Ergod. Th. & Dynam. Sys. (2005), **25**, 629–637 doi:10.1017/S0143385704000720

© 2005 Cambridge University Press Printed in the United Kingdom

Pointwise-recurrent graph maps

JIE-HUA MAI

Institute of Mathematics, Shantou University, Shantou, Guangdong, 515063, People's Republic of China (e-mail: jhmai@stu.edu.cn)

(Received 1 October 2001 and accepted in revised form 17 October 2003)

Abstract. In this paper we show that a continuous map f from a connected graph G to itself is pointwise-recurrent if and only if one of the following two statements holds: (1) G is a circle, and f is a homeomorphism topologically conjugate to an irrational rotation of the unit circle S^1 ; (2) f is a periodic homeomorphism.

1. Introduction

A continuous map f from a topological space X to itself is said to have some homogeneous property if all points in X under f have a common property, for example, all points in X are periodic, almost-periodic, recurrent, or chain recurrent. It is interesting to describe maps which have some homogeneous properties. Montgomery [15] showed that a connected topological manifold M has the property that every pairwise periodic homeomorphism of M must be periodic; see also [16]. Weaver [19] showed that a continuum C embedded in an orientable 2-manifold has this property with respect to homeomorphisms which are C^1 and orientation-preserving. In [12] we proved that if X is a compact locally connected subset of a closed 2-manifold M which has no cut-points, then every orientation-preserving (or orientation-reversing, or orientationrelatively-preserving) pointwise-periodic homeomorphism $f : X \rightarrow X$ is periodic, and f can be extended to a periodic homeomorphism of a compact submanifold of M. Brechner [8] showed that almost-periodic homeomorphisms of the plane are periodic. Oversteegen and Tymchatyn [18] showed that recurrent homeomorphisms of the plane are also periodic. Kolev and Pérouème [10] proved that recurrent homeomorphisms of a compact surface with negative Euler characteristic are still periodic. However, on the annulus, there exists a recurrent area- and orientation-preserving diffeomorphism without periodic points which is not conjugate to a rotation; see [9]. In [14], Mai and Ye proved that a continuous map of a metric space is pointwise-recurrent and has the pseudo-orbittracing property if and only if the map is uniformly conjugate to an adding-machine-like map restricted to some invariant subset.

J.-H. Mai

It is easy to show that every pointwise non-wandering circle map without periodic points is topologically conjugate to an irrational rotation; see [1]. Block and Coven [3] studied pointwise chain-recurrent interval maps. In this paper we will study pointwise-recurrent graph maps. Our main results are the following theorems.

THEOREM 3.4. Let G be a graph, $f \in C^0(G)$, and let W be a minimal set of f. If W contains interior points, then:

- (1) *W* is the union of finitely many pairwise disjoint circles;
- (2) there exists $\varepsilon > 0$ such that $(B(W, \varepsilon) W) \cap \Omega(f) = \emptyset$.

THEOREM 4.4. Let G be a connected graph, and $f : G \rightarrow G$ be a continuous map. Then f is pointwise-recurrent if and only if one of the following two statements holds:

- (1) *G* is a circle and *f* is a homeomorphism topologically conjugate to an irrational rotation of the unit circle S^1 ;
- (2) f is a periodic homeomorphism.

2. Minimal sets of maps

Let \mathbb{N} denote the set of positive integers. For any topological space X, denote by $C^{0}(X)$ the set of all continuous maps from X to X. Suppose $f \in C^{0}(X)$, and $n \in \mathbb{N}$. A point $x \in X$ is called a *periodic point of* f *with period* n (or an *n-periodic point of* f) if $f^{n}(x) = x$ and $f^{k}(x) \neq x$ for each $k \in (0, n) \cap \mathbb{N}$. A point x is called a *fixed point* of f if f(x) = x. A point x is called a *recurrent* (respectively *non-wandering*) *point* of f if for any neighborhood U of x there exists $i \in \mathbb{N}$ (respectively $y \in U$ and $i \in \mathbb{N}$) such that $f^{i}(x) \in U$ (respectively $f^{i}(y) \in U$). Denote by Fix(f) (respectively $P_{n}(f)$, R(f) and $\Omega(f)$) the set of all fixed (respectively *n*-periodic, recurrent and non-wandering) points of f. Write $P(f) = \bigcup_{n=1}^{\infty} P_{n}(f)$. A map f is said to be *pointwise-recurrent* (respectively *periodic*) if all points in X are recurrent (respectively periodic). A map f is said to be *periodic* if there exists $m \in \mathbb{N}$ such that f^{m} is the identity map of X. Note that every pointwise-periodic continuous map of a compact metric space is a homeomorphism.

Write $O(x, f) = (x, f(x), f^2(x), ...)$, and call such a sequence an *orbit* of f. Let $S_n = (x_0, x_1, ..., x_n)$ and $S = (y_0, y_1, y_2, ...)$ be sequences of points in X. If $f(x_i) = x_{i-1}$ for each $i \in \{1, ..., n\}$, then S_n is called a *finite inverse orbit* of f with length n, and x_0 and x_n are respectively called the *starting point* and *terminal point* of this inverse orbit. If $f(y_i) = y_{i-1}$ for all $i \in \mathbb{N}$, then S is called an *infinite inverse orbit* of f. Sometimes we regard the orbit O(x, f) and the inverse orbits S and S_n as sets. The following lemma clearly holds.

LEMMA 2.1. Let X be a topological space, $Y \subset X$ and $f \in C^0(X)$. If $f(Y) \supset Y$, then every finite inverse orbit (x_0, x_1, \ldots, x_n) in Y can be extended to an infinite inverse orbit $(x_0, x_1, \ldots, x_n, x_{n+1}, \ldots)$ in Y.

A subset W of X is said to be *invariant* or *f*-invariant if $f(W) \subset W$. A set W is called an *f*-minimal set or a minimal set of f if it is non-empty, closed and f-invariant, and it contains no proper subset having these three properties. $f : X \to X$ is called

a *minimal map* if X itself is a (unique) minimal set of f. The following lemma can be directly derived from [2, Proposition V.5 and Lemma V.7].

LEMMA 2.2. Let X be a compact metric space, $f \in C^0(X)$, $y \in X$ and $p \in \mathbb{N}$. Then $\overline{O(y, f)}$ is a minimal set of f if and only if $\overline{O(y, f^p)}$ is a minimal set of f^p .

THEOREM 2.3. Let X be a metric space, W be a non-empty compact subset of X, and $f \in C^0(X)$. Then the following four properties are equivalent.

- (i) W is a minimal set of f.
- (ii) For every $y \in W$, $\overline{O(y, f)} = W$.
- (iii) $f(W) \subset W$, and every orbit in W is dense in W.
- (iv) $f(W) \supset W$, and every infinite inverse orbit in W is dense in W.

Furthermore, if the non-empty compact set W is connected, then the above four properties and the following two properties are also equivalent.

(v) $f(W) \subset W$, and there exists a $p \in \mathbb{N}$ such that W is a minimal set of f^p .

(vi) For all $p \in \mathbb{N}$, W is a minimal set of f^p .

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii) and (vi) \Rightarrow (v) are trivial.

(i) \Rightarrow (iv) Assume that (i) is true. Then, since W is compact, we have f(W) = W. Let $S = (x_0, x_1, x_2, ...)$ be an infinite inverse orbit of f contained in W. Then there exist $y \in \overline{S}$ and positive integers $k_1 < k_2 < k_3 < \cdots$ such that $\lim_{i \to \infty} x_{k_i} = y$. Noting that $f^n(y) = \lim_{i \to \infty} x_{k_i - n} \in \overline{S}$, for all $n \in \mathbb{N}$, we have $W = \overline{O(y, f)} \subset \overline{S}$. Thus, S is dense in W.

(iv) \Rightarrow (i) Assume that (iv) is true. Then, by Lemma 2.1, there is an infinite inverse orbit $S = (x_0, x_1, x_2, ...)$ of f contained in W. For every $n \in \mathbb{N} \cup \{0\}$, write $S_n = (x_n, x_{n+1}, x_{n+2}, ...)$. Then S_n is also an infinite inverse orbit in W. Let $\alpha(S) = \bigcap_{n=0}^{\infty} \overline{S}_n$, and call it the α -limit set of S. It is easy to see that $\alpha(S)$ is an f-invariant closed subset of W. Noting that all S_n are dense in W, we have $\alpha(S) = W$. If W is not a minimal set of f, then W should contain a non-empty, closed and f-invariant proper subset W_0 , and W_0 should contain an infinite inverse orbit of f which is not dense in W. This leads to a contradiction. Thus W must be a minimal set of f.

 $(v) \Rightarrow (i)$ Assume that (v) is true. Then we have $W \supset \overline{O(y, f)} \supset \overline{O(y, f^p)} = W$, for all $y \in W$. Thus W is a minimal set of f.

(i) \Rightarrow (vi) Assume that (i) is true, and W is connected. In order to show that (vi) is true, it suffices to consider the case that p is a prime number. Take a point $y \in W$. For every $i \in \mathbb{N} \cup \{0\}$, write $y_i = f^i(y_0)$, and $W_i = \overline{O(y_i, f^p)}$. Then $f(W_i) = W_{i+1}$, and $W = \overline{O(y, f)} = \bigcup_{n=0}^{p-1} W_n$. By Lemma 2.2, W_i is a minimal set of f^p and $W_{i+p} = W_i$. Since W is connected, there exists $k \in \{1, \dots, p-1\}$ such that $W_k \cap W_0 \neq \emptyset$, which implies

$$W_{ik+k} \cap W_{ik} = f^k(W_{ik}) \cap f^k(W_{ik-k}) \supset f^k(W_{ik} \cap W_{ik-k}) \neq \emptyset, \quad \text{for } i = 1, 2, 3, \dots$$

Noting that any two intersecting minimal sets of f^p are the same, we have $W_{ik+k} = W_{ik} = W_{ik-k} = \cdots = W_0$. For each $n \in \{0, 1, \dots, p-1\}$, since k and p are relatively prime, there exists $j = j(n) \in \mathbb{N}$ such that $jk \equiv n \pmod{p}$. Thus $W_n = W_{jk} = W_0$, and hence $W = \bigcup_{n=0}^{p-1} W_n = W_0$ is a minimal set of f^p . Theorem 2.3 is proven.

From Theorem 2.3 we obtain the following.

COROLLARY 2.4. Let X be a compact metric space and $f \in C^0(X)$. If there exists a non-empty closed proper subset Y of X such that $f(Y) \subset Y$ or $f(Y) \supset Y$, then f is not a minimal map.

Proof. If $f(Y) \subset Y$, then X is not a minimal set since it has a non-empty closed f-invariant proper subset Y. If $f(Y) \supset Y$, then f has an infinite inverse orbit S in Y. Since S is not dense in X, by Theorem 2.3, X is not a minimal set of f. Thus, f is not a minimal map. \Box

3. Minimal sets of graph maps

We now consider graph maps. A (finite) graph *G* is a topological space without isolated points which is homeomorphic to the polyhedron |K| of a finite one-dimensional simplicial complex *K* in the three-dimensional Euclidean space \mathbb{R}^3 . A continuous map from *G* to *G* is called a graph map. For convenience, we may assume G = |K|. Then every zerodimensional (respectively one-dimensional) simplex of *K* is called a *vertex* (respectively *edge*) of *G*. Let V(G) be the set of vertices of *G*. For $v \in V(G)$, the number of edges with *v* being an endpoint is called the *valence* of *v* and is written val(*v*). A vertex *v* is called an *endpoint* (respectively *branching point*) of *G* if val(v) = 1 (respectively val(v) \geq 3). For $x \in G - V(G)$, we put val(x) = 2. Define the *standard metric* d_K on G = |K| as in [13]. Then the length of each edge of *G* is 1, and for any two points *x* and *y* lying on the same connected component of *G*, $d_K(x, y)$ is the minimal length of arcs in *G* whose endpoints are *x* and *y*. For any non-empty subset *Y* of *G* and any r > 0, we write $B(Y, r) = \{x \in G \mid d_K(x, Y) \leq r\}$.

For any $x, y \in G$ with $x \neq y$, let $[x, y] = [x, y]_G$ be the arc in *G* whose endpoints are *x* and *y* and whose length is $d_K(x, y)$, if there exists a unique such arc, and let $[x, y] = (y, x] = [x, y] - \{y\}, (x, y) = [x, y) - \{x\}, [x, x] = \{x\}, [x, x) = (x, x] = (x, x) = \emptyset$. Generally, for any arc *A* in *G* and any $\{x, y\} \subset A$, we denote by ∂A the two endpoints of *A*, by $\mathring{A} = A - \partial A$ the interior of *A*, and by $[x, y]_A$ the subarc of *A* whose endpoints are *x* and *y*.

LEMMA 3.1. Let G be a graph, $f \in C^0(G)$, and let A be an arc in G with $\partial A = \{a, b\}$. If $\mathring{A} \cap V(G) = \emptyset$ and $f(a) = f(b) \in A$, then f is not a minimal map.

Proof. Write c = f(a). It suffices to consider only the case that $c \in A$. Let $X_0 = \{x \in A : f(x) \in [x, b]\}$, $X_1 = \{y \in A : f(y) \in [a, y]\}$. Suppose that [a, v] is the connected component of X_0 containing a, and [w, b] is the connected component of X_1 containing b. Then $\{v, w\} \subset A$. If f(v) = v or f(w) = w, then f has a fixed point and hence is not a minimal map. If $f(v) \neq v$ and $f(w) \neq w$, then f(v) = b, f(w) = a and $v \in (a, w)$. Let $Y = [a, v] \cup [w, b]$. Noting that $[c, b] \subset f([a, v]) \subset A$ and $[a, c] \subset f([w, b]) \subset A$, we have $f(Y) = A \supset Y$ and $G - Y \supset A - Y = (v, w) \neq \emptyset$. Thus, by Corollary 2.4, f is not a minimal map. Lemma 3.1 is proven.

THEOREM 3.2. Let G = |K| be a connected graph but not a circle. Then there exists no minimal map from G to itself.

Proof. If Theorem 3.2 is not true, then there exists a minimal map $f : G \to G$. By Theorem 2.3, $f^p : G \to G$ is also minimal, for all $p \in \mathbb{N}$.

CLAIM 1. For any edge A of G, the restriction $f \mid A$ of f on A is injective.

In fact, if Claim 1 does not hold then there are two points $a \neq b$ in A such that f(a) = f(b) = c, and by the minimality of f there exists a $p \in \mathbb{N}$ such that $f^{p}(a) = f^{p}(b) = f^{p-1}(c) \in [a, b]$. Therefore, by Lemma 3.1, f^{p} is not minimal. This yields a contradiction. Hence, Claim 1 holds.

Let $V_b(G)$ denote the set of branching points of G. Since there is no minimal map from an interval to itself, G = |K| is not an arc. Thus, $V_b(G)$ is a non-empty finite set, and there exists $v \in V_b(G)$ such that $f(v) \notin V_b(G)$. Choose $\varepsilon \in (0, 1/2]$ such that $f(B(v, \varepsilon)) \cap V_b(G) = \emptyset$. Write $v_1 = f(v)$. Since $val(v) \ge 3$ and $val(v_1) \le 2$, it follows from Claim 1 that there exist $\{x_0, x_1\} \subset B(v, \varepsilon) - \{v\}$ and $z \in B(v_1, \varepsilon) - \{v_1\}$ such that $f(x_0) = f(x_1) = z, [x_0, v] \cap [x_1, v] = \{v\}$ and

$$f([x_0, v]) = f([x_1, v]) = [z, v_1].$$
(3.1)

Let $Y = G - (x_1, v)$. Then Y is a non-empty closed proper subset of G, and $Y \supset [x_0, v]$. Noting that f is surjective, from (3.1) we get $f(Y) = f(G - (x_1, v)) \cup f([x_0, v]) \supset (f(G) - f([x_1, v])) \cup f([x_0, v]) = f(G) = G \supset Y$. Hence, by Corollary 2.4, f is not a minimal map. This leads to a contradiction. Thus, Theorem 3.2 must be true.

Remark 3.3. In [4] Blokh proved that transitive maps of connected graphs have the so-called specification property. Theorem 3.2 can also be derived from this property. In addition, Kolyada *et al* recently proved that every minimal map of a compact metric space is almost one-to-one (see [11, Theorem 2.7]). From this result and (3.1) we can also derive Theorem 3.2.

It is easy to show that a finite minimal set on a metric space is a periodic orbit, and an infinite minimal set of a graph map containing no interior points is homeomorphic to the Cantor set. To give a description of the topological structure of minimal sets of graph maps containing interior points, we present the following theorem.

THEOREM 3.4. Let G be a graph, $f \in C^0(G)$, and let W be a minimal set of f. If W contains interior points, then:

- (1) W is the union of finitely many pairwise disjoint circles;
- (2) there exists $\varepsilon > 0$ such that $(B(W, \varepsilon) W) \cap \Omega(f) = \emptyset$.

Proof. (1) Let w be an interior point of W and let U be the connected component of W containing w. Then U is a subgraph of G. Let n be the smallest positive integer which satisfies $f^n(U) \cap U \neq \emptyset$. Then $f^n(U) \cup U$ is connected. Thus, $f^n(U) \subset U$. Furthermore, since $f^i(U) \cap U = \emptyset$ for $1 \le i < n$, and W is a minimal set of f, we have $f^n(U) = U$, and U is a minimal set of f^n . Therefore, for $1 \le i < n$, $f^i(U)$ is also a connected minimal set of f^n containing interior points. By Theorem 3.2, for every $i \in \{0, 1, \ldots, n-1\}$, $f^i(U)$ is a circle. Evidently, U, $f(U), \ldots, f^{n-1}(U)$ are pairwise disjoint, and $W = \bigcup_{i=0}^{n-1} f^i(U)$.

(2) Let Y be the set of branching points of G lying on W. Then Y is a finite set. If $Y = \emptyset$, then all of U, $f(U), \ldots, f^{n-1}(U)$ are connected components of G, and by J.-H. Mai

the definition of metric d_K given in [13] we have B(W, 1) = W. If $Y \neq \emptyset$, then there exists $p \in \mathbb{N}$ such that $f^p(Y) \cap Y = \emptyset$. Take $\varepsilon > 0$ such that $f^p(B(Y, \varepsilon)) \cap Y = \emptyset$. Then we have $f^p(B(Y, \varepsilon)) \subset W$, and hence $f^k(B(Y, \varepsilon)) \subset W$ for all $k \geq p$. Thus, $(B(W, \varepsilon) - W) \cap \Omega(f) = (B(Y, \varepsilon) - W) \cap \Omega(f) = \emptyset$. Theorem 3.4 is proven. \Box

COROLLARY 3.5. Let G be a graph and $f \in C^0(G)$.

- (1) If G is a forest, i.e. G is a graph containing no circles, then every minimal set of f contains no interior points.
- (2) If G is connected and contains branching points, and f has a minimal set W which contains interior points, then f has wandering points.

Proof. (1) is clear, by Theorem 3.4.

(2) Let *Y* be the set of branching points of *G* lying on *W*. Then, by (1) of Theorem 3.4, we have $Y \neq \emptyset$, and for any $\varepsilon > 0$, $B(Y, \varepsilon) - W \neq \emptyset$. By (2) of Theorem 3.4, for sufficiently small $\varepsilon > 0$, all points in $B(Y, \varepsilon) - W$ are wandering points of *f*. \Box

4. Pointwise-recurrent graph maps

In this section we study the structure of pointwise-recurrent graph maps.

LEMMA 4.1. Let G be a connected graph, $f : G \to G$ be a pointwise-recurrent continuous map, and let W be a minimal set of f. If $W \neq G$, then W is a periodic orbit of f.

Proof. Since $W \neq G$, G - W is a non-empty open set. Let U be a connected component of G - W. Then $\overline{U} - U = \overline{U} \cap W \neq \emptyset$. It follows from $U \subset R(f)$ that there exists $n \in \mathbb{N}$ such that $f^n(U) \cap U \neq \emptyset$. Obviously, $f^n(U) \cup U$ is connected, and $f^n(U) \cap W = \emptyset$ (if a point of U gets mapped into W then this point is not recurrent). Thus, $f^n(U) \subset U$, and hence $f^n(\overline{U}) \subset \overline{U}$. This with $f^n(W) \subset W$ implies $f^n(\overline{U} \cap W) \subset \overline{U} \cap W$. Noting that $\overline{U} \cap W$ is a finite set, we have $W \cap P(f) = W \cap P(f^n) \supset (\overline{U} \cap W) \cap P(f^n) \neq \emptyset$. Thus, the minimal set W is a periodic orbit of f.

LEMMA 4.2. Let G be a graph, $f : G \to G$ be a pointwise-recurrent continuous map, and let A be an arc contained in an edge of G with $\partial A = \{a, b\}$. If $\{a, b\} \subset Fix(f)$ and there exists $c \in A$ such that $f(c) \in A$, then $A \subset Fix(f)$.

Proof. If $f(A) \not\subset A$ then there will be a point $x \in A$ such that $f(x) \in \{a, b\}$, and x will not be recurrent. This contradicts the condition of the lemma. Thus, we have $f(A) \subset A$.

If $A \not\subset \operatorname{Fix}(f)$, then there will be a subarc $A_1 = [a_1, b_1]$ of A such that $A_1 \cap \operatorname{Fix}(f) = \partial A_1$ and $f(A_1) \subset A_1$. This will lead to $\lim_{n \to \infty} f^n(x) = a_1$ or b_1 for all $x \in A_1$, which also yields a contradiction. Thus, we have $A \subset \operatorname{Fix}(f)$.

LEMMA 4.3. Let G be a connected graph, and $f : G \rightarrow G$ be a pointwise-recurrent continuous map. If G is not a circle, or G is a circle but f is not a minimal map, then every point $x \in G$ is periodic.

Proof. For any given $x \in G$, there exists $v \in \overline{O(x, f)}$ such that $\overline{O(v, f)}$ is a minimal set of f. By Theorem 3.2 and Lemma 4.1 (if G is not a circle), or by the assumption and Lemma 4.1 (if G is a circle), $\overline{O(v, f)} = O(v, f)$ is a periodic orbit. Let n be

the period of v under f. If $v \in O(x, f)$, then $x \in O(v, f)$ is periodic since x is recurrent. If $v \notin O(x, f)$, then there exist positive integers $k_1 < k_2 < k_3 < \cdots$ and $m \in \{0, 1, \ldots, n-1\}$ such that $\lim_{i\to\infty} f^{k_i}(x) = v$ and $k_i \equiv m \pmod{n}$ for all $i \in \mathbb{N}$. Therefore, since val(v) is finite, there exist $\lambda, \mu \in \{k_1, k_2, k_3, ...\}$ with $\lambda > \mu$ such that $f^{\lambda n+m}(x), f^{\mu n+m}(x)$ and v lie on the same edge of G, and $f^{\lambda n+m}(x) \in (v, f^{\mu n+m}(x))$. Write $w = f^{\mu n+m}(x)$, $w_1 = f^{\lambda n+m}(x)$ and $g = f^{\lambda n-\mu n}$. Then, $w_1 = g(w)$ and $v \in Fix(g)$. By [2, Lemma IV.25], we have R(g) = R(f) = G. Thus, g is still pointwiserecurrent, which implies $g^{-1}(v) = \{v\}$, and hence $v \notin g((v, w))$. Let $Y = \{y \in (v, w)\}$: $g(y) \in (v, y)$, and let L be the connected component of Y containing w. If L = (v, w], then $\lim_{i\to\infty} g^i(w) = v$, which contradicts $w \in R(g)$. If $L \neq (v, w]$, then there exists $v_1 \in (v, w)$ such that $L = (v_1, w]$ and $g(v_1) = v_1$. Note that $g((v_1, w]) \cap \{v, v_1\} = \emptyset$, since $(v_1, w] \subset R(g)$. If $w_1 = g(w) \in (v_1, w]$, then $\lim_{i \to \infty} g^i(w) = v_1$, which still contradicts $w \in R(g)$. If $w_1 \in (v, v_1)$, then, since $w_1 \in R(g)$, there exists $k \in \mathbb{N}$ such that $g^k(w_1) \in (v, v_1)$. By Lemma 4.2, we have $w_1 \in [v, v_1] \subset \operatorname{Fix}(g^k) \subset P(f)$. Noting that $w_1 \in O(x, f)$ and $x \in R(f)$, we have $x \in O(w_1, f) \subset P(f)$. Lemma 4.3 is proven.

THEOREM 4.4. Let G be a connected graph, and $f : G \rightarrow G$ be a continuous map. Then f is pointwise-recurrent if and only if one of the following two statements holds:

- (1) *G* is a circle and *f* is a homeomorphism topologically conjugate to an irrational rotation of the unit circle S¹;
- (2) *f* is a periodic homeomorphism.

Proof. The sufficiency is clear. We now show the necessity. Assume that f is pointwise-recurrent.

(1) If f has no periodic points, then, by Lemma 4.1, f is a minimal map, and by Theorem 3.2, G is a circle. From Lemma 3.1 (or from [1, Corollary 1]) we see that f is a homeomorphism. It is well-known (for example, see [17]) that every transitive homeomorphism of a circle is topologically conjugate to an irrational rotation of S^1 .

(2) If *f* has periodic points, then *f* is not a minimal map. By Lemma 4.3, all points in *G* are periodic. Let $\{E_1, E_2, \ldots, E_n\}$ be the set of all edges of *G*. For $i = 1, \ldots, n$, suppose $\partial E_i = \{v_{i1}, v_{i2}\}$, and let v_{i3} be a point in \mathring{E}_i . Let k_{ij} be the period of v_{ij} under *f*, k_i be the least common multiple of k_{i1}, k_{i2} and k_{i3} , and *k* be the least common multiple of k_1, k_2, \ldots, k_n . Then it follows from Lemma 4.2 that $E_i \subset \text{Fix}(f^{k_i})$, which implies $G = \bigcup_{i=1}^n E_i \subset \text{Fix}(f^k)$. Thus, *f* is a periodic homeomorphism. \Box

Remark 4.5. In [5–7] Blokh studied the spectral decomposition for graph maps. From results of [5–7] we can also deduce Theorem 4.4.

Remark 4.6. Let *G* be a connected graph but not a circle. Noting that val(f(x)) = val(x) for any homeomorphism $f : G \to G$ and any $x \in G$, by Theorem 4.4 we can easily prove that there are only finitely many topological conjugacy equivalence classes in the set of pointwise-recurrent continuous maps of *G*.

Note that there exist infinitely many topological conjugacy equivalence classes in the set of pointwise-recurrent continuous maps of a circle.

J.-H. Mai

Remark 4.7. Suppose that *G* is a disconnected graph and $f : G \to G$ is a pointwiserecurrent continuous map. Then the connected components of *G* can be numbered to be $\{G_{ij} : i = 1, ..., m; j = 1, ..., n_i\}$ such that $f(G_{in_i}) = G_{i1}$ and $f(G_{ij}) = G_{i,j+1}$ for i = 1, ..., m and $j = 1, ..., n_i - 1$. By [2, Lemma IV.25], $f^{n_i}|G_{ij} :$ $G_{ij} \to G_{ij}$ is pointwise-recurrent, for all $i \in \{1, ..., m\}$ and $j \in \{1, ..., n_i\}$. Therefore, every pointwise-recurrent continuous map f of a disconnected graph G is still a homeomorphism, and if G has no connected component being a circle then f must be a periodic homeomorphism.

Acknowledgements. The work was supported by the Special Foundation of National Prior Basis Researches of China (Grant No. G1999075108). The author wishes to thank the referee for several valuable suggestions, especially a simplification of the second half of proof of Theorem 3.2 that has been adopted in this paper.

REFERENCES

- J. Auslander and Y. Katznelson. Continuous maps of the circle without periodic points. *Israel. J. Math.* 32 (1979), 375–381.
- [2] L. Block and W. A. Coppel. Dynamics in One Dimension (Lecture Notes in Mathematics, 1513). Springer, New York, 1992.
- [3] L. Block and E. M. Coven. Maps of the interval with every point chain recurrent. *Proc. Amer. Math. Soc.* 98 (1986), 513–515.
- [4] A. Blokh. On transitive maps of one-dimensional branched manifolds. *Differential–Difference Equations and Problems of Mathematical Physics (Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1984)*, pp. 3–9 (in Russian).
- [5] A. Blokh. Dynamical systems on one-dimensional branched manifolds, 1. Theory of Functions, Functional Analysis and Applications (Kharkov) 46 (1986), 8–18 (in Russian). Translation in J. Soviet Math. 48(5) (1990), 500–508.
- [6] A. Blokh. Dynamical systems on one-dimensional branched manifolds, 2. Theory of Functions, Functional Analysis and Applications (Kharkov) 47 (1987), 67–77 (in Russian). Translation in J. Soviet Math. 48(6) (1990), 668–674.
- [7] A. Blokh. Dynamical systems on one-dimensional branched manifolds, 3. Theory of Functions, Functional Analysis and Applications (Kharkov) 48 (1987), 32–46 (in Russian). Translation in J. Soviet Math. 49(2) (1990), 875–883.
- [8] B. L. Brechner. Almost periodic homeomorphisms of E² are periodic. Pacific J. Math. 59 (1975), 367–374.
- [9] R. J. Fokkink and L. G. Oversteegen. A recurrent nonrotational homeomorphism on the annulus. *Trans. Amer. Math. Soc.* 333 (1992), 865–875.
- [10] B. Kolev and M.-C. Pérouème. Recurrent surface homeomorphisms. *Math. Proc. Cambridge Philos. Soc.* 124 (1998), 161–168.
- [11] S. Kolyada, L. Snoha and S. Trofimchuk. Noninvertible minimal maps. Fund. Math. 168 (2001), 141–163.
- [12] J.-H. Mai. Pointwise periodic self-maps of subspaces of 2-dimensional manifolds. Sci. China Ser. A, 33 (1990), 145–155.
- [13] J.-H. Mai. Scrambled sets of continuous maps of 1-dimensional polyhedra. Trans. Amer. Math. Soc. 351 (1999), 353–362.
- [14] J.-H. Mai and X. Ye. The structure of pointwise recurrent maps having the pseudo orbit tracing property. Nagoya Math. J. 166 (2002), 83–92.
- [15] D. Montgomery. Pointwise periodic homeomorphisms. Amer. J. Math. 59 (1937), 118–120.
- [16] D. Montgomery and L. Zippin. *Topological Transformation Groups*. Interscience Publishers, New York, 1955.

- [17] Z. Nitecki. *Differentiable Dynamics*. MIT Press, Cambridge, MA, 1971.
 [18] L. G. Oversteegen and E. D. Tymchatyn. Recurrent homeomorphisms on ℝ² are periodic. *Proc. Amer.* Math. Soc. 110 (1990), 1083–1088.
- [19] N. Weaver. Pointwise periodic homeomorphisms of continua. Ann. Math. 95 (1972), 83-85.