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Large-scale contribution to mean wall shear
stress in high-Reynolds-number flat-plate

boundary layers up to Reθ=13650

Sébastien Deck†, Nicolas Renard, Romain Laraufie and Pierre-Élie Weiss
ONERA, The French Aerospace Lab, F-92190 Meudon, France

(Received 9 July 2013; revised 7 November 2013; accepted 26 November 2013;

A numerical investigation of the mean wall shear stress properties on a spatially
developing turbulent boundary layer over a smooth flat plate was carried out by
means of a zonal detached eddy simulation (ZDES) technique for the Reynolds
number range 30606 Reθ 6 13 650. Some asymptotic trends of global parameters are
suggested. Consistently with previous findings, the calculation confirms the occurrence
of very large-scale motions approximately 5δ to 6δ long which are meandering with a
lateral amplitude of 0.3δ and which maintain a footprint in the near-wall region. It is
shown that these large scales carry a significant amount of Reynolds shear stress and
their influence on the skin friction, denoted Cf ,2, is revisited through the FIK identity
by Fukagata, Iwamoto & Kasagi (Phys. Fluids, vol. 14, 2002, p. L73). It is argued
that Cf ,2 is the relevant parameter to characterize the high-Reynolds-number turbulent
skin friction since the term describing the spatial heterogeneity of the boundary layer
also characterizes the total shear stress variations across the boundary layer. The
behaviour of the latter term seems to follow some remarkable self-similarity trends
towards high Reynolds numbers. A spectral analysis of the weighted Reynolds stress
with respect to the distance to the wall and to the wavelength is provided for the first
time to our knowledge and allows us to analyse the influence of the largest scales
on the skin friction. It is shown that structures with a streamwise wavelength λx > δ
contribute to more than 60 % of Cf ,2, and that those larger than λx > 2δ still represent
approximately 45 % of Cf ,2.

Key words: boundary layer structure, turbulent boundary layer, turbulence simulation

1. Introduction
Mean wall shear stress plays a key role in many phenomena. In engineering

applications, accurate assessment of the skin friction coefficient is required for
determining friction drag on a body moving relative to a fluid. This enables
performance prediction (e.g. fuel consumption). A better understanding of mean
friction generation could even help to design new friction reduction devices. Mean
friction over a smooth surface can also play a key role in some geophysical flows
such as the atmospheric surface layer (Hutchins et al. 2012), wind-driven surface
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FIGURE 1. (Colour online) Typical Reynolds numbers in boundary layer applications. ReL
and Reθ denote the Reynolds numbers based on the streamwise characteristic length and
momentum thickness respectively. Reτ denotes the friction Reynolds number. The relation
Reτ = f (Reθ ) is the one proposed in (3.1). ASL: atmospheric surface sayer; PBL: planetary
boundary layer.

currents in the ocean or wave dissipation by bottom friction. Given the large scales
involved, these flows are most often characterized by a high Reynolds number and
a fully developed turbulence (see figure 1). Though it is widely acknowledged that
both high-quality experiments and numerical simulations are essential to understand
the kinematics and dynamics of the coherent structures populating the turbulent
boundary layer, surprisingly little attention in the literature has been devoted to the
understanding of mean skin friction generation in a boundary layer.

Since mean wall shear stress is directly related to the normal gradient of mean
streamwise velocity at the wall, itself resulting from the turbulent mixing of
streamwise momentum, the inner region of the boundary layer seems to be of highest
interest regarding mean friction generation. Its dynamics has been extensively studied
at rather low Reynolds numbers, typically Reθ 6 5000, for practical reasons. This led
to the characterization of the coherent structures populating the inner layer at low
Reynolds numbers, which scale in wall units and consist of quasi-streamwise vortices
and low- and high-speed near-wall streaks, as well as of several kinds of hairpin-like
structures. A thorough review of these structures can be found in Robinson (1991).
The dynamics of near-wall structures was shown to be self-sustaining, at least at
low Reynolds numbers. Several possible explanations on how coherent structures can
regenerate each other in a closed cycle are described in Jiménez & Pinelli (1999)
and in Panton (2001). This suggests that mean wall shear stress could result only
from near-wall dynamics, possibly independent of the outer layer. It follows from this
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hypothesis that reducing mean friction at low Reynolds numbers could be achieved
by means of controlling the near-wall dynamics using local devices such as ribblets.
However, mean friction in a turbulent boundary layer depends dramatically on the
external flow, the most extreme example of which being the boundary layer separation
occurring in the presence of a strong enough adverse pressure gradient. This shows
that the possibly universal inner layer behaviour must be at least modulated by some
events scaling in outer units and originating from the outer part of the boundary
layer. At moderate Reynolds numbers, the outer length scale (i.e. the boundary
layer thickness) tends to be much larger than the wall unit, which implies that the
influence of these outer events on mean friction can be traced back to the contribution
of large-scale events to friction.

The outer region of the boundary layer is populated with many coherent structures,
described in Robinson (1991) at moderate Reynolds numbers. Experimental visualization
of some of the largest of these structures can be found in Head & Bandyopadhyay
(1981) up to high Reynolds numbers (Reθ up to 17 350), whereas particle image
velocimetry (PIV) data are available up to moderately high Reynolds numbers, such
as the example presented in Carlier & Stanislas (2005). The attached-eddy hypothesis
first presented in Townsend (1976) suggests that some of these structures should
be hairpin-like structures extending down to the wall, hence called attached eddies.
However, unattached structures seem to exist as well, as suggested by models such
as in Perry & Marusic (1995) where it was shown that it is not possible to predict
the actual velocity and turbulence intensity profiles in the boundary layer by means
of solely the attached eddies. Evidence shown in Adrian, Meinhart & Tomkins
(2000) suggests that small structures tend to cluster in packets. This preferential
spatial distribution results in bursting events, large-scale shear layers and zones of
approximately uniform streamwise velocity. As a consequence, the interpretation of
large-scale structures revealed for example by spectral analysis is not straightforward.
Referring to a large-scale structure does not necessarily imply a single entity of large
scale. It can consist of a cluster of spatially coherent structures, which themselves tend
to be made of small structures cascading towards dissipative and quasi-isotropic scales.
The decomposition into smaller scales at higher Reynolds numbers is emphasized
in Jiménez (2012). The difficulty in the interpretation of spectral results in the
presence of clusters of structures that are not straight but meandering is detailed in
Smits, McKeon & Marusic (2011), Jiménez, del Álamo & Flores (2004), Hutchins &
Marusic (2007).

At low to moderate Reynolds numbers, the lack of scale separation between
inner and outer scalings leads to some confusion between inner and outer layer
events. On the other hand, at higher Reynolds numbers, i.e. Reθ > 10 000, the scale
separation becomes clearer. Many experimental results and a few direct numerical
simulations have suggested that the trend towards high Reynolds numbers could
reveal some fundamentally different mechanisms at work in the dynamics of a
high-Reynolds-number boundary layer compared to its lower-Reynolds-number
counterpart. It is not clear whether the phenomena observed at high Reynolds numbers
are missing at lower Reynolds numbers or simply cannot be observed because they
are mixed with other phenomena due to the lack of scale separation. Moreover,
performing a reliable experiment or simulation becomes increasingly difficult at
higher Reynolds numbers. A thorough summary of the experimental issues that have
jeopardized the reliability of some of the high-Reynolds-number results is given in
Marusic et al. (2010). Most of the observed trends towards higher Reynolds numbers
are still raising open questions on their reliability and, if they can be trusted, on
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their physical explanation. Two contrasted reviews of the main issues can be found in
Jiménez (2012) and in Smits et al. (2011), a short summary of which is given in the
following. A thorough description of the main issues related to turbulent boundary
layers may be found in Klewicki (2010).

One first observation for increasing Reynolds numbers is that the streamwise
velocity fluctuations intensity, which peaks at 15 wall units from the wall at low
Reynolds numbers, seems to present an increase in its maximum value when scaled
with inner quantities (i.e. wall unit and friction velocity), together with the growth of
an outer plateau which could even result in an outer peak located near the geometric
centre of the logarithmic layer located around y+ = 3.9 Re1/2

τ (see Marusic, Mathis &
Hutchins 2010a). The appearance of the outer peak, which could also be present in
the turbulent kinetic energy production term, is put into question in Jiménez (2012)
because of the experimental issues caused by the difficulty of performing reliable
measurements at high Reynolds numbers. However, the fact that the inner peak does
not scale in inner units is predicted by the attached-eddy hypothesis (see Townsend
1976; Perry & Marusic 1995), and other scalings have been successfully considered,
for instance in DeGraaff & Eaton (2000). Spectral analysis performed in Hutchins &
Marusic (2007) suggests that the outer peak could be caused by large-scale structures
located in the outer layer, while the increase of the inner peak could result from the
imprint of the outer large-scale structures, the foot of which is superimposed onto the
smaller inner structures in agreement with the attached-eddy theory. This reasoning is
backed up by a scale decomposition of the streamwise fluctuating velocity intensity
across the boundary layer, presented in Smits et al. (2011) and suggesting that large
scales tend to be increasingly important at higher Reynolds numbers.

These increasingly large structures could be up to 15 boundary layer thicknesses
long, and their visualization suggests they have a meandering shape, possibly resulting
from instabilities in their early stages. They are called very large-scale motions
(VLSM) or superstructures. It should be emphasized that these structures seem to be
different in a flat-plate boundary layer, which is the topic of the present study, from
what they may be in a channel or a pipe flow, as described by Jiménez (1998) and
confirmed in Balakumar & Adrian (2007). Further differences between the flat-plate
boundary layer and other wall-bounded flows are given in Marusic et al. (2010).
Because of the numerous applications that have been evoked, the present study
focuses on the flat-plate boundary layer rather than on internal wall-bounded flows.

Another trend that has been reported is the increasing modulation of the inner layer
activity by the outer layer. In addition to the superposition of large scales originating
in the outer layer onto the inner layer, the intensity of the dynamics of the inner layer
seems to be directly modulated by the large-scale events passing by in the above outer
layer, as described and discussed in Mathis, Hutchins & Marusic (2009), Marusic,
Mathis & Hutchins (2010b), Schlatter & Örlü (2010b), Bernardini & Pirozzoli (2011),
Mathis et al. (2011), Jiménez (2012), Ganapathisubramani et al. (2012).

One major question concerning the large-scale structures is whether they are active
or inactive in the sense of Townsend (1976), i.e. whether or not they contribute
to the Reynolds shear stress, to which the mean friction is directly related. In the
framework of the attached-eddy hypothesis, it seems likely that a given structure
is active at a height of the same order as its size, but is inactive near the wall,
where the normal velocity it induces is limited by the no-penetration constraint
at the wall. This could suggest that the largest scales, for instance those with a
streamwise wavelength larger than the boundary layer thickness, do not contribute
much to the mean friction. However, there has been some experimental and numerical
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evidence that the large scales contribute much to the Reynolds shear stress, and may
represent a non-negligible part of the turbulent contribution to mean friction. Some
insight into this question in the channel and pipe flow cases may be found in many
references such as del Álamo et al. (2004), Jiménez et al. (2004) or Hoyas & Jimenez
(2006). In the case that is considered in the present study, i.e. the flat-plate turbulent
boundary layer, much less information can be found in the literature. Evaluations
of the contribution of the large-scale structures to the Reynolds shear stress can
be found in Ganapathisubramani, Longmire & Marusic (2003) and in Marusic &
Hutchins (2005) at some wall-normal locations. Co-spectra of the Reynolds shear
stresses are shown in several experimental data sets, such as Marusic, Li & Perry
(1989), Krogstad, Antonia & Browne (1992), Saddoughi & Veeravalli (1994), Nickels
& Marusic (2001), Kunkel & Marusic (2006) and Balakumar & Adrian (2007). Even
more refined signal processing tools have been used, such as wavelet transforms
in Hudgins, Friehe & Mayer (1993), and a complete study was devoted to the
motions contributing to the Reynolds shear stress in Priyadarshana & Klewicki
(2004). Unfortunately, insufficient data were gathered to cover the contribution of the
large scales to the Reynolds shear stress across the whole boundary layer thickness,
which would be very useful to determine to what extent they contribute to mean
wall shear stress. The available data do not fully represent the evolution with the
Reynolds number of the contribution of large scales to the Reynolds shear stress
either. As emphasized by Balakumar & Adrian (2007), even though it has been
shown that the large scales carry a non-negligible amount of Reynolds shear stress,
a comprehensive analysis of their contribution to mean friction depending also on
the Reynolds number is not yet available. Very recently, Hwang (2013) presented a
study of the Reynolds number trend in the case of a channel flow at relatively low
Reynolds numbers, revealing that the relative contribution to mean skin friction by
larger-scale structures increases significantly with the Reynolds number. Such a study
in the higher-Reynolds-number flat-plate turbulent boundary layer case is still missing.
The direct contribution to mean skin friction of the structures located in the outer
layer has not yet been made clear either.

One of the reasons for this lack of data is the challenge that computing a
high-Reynolds-number boundary layer represents. In contrast to the well-characterized
high-Reynolds-number isotropic turbulence (Kaneda & Ishihara 2006; Ishihara, Gotoh
& Kaneda 2009), the simulation of wall turbulence at high Reynolds numbers is
still a serious challenge (see the discussion by Sagaut & Deck 2009). Indeed, in
the framework of isotropic flows, classical theory tells us that energy production
and dissipation peaks are independent of each other, and that they only interact
through the intermediate inertial cascade, which is universal. A major difference
with wall-bounded flows is that the dissipative structures in the lower buffer region
are also responsible for a large fraction of the turbulent energy production, and
have a major influence on, among other things, the overall friction coefficient. In
addition, Jiménez (2003) emphasized that for the same scale separation, wall-bounded
simulations are more expensive than isotropic ones, both because the inhomogeneity
of the flow results in slightly larger grid requirements, and because the presence of
a mean flow velocity requires shorter time steps. The majority of published studies
concerns the fully developed channel flows instead of a spatially developing boundary
layer over a smooth flat plate, for several reasons. First is the difficulty of prescribing
correct inflow conditions since, conversely to the channel flow configuration, the
unsteady character of the flow field is not imposed by a forcing term in the movement
associated with periodic boundary conditions. Secondly, the streamwise inhomogeneity
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of the flat-plate boundary layer is harder to compute and increases the computational
resources required to simulate this spatially developing wall-bounded flow.

Smits et al. (2011) emphasized that pipe, channel, and boundary layer flows may
behave differently in various aspects and in particular Marusic et al. (2010) reviewed
the significant differences between channel and boundary layer flows even in the
inner regions. Similarly, Lee & Sung (2013) used direct numerical simulations (DNS)
to investigate the similarities and differences of very large-scale motions between a
flat-plate turbulent boundary layer and a fully developed turbulent pipe flow. They
found that the average streamwise length scale of the pipe flow was up to three times
larger through the log and wake regions than that of a flat-plate boundary layer. Thus
from now on, only flat-plate boundary layer flows will be considered. For instance,
table 1 summarizes some numerical studies concerning only the spatially developing
flat-plate turbulent boundary layers. Only numerical studies which are compared
with experimental (or DNS) results are considered. Apart from different numerical
discretization schemes and resolutions, the simulations outlined in table 1 exhibit
very significant differences in domain length, unsteady boundary conditions and inlet
Reynolds numbers. Recent examples of incompressible boundary layers (Schlatter
& Örlü 2010a; Sillero et al. 2011) reach friction Reynolds numbers Reτ ≈ 2000.
Pirozzoli & Bernardini (2013) proposed a DNS at Reτ ≈ 4000 in the low supersonic
regime in the restricted Reynolds number range 13 320 6 Reθ 6 15 489. These DNS
are comparable to the largest DNS of channel flow currently available (Hoyas &
Jimenez 2006; Kaneda, Morishita & Ishihara 2013). As reminded earlier, very little is
known about the mean skin friction generation at these high Reynolds numbers and
in this paper we investigate numerically for the first time to the authors’ knowledge
this problem for a wide Reynolds number range 35006 Reθ 6 13 650.

On the theoretical side, Fukagata, Iwamoto & Kasagi (2002) derived an analytical
expression (referred to as the FIK identity in the following) relating the local skin
friction coefficient to the properties of the flow above the surface for canonical cases
of turbulent plane channel flow, pipe flow, and flat-plate boundary layers. These
authors have shown that the skin friction coefficient depends on a weighted integral
of the Reynolds shear stress distribution. Extensions of this theory that may be found
in the literature will be further discussed in the section devoted to the FIK identity.
However, surprisingly little use of the FIK identity has been made in the case of
the flat-plate boundary layer so far, in comparison with the numerous and successful
analysis made using this identity in the case of internal wall-bounded flows. The
present study proposes some new insight into how the FIK identity may be used in a
high-Reynolds-number flat-plate boundary layer to assess the large-scale contribution
to mean wall shear stress.

This short review reveals that the detailed knowledge of the large-scale contribution
to mean wall shear stress at high Reynold numbers is severely limited by the lack
of experimental data and advanced numerical simulations. This is exactly the scope
of this article, which is organized as follows. In § 2 the simulation methodology is
presented as well as the test case. Both Reynolds-averaged and spectral data are
compared with the available experimental data and those found in the literature in
§ 3. The decomposition of the turbulent mean friction coefficient into several physical
sources through the FIK identity is investigated in § 4. In § 5, the scale decomposition
of mean wall shear stress is investigated with the help of spectral analysis.
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2. Simulation overview
2.1. General description

The FLU3M code developed by ONERA is used to solve the compressible
Navier–Stokes equations on multiblock structured grids. The time integration is
carried out by means of the second-order-accurate backward scheme of Gear. The
spatial scheme is a modified low-dissipative AUSM+(P) scheme (Mary & Sagaut
2002). Further details concerning the numerical method and implementation of
turbulence models can be found in references Péchier, Guillen & Caysac (2001),
Deck et al. (2002). The accuracy of the solver for DNS, large eddy simulation
(LES) and hybrid Reynolds-averaged Navier–Stokes (RANS)/LES purposes has been
assessed in various applications including transitional flows (Mary & Sagaut 2002),
wall-bounded turbulent flows (Deck et al. 2011; Gand et al. 2010; Pamiès et al. 2009)
as well as separated flows (Dandois, Garnier & Sagaut 2007; Deck & Thorigny 2007;
Larchevêque et al. 1997; Simon et al. 2007; Weiss et al. 2009; Weiss & Deck
2011). In these last references, the numerical results are thoroughly compared with
the available experimental data of the near-field fluctuations including spectral and
second-order analysis.

The zonal detached-eddy simulation (ZDES) was first proposed by Deck (2005a,b)
and the complete formulation has been recently published in (Deck 2012). In this
method, which belongs to the family of multi-resolution approaches (see for instance
the discussion by Sagaut, Deck & Terracol 2013), a different hybrid length scale
is defined according to the type of flow treated: mode 1 concerns flows where the
separation is triggered by a relatively abrupt variation in the geometry; mode 2 is
when the location of separation is induced by a pressure gradient on a gently curved
surface and mode 3 is for flows where the separation is strongly influenced by the
dynamics of the incoming boundary layer. The present study only requires the use
of the mode 3 branch of the ZDES approach (Deck 2012). The ability of ZDES to
operate in wall-resolved large eddy simulation (WRLES) as well as in wall-modelled
LES (WMLES) mode has been demonstrated in Deck et al. (2011), Laraufie, Deck &
Sagaut (2011, 2012), Laraufie & Deck (2013), Deck & Laraufie (2013). Even though
the WRLES approach cannot be considered as a direct numerical simulation, the
high resolution of the mesh and the nature of the analysis performed in the present
study make the contribution of the subgrid-scale modelling strategy negligible to the
conclusions drawn in the following analysis of mean wall shear stress. This will be
shown later in this paper, especially in figures 13 and 16, revealing that the weight
given to the outer layer in the FIK identity justifies the possibility of modelling to
some extent the near-wall dynamics.

As soon as the boundary layer is partly resolved in the LES mode, a turbulent
content has to be injected at the inlet of the domain in order to prevent turbulence
decay, which may lead to relaminarization. An adaptation of the synthetic eddy
method of Jarrin et al. (2006), proposed by Pamiès et al. (2009) and extended to
ZDES by Deck et al. (2011), is adopted for this purpose.

2.2. Grids and description of the computation
The test case is a spatially developing zero-pressure-gradient turbulent boundary
layer over a smooth flat plate. The free-stream velocity is U∞ = 70 m s−1, with
the corresponding Mach number M∞ = 0.21; the static pressure is set to P∞ =
99 120 Pa, the temperature equals 287 K leading to a Reynolds number per metre
Re = 4.72 × 106 m−1. A no-slip adiabatic boundary condition is applied at the wall.
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1x 1y 1z Nδ13 000
y Nx ×Ny ×Nz

50+ 1+ 12+ 125 5950× 204× 660
0.050δ0 0.00100δ0 0.0130δ0

0.013δ13 000 0.00026δ13 000 0.0032δ13 000

TABLE 2. Parameters of the grid. Nx, Ny and Nz are the grid sizes along the axes and the
1 are the corresponding resolutions expressed in both inlet wall units (superscript
+) and inlet boundary layer thickness units (δ0). δ13 000 is the boundary layer thickness at
Reθ = 13 000 and Nδ13 000

y is the number of points in the wall-normal direction clustered in
δ13 000.

The initial boundary layer thickness is δ0 = 5.82 mm so that Reδ0 = 27 165. The outer
scales are given by the free-stream velocity and the 99 % boundary layer thickness
δ. Based on the two-dimensional mean velocity profile 〈u〉(x, y), the shear stress at
the wall τw is obtained as τw (x) = (µ(d〈u〉/dy))y=0 where µ = ρν is the molecular
viscosity given by Sutherland’s law, with ρ the density and ν the kinematic viscosity.
The relevant velocity and length scales close to the wall are thus uτ = √τw/ρw and
lν = νw/uτ . It has been checked that because of the low free-stream Mach number,
the turbulence dynamics is almost incompressible, and the variations of the mean
density are less than 1 % across the boundary layer, which implies that the mean flow
may be considered incompressible as well. The variations of the mean viscosity are
also less than 1 %. The data presented in the following will accordingly be compared
to incompressible simulations and very low-Mach-number experiments without any
rescaling. Quantities in wall scaling are written as u+ = u/uτ and y+ = y/lν .

The computational domain sizes in the streamwise, spanwise and wall-normal
directions are respectively Lx = 342δ0, Lz = 8.6δ0 and Ly = 41δ0 so that the
range of Reynolds number covered by the simulation is 3060 6 Reθ 6 13 650
(1070 6 Reτ 6 3800). The large range of Reynolds numbers simulated provides the
required space for the streamwise stretched large-scale structures to develop without
any spurious perturbation that could be caused by too short a domain. As mentioned
in the introduction, the largest coherent structures may be up to 15 boundary layer
thicknesses long, which calls for a long domain for the proper resolution of the
boundary layer dynamics in the streamwise direction. The major parameters of grid
resolution are gathered in table 2 and can be compared with those used in previous
numerical studies in table 1. The values in wall units refer to the boundary layer at
the inlet of the computational domain. Since the mesh has uniform spacings along
the streamwise direction, this means that the mesh spacings in wall units at the outlet
of the numerical domain are slightly smaller than the values given in table 2, because
of the spatial development of the boundary layer. However, this does not result in
significantly smaller values. Besides, the mesh resolution and isotropy in the outer
region of the boundary layer are very good (see e.g. the number of grid points Nδ13 000

y
across the boundary layer thickness given in table 2). It will be shown in § 5 below
that the study of mean wall shear stress according to the FIK identity (Fukagata et al.
2002), which is the main focus of this simulation, requires a very good resolution
of the outer layer, where the terms contributing to mean wall shear stress in the
framework of the FIK identity tend to concentrate. On the other hand, the resolution
of the inner layer seems to be less crucial, and this motivates the use of a ZDES
simulation that does not fully resolve the turbulence dynamics, especially near the
wall, unlike a DNS. Some experimental facts suggest that the outer layer dynamics,
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when scaled in outer units, is not significantly influenced by the near-wall dynamics,
as long as the phenomena taking place near the wall are of a negligible size compared
to the outer scales. For example, it is reported in Kunkel & Marusic (2006) that the
surface roughness, provided the roughness height is very small compared to the
boundary layer thickness, has no major impact on the behaviour of the outer layer,
as long as the proper scaling is used.

Because of the challenging CPU cost that the simulation of high-Reynolds-number
boundary layers represents, a trade-off was sought between conflicting requirements.
Firstly, the mesh resolution in the outer layer has to be fine enough for the proper
resolution of the coherent structures that have the strongest impact on mean wall shear
stress according to the FIK identity. This implies that the mesh was not coarsened in
the wall-normal direction as quickly as it might have been in a simulation designed for
another purpose. Consequently, even though the wall-normal resolution was limited
near the wall in order to keep the CPU cost of the simulation within reasonable
reach, the simulation of the outer layer, which is the main focus of this study,
appears to provide a satisfactory resolution, and should not be significantly influenced
by possible near-wall inaccuracies, given its weak dependence on the inner layer
behaviour as revealed by the experimental comparison between smooth and rough
surfaces. Note that for x/δ0 > 383 (where Reθ = 13 700), mesh cells are stretched in
order to progressively damp the turbulent fluctuations. This procedure is common to
ensure protection of the domain of interest from wave reflections, combined with the
subsonic characteristic boundary treatment at the outlet of the numerical domain.

The time step needs to be chosen in order to correctly describe the important
physical phenomena which are being simulated. For wall-bounded flows, Choi &
Moin (1994) proposed the 1t+ < 1 criterion where 1t+ = u2

τ1tCFD/ν and uτ and ν
denote respectively the friction velocity and the kinematic viscosity, 1tCFD being the
time step of the simulation. These authors showed that a time step of size 1t+≈ 0.4
resulted in negligible error in their DNS. In the present study, the physical time step
is set to 4.8× 10−7 s leading to 1t+= 0.26 so that the selected time step satisfies this
criterion. After the transient phase, the real unsteady calculation begins, allowing the
collection of statistics. The averaging procedure is performed on the fly during the
calculation over a total duration of 1155 δ0/U∞ inertial times. To allow the calculation
of the premultiplied spectra and streamwise-derivative quantities, selected volumes of
the unsteady field have been stored leading to a storage of 3 Terabytes of data. The
cost of the calculation is close to 2× 106 CPU hours on 936 Nehalem processors of
the CINES superscalar computer Jade-SGI Altix Ice 8200.

3. Validation
3.1. Flow visualization

A first visual impression of the spatially developing boundary layer can be gained
from figure 2 where an instantaneous schlieren visualization of the whole domain
as well as zoom near Reθ = 13 000 are displayed. In the zoom, the boundary layer
thickness δ(x) based on the Reynolds-averaged streamwise velocity is also represented.
The heads of some large coherent structures are located well above the conventional
y = δ edge of the boundary layer, in the outer intermittent region. The spatial
organization of the turbulent coherent structures suggested by the visualization seems
to be in good agreement with models such as the paradigm of the packets of hairpins
(Adrian et al. 2000). The measured mean inclination angle of the coherent patterns
is in good agreement with the angle reported in Marusic & Heuer (2007), which
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4000 7000 10000 13000

12400 12700

()

13100 13500

(a)

(b)

FIGURE 2. (Colour online) Instantaneous schlieren Sch (x, y)= ((∂ρ/∂x)2 + (∂ρ/∂y)2
)1/2;

(b) shows a zoom of a small rectangular region in (a) to highlight the flow around Reθ ≈
13 000. Boundary layer thickness δ based on Reynolds-averaged streamwise velocity shown
as the dashed line.

is close to 14◦. In figure 2 the largest structures are inclined at an angle ranging
from 14◦ to 24◦, with an average value close to 19◦. Several reasons why this angle
is slightly larger than in the experiments can be put forward. Firstly, the angle is
not determined in the same way. A typical experimental measurement relies on
the search for the maximum correlation coefficient between the streamwise velocity
signals recorded at two different heights in the boundary layer at the same x location.
The corresponding time lag is then converted into a spatial lag by Taylor’s hypothesis
of frozen turbulence, using the Reynolds-averaged velocity as the convection velocity.
In contrast with this experimental measurement, the angles reported here for the ZDES
simulation were directly measured on the numerical schlieren. A second reason for the
difference between the measured angles could originate from the possible confusion
between the angle of a single, smaller-scale, hairpin and the angle associated with the
spatially coherent hairpins that form a large-scale packet, as emphasized in Marusic
& Heuer (2007).

Another insight into the global organization of the flow is provided by the Q
criterion, one isosurface of which is plotted in figure 3 coloured by the streamwise
velocity. The evolution of the typical coherent structures is emphasized by five insets
extracted at different Reynolds numbers. As expected, the structures do not look
very coherent and well defined, because of the relatively high Reynolds numbers.
Hairpins probably only exist as the average addition of many structures of various
scales, which makes it very hard to recognize any hairpins. This had already been
emphasized in Jiménez et al. (2010), where packets of hairpins proved difficult to
see.

Also, one striking feature appearing at higher Reynolds numbers is the presence
of very large scales, elongated and somewhat meandering areas in which the density
of coherent structures seems to be higher than the average in the outer layer and
lower than the average in the inner layer. The structures in the outer layer are green
and orange (high streamwise velocity) whereas those in the inner layer are blue (low
velocity). These areas might be attributed to the so-called very large-scale motions, or
superstructures. They consist of a streamwise velocity globally lower than the average
at some height above the wall. Because the outer velocity is constant, equal to the
free-stream velocity, this results in a higher shear stress in the outer layer, producing
higher turbulent intensities. Conversely, this results in a lower shear stress near the
wall, since the no-slip condition still holds at the wall. Consequently, there is less
turbulent kinetic energy production in the inner layer. On each side of these large-scale
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1.00

0.80

0.60

0.20

0.40

FIGURE 3. (Colour online) Isosurface of the non-dimensionalized Q criterion Q(δ2
0/U

2
∞)=

0.5 coloured by the streamwise velocity.

structures there seems to be, on the contrary, high-speed areas. These areas feature
higher shear and turbulent kinetic energy near the wall (blue structures) and lower
shear and turbulent kinetic energy in the outer layer. Since there are less green and
orange structures, these areas are seen as ‘blue’ areas in figure 3.

Figure 4 shows velocity fluctuation contours in a wall-parallel plane in the buffer
layer at y+ = 20. Clearly visible in figure 4(a) is a two-scale organization of the
streamwise velocity fluctuations with high- and low-momentum streaks of width
O(100 lν) characterizing the inner layer turbulence and very long regions of negative
u fluctuation, visible in the plot as elongated dark regions. These very large scales
maintain a footprint in the near-wall region as is now commonly acknowledged.
Streamwise length scales O(5δ–6δ) with a characteristic width of approximatively
0.3δ can be distinguished. These characteristics agree well with previous experimental
(Hutchins & Marusic 2007) or DNS (Lee & Sung 2011; Pirozzoli & Bernardini 2013)
observations.

Instantaneous views of the spanwise velocity fluctuation w′ displayed in figure 4(b)
suggest that these superstructures may affect the spanwise velocity, but not in an
obvious manner. They indeed suggest that these superstructures meander significantly
along their length. Some structures, shorter than those featured in the u′ plot, may be
guessed from the spanwise velocity fluctuations. Moreover, the width of these regions
seems to be of the same order of magnitude as found in the literature, i.e. 0.3δ, for the
larger scale structures of u′, suggesting they may be related to each other. However,
in an analogous way to particle image velocimetry (PIV) observations reported in a
supersonic boundary layer by Ganapathisubramani, Clemens & Dolling (2006) (see
figure 2 in that reference), the spanwise velocity fluctuations seem to be much less
coherent than their streamwise counterparts, with fewer visible large length scales.

It should be noted that the very large-scale structures would probably be better
revealed if a more sophisticated post-processing algorithm were applied, such as the
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12600

2

1

2

1

12900 13600

100

12600 12900 13600

(a)

(b)

FIGURE 4. (Colour online) Instantaneous flow field in the x–z plane at y+ = 20 around
Reθ ≈ 13 000. (a) Instantaneous streamwise velocity fluctuations u′. The inset shows a
zoom of a small rectangular region, shown dashed, to highlight the turbulent fine scales
(lν denotes the viscous length scale). Contour levels are shown for −0.156 u′/U∞6 0.15
from dark to light shade. (b) Instantaneous spanwise velocity w′ fluctuations. Contour
levels are shown for −0.16w′/U∞ 6 0.1 from dark to light shade.

skeletonization method presented in Marquillie, Ehrenstein & Laval (2011). However,
this is beyond the scope of the present study.

The contribution of these large scales to streamwise velocity fluctuations and mean
wall shear stress will be discussed in the following.

3.2. Global parameters
The skin friction coefficient Cf from the present calculation is compared in figure 5
with the one given by a RANS calculation using the Spalart–Allmaras model on
the same mesh as the present ZDES, and with the friction law by Schlichting based
on the 1/7-power law of the velocity profile. Also shown are two correlations
from experimental data, one by Michel, Quémard & Durant (1969) based on
high-Reynolds-number data, and the modified Coles–Fernholz correlation given in
Nagib, Chauhan & Monkewitz (2007) which was fitted to high-Reynolds-number
experimental data as well. Moreover, statistics obtained from several DNS and
experimental data sets pertaining to a canonical turbulent boundary layer (TBL)
under zero pressure gradient are compiled and compared to the present calculation.
It is worth noting that the scatter in the experimental data is large partly because
most of the skin friction values have been extracted by indirect methods (see some
comments on this issue in Nagib et al. 2004). Another source of possible scatter in
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5000 10000

1.8

1.6

1.4

1.2

1.0
15000

FIGURE 5. (Colour online) Streamwise evolution of the skin friction coefficient (see
table 3 for explanation of symbols). The grey area represents the 5 % tolerance limits
of the Coles–Fernholz correlation calibrated by Nagib et al. (2007).

experimental data comes from the difficulty in designing a test case with perfectly
zero pressure gradient, as the spatially growing boundary layer gradually increases
wind tunnel blockage, as for instance reported in DeGraaff & Eaton (2000). It is not
only the actual values of Cf that differ (up to 5–10 % for the same Reθ ), but also
inconsistent trends with respect to Reθ can be pointed out among the reference data
available. Interestingly, Schlatter & Örlü (2010a) reviewed DNS datasets and reported
that the scatter in the DNS data (up to 5–10 % for the same Reθ ) is as large as in
similar experimental compilations. The highest-Reynolds number DNS data and the
experiment of Österlund et al. (2000) fall closer to the Coles–Fernholz correlation.
The friction coefficient for the present simulation was computed from second-order
evaluation of the wall-normal derivative of the streamwise Reynolds-averaged velocity
at the wall. Care was also taken that the computational domain be large enough
in the wall-normal direction, so that possibly imperfect boundary conditions on the
upper edge of the domain would not result in a non-zero streamwise pressure gradient
caused by a phenomenon analogous to wind tunnel blockage.

Cf of the present calculation is in very good agreement with the one given by
the Coles–Fernholz correlation and the discrepancy is of the order of 5 % which is
actually very similar to the one observed between two experimental data sets at the
same Reynolds number or between the RANS calculation and the Coles–Fernholz
correlation.

Also, the wide range of Reynolds numbers of the simulation enables the assessment
of the relation between Reynolds numbers Reθ and Reτ which is shown in figure 6
together with several experimental datasets and the RANS simulation. The ZDES
simulation is in good agreement with the experimental data. The experimental data
from DeGraaff & Eaton (2000) suggest a slightly different relation, which is actually
closer to the RANS simulation prediction, but as mentioned earlier, this could be
attributed to the pressure gradient issue raised by the wind tunnel blockage. It should
also be noted that the experimental data are increasingly scattered for increasing
Reynolds numbers, probably as a consequence of the growing difficulty in performing
a reliable measurement as the Reynolds number becomes larger. The linear behaviour
between the two Reynolds numbers plotted in logarithmic scales suggests a power-law
relation. Such a relation is of high practical interest since it makes easier to convert
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5000

4500

4000

3500

3000

2500

2000

1500

1000

500
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FIGURE 6. (Colour online) Relation between Reynolds numbers Reθ and Reτ . ——,
present ZDES; ◦, best fit to present data, Reτ = 0.435Re0.954

θ ; �, best fit from DNS data
in the range 3006Reθ 6 3500 provided by Schlatter & Örlü (2010a),Reτ = 1.13×Re0.843

θ ;
− · −, RANS; •, exp. DeGraaff & Eaton (2000);�, exp. Österlund et al. (2000);×, exp.
Smith (1994).

Reference Exp./DNS/Correlation Symbol

DeGraaff & Eaton (2000) Exp. •
Österlund et al. (2000) Exp. �
Fernholz & Finley (1996) Exp. H
Head & Bandyopadhyay (1981) Exp. 5
Nagib et al. (2007) Exp. �
Smith (1994) Exp. ×
Erm & Joubert (1991) Exp. �
Schlatter & Örlü (2010a) DNS �
Pirozzoli & Bernardini (2013) DNS 4
Sillero et al. (2011) DNS ©
Coles–Fernholz, best fit
from Nagib et al. (2007) Cf = 2

(
1

0.384 ln (Reθ )+ 4.127
)−2 ——

Schlichting (1968) Cf = 0.0256Re−1/4
θ − · ·−

Michel et al. (1969) Cf = 0.0172Re−1/5
θ · · ··

Spalart & Allmaras (1992) RANS − ·−
Present ZDES − − −

TABLE 3. List of symbols utilized in figures 5 and 7.
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5000 1500010000

FIGURE 7. (Colour online) Streamwise evolution of the shape factor (see table 3 for
explanation of symbols).

between the two Reynolds numbers. The best fit to our data provides the following
relation:

Reτ = 0.435 Re0.954
θ . (3.1)

This is in good agreement with the best fit from data in the lower-Reynolds-number
range 3006 Reθ 6 3500 provided by Schlatter & Örlü (2010a), namely Reτ = 1.13×
Re0.843

θ , which is also plotted in figure 6.
The shape factor H = δ1/θ gives another assessment of the mean velocity profile

independent of the skin friction (i.e. wall-normal derivative). The computation of
H relies on the evaluation of two integral quantities which may be less sensitive
to numerical or experimental inaccuracies than the evaluation of skin friction. The
values obtained by the present calculation are given in figure 7. Let us be reminded
that the 1/7-power law of the velocity profile proposed by Schlichting (1968) yields
H = 1.285 which is significantly lower than the values observed at high Reynolds
number. This result corroborates the deviations in Cf observed by Schlichting’s
law in figure 5. Most interestingly, the trend observed in the experimental and
DNS data is very well reproduced by the ZDES simulation: the shape factor
decreases gradually for increasing Reynolds numbers, as emphasized and predicted
by theoretical considerations in Nagib et al. (2007). The level of H in the ZDES
simulation is in good agreement with the somewhat scattered reference data available.
The maximum Reynolds number achieved is not high enough to confirm that H
should decrease below 1.3 and even tend towards 1 for infinite Reynolds numbers
as the theory given in Nagib et al. (2007) predicts with some experimental support.
Higher-Reynolds-number simulations are needed for such purposes.

Another parameter of interest for the turbulent boundary layer is Coles’ wake
factor Π initially defined by Coles (1956), which is related to the wake profile of the
boundary layer (outer region beyond the logarithmic layer) and has by definition a
constant value in an equilibrium turbulent boundary layer. This constant value is close
to 0.55 for a zero-pressure-gradient boundary layer for any high enough Reynolds
number, according to Nagib et al. (2007). Checking that the wake factor keeps a
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constant value over the simulated range of Reynolds numbers reveals whether the
simulated boundary layer has reached equilibrium or not, thus assessing the quality
of the numerical method. However, computing the wake factor can be done in several
ways, depending on the assumptions made in the wake and wall laws. Consequently,
different expressions can be found, e.g. in Coles (1956), in Perry, Marusic & Jones
(2002) and in Nagib et al. (2007), leading to somewhat different levels but a globally
unchanged trend of the wake factor evolution with respect to the Reynolds number.
Here the wake factor Π99 computed according to the method presented in Nagib
et al. (2007) is presented and compared to the set of experimental data gathered in
the same reference. The starting point is the velocity profile law assumed to be valid
in the whole boundary layer except in the viscous sublayer and buffer layer by Coles
(1956):

〈u〉
uτ
= 1
κ

ln
(yuτ
ν

)
+ A+ Π

κ
w
(y
δ

)
, (3.2)

where 〈u〉(y= δ)=U∞, 〈u〉(y= δ99)= 0.99U∞ and w(1)= 2 by definition. From this
expression, Π is derived in Coles (1956) by assuming that the given law is valid down
to the wall, thus neglecting the viscous effects. In Nagib et al. (2007), the authors
instead use this law only where it is valid, eventually only at y= δ99, which yields:

Π99 = κ

w(δ99/δ)

(
0.99

U∞
uτ
− 1
κ

ln
(
δ99uτ
ν

)
−A
)
≈ κ

2

(
0.99

U∞
uτ
− 1
κ

ln
(
δ99uτ
ν

)
− A

)
,

(3.3)
where w (δ99/δ) has been replaced with w(1) = 2 because the actual wake function
w has a first derivative with respect to y close to 0 at y = δ, which implies that
the approximation w (δ99/δ) ≈ 2 is fairly good, while the 0.99 factor present in the
equation should on the other hand be kept. As explained in Nagib et al. (2007), this
relation is used to compute Π99 from the measured δ99 and Reδ1 (δ99 is explicitly
computed as the location where the Reynolds-averaged streamwise velocity is equal to
0.99 times the outer velocity, whereas δ1 is evaluated by numerical integration of the
velocity profile). The values for the constants are, from Nagib et al. (2007), κ = 0.384
and A= 4.173. In order to evaluate the required value of U∞/uτ , the Coles–Fernholz
correlation from Nagib et al. (2007) is used so that comparison with the experimental
data gathered in the reference is possible:

U∞
uτ
≈ 1
κ

ln(Reδ1)+C∗, (3.4)

where C∗ = 3.354. It should be noted that following rigorously this procedure was
required in order to make the comparison with available data possible, because of
the high sensitivity of the wake factor to the way it is computed. Besides, resorting
to a correlation giving the friction coefficient as a function of Reδ1 tends to reduce
the scatter of the available data, especially because experimental measurement of the
displacement thickness seems to be more accurate than experimental measurement of
skin friction. It can be seen in figure 8 that the wake factor Π99 computed for the
ZDES simulation is in very good agreement with the experimental data from Nagib
et al. (2007), and that it keeps a nearly constant value suggesting that the simulated
boundary layer actually is in an equilibrium state. The value is close to 0.55 which
was also the value found in Nagib et al. (2007).
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FIGURE 8. (Colour online) Streamwise evolution of Coles wake factor Π99 computed
according to (3.3) and (3.4) (see table 3 for explanation of symbols).

3.3. Velocity profiles
The mean velocity profiles are plotted in outer and inner scales at two different
Reynolds numbers in figure 9. The external unit is preferred since this scaling is the
one used in the FIK identity (see § 5). The second-order velocity fluctuation statistics
at Reθ = 5200 and 13 000 are shown in the same figure in both inner and outer
coordinates. The moments correspond to the resolved fluctuations only. Contrary
to the Reynolds shear stress, the modelled part of the normal Reynolds stresses
cannot be reconstructed, because the simulation resorts to Boussinesq’s eddy viscosity
hypothesis for subgrid-scale modelling together with a model for the eddy viscosity
itself (there is no prediction of the modelled turbulent kinetic energy in the framework
of the one-equation Spalart–Allmaras model). We also show experimental data by
DeGraaff & Eaton (2000) and the prediction by the model of Marusic et al. (1997),
Marusic & Kunkel (2003) of the Reynolds stresses for which experimental data are
missing. Deviations are observed in the inner layer, where the present simulation
does not perfectly match the experimental data. Significant deviations observed in the
inner layer have also been reported by Pirozzoli & Bernardini (2013) in their DNS
data at similar Reynolds numbers. On the contrary, the velocity variances are well
predicted in the outer layer. As emphasized before, the role played by turbulence
modelling in the inner layer has negligible impact on the following analysis of mean
wall shear stress. Indeed, the FIK identity weights the outer layer using the wall
distance, making the role played by the inner layer in the integral negligible (see
figure 16). The mean velocity profiles also feature an accurate wake profile and
a substantial logarithmic zone with the proper slope, while the inner layer deviates
from the experimental data. The plots in wall units present a slight shift of the curves
caused by the underestimation of the friction coefficient in the present simulation,
since U∞/uτ =

√
2/Cf . The proper resolution of the outer layer enables an accurate

evaluation of its contribution to the mean skin friction using the FIK identity.
Also, it can be shown that in agreement with the predictions of the attached eddy

hypothesis, the spanwise fluctuations feature a logarithmic layer, the width of which
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FIGURE 9. (Colour online) (a) Mean velocity profiles in outer scale: •, exp. DeGraaff
& Eaton (2000); ——, present ZDES. (b) Mean velocity profiles in wall units: •, exp.
DeGraaff & Eaton (2000); �, exp. Smith (1994) at Reθ = 5 021 and Reθ = 13 052; ——,
present ZDES. (c) Distribution of normal Reynolds stress components: •, exp. DeGraaff
& Eaton (2000); �, model by Marusic, Uddin & Perry (1997), Marusic & Kunkel (2003);
——, present ZDES. Data for two different Reynolds numbers, Reθ =5200 (left) and Reθ =
13 000 (right).

increases with the Reynolds number. As in Pirozzoli & Bernardini (2013), such a
feature is missing for the streamwise velocity fluctuations, although predicted by the
attached eddy theory. This is consistent with recent experimental measurements by
Hultmark et al. (2013) and Marusic et al. (2012) that emphasized that the logarithmic
layer for streamwise velocity fluctuations appears clearly only at high Reynolds
numbers Reτ > 10 000, above the Reynolds numbers considered here. Besides, the
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FIGURE 10. (Colour online) Streamwise evolution of the longitudinal velocity fluctuations
(〈u′2〉/(U∞uτ ))1/2 for the ZDES simulation (contour lines) together with the correlation of
the peak streamwise turbulent intensity given in Hutchins et al. (2009) (filled circles).

relative intensity of the streamwise velocity fluctuations in the logarithmic layer
clearly increases with the Reynolds number. Above the inner peak, a plateau is
growing and could even possibly lead to an outer peak at higher Reynolds numbers
which are beyond reach of the present simulation.

DeGraaff & Eaton (2000) emphasized that the longitudinal Reynolds stresses
lack universality in inner scaling. The fluctuation amplitudes slowly increase with
Reθ if they are scaled using only the friction velocity uτ . Figure 10 displays
the streamwise evolution of the longitudinal velocity fluctuations in mixed-outer
coordinates

√〈u′2〉/(U∞uτ ). This scaling was introduced by DeGraaff & Eaton
(2000) and it can be seen that it provides an almost constant value of the maximum
streamwise turbulence intensity. The physical justification for this mixed velocity
scaling comes from the energy balance of the boundary layer, as detailed in DeGraaff
& Eaton (2000). Since the total power dissipated by the boundary layer scales on
U∞τw, for a constant-density flow, the total rate of energy dissipation by turbulence
depends on both U∞ and uτ . More specifically, the mean specific turbulent kinetic
energy (i.e. per unit mass) in the inner region of the boundary layer can be shown
to be proportional to U∞uτ by means of dimensional analysis. Another way of
addressing the issue of the level of the inner streamwise velocity fluctuations peak
is given by the attached eddy hypothesis of Townsend (1976). As described in Perry
& Marusic (1995), the profile of streamwise turbulence intensity predicted by the
hypothesis behaves like:

〈u′2〉
u2
τ

= BT − AT ln
(y
δ

)
. (3.5)
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This version of the theory bound to the attached eddy hypothesis does not take into
account the viscous effects that are dominating in the closest vicinity of the wall.
This means that the above formula should not be used down to the wall, where
viscous effects may not be neglected any more. However, the distance to the wall
measured in wall units y+ = yuτ/ν is also the Reynolds number associated with the
attached eddies of size y at the height y with typical induced velocity uτ . Hence, the
height from which the viscous effects cannot be neglected any more in the attached
eddy hypothesis probably is a constant y+ value. Consequently, the evolution of the
maximum value of 〈u′2〉 with Reynolds number could be evaluated from equation
(3.5) at the height y+ = 15 where experiments indicate that the maximum is located.
This provides the following prediction of the peak 〈u′2〉:

〈u′2〉peak

u2
τ

= BT + AT ln
(

Reτ
15

)
. (3.6)

As mentioned in Hwang (2013), this relation is equivalent to the mixed scaling
suggested by DeGraaff & Eaton (2000) 〈u′2〉peak ∼U∞uτ as soon as U∞ ∼ uτ ln(Reτ ),
which can also be formulated as Cf ∼ (ln(Reτ ))−2. In figure 10, we also consider
the peak streamwise velocity variance as a function of Reθ and compare with the
correlation derived in Hutchins et al. (2009) from the prediction from the Townsend
(1976) attached eddy hypothesis fitted to experimental data by Hutchins et al. (2009),
namely:

〈u′2〉peak

u2
τ

= 4.837+ 0.469 ln (Reτ ) . (3.7)

Figure 10 suggests that we recover logarithmic growth of the velocity variance and
that this growth is fully compatible with the mixed scaling by DeGraaff & Eaton
(2000). Also, this figure reveals the growth of a plateau of (〈u′2〉/(U∞uτ ))1/2 in the
outer region of the boundary layer, which possibly would result in an outer peak at
higher Reynolds numbers. It can be seen that with the distance to the wall scaled
in boundary layer thickness (outer scaling), the inner peak moves closer to the wall
when the Reynolds number increases, which is not surprising since it is located at
an approximately constant position in inner scaling. On the other hand, it can be
seen that the contour lines corresponding to given levels of streamwise fluctuations in
mixed scaling clearly move towards the edge of the boundary layer in outer distance
scale for Reynolds numbers higher than Reθ ≈7000. This shows again how the plateau
gradually grows for increasing Reynolds numbers.

3.4. Spectral analysis of the streamwise fluctuations
To gain a better insight into the contribution of each streamwise length scale
to the streamwise velocity fluctuations, spectra across the boundary layer are
shown in figure 11. The figure shows contours of the one-sided premultiplied
one-dimensional streamwise power spectral density of the resolved streamwise
velocity non-dimensionalized by the friction velocity kxΦuu/u2

τ versus λx/δ and y/δ
for Reθ = 5200 and 13 000. kxΦuu is normalized so that:

〈u′2〉 =
∫ ∞

0
Φuu(kx) dkx =

∫ ∞

−∞
kxΦuu(kx) d ln(kx). (3.8)

This equation shows that the contribution of each length scale to the streamwise
turbulent intensity is directly proportional to the area below the kxΦuu versus ln(kx)
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FIGURE 11. (Colour online) Premultiplied power spectral density of the streamwise
fluctuations of velocity kxΦuu/u2

τ (3.8) at Reθ = 5200 (Reτ = 1510) (a) and Reθ = 13 000
(Reτ = 3600) (b). Coloured map from the present simulation. Isolines from experimental
data: ——, Reτ = 2800 from Mathis et al. (2009),− − −, Reτ = 3900 from Marusic
et al. (2010a). Note that the axis in inner units refers to the present simulation only,
whereas the experimental data should be read using the outer units together with the
present simulation.

curve at a given height y. This implies that figure 11 enables a direct study of
the levels and distribution of streamwise turbulent intensity according to the length
scale and the location in the boundary layer. It should be noted that because the
boundary layer is spatially developing along x, x is not an homogeneous direction.
Consequently, the power spectral density shown cannot strictly speaking result from a
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Fourier transform along x. Instead, the Fourier transform of a time signal recorded at a
given x location is considered. Then the time spectra are converted into spatial spectra
according to Taylor’s frozen flow hypothesis. It is assumed that the coherent turbulent
structures do not evolve much while they are passing the considered x location.
If their convection velocity is known, the corresponding spatial shape along x can
be deduced from the time signal. This results in a duality between the streamwise
wavenumber kx = 2π/λx and the frequency f according to λx = 2π/kx = Uc/f , where
Uc(y/δ) is the local advection velocity.

In figure 11, the spectrum at Reθ = 13 000 is compared with experimental spectra
from Mathis et al. (2009) and Marusic et al. (2010a), which were made using the
Reynolds-averaged streamwise velocity as Uc. Consequently, the advection velocity is
chosen here equal to the Reynolds-averaged streamwise velocity for the purpose of
comparison. Other choices can be made, such as computing the advection velocity
from the slope of the maximum two-point two-time correlation of streamwise velocity
fluctuations. However, different definitions of the advection velocity do not result in
significant changes of the spectra, as depicted for instance in Mathis et al. (2009). A
deeper study of this issue, especially focusing on the impact that Taylor’s hypothesis
may have on the spectral resolution of the very large-scale structures can be found in
Dennis & Nickels (2008). From this reference it can be concluded that wavelengths up
to 6 boundary layer thicknesses are properly resolved by the present spectral analysis.
Discussions on the dependence of the convection velocity on the size of the coherent
structures can be found in Krogstad, Kaspersen & Rimestad (1998) and in del Álamo
& Jiménez (2009). One possible limitation of using the Reynolds-averaged streamwise
velocity is that the large structures located near the wall tend to be convected at
a velocity that does not seem to scale like the friction velocity (as the local mean
velocity does). It seems to scale like the outer velocity instead, or as reported in a
study by Hutchins et al. (2011), like a mixed scaling close to the mean velocity at
the geometric centre of the logarithmic layer where y+ ≈ 3.9

√
Reτ . This can lead to

some underestimation of the size of the largest structures near the wall, more so as
the Reynolds number is higher.

It can be seen in figure 11 that a fair agreement between the experimental data
and the present results is obtained, especially in the outer layer. The comparison of
the spectra at Reθ = 5200 and Reθ = 13 000 shows one very clear inner energy site,
but also an outer energy site emerging with increasing Reynolds numbers. The inner
site is due to the near-wall cycle of streaks in the buffer layer. As a consequence, its
location and the size of the coherent structures it results from tend to scale in inner
scales. This explains why its location given in outer scale (y/δ) is moving closer to
the wall with increasing Reynolds numbers, and why the peak size, scaled in outer
scale λx/δ of the structures it is made of, is also decreasing with increasing Reynolds
numbers. Both trends are obvious in the experimental data shown in Mathis et al.
(2009). As the Reynolds number increases, a second energy site emerges in the outer
layer. Even though a local maximum of the power spectral density cannot be seen
as clearly on the simulation results as with the experimental data, energy is very
clearly appearing in the largest scales, outer layer zone of the spectrum, in excellent
agreement with the shape of the experimental spectra. This is assumed to be caused
by the spectral content of the very large-scale motions that are described in the section
on flow visualization.

Equation (3.8) allows the velocity signatures across a boundary layer to be
decomposed into small-scale (λx < λc) and large-scale (λx > λc) contributions (Smits
et al. 2011) by integrating the power spectral density over the small- or large-scale
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FIGURE 12. (Colour online) Contribution of the large and small scales to the streamwise
velocity fluctuations at Reθ =13 000 (Reτ =3600): −·−, total signal; green solid line, λx<
δ; red solid line, λx> δ; green dashed line, λx< 2δ; red dashed line, λx> 2δ. Experimental
data from Marusic et al. (2010a) at Reτ = 3900: green square, λx < δ; red square, λx > δ.

range of wavelengths defined by the cut-off wavelength λc. Typically λc = δ, which
makes the difference between the small viscous-scaled contribution and the larger
outer-scaled contribution. In particular, figure 12 indicates that the 〈u′2〉 profile can
be considered as the sum of a small viscous-scaled contribution primarily located in
the near-wall region and a larger outer-scaled contribution. The resulting profiles are
compared with the experimental data from Marusic et al. (2010a) at a slightly higher
skin friction Reynolds number. A second value of the cut-off wavelength is presented,
λc = 2δ. The latter cut-off makes clearer the contribution of the outer layer to the
larger-scale fluctuations and of the inner layer to the smaller-scale fluctuations. The
profiles for the same cut-off λc= δ of the present simulation and of the experimental
data do not agree very well, whereas the profiles for the present simulation with
λc = 2δ are much closer to the experimental ones (for which λc = δ). This can be
partly explained by the different Reynolds numbers. Indeed, as shown in figure 11,
the inner energy site at such Reynolds numbers still has a significant footprint on
the large-scale domain. Increasing the Reynolds number does increase the energy
associated with the outer layer large scales, but also results in a motion of the inner
site towards the wall when y is scaled with δ, thus reducing the contribution of this
site to the large-scale fluctuations. As a consequence, at the slightly lower Reynolds
number of the simulation, a slightly higher cut-off wavelength is required in order to
get similar profiles.

Other sources of discrepancy in the cut-off value can also be thought of, such as
different methods to estimate the power spectral density which may result in different
spectral distortion at low frequencies. It should also be noted that the emergence of
the large-scale outer peak and the absence of significant change of the small-scale
profile that is shown in Marusic et al. (2010a) cannot be seen when figure 12 is
compared to its equivalent at Reθ = 5200. Indeed, Marusic et al. (2010a) deal with
Reynolds numbers higher than Reθ =13 000, whereas the present simulation deals with
Reynolds numbers smaller than Reθ = 13 000, for which the trend is different. The
reason for the different trend is that the inner site corresponding to small scales at high
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Reynolds numbers actually is located near the large scales site at Reθ = 5200, as can
be seen in figure 11. Increasing the Reynolds number from Reθ =5200 to Reθ =13 000
mainly results in moving the inner site with respect to the cut-off wavelength, which
is located somewhere inside this site. Consequently, large scales in the inner layer
could be believed to be stronger at Reθ = 5200 than at Reθ = 13 000 because the inner
fluctuations are mistakenly taken for large scales due to the lack of scale separation
at moderate Reynolds numbers. This shows how useful the full spectra are compared
to semi-integrated global values.

4. A glimpse into the FIK identity
The FIK identity was first presented in Fukagata et al. (2002) as a tool to

decompose the turbulent mean friction coefficient of wall-bounded turbulent flows
into several contributing terms emphasizing the physical sources of mean friction and
their distance from the wall. Indeed, this identity provides a quantity that amounts to
the turbulent friction once integrated with respect to the wall distance. To the authors’
knowledge, there is no other such quantity available in the literature. For instance,
even though the wall-normal derivative of the Reynolds shear stress describes how
the mean flow is retarded or accelerated by the turbulent fluctuations, as pointed
out by Balakumar & Adrian (2007), it does not seem to be directly related to mean
wall shear stress. In particular, the integral of this quantity over the boundary layer
thickness vanishes (assuming a zero Reynolds shear stress at y= δ, which is close to
the actual value), since:

∫ δ

0

∂

∂y

(−〈u′v′〉) dy=−〈u′v′〉(δ)− (−〈u′v′〉(0))= 0. (4.1)

It can be seen that mean wall shear stress does not result from the integral of
the contribution of (∂/∂y) (−〈u′v′〉) over the boundary layer. Moreover, the term
(∂/∂y) (−〈u′v′〉) has to be positive and negative in different areas of the boundary
layer so that its integral vanishes. What could be interpreted as a contribution of
the Reynolds shear stress to mean wall shear stress at a given wall distance would
be a negative value of (∂/∂y) (−〈u′v′〉), meaning that the turbulent stress tends to
retard the mean flow. This is the case in the outer layer, but on the contrary near the
wall this term is positive, so that the overall integral vanishes. It clearly appears that
the turbulent fluctuations in the inner layer tend to accelerate the mean flow, but it
would seem somewhat misleading if one concluded that the turbulent fluctuations in
the inner layer produce negative drag. As explained in Balakumar & Adrian (2007),
the co-spectrum of (∂/∂y) (−〈u′v′〉) has a sign that also depends on the wavelength,
but this relates to mean flow retardation or acceleration. The relation to mean wall
shear stress generation is not obvious. On the other hand, the FIK identity provides
an explicit description of the contribution to mean wall shear stress depending on
wall distance.

The FIK identity was generalized to compressible flows in Gomez, Flutet & Sagaut
(1981), and to some non-planar walls in Peet & Sagaut (2009). Even though it
has been widely used to study turbulent channel flows, for which it shows a direct
relationship between the weighted distribution of the Reynolds shear stress across the
boundary layer and the mean turbulent friction, less has been written on the use of
the FIK identity to analyse the zero-pressure-gradient flat-plate boundary layer. One
such analysis can nevertheless be found in Lee et al. (2013), but only at moderate
Reynolds numbers up to Reθ = 2060.
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In the channel flow case, the term of the FIK identity corresponding to spatial
inhomogeneity is zero, and the study of turbulent mean friction generation focuses on
the Reynolds shear stress. The study of the spatially developing flat-plate boundary
layer usually focuses in an analogous way on the Reynolds shear stress. Yet in the
latter case the inhomogeneity term is non-zero, making the relation between the
Reynolds shear stress and the mean friction less obvious. This section discusses to
what extent the generation of mean skin friction can still be related to the Reynolds
shear stress in this case, by considering the behaviour of the terms of the FIK identity
at high Reynolds numbers. Some remarkable high-Reynolds-number trends seem to
give strong support to the usual focus on the Reynolds shear stress. A physical
explanation for these observed trends is then suggested. This leads to the conclusion
that the study of the weighted Reynolds shear stress appears to be sufficient for the
understanding of turbulent friction generation at high Reynolds numbers. To better
understand the contribution of the turbulent coherent structures to mean friction,
especially the very large-scale ones, a scale decomposition of the weighted Reynolds
shear stress is performed in § 5.

4.1. The FIK identity in the flat-plate boundary layer case
A short summary of the FIK identity applied to the case of the incompressible flat-
plate boundary layer with no pressure gradient and a no-slip boundary condition at
the wall is first given here. More details can be found in Fukagata et al. (2002). The
generalization to compressible flows presented in Gomez et al. (1981) is not used
here, because the fluctuating and mean fields both behave in an almost incompressible
manner, as emphasized in the simulation overview § 2. Mean wall shear stress τw, the
skin friction coefficient Cf and the friction velocity uτ are defined as:

τw =µ∂ 〈u〉
∂y

(y= 0) and Cf = τw
1
2ρU2∞

= 2
(

uτ
U∞

)2

. (4.2)

The boundary layer thickness δ and the related Reynolds number are:

Reδ = δU∞
ν

where 〈u〉 (y= δ)= 0.99U∞. (4.3)

The displacement thickness δ1 is defined as:

δ1 =
∫ δ

0

(
1− 〈u〉

U∞

)
dy. (4.4)

As shown in Fukagata et al. (2002), from the streamwise momentum equation of the
Reynolds-averaged Navier–Stokes equations, the FIK identity can be written in the
present case as follows:

Cf =Cf ,1 +Cf ,2 +Cf ,3, (4.5)

Cf ,1 = 4(1− δ1/δ)

Reδ
, (4.6)

Cf ,2 =−4
∫ 1

0

〈u′v′〉
U2∞

(
1− y

δ

)
d
(y
δ

)
, (4.7)
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Cf ,3 =−2
∫ 1

0

(
1− y

δ

)2
(

Ix + ∂ 〈u〉
∂t

)
δ

U2∞
d
(y
δ

)
, (4.8)

Ix = ∂

∂x

(
〈u〉2

)
+ ∂

∂y

(
〈u〉 〈v〉

)
− ν ∂

2 〈u〉
∂x2
+ ∂

∂x

( 〈
u′2
〉 )
. (4.9)

The last two terms in the expression for Ix may be neglected in the framework of the
turbulent boundary layer hypotheses, leading to the approximate relation:

Ix = ∂

∂x

(
〈u〉2

)
+ ∂

∂y

(
〈u〉 〈v〉

)
. (4.10)

The FIK identity (4.5) is classically interpreted as a decomposition of mean friction
according to the physical mechanisms of its generation. The first term Cf ,1 is
sometimes called the laminar contribution because of its similarity to laminar friction
formulae. The second term Cf ,2 is the turbulent contribution to the mean friction
through the weighted integral of the Reynolds shear stress. It indicates that turbulent
fluctuations at any height in the boundary layer may contribute to the mean friction,
all the more as they get closer to the wall. The last term Cf ,3 is related to the spatial
heterogeneity of the boundary layer.

In the case of a steady channel flow, the FIK identity is similar, but Cf ,3 vanishes
because of the spatial homogeneity of the parallel flow. Also, the first term Cf ,1 is
equal to the friction coefficient Cf for a laminar flow with the same Reynolds number
based on the bulk velocity and the channel width, as emphasized in Fukagata et al.
(2002). This implies that Cf ,2 represents the extra skin friction encountered for a
given Reynolds number because of the turbulent fluctuations in comparison with the
laminar case. The turbulent mean friction generation for a channel flow is thus fully
characterized by the weighted Reynolds shear stress profile.

In the case of the spatially developing flat-plate boundary layer, the relation
is less obvious, because Cf ,3 is non-zero and cannot be easily related to its
laminar counterpart. To make comparisons with the reference case of the laminar
boundary layer, for which Cf ,2,lam = 0, the Blasius self-similar solution of the
laminar incompressible boundary layer equations with no pressure gradient detailed
in Schlichting (1968) can be used. With x denoting the distance from the origin of
the laminar boundary layer and Rex = xU∞/ν, it can be shown that:

Cf ,lam = 0.664√
Rex

, Cf ,1,lam = 0.529√
Rex

, Cf ,2,lam = 0, Cf ,3,lam = 0.135√
Rex

. (4.11)

It is interest that the ratios of the FIK terms Cf ,i,lam to the total Cf ,lam do not depend
on the Reynolds number for the self-similar laminar boundary layer:

Cf ,1,lam = 0.79604Cf ,lam, Cf ,2,lam = 0, Cf ,3,lam = 0.20396Cf ,lam. (4.12)

A Reynolds number definition for which the laminar Cf ,1,lam and Cf ,3,lam terms and
their turbulent counterparts would coincide (in a similar way to the channel flow case
with the Reynolds number based on bulk velocity and channel width) was sought with
no success. Instead, the behaviour of the FIK terms Cf ,1, Cf ,2 and Cf ,3 with respect to
the Reynolds number is studied in the next subsection in order to identify potential
parallels between the laminar and turbulent cases. The results suggest two reasons
why, when focusing on Cf ,2 alone, the study of turbulent friction generation at high
Reynolds numbers does not seem to miss any major friction generation mechanism
that could be represented by either Cf ,1 or Cf ,3.
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FIGURE 13. (Colour online) (a) Streamwise evolution of the FIK terms Cf ,i as a function
of Reθ . ——, Cf from computed wall shear stress; H, Cf ,1; 4, Cf ,2, resolved part only;
N, Cf ,2, total (modelled and resolved parts); �, Cf ,3; ♦, Cf ,3, contribution of ∂/∂x(〈u〉2);
B, Cf ,3, contribution of ∂/∂y(〈u〉〈v〉); C, Cf ,3, contribution of −ν∂2〈u〉/∂x2; ◦, Cf ,3,
contribution of ∂/∂x(〈u′2〉); •, Cf ,1 + Cf ,2 + Cf ,3. (b) Streamwise evolution of the relative
FIK terms Cf ,i/Cf . (Cf ,1 +Cf ,2)/Cf : ×, present; ——, laminar solution (Blasius (4.12))
for the same Cf . Cf ,3/Cf : �, present; − − −, laminar solution (Blasius (4.12)) for the
same Cf . Note that the abscissa is reversed (decreasing Cf and increasing Reθ ).

4.2. Evolution of the FIK identity in high-Reynolds-number flat-plate boundary layers
The Reynolds-number dependence of the FIK terms Cf ,1, Cf ,2 and Cf ,3 computed
in the present simulation is depicted in figure 13(a). It is important to note that
the contribution of the modelled Reynolds shear stress to Cf ,2 can be neglected, as
demonstrated by the very close values for the resolved and total Cf ,2 shown in the
same figure. The modelled part amounts to less than 2 % of the total Cf at the
considered Reynolds numbers.

First of all, the total friction coefficient computed by numerical integration of the
integral terms of the FIK identity is compared with the same coefficient directly
estimated from the wall-normal gradient of streamwise velocity at the wall. Excellent
agreement is found between the two methods. It should be noted that the first term
Cf ,1 is much smaller than the other two. It may also be checked in figure 13 that
two of the four terms contributing to Cf ,2 actually are negligible, as implied by the
boundary layer hypothesis (see (4.10)). Furthermore, over the Reynolds number range
covered, the second term Cf ,2 is approximately four times greater than the third one
Cf ,3. This suggests that most of the friction drag is associated with the second term
Cf ,2, on which the analysis of friction generation may consequently focus.

However, this would imply that Cf ,3 is merely neglected, even though it amounts
to approximately 20 % of the total Cf , as can be seen on figure 13(b). In addition,
contrary to the channel flow case, the first and third terms Cf ,1 and Cf ,3 depend on
the turbulent fluctuations. Indeed, even though they formally involve only the mean
value of velocity and not its second-order statistical moments, the mean velocity
profile itself depends on the Reynolds shear stress. This means that evaluating the
impact of a given type of turbulent coherent structures on mean friction should cover
both its impact on Cf ,2 but also on the other two FIK terms. Nevertheless, in the
following some reasons are shown for why the study of the contribution of the
turbulent fluctuations to Cf ,2 only appears to be sufficient for an accurate description
of turbulent friction generation.

Indeed, a particular feature of the evolution of the FIK terms with the Reynolds
number is shown in figure 13(b). This figure presents the ratio Cf ,3/Cf for the
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present simulation, compared to the value it has in the laminar case (see (4.12)). It
is demonstrated in the previous subsection that in the case of a laminar boundary
layer, the ratios Cf ,1/Cf and Cf ,3/Cf remain constant whatever the Reynolds number.
Since computing such quantities emphasizes the value of Cf , Cf is used as the x-axis
variable, but in reversed scale so that the Reynolds number is increasing towards the
right-hand side.

The first striking feature in figure 13(b) is the relatively constant value of the ratio
Cf ,3/Cf over the considered Reynolds number range for the present turbulent boundary
layer. A second striking fact is the very close values taken by this ratio in the laminar
and in the turbulent case. It will be shown in the next subsection that theoretical
considerations tend to predict that the turbulent value of Cf ,3/Cf is asymptotically
constant for high Reynolds numbers. It will also be shown how the laminar case and
the high-Reynolds-number turbulent case end up with a very similar value of Cf ,3/Cf ,
even though there is no obvious theoretical reason for the values to be equal.

Since Cf ,3/Cf is found to be almost constant and close to the laminar case value,
the sum of the other two FIK terms (Cf ,1 +Cf ,2)/Cf = 1− Cf ,3/Cf has to follow the
same trend, which can be seen in figure 13(b). However, even though (Cf ,1 +Cf ,2)/Cf
is almost constant in the high-Reynolds-number turbulent case and has a value close
to its laminar counterpart, it involves a very different distribution of the contributing
terms Cf ,1 and Cf ,2: in the turbulent case, (Cf ,1 +Cf ,2)/Cf ≈ Cf ,2/Cf , while in the
laminar case (Cf ,1 +Cf ,2)/Cf =Cf ,1/Cf .

These observations suggest a new way of reasoning, presented in the following, that
supports the focus on the contribution of the high-Reynolds-number turbulent coherent
structures only to Cf ,2.

A Reynolds number Reα is first defined, based on the characteristic length α =
δ/(1− δ1/δ), so that:

Reα = Reδ
1− δ1/δ

. (4.13)

This definition is motivated by the resulting relation:

Cf ,1 = 4
Reα

. (4.14)

Since the ratio δ1/δ is constant in the laminar case and varies slowly in the turbulent
case, the behaviour of Reα is similar to the more common Reynolds number Reδ.
The evolution of Reθ with Reα in the present turbulent simulation is presented in
figure 14(b), confirming that this newly defined Reynolds number does increase with
the more usual Reynolds number. The laminar and turbulent Cf are plotted as a
function of Reα in figure 14(a). The dependence of the laminar Cf on the Reynolds
number Reα is deduced from equations (4.12) and (4.14):

Cf ,lam = 5.025
Reα

. (4.15)

It is now shown that the acknowledged extra skin friction of a turbulent boundary
layer compared to a laminar boundary layer with the same Reynolds number can
be attributed to the FIK term Cf ,2 alone, making irrelevant the study of the impact
of the turbulent fluctuations on Cf ,1 and Cf ,3. More specifically, it is shown in the
following that if the ratio Cf ,3/Cf is assumed to have the same value in the laminar
case as in the high-Reynolds-number turbulent cases, then the higher value of Cf in
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FIGURE 14. (Colour online) (a) Friction coefficient Cf as a function of the Reynolds
number Reα defined by (4.13).−−−: laminar case Cf = 5.025/Reα; •, present turbulent
boundary layer simulation. (b) Reynolds number based on the momentum thickness Reθ
plotted in the turbulent case as a function of Reα .

the turbulent case compared to the laminar case at the same Reα only results from
the strictly positive value of Cf ,2 in the turbulent case compared to its zero value in
the laminar case. This emphasizes the key role of the FIK term Cf ,2 in the turbulent
friction generation and justifies that only this term need be studied to characterize
turbulent friction.

Returning to figure 14(a), it has to be shown that point A of the turbulent case,
characterized by the Reynolds number Reα,A and the friction coefficient Cf ,A, has a
greater Cf than point C which represents the laminar case at the same Reα = Reα,A
with a friction coefficient Cf ,C, from only two assumptions:

(i) the ratio Cf ,3/Cf for point A has the same value as the laminar case value;
(ii) Cf ,2> 0 in A and Cf ,2= 0 in the laminar case, which results from the well-known

properties of the Reynolds shear stress sign in the laminar and turbulent boundary
layers.

In an intermediate step, the laminar case with the same Cf (point B) instead of
the same Reα is considered. The motivation for considering a given Cf comes from
the observed property of the ratios Cf ,3/Cf and (Cf ,1 + Cf ,2)/Cf remaining constant,
which suggests using a reference Cf . For a given Cf =Cf ,A, it has been shown that the
sum Cf ,1+Cf ,2 has very close values in the laminar and in the high-Reynolds-number
turbulent cases. However, Cf ,2 is zero in the laminar case and strictly positive in the
turbulent case. This implies that for a given Cf = Cf ,A, the Reynolds number Reα,B
in the laminar case is smaller than the Reynolds number Reα,A in the turbulent case,
because of the relation:

Cf ,1 +Cf ,2 = 4
Reα
+Cf ,2 ≈ constant for a given Cf . (4.16)

This implies that for a strictly positive Cf ,2 caused by the turbulent fluctuations, point
A is located to the right of point B in figure 14(a) (Reα,A > Reα,B). Because of the
behaviour of Cf with Reα in the laminar case, this clearly implies that point A is
located above the laminar case curve. As a consequence, for a given Reynolds number
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Reα =Reα,A, the turbulent case point A is located above the laminar case point C, i.e.
the turbulent friction coefficient Cf ,A is greater than its laminar counterpart Cf ,C. The
previous reasoning has shown that the level of Cf ,2 at a given Cf is directly related
to the difference between the turbulent and laminar Cf at a given Reα, as long as the
ratio Cf ,3/Cf may be assumed independent of the Reynolds number in the turbulent
case and close to the laminar case value.

The impact of Cf ,2 in the turbulent case at high Reynolds numbers, where it is much
greater than Cf ,1 (Cf ,1 is less than 3 % of the total Cf over the considered Reynolds
number range), can be seen as simply determining which small amount is left for Cf ,1
at the considered value of Cf , thus determining the value of Reα. Consequently, the
study of mean friction generation can focus on Cf ,2, just as in the case of the channel
flow. This can alternatively be seen from the following relation:

1 = Cf ,1

Cf
+ Cf ,2

Cf
+ Cf ,3

Cf

= 4
Cf Reα

+ Cf ,2

Cf
+ Cf ,3

Cf
(4.17)

which, if Cf ,3/Cf is assumed to be approximately constant in the high-Reynolds-
number turbulent range, leads to 4/(Cf Reα)+Cf ,2/Cf ≈constant for any high Reynolds
number. Since Cf does not decay as fast as 1/Reα in the turbulent case (because a
1/Reα decay corresponds to the laminar case), 4/(Cf Reα) decreases with the Reynolds
number. Consequently, in the turbulent boundary layer, Cf ,1/Cf decreases towards zero
with the Reynolds number, whereas Cf ,2/Cf increases so that (Cf ,1 +Cf ,2)/Cf stays
approximately constant, just as Cf ,3/Cf . The increase of the relative contribution of
Cf ,2 to Cf can finally be seen as the main result of the evolution of the turbulent
coherent structures with increasing Reynolds numbers.

One last alternative point of view resorts to the ratio Cf /(Cf ,1 +Cf ,2), which is
constant when Cf ,3/Cf is assumed to be constant. For a given Reynolds number Reα,
the laminar and the turbulent boundary layers have the same Cf ,1 (by definition of
this Reynolds number, see (4.14)). The sum Cf ,1 + Cf ,2 is greater in the turbulent
case (where Cf ,2 > 0) than in the laminar case (where Cf ,2 = 0). The total Cf is
then obtained from the product of the sum Cf ,1+Cf ,2 times the ratio Cf /(Cf ,1 +Cf ,2),
which is assumed to have the same value in the laminar and turbulent cases. By noting
that for a given Reα,

Cf ,lam = Cf

Cf ,1 +Cf ,2

(
Cf ,1 + 0

)
(4.18)

and
Cf ,turb = Cf

Cf ,1 +Cf ,2

(
Cf ,1 +Cf ,2

)
, (4.19)

where Cf /(Cf ,1 +Cf ,2) is assumed to have the same constant value in the laminar and
turbulent case, one can conclude that the extra drag of the turbulent boundary layer
compared to its laminar counterpart of same Reα is equal to

Cf ,turb −Cf ,lam = Cf

Cf ,1 +Cf ,2
Cf ,2 (4.20)

which is directly proportional to the FIK term Cf ,2 related to the weighted Reynolds
shear stress profile.
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It should however be noted that the above reasoning relies on the assumption that
the ratio Cf ,3/Cf does not depend much on the turbulent structures present in the
boundary layer. This has been suggested to be almost the case in the high-Reynolds-
number range considered, but is not necessarily the case for other boundary layers, for
instance the lower-Reynolds-number turbulent one, or an artificially forced turbulent
boundary layer.

In particular, the values shown in Lee et al. (2013) of the FIK terms from a DNS
of a turbulent boundary layer with and without wall heating tend to suggest that the
value of Cf ,3/Cf might be higher at low to moderate Reynolds numbers (Reθ = 1240
to 2060) than in the laminar and high-Reynolds-number turbulent cases. The authors
also suggest that the impact of wall heating on this ratio decreases with the Reynolds
number. This leads to the hypothesis that the trend observed in the present simulation
is valid only for asymptotically high Reynolds numbers, which is fully supported by
the theoretical considerations of the next subsection.

4.3. A possible explanation of the behaviour of Cf ,3/Cf based on outer layer
self-similarity at high Reynolds numbers

In this subsection, theoretical support is given for the observed trend of an
approximately constant value of the ratio Cf ,3/Cf at high Reynolds numbers. It
is also shown how the values in the turbulent and laminar cases can be close to each
other. This last point is extremely confusing if considered from the classical point of
view according to which the third FIK term Cf ,3 is describing the spatial growth of
the boundary layer, which is much faster in the turbulent case than in the laminar
one.

The first step to draw parallels between these very different cases consists of
rewriting Cf ,3 in a different manner. Using the Reynolds-averaged Navier–Stokes
streamwise momentum equation within the boundary layer hypotheses framework,
this term can be rewritten, with no approximation, in terms of the profile of the
wall-normal gradient of the total shear stress τ/ρ = ν∂ 〈u〉 /∂y− 〈u′v′〉 only:

Cf ,3 =−2
∫ 1

0

(
1− y

δ

)2 ∂(τ/ρ)

∂y
δ

U2∞
d
(y
δ

)
. (4.21)

This induces a very different interpretation of this term compared to its usual
description as the spatial heterogeneity term: Cf ,3 also describes the total shear
stress normal gradient profile. The relation between the two points of view simply
relies on the streamwise momentum balance.

It is known that the total shear stress in a turbulent boundary layer is approximately
constant in the inner layer. At the wall, the total stress is purely viscous. Away from
the wall, the viscous part gradually decreases but a simultaneous increase of the
Reynolds shear stress compensates for it so that the total shear stress is constant.
Even further away from the wall, the logarithmic layer can be characterized by a
constant Reynolds shear stress, and since the viscous stress is negligible in this
region at high Reynolds numbers, the total shear stress is constant in that layer too.
Consequently, one may assume that ∂(τ/ρ)/∂y ≈ 0 from the wall to the outer edge
of the logarithmic layer, meaning that the integral giving Cf ,3 almost depends only
on the outer layer.

The integral for Cf ,3 is next rewritten in order to introduce the usual outer scaling
and to isolate the total Cf :

Cf ,3 =−Cf

∫ 1

0

(
1− y

δ

)2 ∂τ+

∂(y/δ)
d
(y
δ

)
, (4.22)
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FIGURE 15. (Colour online) Normalized total shear stress τ+ = τ/τw. Data from the
references given in the table 3.

where τ+= τ/τw is the total shear stress non-dimensionalized by the wall shear stress
τw = ρu2

τ .
As already mentioned, the total shear stress varies significantly only in the outer

layer of the turbulent boundary layer. Consequently, as shown by equation (4.22), the
ratio Cf ,3/Cf is independent of the Reynolds number if the profile in the outer layer of
the non-dimensionalized total shear stress τ+(y/δ) does not depend on the Reynolds
number. This can be seen as a self-similarity property of the outer layer.

Figure 15 investigates whether such a self-similarity exists in high-Reynolds-number
turbulent boundary layers. Experimental data, DNS simulations and the data from the
present simulation, altogether covering a very wide range of high Reynolds numbers
(approximately Reθ = 4000 to Reθ = 50 000), are presented. Apart from experimental
and numerical scatter, it seems that all the profiles collapse, as had already been
suggested in figure 25 of DeGraaff & Eaton (2000). This strongly supports the
existence of a self-similar total shear stress profile τ+(y/δ) in the outer layer. As a
consequence of this possible self-similarity, the above equations show that the ratio
Cf ,3/Cf is approximately constant for high Reynolds numbers.

One may find it surprising that the total shear stress profile could be independent
of the Reynolds number, although it includes the viscous stress contribution, which
explicitly depends on it. However, the above formulation of Cf ,3 can be expanded:

Cf ,3 =−Cf

∫ 1

0

(
1− y

δ

)2 ∂

∂(y/δ)

(
1

Reτ

∂ 〈u〉+
∂y/δ

− 〈u′v′〉+
)

d
(y
δ

)
. (4.23)

The 1/Reτ factor emphasizes the dependence of the viscous stress on the Reynolds
number, but also shows that in the limit of high Reynolds numbers, the viscous
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stress in the outer layer becomes very small compared to the Reynolds shear stress.
This suggests that the self-similarity of the total shear stress in the outer layer simply
results from the self-similarity of the Reynolds shear stress −〈u′v′〉+ (y/δ) in the outer
layer, which does not depend explicitly on the Reynolds number. The self-similarity of
the latter profile does not seem impossible from a theoretical point of view, because
turbulence tends to adapt its dissipative scales so that the amount of dissipation
matches the large-scale energy production in a process where the dependence on the
Reynolds number may disappear. One well-known example is the friction coefficient
over a sand-roughened flat plate in fully rough flow conditions, which depends only
on the relative roughness ks/x and not on the Reynolds number. The self-similarity
of − 〈u′v′〉+ (y/δ) was already suggested in DeGraaff & Eaton (2000). Furthermore,
the mean streamwise velocity profile can be satisfactorily described by a self-similar
outer layer law, given for instance by Coles’ law of the wake (Coles 1956), and
since the Reynolds shear stress is related to the mean velocity by the streamwise
momentum equation, it makes sense that it is self-similar in the outer layer as well.

The above reasoning gives some insight into why the ratio Cf ,3/Cf seems to tend
to a constant value in the limit of high Reynolds numbers for the turbulent boundary
layer. However, it does not explain why this value is very close to its laminar
counterpart. The way that the integral for Cf ,3 has been reformulated is still valid
in the laminar case. This implies that to understand the value of Cf ,3,lam/Cf ,lam, one
could consider the profile of the total shear stress non-dimensionalized in the same
way as in the turbulent case. Using the Blasius solution presented in Schlichting
(1968), with the similarity parameter η = y

√
U∞/(νx) and the streamwise velocity

profile u/U∞ = f ′(η), the total shear stress non-dimensionalized by the wall shear
stress is:

τ+ =
µ
∂ 〈u〉
∂y

(y)

µ
∂ 〈u〉
∂y

(y= 0)
= f ′′(η)

f ′′(0)
, (4.24)

where the values of the function f ′′(η) can be found in Schlichting (1968) and η ≈
4.92 y/δ.

Using these equations, the laminar profile τ+(y/δ) is plotted in figure 15 together
with the data for turbulent boundary layers. Even though the laminar total shear stress
profile is slightly different from the profile which the turbulent case seems to tend to
at infinitely high Reynolds numbers, the two profiles are surprisingly close to each
other. No physical explanation could be found for this feature, but it is believed that
the absence of a major difference between the profiles results in the close values taken
by Cf ,3/Cf in both cases.

From this subsection it may be concluded that there are some theoretical grounds
supporting the assumed constant value of the ratio Cf ,3/Cf in the high-Reynolds-
number turbulent case and the very similar value this ratio takes in the laminar case.
As explained in the previous subsection, this motivates the focus on the second FIK
term Cf ,2 alone, and consequently on the Reynolds shear stress only, to study how the
coherent structures observed in high-Reynolds-number flat-plate turbulent boundary
layers contribute to mean wall shear stress.

5. Scale decomposition of mean wall shear stress
As detailed in the previous section, the study of the contribution of the turbulent

coherent structures to mean wall shear stress can focus on the second term Cf ,2 of
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FIGURE 16. (Colour online) Contribution of the large and small scales to (y/δ)FR (from
(5.2)) at Reθ =5200 (a) and Reθ =13 000 (b). •, Exp. DeGraaff & Eaton (2000); blue solid
line resolved signal (present ZDES); green solid line λx < δ; red solid line λx > δ; green
dashed line, λx < 2δ; red dashed line, λx > 2δ; �, total (y/δ)FR (resolved and modelled
parts, present ZDES).

the FIK identity (4.5). This term may be rewritten as:

Cf ,2 =
∫ 1

0
FR d

(y
δ

)
, (5.1)

where FR represents the weighted contribution of the Reynolds shear stress to mean
friction as described by the FIK identity:

FR =−4
〈u′v′〉
U2∞

(
1− y

δ

)
. (5.2)

As mentioned before, to the authors’ knowledge the FIK identity provides the
only way of describing the turbulent contribution to mean wall shear stress by a
quantity, FR, whose integral over the wall distance amounts to turbulent friction,
which motivated the framework of the present analysis.

If the term FR is multiplied by y/δ, the contribution to Cf ,2 is proportional to
the area below the (y/δ)FR curve as a function of y/δ plotted in logarithmic scale.
One such plot is shown in figure 16, where the present simulation is compared
with experimental data for two different Reynolds numbers. It can be seen that the
contribution to Cf ,2 is very well captured by the simulation. It may also be noted
that the outer layer represents the most significant part of the contribution to Cf ,2,
which was the motivation for the refinement of the mesh in the outer layer at the
expense of the full resolution of the inner layer (as discussed in § 2). This figure also
shows the reconstructed total (y/δ)FR, where the resolved and modelled Reynolds
shear stresses have been added. The modelled part is negligible in the areas where
(y/δ)FR takes significant values, which implies that the resolved fluctuations can be
used directly for the analysis in the framework of the FIK identity. In particular, the
most significant contribution is located in the outer layer, where it has been shown
that the streamwise velocity spectrum matches well experimental data, so that the
present simulation is expected to provide a good resolution of the contribution to Cf ,2.
A scale decomposition is also shown in this figure and will be discussed in § 5.2.

In the following, the term FR is decomposed according to the length scale of the
contributing turbulent fluctuations. This involves a spectral analysis of FR, presented
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in the next subsection. The spectra can then be integrated over the length scale and
over the distance to the wall to assess the local and global contribution of the larger
scales to skin friction.

5.1. Spectral analysis of the Reynolds shear stress
Performing a spectral analysis of FR is equivalent to computing the spectrum of the
Reynolds shear stress at a given distance y from the wall, because it is the only
statistical moment present in the definition of FR (5.2). The spectral analysis is made
in the same way as for the streamwise velocity fluctuations presented in § 3.4. This
means that the two spectra can be compared, for instance to assess whether the
large-scale structures that have been visualized and emphasized by the streamwise
velocity spectra contribute to mean wall shear stress. Consequently, the convection
velocity used to reconstruct a spatial spectrum from the time signal by Taylor’s frozen
turbulence hypothesis is the Reynolds-averaged streamwise velocity, just as in § 3.4.
It should be noted that as emphasized previously, this procedure may lead to some
underestimation of the size of the largest structures near the wall. As a consequence,
the contribution of the largest scales to mean skin friction could be underestimated.
Some details are given here on the way the spectral analysis of the Reynolds shear
stress is performed. The signals available from the simulation are the time signals
of the streamwise and wall-normal velocity u(t) and v(t) at the considered x and y
location. The cross-correlation of these signals is defined as:

R12(τ )=
〈
u′(t)v′(t+ τ)〉 . (5.3)

The cross-power spectral density of u′ and v′ is the Fourier transform of the cross-
correlation:

Su′v′(f )=
∫ ∞

−∞
R12(τ )e−2iπf τ dτ . (5.4)

The cross-correlation can be expressed as the inverse Fourier transform of the cross-
power spectral density:

R12(τ )=
∫ ∞

−∞
Su′v′(f )e2iπf τ df . (5.5)

By definition R12(τ = 0)= 〈u′v′〉, which gives:

〈
u′v′
〉=

∫ ∞

−∞
Su′v′(f ) df . (5.6)

Moreover, it can be seen from (5.4) that Su′v′(f ) and Su′v′(−f ) are complex conjugates.
This leads to the final formulation of 〈u′v′〉, where Re denotes the real part:

〈
u′v′
〉 =

∫ ∞

−∞
Su′v′(f ) df

=
∫ ∞

0
(Su′v′(−f )+ Su′v′(f )) df

=
∫ ∞

0
2Re(Su′v′(f )) df . (5.7)
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The premultiplied spatial co-spectrum (i.e. the real part of the premultiplied one-
sided cross-power spectral density) is estimated from Taylor’s hypothesis with the
local convection velocity Uc, leading to the following relations:

kx = 2πf
Uc

, (5.8)

〈u′v′〉
u2
τ

=
∫ ∞

0

Φuv(kx)

u2
τ

dkx, (5.9)

kxΦuv(kx)= 2f Re(Su′v′(f )). (5.10)

The contribution of the wavenumber band [kx,1, kx,2] to 〈u′v′〉 can be computed by
truncating the integral:

〈u′v′〉[kx,1,kx,2]
u2
τ

=
∫ kx,2

kx,1

Φuv

u2
τ

dkx. (5.11)

The premultiplied spectrum kxΦuv, when plotted versus the wavenumber kx in
logarithmic scale, shows the contribution of each wavenumber band proportionally to
the area located below the curve:

〈u′v′〉
u2
τ

=
∫ ∞

−∞

kxΦuv

u2
τ

d(ln(kx)). (5.12)

Returning to the FIK identity, the co-spectrum ΦFR of FR defined by (5.2) is given
by:

ΦFR =−4
Φuv

U2∞

(
1− y

δ

)
, (5.13)

so that

FR =
∫ ∞

−∞
kxΦFR d(ln(kx)) (5.14)

and finally:

Cf ,2 =
∫ 0

−∞

∫ ∞

−∞
kx

y
δ
ΦFRd(ln(kx)) d

(
ln
(y
δ

))
. (5.15)

Plotting kx(y/δ)ΦFR in the (λx, y) plane with logarithmic scales for both the wall
distance and the streamwise wavelength thus provides a map of the local contribution
of a given scale at a given height above the wall to mean wall shear stress. The
contribution is proportional to the volume located below the kx(y/δ)ΦFR surface. One
such plot is shown in figure 17 for the present simulation, at two Reynolds numbers
Reθ = 5200 and Reθ = 13 000. The power spectral density of the streamwise velocity
fluctuations is also shown as dashed lines so that a comparison is possible.

The most striking feature from figure 17 is that the inner energy site that could be
seen on the streamwise velocity spectra contributes very little to Cf ,2, to such an extent
that the inner site cannot even be seen in the contours of kx(y/δ)ΦFR . This results
from the weighting of the FIK identity and from the premultiplication used for the
plot in logarithmic scale. On the contrary, the outer site, corresponding to the larger
scales located in the outer layer, gives the main contribution to Cf ,2, with a very good
match between the spectra of the streamwise velocity and the contribution to skin
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FIGURE 17. (Colour online) Premultiplied local contribution kx(y/δ)ΦFR to mean wall
shear stress (5.15) at Reθ = 5200 (a) and Reθ = 13 000 (b). Coloured map: present
simulation. Dashed lines: isocontours from the streamwise velocity spectrum (present
simulation) shown in figure 11.

friction in the outer layer. It should of course be mentioned that this decomposition of
the mean friction generation relies on a mathematical transformation of the governing
equations according to the method first introduced by Fukagata et al. (2002), and not
on a physical reasoning. Consequently, the map of the contributions shown in this
figure should not be interpreted as a map of the root causes of friction generation,
as for instance some inner layer phenomena may be necessary for the outer layer
Reynolds-shear-stress-carrying structures to appear.
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The Reynolds number dependence of the site of the main contribution to Cf ,2
is weak in figure 17, except for the fact that the overall level is lower because
the total Cf is smaller at higher Reynolds numbers. Indeed, outer scales have been
chosen, which are well-suited for the use of the FIK identity because of the way
it is formulated, but which are also well-suited to describe phenomena taking place
in the outer layer. This result is fully consistent with the possible self-similarity of
the Reynolds shear stress profile in the outer layer evoked in the previous section.
One may note however that at the higher Reynolds number, the contribution to Cf ,2
seems to involve larger scales, even though its integral value over all scales might
be unchanged in the outer layer. Figure 17 also suggests that the very large-scale
motions that have been visualized in § 3 and suggested by the streamwise velocity
spectra in § 3.4 might also carry a significant contribution to mean wall shear stress,
with a non-negligible contribution of wavelengths larger than 10δ at the higher
Reynolds number presented. In the next subsection, several estimations of the scale
decomposition of mean wall shear stress are made.

5.2. Assessment of large-scale contribution to skin friction
The contribution to Cf ,2 of the large and small scales can be evaluated from the map
presented in figure 17 by integrating over the wavelength. This is quite similar to the
discussion on the streamwise velocity spectrum, for which a cut-off wavelength has
been chosen. Figure 16 presents the decomposition of the premultiplied contribution
(y/δ)FR (see (5.2)) to Cf ,2 with the same two cut-off wavelengths λc = δ and
2δ as before. As had already been emphasized, at the lower Reynolds number,
small inner-scaled wavelengths are not well separated from the larger outer-scaled
wavelengths, which makes the decomposition very sensitive to the cut-off wavelength.
This sensitivity is weaker at higher Reynolds numbers. The comparison with the
similar decomposition performed in figure 12 reveals that towards high Reynolds
numbers, even though the larger wavelengths significantly contribute to the streamwise
turbulence intensity in the inner layer, their contribution to Cf ,2 becomes relatively
small in the inner layer compared to the contribution of the smaller scales. This
suggests that the large-scale structures that can be seen contribute much to mean wall
shear stress by their outer layer activity, but their footprint in the inner layer, which
is significant in terms of streamwise fluctuations, does not contribute significantly to
mean wall shear stress. This is not the case at the lower Reynolds number considered,
suggesting that the feet of the very large-scale motions may be seen as inactive in
the sense of Townsend (Townsend 1976) only in the limit of asymptotically high
Reynolds numbers. Conversely, the largest scales (λx > 2δ) make an increasingly
important contribution to the Reynolds shear stress in the outer layer.

It is then possible to assess the overall contribution of the large and small scales
to Cf ,2 by integrating the previous profiles over y. The full decomposition of Cf

according to the FIK identity and with two different cut-off wavelengths is presented
in figure 18 for the two considered Reynolds numbers. The relative share of Cf ,1
and Cf ,3 has already been discussed in § 4. It can be seen that the largest scales
contribute significantly to the overall Cf . At Reθ = 5200, depending on the cut-off
wavelength, the contribution of the largest scales to Cf ,2 ranges from 65 % (λc = δ)
to 44 % (λc= 2δ). This becomes 63 % to 47 % at Reθ = 13 000 with the same cut-off
wavelengths. Let us be reminded that these percentages are related to the second
term of the FIK identity Cf ,2 only, whereas the values given in figure 18 refer to the
total Cf . It should be noted that the relative contribution of the large scales increases
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FIGURE 18. (Colour online) Decomposition of Cf (present simulation) according to the
FIK identity with scale decomposition of Cf ,2 at cut-off wavelength λx=λc, (a) Reθ =5200,
λc = δ, (b) Reθ = 5200, λc = 2δ, (c) Reθ = 13 000, λc = δ, (d) Reθ = 13 000, λc = 2δ.

with the Reynolds number if large enough a cut-off wavelength is used, but slightly
decreases if the cut-off λc = δ is used. This can easily be explained by the lack of
scale separation at the lower Reynolds number that has been previously emphasized.
It may be concluded that the large-scale structures seem to contribute to about half
of the mean skin friction in the range of Reynolds numbers considered, and that this
share may even increase at higher Reynolds numbers. Indeed, as already mentioned
for the streamwise velocity fluctuations, the spectra (or co-spectra) give much more
reliable information than such integrated values, as a consequence of the lack of
scale separation at the considered Reynolds numbers. It should also be remembered
that the way the advection velocity is determined in the use of Taylor’s hypothesis
tends to underestimate the contribution of the larger scales near the wall, as already
explained above, which means that their actual contribution to mean wall shear stress
may be even higher than estimated here.

Equation (5.15) may be integrated over the wall distance in order to assess the
overall contribution of a specified band of wavelengths to Cf ,2. This leads to the
definition of a kind of power spectral density of Cf ,2 depending on the wavelength
of the contributing structures across the boundary layer, defined as ΦCf :

kxΦCf =
∫ 1

0
kxΦFR d

(y
δ

)
, (5.16)

Cf ,2 =
∫ ∞

−∞
kxΦCf d(ln(kx)). (5.17)

It should be noted that this quantity does not result from the post-processing of
the temporal signal Cf (t) at the wall, which would lead to a different spectrum and
have quite a different physical meaning. This is only an indirect way of evaluating
the contribution of the wavelengths to Cf ,2 according to the FIK identity, hence to
the mean friction coefficient and not its fluctuations. The relative contribution is
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FIGURE 19. (Colour online) Contribution kxΦCf (5.16) of the physical length scales to
Cf ,2: −−−, Reθ = 5200; ——, Reθ = 13 000

directly proportional to the area under the curve of kxΦCf plotted as a function of the
wavelength in logarithmic scales. The results at both Reynolds numbers considered
are shown in figure 19.

The overall level of kxΦCf is lower at the higher Reynolds number because the
overall friction coefficient is smaller. The relative contribution of the largest structures
slightly increases with the Reynolds number. The maximum of the local contribution
in wavelength stays close to δ to 2δ, confirming that the most significant contribution
to mean wall shear stress scales in outer units. It may also be noted that the smaller-
wavelength part of the spectrum is much broader at the higher Reynolds number. This
corresponds to the scale separation that appears in between the two Reynolds numbers:
the inner scales become much smaller when non-dimensionalized by the outer scaling
for increasing Reynolds numbers. As explained in § 4, assessing the contribution to
Cf ,2 actually provides a good insight into the contribution to the overall turbulent
extra Cf compared to the laminar Cf , which is shown by (4.20). Figure 19 confirms
how significant the contribution of the large scales to mean wall shear stress is at the
considered Reynolds numbers and suggests it might become even more significant at
higher Reynolds numbers.

6. Conclusion

A simulation of a flat-plate turbulent boundary layer with zero pressure gradient
developing over a wide range of Reynolds numbers 3060 6 Reθ 6 13 650 was
performed using the zonal detached eddy simulation (ZDES) technique. The study
mainly focused on mean wall shear stress generated by the turbulent boundary layer
and especially by the largest-scale coherent structures, a topic that has received
surprisingly little attention in the literature in the case of flat-plate boundary layers,
compared to channel flows and friction fluctuations.

The simulation is validated at several levels. First of all, the global quantities
describing the boundary layer development, such as the mean skin friction coefficient,
the shape parameter and Coles’ wake factor compare very favourably to the
experimental data, and the asymptotic trend towards high Reynolds numbers is well
recovered. Simple fits from the literature are compared and adjusted to the available
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data, enabling an easier prediction of global quantities at high Reynolds numbers. For
instance, a relation between Reθ and Reτ is given. Moreover, the comparison of the
second-order statistical moments demonstrates the very good resolution of the outer
layer. Finally, a more thorough comparison with the experiments is made through the
computation of streamwise spectra of the streamwise velocity component.

The energy sites in these spectra reveal the presence of very large-scale motions
which are visualized by more direct means. Consistently with previous findings in
the literature, e.g. Hutchins & Marusic (2007), these superstructures are found to be
approximately 5δ to 6δ long and are meandering with a lateral amplitude of 0.3δ.
They have a clear footprint in the inner layer. In addition, hairpins are seen to cluster
in what looks like the so-called hairpin packets. The mean inclination angle of the
resulting structures is close to 19◦, larger than usually reported from experiments,
in which it is assessed somewhat differently. However, towards the higher Reynolds
numbers considered, the wider range of active scales makes the structures much
more complicated, thus making the recognition of hairpins harder. As described in
the literature, e.g. in Jiménez et al. (2010), the hairpin finally only describes a mean
statistical structure made up of many different realizations resulting from smaller-scale
structures.

The issue of mean wall shear stress generation according to the wavelength of the
turbulent fluctuations is then looked at from the point of view offered by the FIK
identity (Fukagata et al. 2002). According to this identity, the mean skin friction
coefficient results from the weighted integral of the Reynolds shear stress. This
identity is widely applied to channel flows, but not as often to the case of a flat-plate
boundary layer. Indeed, one major issue that is raised when applying the FIK identity
to the flat-plate boundary layer is the presence of a contributing term to Cf which is
traditionally seen as describing the spatial heterogeneity of the boundary layer and
which vanishes in the case of a channel flow. A new point of view is given here,
according to which this term describes the total shear stress variations across the
boundary layer, and the behaviour of this term is shown to follow some remarkable
self-similarity trends towards high Reynolds numbers. This casts a new light on the
traditional use of the FIK identity, giving much support to the common study of the
mean skin friction coefficient focusing only on the contributing term related to the
Reynolds shear stress, denoted Cf ,2 here.

The integrand FR of the integral giving Cf ,2 is studied both with respect to the
distance to the wall and with respect to the wavelength of the turbulent fluctuations.
For the first time to the authors’ knowledge, a spectral mapping of FR is given in
the case of the flat-plate turbulent boundary layer. This directly maps the contribution
of a given wavelength at a given height to the global friction coefficient. Thanks
to this mapping, the contribution of the larger-scale structures to mean friction is
assessed. In the considered Reynolds number range, the structures with a streamwise
wavelength λx >δ contribute to more than 60 % of Cf ,2, and those larger than λx > 2δ
still represent approximately 45 % of Cf ,2. It is recalled that Cf ,2 amounts to more
than 80 % of the overall Cf , which shows how significant the contribution of the very
large-scale motions to mean wall shear stress is.

Nevertheless, the very nature of the FIK identity should be kept in mind. Indeed,
this identity results from a mathematical transform of the equations rather than
from a physical reasoning. This implies that the description of the contributions
of given structures at given heights in the boundary layer through the integral
giving Cf ,2 cannot lead to conclusions as to causal relations, for instance concerning
the interaction between the inner and the outer layer. Even though the present
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study demonstrates how significantly the larger structures located in the outer layer
contribute to the mean skin friction, and especially suggests that the superstructures
may carry a significant contribution to the Reynolds shear stress, it should not
be concluded that the structures located in the inner layer play a negligible role in
friction generation. The simplest demonstration of this is given by the case of the fully
turbulent rough-flat-plate boundary layer, in which the skin friction is much different
from the smooth wall case, even though the influence of the surface roughness is
expected to impact mainly on the inner layer very close to the wall. Consequently,
the study of the interaction between the inner and the outer layer, which has already
been widely dealt with in the literature, for instance in Mathis et al. (2013) and in
Ganapathisubramani et al. (2012), but which still raises unanswered questions, will be
a natural continuation of the present work. Simulating even higher-Reynolds-number
turbulent boundary layers would also prove extremely useful, as the present range of
Reynolds numbers has been shown to be hardly sufficient for scale separation and
high-Reynolds-number asymptotic trends to arise.
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