iω
∂P̃
∂x
+K∞

∂2P̃
∂x2
− ∂

2P̃
∂Y2
= 0, (5.23a)
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∂P̃
∂Y
= ∂

2Ã
∂x2

at Y = 0, (5.23b)

P̃→ 0 as Y→∞. (5.23c)

Applying the Fourier transform to (5.23a,b), we have

d2P̌
dY2
+ (2ωk+ k2K∞)P̌= 0,

dP̌
dY
=−k2Ǎ at Y = 0.

 (5.24)

Here P̌ is the Fourier transform of P̃, and Ǎ is the Fourier transform of Ã. The solution
to (5.24) satisfying the attenuation/causality conditions at large Y is written as

P̌= ik2Ǎσ−1eiσY . (5.25)

Here σ is calculated for subsonic flow (K∞ < 0) as

σ =


−√2ωk− k2|K∞| for k ∈

[
0,

2ω
|K∞|

]
,

i
√−2ωk+ k2|K∞| for k ∈ (−∞, 0)∪

(
2ω
|K∞| ,∞

)
,

(5.26)

and for the supersonic flow (K∞ > 0) as

σ =



√−2ω|k| + k2K∞ for k ∈
(
−∞,− 2ω

|K∞|
)
,

i
√

2ω|k| − k2K∞ for k ∈
[
− 2ω
|K∞| , 0

]
,

−√2ωk+ k2K∞ for k ∈ (0,∞).

(5.27)

Setting Y = 0 in (5.25) gives the Fourier transform of the pressure in the viscous
sublayer:

p̌= ik2Ǎσ−1. (5.28)

The boundary-value problem (5.22) for the viscous sublayer is written in terms of
the Fourier transforms as

iωǔ+ ikyǔ+ v̌ + ikŨsūr + v̄r
dŨs

dy
=−ikp̌+ d2ǔ

dy2
, (5.29a)

ikǔ+ dv̌
dy
= 0, (5.29b)

ǔ= v̌ = 0 at y= 0, (5.29c)

ǔ= Ǎ at y=∞. (5.29d)

Differentiating (5.29a) with respect to y, and eliminating dv̌/dy with the help of
(5.29b), we find that

i(ky+ω)dǔ
dy
+ ikŨs

dūr

dy
+ v̄r

d2Ũs

dy2
= d3ǔ

dy3
. (5.30)
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This equation has to be solved with the boundary conditions

ǔ= 0 at y= 0, (5.31a)

ǔ= Ǎ as y→∞. (5.31b)
d2ǔ
dy2
= ikp̌=−k3Ǎσ−1 at y= 0. (5.31c)

The third boundary condition has been obtained by setting y= 0 in (5.29a) and using
(5.28).

Equations (5.14) suggest that the solution of the boundary-value problem (5.30) and
(5.31) may be represented as

ǔ= F̄(k) ¯̄u, Ǎ= F̄(k) ¯̄A. (5.32a,b)

Introducing a new independent variable

ζ = (ik)1/3y+ ζ0, (5.33)

where ζ0 = iω/(ik)2/3, it is easily shown that d ¯̄u/dζ satisfies the inhomogeneous Airy
equation:

d3 ¯̄u
dζ 3
− ζ d ¯̄u

dζ
= ¯̄H(ζ ; k, ω,K∞), (5.34)

with
¯̄H(ζ ; k, ω,K∞)= (ik)1/3Ũs

dΦ
dz
+ (ik)−1 d2Ũs

dy2
Ψ . (5.35)

This should be solved subject to the following boundary conditions:

¯̄u= 0 at ζ = ζ0, (5.36a)
d2 ¯̄u
dζ 2
= i(ik)1/3k2 ¯̄Aσ−1 as ζ = ζ0, (5.36b)

¯̄u= ¯̄A as ζ→∞. (5.36c)

The general solution of (5.34) is a composition of two complementary solutions of
the Airy equation and a particular integral:

d ¯̄u
dζ
=C1Ai(ζ )+C2Bi(ζ )+ ϕ(ζ ). (5.37)

Here we choose ϕ(ζ ) to be the solution to the following boundary-value problem:

ϕ′′ − ζϕ = ¯̄H, (5.38a)
ϕ′(ζ0)= 0, (5.38b)
ϕ(∞)= 0. (5.38c)

To avoid exponential growth of d ¯̄u/dζ as ζ →∞, we set C2 = 0 in (5.37). Thus,
we have

d ¯̄u
dζ
=C1Ai(ζ )+ ϕ(ζ ). (5.39)
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Then, applying boundary conditions (5.36), we obtain two equations for the constant
C1 and the displacement function ¯̄A:

C1Ai′(ζ0)= i(ik)1/3k2 ¯̄Aσ−1, C1

∫ ∞
ζ0

Ai(s) ds+
∫ ∞
ζ0

ϕ(s) ds= ¯̄A. (5.40a,b)

Eliminating C1 from (5.40), we find that

¯̄A=
Ai′(ζ0)

∫ ∞
ζ0

ϕ(s) ds

Ai′(ζ0)− i(ik)1/3k2σ−1
∫ ∞
ζ0

Ai(s) ds
. (5.41)

Finally, we substitute (5.41) into (5.31b) and then into (5.28). We find that the
Fourier transform of the pressure is given by

p̌=
ik2Ai′(ζ0)F̄(k)

∫ ∞
ζ0

ϕ(s) ds

σAi′(ζ0)− i(ik)1/3k2
∫ ∞
ζ0

Ai(s) ds
. (5.42)

To return to physical variables, one needs to apply the inverse Fourier transform to
(5.42):

P(t, x)= eiωt

2π

∫ ∞
−∞

ik2Ai′(ζ0)

∫ ∞
ζ0

ϕ(s) ds

σAi′(ζ0)− i(ik)1/3k2

∫ ∞
ζ0

Ai(s) ds
F̄(k)eikx dk. (5.43)

Here the integration is performed along the real axis in the k-plane. For our purposes,
it is convenient to take the analytic extension of the integrand into the complex
k-plane, and deform the contour of integration. When performing this task, one needs
to know the singularities of the integrand. Setting the denominator in (5.43) to zero
results in the following dispersion relation:

σAi′(ζ0)− i(ik)1/3k2
∫ ∞
ζ0

Ai(s) ds= 0, (5.44)

with σ and ζ0 defined as in (5.26), (5.27) and (5.33).
When solving (5.44) we will assume that the frequency, ω, is real and positive. Our

task will be to find the wavenumber, k, which in the general case is complex and
is a function of ω and K∞. We expect the Tollmien–Schlichting waves to propagate
downstream, which happens when the real part of the wavenumber is negative. Also,
when solving the dispersion equation (5.44), it should be remembered that the real
part of

√
2ωk+ k2K∞ has been assumed positive in (5.26) and (5.27). We start the

calculations by assuming that ω→ 0 and ζ0 is finite, which consequently leads to the
limit k→ 0. In addition, it can be deduced from (5.33) that ω is an O(k2/3) quantity
and thus σ =O(k). Taking these into account, we can see that the dispersion equation
(5.44) reduces to

dAi(ζ )
dζ

= 0 at ζ = ζ0. (5.45)
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FIGURE 3. The first five roots of the dispersion equation in the (a) k-plane and
(b) ζ0-plane.

The above equation has an infinite number of roots, all of them lying on the negative
real semi-axis in the ζ0-plane. This suggests that the dispersion equation (5.44) has an
infinite number of roots. In figure 3 we show five of these. Each root was calculated
by using the corresponding root of (5.45) as an initial guess for a small value of
ω. Then the dispersion relation (5.44) was solved using Newton iterations, where the
frequency was kept fixed until the iteration process converged and the corresponding
value of ζ0 was found. The process was then repeated for a new, larger value of ω.
The results of the calculations are shown in figure 3. We see that in the ζ0-plane,
all the roots originate from the points defined by (5.45), and all of them, except the
first one, tend to finite points in the ζ0-plane as ω→∞. In this limit the dispersion
equation (5.44) reduces to ∫ ∞

ζ0

Ai(s) ds= 0. (5.46)

Equation (5.46) has an infinite number of roots, which all come in complex
conjugate pairs and lie in the left half of the ζ0-plane. As far as the first root is
concerned, its behaviour is different. For this root, ζ0 moves to infinity as ω→∞
(see figure 3b). This root also behaves differently in the k-plane. While all the other
roots remain in the second quadrant for all ω, representing the modes that decay
downstream, the first root crosses the real axis at point k= k0 < 0 at a critical value
ω0 of the frequency ω. Both k0 and ω0 depend on the Kármán–Guderley parameter.
This root represents the Tollmien–Schlichting wave, which appears to be neutral at
ω = ω0. For all ω > ω0 this root remains in the third quadrant, which signifies that
the Tollmien–Schlichting wave is growing downstream. It is interesting to note that
|k0| decreases as the Kármán–Guderley parameter K∞ increases (see Ryzhov 2012).

A way to determine how k0 depends on K∞ was suggested by Timoshin (1990).
He noticed that, in the case of neutral perturbations, the transonic dispersion equation
(5.44) can easily be reduced to the dispersion equation for incompressible flow:

(ik)1/3|k|[Ai′(ζ0)]−1
∫ ∞
ζ0

Ai(s) ds= 1. (5.47)
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FIGURE 4. (a) Neutral frequency and (b) wavenumber as functions of the Kármán–
Guderley parameter.

To perform this task, it is convenient to introduce the phase velocity c0 =ω0/k0, and
perform the affine transformations

c0 = ac∗0, k0 = a−3k∗0, (5.48a,b)

where c∗0 =−2.296, k∗0 =−1.00049 is the neutral solution of (5.47). The transformations
(5.48) turn (5.44) into

(ik∗0)
1/3|k∗0|[Ai′(ζ ∗0 )]−1

∫ ∞
ζ ∗0

Ai(s) ds= a4(−2ac∗0 −K∞)1/2, (5.49)

Comparison of (5.47) with (5.49) leads to the following equation for constant a:

a8(2ac∗0 +K∞)=−1. (5.50)

This equation has only one real solution whose behaviour is shown in figure 4.
Let us now return to the integral (5.43). Our intention is to deform the integration

path in the k-plane. We shall distinguish between two cases: subsonic (K∞ < 0) and
supersonic (K∞ > 0). In both cases we start by considering a value of the frequency
that is smaller than the critical frequency. For such ω, all the roots of (5.44) lie in the
second quadrant of the complex k-plane. We have to remember that, when introducing
an analytical branch of the function (ik)1/3, we had to make a branch cut along the
positive imaginary axis in the k-plane. Therefore, we have to split the integration
interval in (5.43) into two parts, negative and positive real semi-axes.

In the case of negative K∞, we close the contour along the real negative semi-axis
with an arc C−S of a large radius R and a ray C−I originating at the coordinate origin
(see figure 5a). The angle between the negative real semi-axis and C−I is chosen so
that the closed contour encloses only one root k1. To calculate the integral along
the real positive semi-axis, we introduce two closed contours (C+R2

, C+E2
, C+S2

, C+I ) and
(C+R3

,C+S3
,C+E3

) divided by the point k= 2ω/|K∞| on the real axis.
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k

k
(a)

(b)

FIGURE 5. The contour of integration in the k-plane for (a) negative and (b) positive
values of the Kármán–Guderley parameter.

Using the residue theorem and setting R→∞, we can then write (5.43) as

P(t, x) = −
3iq1k2

1Ai′(ζ0)

∫ ∞
ζ0

ϕ(s) ds F̄(k1)ei(ωt+k1x)

3Ai′(ζ0)[K∞k1 +ω] + q1(ik1)1/3

[
2Ai(ζ0)ζ0

(
q1
ω

k2
1
+ k1

)
+ 7k1Iζ0

]
− eiωt

2π

[∫
C−I
+
∫

C+I

]
, (5.51)

where

q1 =
√
−K∞k2

1 − 2ωk1, Iζ0 =
∫ ∞
ζ0

Ai(s) ds, ζ0 = iω
(ik1)2/3

. (5.52a−c)

The first term in the above equation is the residue at point k1. Note that, using the
Jordan lemma, we have disregarded the integrals along C−S , C+S2

and C+S3
. Further, using

the Watson lemma, it may be shown (see Bernots 2014) that at large values of x the
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contribution of the integrals along the rays C−I and C+I in (5.51) amounts to

− (i+ 1)Γ ( 29
6 )F̄(0)

24πω5/2Ai′(0)|K∞|1/2
eiωt

x29/6
+ · · · . (5.53)

Thus we can conclude that at large values of x and negative values of the Kármán–
Guderley parameter,

P(t, x)=K (ω,K∞)F̄(k1)ei(ωt+k1x) − (i+ 1)Γ ( 29
6 )F̄(0)

24πω5/2Ai′(0)|K∞|1/2
eiωt

x29/6
+ · · · , (5.54)

where K (ω,K∞) is the receptivity coefficient. It is a function of the frequency ω and
the Kármán–Guderley parameter K∞. It is calculated as

K =−
3iq1k2

1Ai′(ζ0)

∫ ∞
ζ0

ϕ(s) ds

3Ai′(ζ0)[K∞k1 +ω] + q1(ik1)1/3

[
2Ai(ζ0)ζ0

(
q1
ω

k2
1
+ k1

)
+ 7k1Iζ0

] . (5.55)

The above analysis can be repeated for positive K∞, now deforming the contour of
integration as shown in figure 5(b). Interestingly, the results of the analysis can be
expressed again by (5.54) and (5.55). The first term on the right-hand side of (5.54)
represents the Tollmien–Schlichting wave. Its amplitude is given by the product of the
receptivity coefficient K and the Fourier transform of the roughness shape function
F̄(k1) calculated at k= k1.

The results of the numerical calculation of the receptivity coefficient are shown in
figures 6 and 7. It is interesting to note that |K | reaches its maximum when K∞= 0,
i.e. the free-stream Mach number M∞ is exactly one.

6. Nonlinear receptivity problem

We shall now assume that the roughness height parameter h is an order-one quantity.
The amplitude α of the acoustic wave will still be assumed small. In this case the
solution of the viscous–inviscid interaction problem (4.21)–(4.25) can be represented
in the form

u(x, y, t)= u0(x, y)+ αu1(x, y, t)+ · · · ,
v(x, y, t)= v0(x, y)+ αv1(x, y, t)+ · · · ,

p(x, t)= p0(x)+ αp1(x, t)+ · · · ,
A(x, t)= A0(x)+ αA1(x, t)+ · · · ,

P(x, Y, t)= P0(x, Y)+ αP1(x, Y, t)+ · · · .


(6.1)

6.1. Nonlinear steady solution
Setting α = 0 in (4.21) and (4.22) gives the equations for the steady flow past the
roughness in the lower deck:

u0
∂u0

∂x
+ v0

∂u0

∂y
=−∂p0

∂x
+ ∂

2u0

∂y2
, (6.2a)
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FIGURE 6. Receptivity coefficient modulus (a) and argument (b).
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FIGURE 7. Dependence of the receptivity coefficient on K∞ for neutral ω0 and k0.

∂u0

∂x
+ ∂v0

∂y
= 0. (6.2b)

These have to be solved with the following boundary conditions:

u0 = v0 = 0 at y= 0, (6.3a)
u0 = y+ · · · as x→−∞, (6.3b)

u0 = y+ A0(x)+ · · · as y→∞. (6.3c)

The pressure p0 in (6.2a) is not known in advance, and has to be found using the
transonic small perturbation equation (4.23). For a steady flow it assumes the form

K∞
∂2P0

∂x2
− ∂

2P0

∂Y2
= 0. (6.4)

Substitution of (6.1) and (5.1) into boundary condition (4.24a) renders it in the form

∂P0

∂Y
= d2A0

dx2
− h

d2F
dx2

at Y = 0. (6.5)
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If the flow is supersonic (K∞> 0), then the general solution to (6.4) is written as

P0 = f1(x−
√

K∞Y)+ f2(x+
√

K∞Y), (6.6)

with the two terms representing the perturbations that propagate downstream and
upstream, respectively. The causality rule suggests that the second term should be
disregarded. Taking this into account, and using boundary condition (6.5), one can
find that at the ‘bottom’ of the upper deck the Ackeret formula holds:

P0(x)= hF′(x)− A′0(x)√
K∞

, K∞ > 0. (6.7)

In subsonic flow (K∞ < 0) the solution of (6.4) satisfying boundary condition (6.5)
and the condition of attenuation of the perturbations as Y→∞ is expressed by the
Hilbert integral of thin airfoil theory:

P0(x)= 1
π
√−K∞

∫ ∞
−∞

hF′(s)− A′0(s)
s− x

ds, K∞ < 0. (6.8)

To solve the steady viscous–inviscid interaction problem as formulated above, we
used the numerical technique suggested by Kravtsova, Zametaev & Ruban (2005).
We shall give here a short description of the method. For more details, the reader is
referred to the original paper of Kravtsova et al. (2005). To perform the calculations,
we introduce a discrete mesh {xi}, where i=1, . . . ,N, and denote the vector composed
of the values of A0 at the mesh points by A. We also consider the vector B whose
elements are the values of the pressure gradient dp/dx at the mesh points. Then,
the finite-difference representation of the inviscid equations (6.7) and (6.8) can be
expressed in the form

B|inv = L(A), (6.9)

where L is a linear operator. Also, given the displacement function A, equations (6.2)
and (6.3) allow us to calculate the velocity field (u0, v0) in the viscous sublayer and
the pressure gradient. The latter may be expressed in the form

B|vis = N(A), (6.10)

where N is a nonlinear operator. Our task is to find A such that the pressure gradient
(6.9) defined by the outer solution coincides with the pressure gradient (6.10) defined
by the inner solution. Following the formalism of the Newtonian method, we start with
an approximate distribution of the displacement function Ã and introduce a correction,
δA. Then, assuming δA to be small, equations (6.9) and (6.10) may be written as

B|inv = L(Ã)+ ∂L

∂A
δA, B|vis = N(Ã)+ ∂N

∂A
δA. (6.11a,b)

The requirement that the pressure gradient should be the same in the viscous sublayer
and at the ‘bottom’ of the upper deck leads to the following equation for the
correction δA: (

∂L

∂A
− ∂N

∂A

)
δA= N(Ã)− L(Ã). (6.12)

The most time-consuming part of the numerical procedure is the calculation of the
elements of the matrices L and N . On each iteration, we first calculate the ‘viscous’
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FIGURE 8. Streamlines for the steady flow, K∞=−2: (a) h= 2.5; (b) h= 3.5; (c) h= 5.0.

and ‘inviscid’ pressure gradients for a given Ã, and then repeat the calculations N
times with the displacement function perturbed at a single point xi. Comparing the
perturbed and unperturbed results allows us to determine the ith columns in matrices
L and N .

Some of the results of the calculations are shown in figure 8 in the form of
streamline patterns. Here we choose the Kármán–Guderley parameter to be K∞=−2,
and the shape of the roughness F = e−2x2 . In this case the separation region forms
when the roughness height is h= 2.5, and it increases in size as h is growing.

6.2. Unsteady problem formulation

The equations for the unsteady perturbations are obtained by substituting (6.1) into
(4.21) and (4.22), and working with O(α) terms. We find that in the viscous sublayer
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the flow is described by the linear boundary-layer equations

∂u1

∂t
+ u0

∂u1

∂x
+ u1

∂u0

∂x
+ v0

∂u1

∂y
+ v1

∂u0

∂y
= cos(ωt)− ∂p1

∂x
+ ∂

2u1

∂y2
, (6.13a)

∂u1

∂x
+ ∂v1

∂y
= 0. (6.13b)

These have to be solved with the no-slip conditions of the surface of the roughness,

u1 = v1 = 0, y= 0, (6.13c)

the condition of matching with the solution in the middle deck,

u1 = A1(x, t)+ 1
ω

sin(ωt)+ · · · , y→+∞, (6.13d)

and the condition of matching with the solution upstream of the roughness,

u1 = 1
ω

{[
1− e−

√
ω/2y cos

(√
ω

2
y
)]

sin(ωt)

+ e−
√
ω/2y sin

(√
ω

2
y
)

cos(ωt)
}
+ · · · as x→−∞. (6.13e)

In the upper tier we have to solve (5.18) subject to the boundary conditions (5.19).
In the notation used here, these are written as

K∞
∂2P1

∂x2
+ 2

∂2P1

∂x∂t
= ∂

2P1

∂Y2
, (6.14a)

∂P1

∂Y
= ∂

2A1

∂x2
at Y = 0, (6.14b)

P1 = 0 as Y→∞. (6.14c)

We shall seek the solution in the viscous sublayer in the form

u1 = u11 sin(ωt)+ u12 cos(ωt),
v1 = v11 sin(ωt)+ v12 cos(ωt),
p1 = p11 sin(ωt)+ p12 cos(ωt),
A1 = A11 sin(ωt)+ A12 cos(ωt).

 (6.15a−d)

Substitution of (6.15) into (6.13) results in the following set of linear equations:

−ωu12 + u0
∂u11

∂x
+ u11

∂u0

∂x
+ v0

∂u11

∂y
+ v11

∂u0

∂y
=−∂p11

∂x
+ ∂

2u11

∂y2
, (6.16a)

ωu11 + u0
∂u12

∂x
+ u12

∂u0

∂x
+ v0

∂u12

∂y
+ v12

∂u0

∂y
= 1− ∂p12

∂x
+ ∂

2u12

∂y2
, (6.16b)

∂u11

∂x
+ ∂v11

∂y
= 0,

∂u12

∂x
+ ∂v12

∂y
= 0. (6.16c,d)
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These have to be solved subject to the boundary conditions

u11 = u12 = v11 = v12 = 0, y= 0, (6.17a)

u11 = A11(x)+ 1
ω
+ · · · , u12 = A12(x)+ · · · , y→+∞, (6.17b,c)

u11 = 1
ω

[
1− exp

(
−
√
ω

2
y
)

cos
(√

ω

2
y
)]

, (6.17d)

u12 = 1
ω

exp
(
−
√
ω

2
y
)

sin
(√

ω

2
y
)
, x→−∞. (6.17e)

6.3. Transonic interaction law for K∞ < 0
Now our task will be to express the solution of (6.14a) for the upper deck in a
form suitable for numerical analysis. We assume that the solution is periodic in time,
namely,

P1 = eiωtP̃+ c.c. (6.18)
Substitution of (6.18) into (6.14a) yields

K∞
∂2P̃
∂x2
+ 2iω

∂P̃
∂x
= ∂

2P̃
∂Y2

. (6.19)

The above equation can be reduced to the Helmholtz equation

∇2pv + ω2

K2∞
pv = 0 (6.20)

by means of the transformations

P̃= e−i(ω/K∞)xpv(x, y1), y1 =
√−K∞Y. (6.21)

Similar to the pressure P1, we represent the displacement function A1 in the time-
periodic form

A1 = eiωtÃ+ c.c., (6.22)
and then the boundary condition (6.14b) turns into

∂pv
∂y1

∣∣∣∣
y1=0

= g1(x), (6.23)

where
g1(x)= 1√−K∞

ei(ω/K∞)xÃ′′(x). (6.24)

Let us introduce a point source in (6.20) centred at point (x0, y10):

∇2V + ω2

K2∞
V = δ(x− x0, y1 − y10), (6.25)

where δ is the Dirac delta function. The two fundamental solutions of (6.25), which
are functions of the distance r=√(x− x0)2 + (y1 − y10)2 from the source only, are

V1 =− i
4

H(1)
0

(
ω

−K∞
r
)
, V2 = i

4
H(2)

0

(
ω

−K∞
r
)
, (6.26a,b)
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R

x

–R

FIGURE 9. Region D used in equation (6.29).

where H(1)
0 and H(2)

0 are Hankel functions. It is well known that (see e.g. Abramowitz
& Stegun 1965)

H(1)
0 (z)=

√
2
πz

ei(z−π/4) + · · · ,

H(2)
0 (z)=

√
2
πz

e−i(z−π/4) + · · ·

 as z→∞. (6.27)

Substituting (6.27) into (6.26) and using V1,2 instead of pv in (6.21), we find from
(6.18) that, at large values of y1,

P(1)1 =−i

√
−K∞
πωy1

exp
{

i
[
ωt+ ω

(−K∞)
y1 + ω

(−K∞)
x− π

4

]}
+ · · · , (6.28a)

P(2)1 = i

√
−K∞
πωy1

exp
{

i
[
ωt− ω

(−K∞)
y1 + ω

(−K∞)
x+ π

4

]}
+ · · · . (6.28b)

We see that (6.28a,b) represent the perturbations propagating in the negative and
positive y1-direction, respectively. Since we are interested in the perturbations radiated
by the roughness, we will be using the second of the solutions (6.26).

Let us consider region D inside a closed contour that is composed of a semicircle
CR of a large radius R and a segment [−R, R] of the x-axis (see figure 9). Green’s
formula applied to this region is written as∫∫

D

(U∇2V − V∇2U) dx dy1 =
∫ R

−R

(
U
∂V
∂n
− V

∂U
∂n

)∣∣∣∣
y1=0

dx

+
∫

CR

(
U
∂V
∂n
− V

∂U
∂n

)
ds, (6.29)
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We choose U in (6.29) to coincide with pv, and V to coincide with the second function
in (6.26). Keeping in mind that V ∼ 1/

√
y1 and pv has to satisfy the attenuation

condition, we can disregard the second integral on the right-hand side of (6.29). It
follows from (6.20) and (6.25) that, in region D ,

U∇2V − V∇2U = pv(x, y1)δ(x− x0, y1 − y10). (6.30)

Using (6.30) in the integral on the left-hand side of (6.29), we have

pv(x0, y10)=
∫ ∞
−∞

(
U
∂V
∂n
− V

∂U
∂n

)∣∣∣∣
y1=0

dx. (6.31)

Keeping in mind that n is the external normal to region D , and using the boundary
condition (6.23) for U, we have(

U
∂V
∂n
− V

∂U
∂n

)∣∣∣∣
y1=0

= V2g1(x)− pv
∂V2

∂y1
, (6.32)

which turns (6.31) into

pv(x0, y10)=
∫ ∞
−∞

(
V (+)

2 g1(x)− pv
∂V (+)

2

∂y1

)∣∣∣∣∣
y1=0

dx. (6.33)

Here the superscript (+) in V (+)
2 is used to indicate that V (+)

2 is the solution of (6.25)
with the source situated at point (x0, y0) above the x-axis.

Let us now reflect the source in the x-axis (see figure 9), and write (6.25) in the
form

∇2V + ω2

K2∞
V = δ(x− x0, y1 + y10). (6.34)

Our interest again is in the second of the solutions (6.26), which describes the
perturbations radiated by the roughness. We shall write it as

V (−)
2 =

i
4

H(2)
0

(
ω

−K∞
r
)
, (6.35)

where r = √(x− x0)2 + (y1 + y10)2. If we choose U = pv and V = V (−)
2 in Green’s

formula (6.29), and take into account that now the source is situated outside region
D , then instead of (6.33) we will have∫ ∞

−∞

(
V (−)

2 g1(x)− pv
∂V (−)

2

∂y1

)∣∣∣∣∣
y1=0

dx= 0. (6.36)

It is easily seen that

V (+)
2 |y1=0 = V (−)

2 |y1=0,
∂V (+)

2

∂y1

∣∣∣∣∣
y1=0

= −∂V (−)
2

∂y1

∣∣∣∣∣
y1=0

, (6.37a,b)
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which means that pv can be eliminated from the integral on the right-hand side of
(6.33) by simply adding (6.36) to (6.33). This results in

pv(x0, y10)= 2
∫ ∞
−∞

g1(x)V
(+)
2

∣∣∣∣
y1=0

dx. (6.38)

Making use of (6.24) and of the second of the solutions (6.26), we can write (6.38)
in the form

pv(x, y1)= i
2
√−K∞

∫ ∞
−∞

ei(ω/K∞)ξH(2)
0

(
ω

−K∞

√
(x− ξ)2 + y2

1

)
Ã′′(ξ) dξ . (6.39)

It remains to return to (6.21), and we can conclude that the solution in the upper deck
is written as

P̃= i
2
√−K∞

∫ ∞
−∞

ei(ω/K∞)(ξ−x)H(2)
0

(
ω

−K∞

√
(x− ξ)2 −K∞Y2

)
Ã′′(ξ) dξ . (6.40)

When performing the unsteady flow calculations, we used the above equation to
form the matrix L in (6.9). The rest of the numerical procedure is the same as in § 6.1.
The results of the calculations are presented in figures 10 and 11. In figure 10 we
show the pressure gradient distribution along the body surface for a particular value
of the Kármán–Guderley parameter K∞=−1. According to the linear theory (see § 5),
the neutral frequency for K∞=−1 is ω0= 3.35 (see figure 4a). Figure 10 shows that
the perturbations decay downstream of the roughness if ω <ω0, and start growing if
ω>ω0.

Figure 11 shows how the receptivity coefficient K depends on the roughness height
h. Here, for each value of the Kármán–Guderley parameter, we chose the frequency
ω to coincide with the neutral frequency (see figure 4a), and repeated the calculations
for a sequence of values of h. We then determined the amplitude of the oscillations of
the pressure gradient in the Tollmien–Schlichting wave downstream of the roughness.
The receptivity coefficient is the ratio of this amplitude and the roughness height h.
It is interesting to note that the receptivity coefficient starts to grow rapidly as soon
as the separation region forms in the flow past the roughness (see figure 8).

6.4. Transonic interaction law for K∞ > 0
For positive values of the Kármán–Guderley parameter, we treat the upper-deck
equation (6.14a) in a slightly different way. We start as before by representing the
solution in the time-periodic form (6.18) and use the transformation (6.21), this time
without scaling of the independent variable Y . This results in the ‘telegraph equation’:

∂2pv
∂Y2
=K∞

∂2pv
∂x2
+ ω2

K∞
pv. (6.41)

This has to be solved with the boundary condition

∂pv
∂Y

∣∣∣∣
Y=0

= g2(x), (6.42)

where
g2(x)= ei(ω/K∞)xÃ′′(x). (6.43)
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FIGURE 10. Pressure gradient distribution for h= 0.2 and K∞=−1: (a) ω= 1.7; (b) ω=
2.8; (c) ω= 3.35; (d) ω= 3.45.

A fundamental solution of (6.41) may be sought in the form

pv(x, Y)= f (η), η= ω

K∞

√
x2 −K∞Y2. (6.44a,b)

Substitution of (6.44) into (6.41) leads to the Bessel equation

f ′′ + 1
η

f ′ + f = 0. (6.45)

This means that the solution of (6.41) may be written as

pv(x, Y)=
∫ x−√K∞Y

−∞
ϕ(ξ)J0

(
ω

K∞

√
(x− ξ)2 −K∞Y2

)
dξ, (6.46)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

58
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.587


186 A. I. Ruban, T. Bernots and M. A. Kravtsova
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FIGURE 11. The receptivity coefficients K for negative values of the Kármán–Guderley
parameter K∞.

where J0 is the Bessel function. To find the function ϕ(ξ), one has to use the boundary
condition (6.42). Differentiation of (6.46) with respect to Y yields

∂pv
∂Y
=−√K∞ϕ(x−

√
K∞Y)−

∫ x−√K∞Y

−∞

ωYJ′0√
(x− ξ)2 −K∞Y2

dξ . (6.47)

Setting Y = 0 in (6.47) and using (6.42) and (6.43) it is easily found that

ϕ(x)=− 1√
K∞

ei(ω/K∞)xÃ′′(x). (6.48)

It remains to substitute (6.48) into (6.46), and we can see that the pressure in the
viscous sublayer is given by

P̃(x) = e−i(ω/K∞)xpv|Y=0

= − 1√
K∞

∫ x

−∞
e−i(ω/K∞)(x−ξ)Ã′′(ξ)J0

(
ω

K∞
(x− ξ)

)
dξ . (6.49)

Equation (6.49) was used, together with (6.16) and (6.17), to analyse the receptivity
process for K∞ > 0.

Similar to the subsonic flow regime, the calculations were performed for the
roughness shape g(x) = hF(x) with F(x) = e−2x2 . The results of the calculations are
shown in figure 12 in the form of the distribution of the pressure gradient along the
body surface. We see that the Tollmien–Schlichting wave decays downstream if the
acoustic wave interacting with the roughness has a subcritical frequency (ω= 2.6) and
grows for a supercritical frequency (ω= 3.25). The results in figure 12(a) correspond
to unit value of Kármán–Guderley parameter K∞. Figure 12(b) shows that for K∞= 1
the neutral frequency is ω= 3.025.
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FIGURE 12. Pressure gradient distribution for three different acoustic wave frequencies ω,
roughness hump height h= 0.1 and Kármán–Guderley parameter K∞ = 1: (a) subcritical
and supercritical frequencies; (b) neutral perturbations.
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FIGURE 13. The receptivity coefficient K for K∞ > 0.

The calculations were repeated for a number of values of the Kármán–Guderley
parameter in the range K∞ ∈ (0, 5), and for various values of the roughness height
h. The results of these calculations are summarised in figure 13, where the receptivity
coefficient K for neutral Tollmien–Schlichting waves is displayed. Interestingly, the
receptivity coefficient does not show the same growth with h as for the subsonic flow
regime (see figure 11).

7. Discussion of the results
This work is concerned with the generation of the Tollmien–Schlichting waves in

the boundary layer on a wing surface in the transonic flow regime. Assuming that
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the Reynolds number is large, we use the transonic version of the viscous–inviscid
interaction theory, which is known to describe the stability of the boundary layer on
the lower branch of the neutral curve. It is assumed that the Tollmien–Schlichting
wave is generated through interaction of the acoustic wave impinging upon the
boundary layer with steady flow perturbations produced in the flow by a small wall
roughness. The results of the analysis confirm, once again, that effective generation
of the Tollmien–Schlichting waves takes place when the so-called double-resonance
condition is observed. This condition requires that (i) the frequency of the acoustic
wave is tuned to the frequency of the Tollmien–Schlichting wave, and (ii) in
the Fourier spectrum of the steady perturbations produced by the wall roughness
there is a harmonic with wavenumber that coincides with the wavenumber of
the Tollmien–Schlichting wave. The transonic version of the triple-deck theory is
applicable when the free-stream Mach number M∞ is such that M∞ − 1=O(Re−1/9).
In this flow regime, the dimensionless frequency of the Tollmien–Schlichting wave is
an O(Re2/9) quantity and wavelength is estimated as O(Re−1/3).

We first develop the linear receptivity theory. It is applicable when the amplitude
of the pressure perturbation in the acoustic wave is small compared to ρ∞U2

∞Re−1/9,
and the roughness height is small compared to LRe−11/18. Under these conditions,
the governing equations my be solved in an analytic form. As a result, an explicit
formula for the amplitude of the generated Tollmien–Schlichting wave is deduced.
It can be expressed as the product of the so-called receptivity coefficient and
the Fourier transform of the roughness shape calculated for wavenumber of the
Tollmien–Schlichting wave. The former does not depend on the roughness shape,
and reaches a maximum when the Kármán–Guderley parameter K∞ becomes zero or,
equivalently, the free-stream Mach number M∞ = 1.

In the second part of the paper, we lift the restriction on the roughness height,
allowing the basic flow to develop a local separation region near the roughness.
For this case the analysis of the generation of the Tollmien–Schlichting waves is
conducted through numerical solution of the viscous–inviscid interaction problem.
First, the basic steady flow is calculated for various values of the Kármán–Guderley
parameter K∞, progressively increasing the roughness height. Then the flow response
to the impinging acoustic wave is determined through numerical solution of the
unsteady viscous–inviscid interaction problem. The numerical method used in this
study is based on Newtonian iterations where the solutions in the viscous and inviscid
parts of the flow are calculated assuming that the displacement function is known.
The iterations are conducted to adjust the displacement function such that it would
make the pressure distributions in the viscous and inviscid flow coincide with one
another. The results of the calculations show that for negative K∞, when the flow
outside the boundary layer is subsonic, the receptivity is enhanced significantly by the
formation of a separation region. Surprisingly, in the supersonic flow regime (K∞> 0)
the separation has only a moderate effect on the receptivity process.

In conclusion, we shall make the following comment. The asymptotic approach
used in this paper is primarily intended to uncover the fundamental physical processes
involved in the receptivity process. At the same time, we know from a number of
comparisons of the triple-deck theory with the Navier–Stokes simulations of the
boundary-layer receptivity in subsonic flows that the triple-deck predictions are rather
accurate (see e.g. Tumin 2006; Tullio & Ruban 2015). Therefore, we expect the
results presented in this paper to be sufficiently accurate for engineering applications.
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