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Abstract. In this paper we show that a continuous map f from a connected graph G

to itself is pointwise-recurrent if and only if one of the following two statements holds:
(1) G is a circle, and f is a homeomorphism topologically conjugate to an irrational
rotation of the unit circle S1; (2) f is a periodic homeomorphism.

1. Introduction
A continuous map f from a topological space X to itself is said to have some homogeneous
property if all points in X under f have a common property, for example, all points
in X are periodic, almost-periodic, recurrent, or chain recurrent. It is interesting to
describe maps which have some homogeneous properties. Montgomery [15] showed
that a connected topological manifold M has the property that every pairwise periodic
homeomorphism of M must be periodic; see also [16]. Weaver [19] showed that a
continuum C embedded in an orientable 2-manifold has this property with respect to
homeomorphisms which are C1 and orientation-preserving. In [12] we proved that
if X is a compact locally connected subset of a closed 2-manifold M which has no
cut-points, then every orientation-preserving (or orientation-reversing, or orientation-
relatively-preserving) pointwise-periodic homeomorphism f : X → X is periodic,
and f can be extended to a periodic homeomorphism of a compact submanifold of M .
Brechner [8] showed that almost-periodic homeomorphisms of the plane are periodic.
Oversteegen and Tymchatyn [18] showed that recurrent homeomorphisms of the plane
are also periodic. Kolev and Pérouème [10] proved that recurrent homeomorphisms of
a compact surface with negative Euler characteristic are still periodic. However, on the
annulus, there exists a recurrent area- and orientation-preserving diffeomorphism without
periodic points which is not conjugate to a rotation; see [9]. In [14], Mai and Ye proved
that a continuous map of a metric space is pointwise-recurrent and has the pseudo-orbit-
tracing property if and only if the map is uniformly conjugate to an adding-machine-like
map restricted to some invariant subset.
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It is easy to show that every pointwise non-wandering circle map without periodic points
is topologically conjugate to an irrational rotation; see [1]. Block and Coven [3] studied
pointwise chain-recurrent interval maps. In this paper we will study pointwise-recurrent
graph maps. Our main results are the following theorems.

THEOREM 3.4. Let G be a graph, f ∈ C0(G), and let W be a minimal set of f . If W

contains interior points, then:
(1) W is the union of finitely many pairwise disjoint circles;
(2) there exists ε > 0 such that (B(W, ε) − W) ∩ �(f ) = ∅.

THEOREM 4.4. Let G be a connected graph, and f : G → G be a continuous map.
Then f is pointwise-recurrent if and only if one of the following two statements holds:
(1) G is a circle and f is a homeomorphism topologically conjugate to an irrational

rotation of the unit circle S1;
(2) f is a periodic homeomorphism.

2. Minimal sets of maps
Let N denote the set of positive integers. For any topological space X, denote by C0(X)

the set of all continuous maps from X to X. Suppose f ∈ C0(X), and n ∈ N. A point
x ∈ X is called a periodic point of f with period n (or an n-periodic point of f ) if
f n(x) = x and f k(x) �= x for each k ∈ (0, n) ∩ N. A point x is called a fixed point
of f if f (x) = x. A point x is called a recurrent (respectively non-wandering) point of
f if for any neighborhood U of x there exists i ∈ N (respectively y ∈ U and i ∈ N)
such that f i(x) ∈ U (respectively f i(y) ∈ U ). Denote by Fix(f ) (respectively Pn(f ),
R(f ) and �(f )) the set of all fixed (respectively n-periodic, recurrent and non-wandering)
points of f . Write P(f ) = ⋃∞

n=1 Pn(f ). A map f is said to be pointwise-recurrent
(respectively pointwise-periodic) if all points in X are recurrent (respectively periodic).
A map f is said to be periodic if there exists m ∈ N such that f m is the identity map
of X. Note that every pointwise-periodic continuous map of a compact metric space is a
homeomorphism.

Write O(x, f ) = (x, f (x), f 2(x), . . . ), and call such a sequence an orbit of f .
Let Sn = (x0, x1, . . . , xn) and S = (y0, y1, y2, . . . ) be sequences of points in X.
If f (xi) = xi−1 for each i ∈ {1, . . . , n}, then Sn is called a finite inverse orbit of f

with length n, and x0 and xn are respectively called the starting point and terminal point
of this inverse orbit. If f (yi) = yi−1 for all i ∈ N, then S is called an infinite inverse
orbit of f . Sometimes we regard the orbit O(x, f ) and the inverse orbits S and Sn as sets.
The following lemma clearly holds.

LEMMA 2.1. Let X be a topological space, Y ⊂ X and f ∈ C0(X). If f (Y ) ⊃ Y , then
every finite inverse orbit (x0, x1, . . . , xn) in Y can be extended to an infinite inverse orbit
(x0, x1, . . . , xn, xn+1, . . . ) in Y .

A subset W of X is said to be invariant or f -invariant if f (W) ⊂ W . A set W is
called an f -minimal set or a minimal set of f if it is non-empty, closed and f -invariant,
and it contains no proper subset having these three properties. f : X → X is called
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a minimal map if X itself is a (unique) minimal set of f . The following lemma can be
directly derived from [2, Proposition V.5 and Lemma V.7].

LEMMA 2.2. Let X be a compact metric space, f ∈ C0(X), y ∈ X and p ∈ N.
Then O(y, f ) is a minimal set of f if and only if O(y, f p) is a minimal set of f p.

THEOREM 2.3. Let X be a metric space, W be a non-empty compact subset of X, and
f ∈ C0(X) . Then the following four properties are equivalent.
(i) W is a minimal set of f .
(ii) For every y ∈ W , O(y, f ) = W .
(iii) f (W) ⊂ W , and every orbit in W is dense in W .
(iv) f (W) ⊃ W , and every infinite inverse orbit in W is dense in W .
Furthermore, if the non-empty compact set W is connected, then the above four properties
and the following two properties are also equivalent.
(v) f (W) ⊂ W , and there exists a p ∈ N such that W is a minimal set of f p.
(vi) For all p ∈ N, W is a minimal set of f p.

Proof. (i) ⇔ (ii) ⇔ (iii) and (vi) ⇒ (v) are trivial.
(i) ⇒ (iv) Assume that (i) is true. Then, since W is compact, we have f (W) = W .

Let S = (x0, x1, x2, . . . ) be an infinite inverse orbit of f contained in W . Then there exist
y ∈ S and positive integers k1 < k2 < k3 < · · · such that limi→∞ xki = y. Noting that
f n(y) = limi→∞ xki−n ∈ S, for all n ∈ N, we have W = O(y, f ) ⊂ S. Thus, S is dense
in W .

(iv) ⇒ (i) Assume that (iv) is true. Then, by Lemma 2.1, there is an infinite inverse
orbit S = (x0, x1, x2, . . . ) of f contained in W . For every n ∈ N ∪ {0}, write Sn =
(xn, xn+1, xn+2, . . . ). Then Sn is also an infinite inverse orbit in W . Let α(S) = ⋂∞

n=0 Sn,
and call it the α-limit set of S. It is easy to see that α(S) is an f -invariant closed subset
of W . Noting that all Sn are dense in W , we have α(S) = W . If W is not a minimal set
of f , then W should contain a non-empty, closed and f -invariant proper subset W0, and
W0 should contain an infinite inverse orbit of f which is not dense in W . This leads to a
contradiction. Thus W must be a minimal set of f .

(v) ⇒ (i) Assume that (v) is true. Then we have W ⊃ O(y, f ) ⊃ O(y, f p) = W , for
all y ∈ W . Thus W is a minimal set of f .

(i) ⇒ (vi) Assume that (i) is true, and W is connected. In order to show that (vi)
is true, it suffices to consider the case that p is a prime number. Take a point y ∈ W .
For every i ∈ N ∪ {0}, write yi = f i(y0), and Wi = O(yi, f p). Then f (Wi) = Wi+1, and
W = O(y, f ) = ⋃p−1

n=0 Wn. By Lemma 2.2, Wi is a minimal set of f p and Wi+p = Wi .
Since W is connected, there exists k ∈ {1, . . . , p − 1} such that Wk ∩ W0 �= ∅, which
implies

Wik+k ∩ Wik = f k(Wik) ∩ f k(Wik−k) ⊃ f k(Wik ∩ Wik−k) �= ∅, for i = 1, 2, 3, . . . .

Noting that any two intersecting minimal sets of f p are the same, we have Wik+k = Wik =
Wik−k = · · · = W0. For each n ∈ {0, 1, . . . , p − 1}, since k and p are relatively prime,
there exists j = j (n) ∈ N such that jk ≡ n (mod p). Thus Wn = Wjk = W0, and hence

W = ⋃p−1
n=0 Wn = W0 is a minimal set of f p. Theorem 2.3 is proven. �
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From Theorem 2.3 we obtain the following.

COROLLARY 2.4. Let X be a compact metric space and f ∈ C0(X). If there exists a
non-empty closed proper subset Y of X such that f (Y ) ⊂ Y or f (Y ) ⊃ Y , then f is not a
minimal map.

Proof. If f (Y ) ⊂ Y , then X is not a minimal set since it has a non-empty
closed f -invariant proper subset Y . If f (Y ) ⊃ Y , then f has an infinite inverse orbit
S in Y . Since S is not dense in X, by Theorem 2.3, X is not a minimal set of f . Thus, f is
not a minimal map. �

3. Minimal sets of graph maps
We now consider graph maps. A (finite) graph G is a topological space without isolated
points which is homeomorphic to the polyhedron |K| of a finite one-dimensional simplicial
complex K in the three-dimensional Euclidean space R

3. A continuous map from G to G

is called a graph map. For convenience, we may assume G = |K|. Then every zero-
dimensional (respectively one-dimensional) simplex of K is called a vertex (respectively
edge) of G. Let V (G) be the set of vertices of G. For v ∈ V (G), the number of edges with
v being an endpoint is called the valence of v and is written val(v). A vertex v is called
an endpoint (respectively branching point) of G if val(v) = 1 (respectively val(v) ≥ 3).
For x ∈ G − V (G), we put val(x) = 2. Define the standard metric dK on G = |K| as
in [13]. Then the length of each edge of G is 1, and for any two points x and y lying
on the same connected component of G, dK(x, y) is the minimal length of arcs in G

whose endpoints are x and y. For any non-empty subset Y of G and any r > 0, we write
B(Y, r) = {x ∈ G | dK(x, Y ) ≤ r}.

For any x, y ∈ G with x �= y, let [x, y] = [x, y]G be the arc in G whose endpoints are
x and y and whose length is dK(x, y), if there exists a unique such arc, and let [x, y) =
(y, x] = [x, y] − {y}, (x, y) = [x, y) − {x}, [x, x] = {x}, [x, x) = (x, x] = (x, x) = ∅.
Generally, for any arc A in G and any {x, y} ⊂ A, we denote by ∂A the two endpoints
of A, by Å = A − ∂A the interior of A, and by [x, y]A the subarc of A whose endpoints
are x and y.

LEMMA 3.1. Let G be a graph, f ∈ C0(G), and let A be an arc in G with ∂A = {a, b}.
If Å ∩ V (G) = ∅ and f (a) = f (b) ∈ A, then f is not a minimal map.

Proof. Write c = f (a). It suffices to consider only the case that c ∈ Å. Let X0 = {x ∈
A : f (x) ∈ [x, b]}, X1 = {y ∈ A : f (y) ∈ [a, y]}. Suppose that [a, v] is the connected
component of X0 containing a, and [w, b] is the connected component of X1 containing b.
Then {v,w} ⊂ Å. If f (v) = v or f (w) = w, then f has a fixed point and hence is not
a minimal map. If f (v) �= v and f (w) �= w, then f (v) = b, f (w) = a and v ∈ (a,w).
Let Y = [a, v] ∪ [w, b]. Noting that [c, b] ⊂ f ([a, v]) ⊂ A and [a, c] ⊂ f ([w, b]) ⊂ A,
we have f (Y ) = A ⊃ Y and G − Y ⊃ A − Y = (v,w) �= ∅. Thus, by Corollary 2.4, f is
not a minimal map. Lemma 3.1 is proven. �

THEOREM 3.2. Let G = |K| be a connected graph but not a circle. Then there exists no
minimal map from G to itself.
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Proof. If Theorem 3.2 is not true, then there exists a minimal map f : G → G.
By Theorem 2.3, f p : G → G is also minimal, for all p ∈ N.

CLAIM 1. For any edge A of G, the restriction f |A of f on A is injective.

In fact, if Claim 1 does not hold then there are two points a �= b in A such that
f (a) = f (b) = c, and by the minimality of f there exists a p ∈ N such that
f p(a) = f p(b) = f p−1(c) ∈ [a, b]. Therefore, by Lemma 3.1, f p is not minimal.
This yields a contradiction. Hence, Claim 1 holds.

Let Vb(G) denote the set of branching points of G. Since there is no minimal map
from an interval to itself, G = |K| is not an arc. Thus, Vb(G) is a non-empty finite set,
and there exists v ∈ Vb(G) such that f (v) /∈ Vb(G). Choose ε ∈ (0, 1/2] such that
f (B(v, ε)) ∩ Vb(G) = ∅. Write v1 = f (v). Since val(v) ≥ 3 and val(v1) ≤ 2 , it follows
from Claim 1 that there exist {x0, x1} ⊂ B(v, ε) − {v} and z ∈ B(v1, ε) − {v1} such that
f (x0) = f (x1) = z, [x0, v] ∩ [x1, v] = {v} and

f ([x0, v]) = f ([x1, v]) = [z, v1]. (3.1)

Let Y = G − (x1, v). Then Y is a non-empty closed proper subset of G, and Y ⊃ [x0, v].
Noting that f is surjective, from (3.1) we get f (Y ) = f (G − (x1, v)) ∪ f ([x0, v]) ⊃
(f (G) − f ([x1, v])) ∪ f ([x0, v]) = f (G) = G ⊃ Y . Hence, by Corollary 2.4, f is not a
minimal map. This leads to a contradiction. Thus, Theorem 3.2 must be true. �

Remark 3.3. In [4] Blokh proved that transitive maps of connected graphs have the
so-called specification property. Theorem 3.2 can also be derived from this property.
In addition, Kolyada et al recently proved that every minimal map of a compact metric
space is almost one-to-one (see [11, Theorem 2.7]). From this result and (3.1) we can also
derive Theorem 3.2.

It is easy to show that a finite minimal set on a metric space is a periodic orbit, and an
infinite minimal set of a graph map containing no interior points is homeomorphic to the
Cantor set. To give a description of the topological structure of minimal sets of graph maps
containing interior points, we present the following theorem.

THEOREM 3.4. Let G be a graph, f ∈ C0(G), and let W be a minimal set of f . If W

contains interior points, then:
(1) W is the union of finitely many pairwise disjoint circles;
(2) there exists ε > 0 such that (B(W, ε) − W) ∩ �(f ) = ∅.

Proof. (1) Let w be an interior point of W and let U be the connected component of W

containing w. Then U is a subgraph of G. Let n be the smallest positive integer which
satisfies f n(U)∩U �= ∅. Then f n(U)∪U is connected. Thus, f n(U) ⊂ U . Furthermore,
since f i(U)∩U = ∅ for 1 ≤ i < n, and W is a minimal set of f , we have f n(U) = U , and
U is a minimal set of f n. Therefore, for 1 ≤ i < n, f i(U) is also a connected minimal set
of f n containing interior points. By Theorem 3.2, for every i ∈ {0, 1, . . . , n−1}, f i(U) is
a circle. Evidently, U, f (U), . . . , f n−1(U) are pairwise disjoint, and W = ⋃n−1

i=0 f i(U).
(2) Let Y be the set of branching points of G lying on W . Then Y is a finite set.

If Y = ∅, then all of U, f (U), . . . , f n−1(U) are connected components of G, and by
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the definition of metric dK given in [13] we have B(W, 1) = W . If Y �= ∅, then there
exists p ∈ N such that f p(Y ) ∩ Y = ∅. Take ε > 0 such that f p(B(Y, ε)) ∩ Y = ∅.
Then we have f p(B(Y, ε)) ⊂ W , and hence f k(B(Y, ε)) ⊂ W for all k ≥ p.
Thus, (B(W, ε) − W) ∩ �(f ) = (B(Y, ε) − W) ∩ �(f ) = ∅. Theorem 3.4 is proven. �

COROLLARY 3.5. Let G be a graph and f ∈ C0(G).
(1) If G is a forest, i.e. G is a graph containing no circles, then every minimal set of f

contains no interior points.
(2) If G is connected and contains branching points, and f has a minimal set W which

contains interior points, then f has wandering points.

Proof. (1) is clear, by Theorem 3.4.
(2) Let Y be the set of branching points of G lying on W . Then, by (1) of Theorem 3.4,

we have Y �= ∅, and for any ε > 0, B(Y, ε) − W �= ∅. By (2) of Theorem 3.4, for
sufficiently small ε > 0, all points in B(Y, ε) − W are wandering points of f . �

4. Pointwise-recurrent graph maps
In this section we study the structure of pointwise-recurrent graph maps.

LEMMA 4.1. Let G be a connected graph, f : G → G be a pointwise-recurrent
continuous map, and let W be a minimal set of f . If W �= G, then W is a periodic
orbit of f .

Proof. Since W �= G, G − W is a non-empty open set. Let U be a connected component
of G − W . Then U − U = U ∩ W �= ∅. It follows from U ⊂ R(f ) that there exists n ∈ N

such that f n(U) ∩ U �= ∅. Obviously, f n(U) ∪ U is connected, and f n(U) ∩ W = ∅
(if a point of U gets mapped into W then this point is not recurrent). Thus, f n(U) ⊂ U ,
and hence f n(U) ⊂ U . This with f n(W) ⊂ W implies f n(U ∩ W) ⊂ U ∩ W . Noting
that U ∩ W is a finite set, we have W ∩ P(f ) = W ∩ P(f n) ⊃ (U ∩ W) ∩ P(f n) �= ∅.
Thus, the minimal set W is a periodic orbit of f . �

LEMMA 4.2. Let G be a graph, f : G → G be a pointwise-recurrent continuous map,
and let A be an arc contained in an edge of G with ∂A = {a, b}. If {a, b} ⊂ Fix(f ) and
there exists c ∈ Å such that f (c) ∈ A, then A ⊂ Fix(f ).

Proof. If f (Å) �⊂ Å then there will be a point x ∈ A such that f (x) ∈ {a, b}, and x will
not be recurrent. This contradicts the condition of the lemma. Thus, we have f (Å) ⊂ Å.

If A �⊂ Fix(f ), then there will be a subarc A1 = [a1, b1] of A such that A1 ∩ Fix(f ) =
∂A1 and f (Å1) ⊂ Å1. This will lead to limn→∞ f n(x) = a1 or b1 for all x ∈ Å1, which
also yields a contradiction. Thus, we have A ⊂ Fix(f ). �

LEMMA 4.3. Let G be a connected graph, and f : G → G be a pointwise-recurrent
continuous map. If G is not a circle, or G is a circle but f is not a minimal map, then
every point x ∈ G is periodic.

Proof. For any given x ∈ G, there exists v ∈ O(x, f ) such that O(v, f ) is a minimal
set of f . By Theorem 3.2 and Lemma 4.1 (if G is not a circle), or by the assumption
and Lemma 4.1 (if G is a circle), O(v, f ) = O(v, f ) is a periodic orbit. Let n be
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the period of v under f . If v ∈ O(x, f ), then x ∈ O(v, f ) is periodic since x is
recurrent. If v �∈ O(x, f ), then there exist positive integers k1 < k2 < k3 < · · · and
m ∈ {0, 1, . . . , n − 1} such that limi→∞ f ki (x) = v and ki ≡ m (mod n) for all i ∈ N.
Therefore, since val(v) is finite, there exist λ,µ ∈ {k1, k2, k3, . . . } with λ > µ such that
f λn+m(x), f µn+m(x) and v lie on the same edge of G, and f λn+m(x) ∈ (v, f µn+m(x)).
Write w = f µn+m(x), w1 = f λn+m(x) and g = f λn−µn. Then, w1 = g(w) and
v ∈ Fix(g). By [2, Lemma IV.25], we have R(g) = R(f ) = G. Thus, g is still pointwise-
recurrent, which implies g−1(v) = {v}, and hence v /∈ g((v,w]). Let Y = {y ∈ (v,w] :
g(y) ∈ (v, y)}, and let L be the connected component of Y containing w. If L = (v,w],
then limi→∞ gi(w) = v, which contradicts w ∈ R(g). If L �= (v,w], then there exists
v1 ∈ (v,w) such that L = (v1, w] and g(v1) = v1. Note that g((v1, w]) ∩ {v, v1} = ∅,
since (v1, w] ⊂ R(g). If w1 = g(w) ∈ (v1, w], then limi→∞ gi(w) = v1, which still
contradicts w ∈ R(g). If w1 ∈ (v, v1), then, since w1 ∈ R(g), there exists k ∈ N such
that gk(w1) ∈ (v, v1). By Lemma 4.2, we have w1 ∈ [v, v1] ⊂ Fix(gk) ⊂ P(f ). Noting
that w1 ∈ O(x, f ) and x ∈ R(f ), we have x ∈ O(w1, f ) ⊂ P(f ). Lemma 4.3 is
proven. �

THEOREM 4.4. Let G be a connected graph, and f : G → G be a continuous
map. Then f is pointwise-recurrent if and only if one of the following two statements
holds:
(1) G is a circle and f is a homeomorphism topologically conjugate to an irrational

rotation of the unit circle S1;
(2) f is a periodic homeomorphism.

Proof. The sufficiency is clear. We now show the necessity. Assume that f is pointwise-
recurrent.

(1) If f has no periodic points, then, by Lemma 4.1, f is a minimal map, and by
Theorem 3.2, G is a circle. From Lemma 3.1 (or from [1, Corollary 1]) we see that
f is a homeomorphism. It is well-known (for example, see [17]) that every transitive
homeomorphism of a circle is topologically conjugate to an irrational rotation of S1.

(2) If f has periodic points, then f is not a minimal map. By Lemma 4.3, all points
in G are periodic. Let {E1, E2, . . . , En} be the set of all edges of G. For i = 1, . . . , n,
suppose ∂Ei = {vi1, vi2}, and let vi3 be a point in E̊i . Let kij be the period of vij under f ,
ki be the least common multiple of ki1, ki2 and ki3, and k be the least common multiple
of k1, k2, . . . , kn. Then it follows from Lemma 4.2 that Ei ⊂ Fix(f ki ), which implies
G = ⋃n

i=1 Ei ⊂ Fix(f k) . Thus, f is a periodic homeomorphism. �

Remark 4.5. In [5–7] Blokh studied the spectral decomposition for graph maps.
From results of [5–7] we can also deduce Theorem 4.4.

Remark 4.6. Let G be a connected graph but not a circle. Noting that val(f (x)) = val(x)

for any homeomorphism f : G → G and any x ∈ G, by Theorem 4.4 we can easily prove
that there are only finitely many topological conjugacy equivalence classes in the set of
pointwise-recurrent continuous maps of G.

Note that there exist infinitely many topological conjugacy equivalence classes in the
set of pointwise-recurrent continuous maps of a circle.
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Remark 4.7. Suppose that G is a disconnected graph and f : G → G is a pointwise-
recurrent continuous map. Then the connected components of G can be numbered to
be {Gij : i = 1, . . . ,m; j = 1, . . . , ni} such that f (Gini ) = Gi1 and f (Gij ) =
Gi,j+1 for i = 1, . . . ,m and j = 1, . . . , ni − 1. By [2, Lemma IV.25], f ni |Gij :
Gij → Gij is pointwise-recurrent, for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , ni}.
Therefore, every pointwise-recurrent continuous map f of a disconnected graph G is still
a homeomorphism, and if G has no connected component being a circle then f must be a
periodic homeomorphism.

Acknowledgements. The work was supported by the Special Foundation of National Prior
Basis Researches of China (Grant No. G1999075108). The author wishes to thank the
referee for several valuable suggestions, especially a simplification of the second half of
proof of Theorem 3.2 that has been adopted in this paper.

REFERENCES

[1] J. Auslander and Y. Katznelson. Continuous maps of the circle without periodic points. Israel. J. Math.
32 (1979), 375–381.

[2] L. Block and W. A. Coppel. Dynamics in One Dimension (Lecture Notes in Mathematics, 1513). Springer,
New York, 1992.

[3] L. Block and E. M. Coven. Maps of the interval with every point chain recurrent. Proc. Amer. Math. Soc.
98 (1986), 513–515.

[4] A. Blokh. On transitive maps of one-dimensional branched manifolds. Differential–Difference Equations
and Problems of Mathematical Physics (Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1984), pp. 3–9 (in
Russian).

[5] A. Blokh. Dynamical systems on one-dimensional branched manifolds, 1. Theory of Functions,
Functional Analysis and Applications (Kharkov) 46 (1986), 8–18 (in Russian). Translation in J. Soviet
Math. 48(5) (1990), 500–508.

[6] A. Blokh. Dynamical systems on one-dimensional branched manifolds, 2. Theory of Functions,
Functional Analysis and Applications (Kharkov) 47 (1987), 67–77 (in Russian). Translation in J. Soviet
Math. 48(6) (1990), 668–674.

[7] A. Blokh. Dynamical systems on one-dimensional branched manifolds, 3. Theory of Functions,
Functional Analysis and Applications (Kharkov) 48 (1987), 32–46 (in Russian). Translation in J. Soviet
Math. 49(2) (1990), 875–883.

[8] B. L. Brechner. Almost periodic homeomorphisms of E2 are periodic. Pacific J. Math. 59 (1975),
367–374.

[9] R. J. Fokkink and L. G. Oversteegen. A recurrent nonrotational homeomorphism on the annulus. Trans.
Amer. Math. Soc. 333 (1992), 865–875.

[10] B. Kolev and M.-C. Pérouème. Recurrent surface homeomorphisms. Math. Proc. Cambridge Philos. Soc.
124 (1998), 161–168.

[11] S. Kolyada, L. Snoha and S. Trofimchuk. Noninvertible minimal maps. Fund. Math. 168 (2001), 141–163.
[12] J.-H. Mai. Pointwise periodic self-maps of subspaces of 2-dimensional manifolds. Sci. China Ser. A, 33

(1990), 145–155.
[13] J.-H. Mai. Scrambled sets of continuous maps of 1-dimensional polyhedra. Trans. Amer. Math. Soc. 351

(1999), 353–362.
[14] J.-H. Mai and X. Ye. The structure of pointwise recurrent maps having the pseudo orbit tracing property.

Nagoya Math. J. 166 (2002), 83–92.
[15] D. Montgomery. Pointwise periodic homeomorphisms. Amer. J. Math. 59 (1937), 118–120.
[16] D. Montgomery and L. Zippin. Topological Transformation Groups. Interscience Publishers, New York,

1955.

https://doi.org/10.1017/S0143385704000720 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385704000720


Pointwise-recurrent graph maps 637

[17] Z. Nitecki. Differentiable Dynamics. MIT Press, Cambridge, MA, 1971.
[18] L. G. Oversteegen and E. D. Tymchatyn. Recurrent homeomorphisms on R2 are periodic. Proc. Amer.

Math. Soc. 110 (1990), 1083–1088.
[19] N. Weaver. Pointwise periodic homeomorphisms of continua. Ann. Math. 95 (1972), 83–85.

https://doi.org/10.1017/S0143385704000720 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385704000720

