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On a bivariate risk process with a dividend barrier strategy
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Abstract
In this paper, we study a continuous-time bivariate risk process in which each individual line of business
implements a dividend barrier strategy. The insurance portfolios of the two insurers are correlated as
they are subject to common shocks that induce dependent claims. To analyse the expected discounted
dividends until the joint ruin time of the bivariate process (i.e. exit from the positive quadrant), we
propose a discrete-time counterpart of the model and apply a bivariate extension of the Dickson−
Waters discretisation with the use of a bivariate Panjer-type recursion. Detailed numerical examples
under different dependencies via common shocks, copulas and proportional reinsurance are discussed,
and applications to optimal problems in reinsurance, capital allocation and dividends are given. It is
also illustrated that the optimal pair of dividend barriers maximising the dividend function is dependent
on the initial surplus levels. A modified type of dividend barrier strategy is proposed towards the end.
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1. Introduction

In the classical compound Poisson risk model, the surplus process U� tð Þf gt ≥ 0 of a single line of
insurance business is modelled by

U�ðtÞ ¼ u + ct�
XNðtÞ

n¼ 1

Xn; t≥0

where u≥ 0 is the insurer’s initial surplus, c>0 the constant premium income per unit time, {N(t)}t≥ 0

a counting process that counts the number of claims and Xn the size (or severity) of the nth claim.
It is assumed that {N(t)}t≥ 0 is a Poisson process with rate λ>0, and fXng1n¼ 1 is a sequence of
independent and identically distributed (i.i.d.) random variables independent of {N(t)}t≥ 0. The time
of ruin of the process U� tð Þf gt ≥0 is defined by T� ¼ infft≥ 0 : U�ðtÞ< 0g, which is the first time that
the surplus process drops below zero. One requires the positive security loading condition c> λE[X1]
to ensure that the event of ruin fT� <1g is not certain.

A drawback of the above model is that the surplus process U� tð Þf gt ≥ 0 will grow to infinity in
the long run, which leads to the idea of redistributing some of the surplus to the shareholders of the
insurance company (de Finetti, 1957). One of the most commonly studied dividend strategies is the
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barrier strategy (see e.g. Gerber, 1979; Lin et al., 2003; Dickson & Waters, 2004; Gerber
et al., 2006), in which the entire incoming premium rate is paid to the shareholders as dividend
immediately whenever the surplus reaches a fixed barrier level b (as long as ruin has not
occurred). Mathematically, the modified surplus process {U(t)}t≥ 0 with U(0) = u≥0 and u≤ b can
be described by

dUðtÞ ¼
cdt� d

PNðtÞ
n¼ 1 Xn; 0≤UðtÞ< b

�d
PNðtÞ

n¼ 1 Xn; UðtÞ ¼ b

8<
:

The quantities of interest in the literature include the Gerber − Shiu expected discounted penalty
function (Gerber & Shiu, 1998) and the expectation or even the higher moments of the discounted
dividends payable until ruin (Dickson & Waters, 2004). The study of barrier strategy is of great
importance because it is known to be optimal in maximising the expected discounted dividends until
ruin when the density of X1 is completely monotone (e.g. Loeffen, 2008, Theorem 3). In addition, for
any given claim distributions, the optimal dividend barrier is independent of the initial surplus level.
We refer interested readers to Albrecher & Thonhauser (2009) and Avanzi (2009) for comprehensive
reviews of different dividend strategies and related optimality results in the literature.

Recently, there has been increased interest in multi-dimensional risk theory in which the surplus
processes of more than one line of business are jointly analysed. In multi-dimensional risk models,
the frequencies and/or the severities of insurance claims payable by different insurers are generally
correlated. Practically, such a situation arises when the insurers are subject to “common shocks” as a
result of catastrophic events (e.g. earthquakes and tsunamis) inducing large and correlated claims to
them at the same time, or when an insurer transfers part of its claims to one or more reinsurers via a
reinsurance contract. In this paper, we follow the former formulation, although applications to the
latter situation are also possible (see Remark 1 and section 3.3). We shall consider two lines of
business, and each of them implements a dividend barrier strategy. The bivariate surplus process
{(U1(t), U2(t))}t≥ 0 with initial surplus levels (u1, u2) = (U1(0), U2(0)) and dividend barriers (b1, b2)
(where 0≤u1≤b1 and 0≤u2≤ b2) is described by, for k = 1, 2:

dUkðtÞ ¼
ckdt� d

PNkkðtÞ
n¼1 Yk;n +

PN12ðtÞ
n¼1 Zk;n

� �
; 0≤UkðtÞ< bk

� d
PNkkðtÞ

n¼ 1 Yk;n +
PN12ðtÞ

n¼ 1 Zk;n

� �
; UkðtÞ ¼ bk

8><
>: (1)

where (c1, c2) are the premium rates of the two lines, and {N11(t)}t≥ 0, {N22(t)}t≥ 0 and {N12(t)}t≥ 0 are
mutually independent Poisson processes with respective parameters λ11, λ22 and λ12. Furthermore,
fY1;ng1n¼ 1; fY2;ng1n¼ 1 and fðZ1;n;Z2;nÞg1n¼ 1 are mutually independent i.i.d. sequences, independent
of the above three Poisson processes and distributed as the generic random variables Y1, Y2 and
(Z1, Z2), respectively. For each k = 1, 2, the process {Nkk(t)}t≥ 0 counts the number of claims faced
by the kth business only for claims that arise from the “usual” claim occurrences with severity
distributed as Yk. On the other hand, {N12(t)}t≥ 0 counts the number of “common shocks” that result
in possibly dependent claims distributed as (Z1, Z2) to the two lines. It is assumed that Y1, Y2 and
(Z1, Z2) are all positive continuous random variables with cumulative distribution functions (cdfs)
F11(·), F22(·) and F12(·,·), respectively. It will be convenient to present F12(·,·) in copula form (e.g.
Nelsen, 2006) as F12(z1, z2) = C(F1∙(z1), F∙2(z2)), where C(·,·) is a copula and F1∙(z1) and F∙2(z2) are
the marginal cdfs of Z1 and Z2, respectively. For later use we also define the probability density
functions (pdfs) f11ð�Þ ¼ F0

11ð�Þ; f22ð�Þ ¼ F0
22ð�Þ; f1�ð�Þ ¼ F0

1�ð�Þ and f�2ð�Þ ¼ F0
�2ð�Þ. For each k = 1, 2,

we assume that the loading condition ck> λkkE[Yk] + λ12E[Zk] holds. The time of ruin of the kth line
is Tk = inf{t≥0 :Uk(t)<0}.
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Remark 1 Suppose that (Z1, Z2) is the result of the splitting of a claim W between an insurer
and a reinsurer via proportional reinsurance, i.e., (Z1, Z2) = (s1W,(1 − s1)W) for a positive
continuous random variable W with cdf FW(·) and a constant s1 such that 0< s1<1. Then one
can let F1∙(z1) = FW(z1/s1) and F∙2(z2) = FW(z2/(1 − s1)) and apply the comonotonicity copula
C(u, v) = min(u, v) for 0≤ u, v≤1. Hence, our formulation provides a unified approach to study
common shocks and proportional reinsurance. Examples concerning proportional reinsurance will
be examined in section 3.3. □

Unlike the classical univariate risk process in which ruin is defined to be the event that the surplus
process ever drops below zero, there are various ways to define ruin in a bivariate risk model.
Commonly studied definitions of ruin include (i) min(T1, T2) = inf{t≥0 : min(U1(t), U2(t))< 0}: the
first time when (at least) one of the two surplus processes drops below zero (i.e. the first exit from the
positive quadrant); (ii) inf{t≥0 : max(U1(t), U2(t))< 0}: the first time when both processes are below
zero simultaneously (i.e. the first entrance into the negative quadrant); and (iii) max(T1, T2): the first
time when both processes have ruined (but not necessarily simultaneously). Most papers in the
literature of multi-dimensional risk theory are concerned with the ruin probabilities associated with
these definitions of ruin in the absence of dividends. Exact solutions are rarely available, and the
existing results are mostly in the form of asymptotics (e.g. Li et al., 2007, section 4; Chen et al., 2011;
Hu & Jiang, 2013; Huang et al., 2013), bounds (e.g. Chan et al., 2003; Picard et al., 2003, section 4;
Cai & Li, 2005, 2007; Yuen et al., 2006; Li et al., 2007, sections 2 and 3) and recursive approximations
(e.g. Dang et al., 2009; Rabehasaina, 2009, section 5; Gong et al., 2012). In some special
two-dimensional models involving proportional reinsurance, exact results were obtained by Avram
et al. (2008a, 2008b) and Badescu et al. (2011) via transforming the bivariate problem to simpler
univariate problems. Numerical methods to evaluate ruin probabilities with particular applications
in excess-of-loss and stop-loss reinsurance can be found in Kaishev & Dimitrova (2006), Kaishev
et al. (2008, section 4), Dimitrova & Kaishev (2010) and Castañer et al. (2013). We also refer
interested readers to, e.g., Collamore (1996, 1998), Hult et al. (2005), Hult & Lindskog (2006),
Blanchet & Liu (2014) and Liu & Woo (2014) for the study of ruin-related quantities associated
with the hitting of a rare set in multi-dimensional models. A comprehensive overview of multi-
dimensional risk processes is given in Asmussen & Albrecher (2010, Chapter XIII.9).

A recent work by Czarna & Palmowski (2011) took into account the effect of dividend payments in a
bivariate model with proportional reinsurance. One of their proposed models involves a barrier in the
form of aU1(t) +U2(t) = b, which is clearly different from our model dynamics in equation (1). However,
they implicitly assumed that there is a transfer of capital between the two lines of business whenever the
bivariate process is on the barrier (see Czarna & Palmowski, 2011, figure 1). This means that ruin
(in terms of an exit from the positive quadrant) may actually occur due to capital transfer, which is
practically undesirable. In this paper, we shall study the model described by equation (1) and define the
time of ruin of the bivariate process {(U1(t), U2(t))}t≥0 to be T = min(T1, T2) = inf{t≥0 :min(U1(t),
U2(t))<0}. The key quantity of our interest is the expected discounted dividends until the joint ruin time
for each of the two lines. For each k = 1, 2, we aim at evaluating for 0≤u1≤b1; 0≤u2≤b2:

Vkðu1; u2; b1; b2Þ ¼ ckE
ðT
0
e�δtIfUkðtÞ ¼ bkgdt j ðU1ð0Þ;U2ð0ÞÞ ¼ ðu1; u2Þ

� �
(2)

where δ is the force of interest per unit time. It is instructive to note that even if there is no common
shock component, the dividends of the two lines are still dependent via the joint ruin time T. As
mentioned above, it is generally very difficult to derive exact results for multi-dimensional risk
processes. Therefore, similar procedures as in Dickson & Waters (1991) can be applied to establish a
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connection between our continuous-time model and a discrete-time one which is easier to study.
Then one can approximate the quantity in equation (2) using its discrete counterpart.

This paper is organised as follows. In section 2, the evaluation of the expected discounted dividends
until ruin in a discrete bivariate risk process is discussed. Despite being a stand-alone model, we
demonstrate how it can be used to approximate the continuous-time model via Dickson −Waters
discretisation with the help of a bivariate Panjer-type recursion. The approximation is then sup-
ported by some simulations. Section 3 is concerned with comparing how dependency between
the two lines affects dividends, and numerical examples involving common shocks, proportional
reinsurance and the use of different copulas are given. Section 4 provides more numerical examples
that focus on the pair of optimal dividend barriers maximising the expected discounted dividends.
Unlike the classical univariate case, the optimal barriers in the bivariate framework depend on the
initial surplus levels of the two lines. This leads us to propose a modified type of barrier strategy. A
capital allocation problem is also discussed briefly. Section 5 ends the paper with a few concluding
remarks.

2. A Discrete Bivariate Risk Process with Dividend Barriers

2.1. The model and dividends

Under a discrete framework, we consider the bivariate process fðUd
1ðnÞ;Ud

2ðnÞÞg1n¼0 with the
dividend barriers (b1, b2), which is defined recursively via, for k = 1, 2:

Ud
kðnÞ ¼ Ud

kðn� 1Þ + 1� IfUd
kðn� 1Þ ¼ bk;Xk;n ¼ 0g�Xk;n; n ¼ 1; 2; ¼ (3)

with the starting capital of Uk
d(0) = uk (where uk = 0, 1,…,bk). It is assumed that the premium

income is 1 in each period, and the claims fðX1;n;X2;nÞg1n¼ 1 form a sequence of i.i.d. bivariate
random vectors distributed as (X1, X2) with common joint probability mass function (pmf) g(·,·). In
addition, X1 and X2 are distributed on the set of non-negative integers. The dynamics in equation (3)
mean that a dividend of 1 is payable to the shareholders of line k at time n if (i) the surplus of line
k is at level b at time n – 1 and (ii) line k has no claim at time n (see Dickson & Waters, 2004,
section 5). For k = 1, 2, let Td

k ¼ inffn 2 f1; 2; ¼ g : Ud
kðnÞ≤0g be the ruin time of fUd

kðnÞg1n¼ 0

(see Remark 2). However, at time 0 we allow the individual processes to start at level zero without
ruin occurring. For each k = 1, 2, the loading condition is given by E[Xk]<1. The time of ruin for
the joint bivariate surplus process fðUd

1ðnÞ;Ud
2ðnÞÞg1n¼ 0 is then defined as Td ¼ minðTd

1 ;T
d
2 Þ.

Remark 2 In the study of discrete-time risk models, different researchers have adopted different
definitions of ruin as to whether reaching level zero is regarded as a ruin event. But the
current definition (that reaching zero leads to ruin) is expected to work better, especially when one
applies the discrete-time model to approximate a continuous-time one (see Dickson & Waters, 1991,
section 8). □

Assuming the force of interest to be α per period, we are interested in the expected discounted
dividend payment until the joint ruin time for each of the two lines. For each k = 1, 2, we define, for
u1 = 0,1,…,b1; u2 = 0,1,…,b2:

Vd
k ðu1; u2; b1; b2Þ ¼ E

XTd

n¼1

e�αnIfUd
kðn�1Þ ¼ bk;Xk;n ¼ 0gjðUd

1ð0Þ;Ud
2ð0ÞÞ ¼ ðu1; u2Þ

" #
(4)
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In order to study the above quantity, we can condition on all possible events at time 1. Four cases
need to be distinguished based on the initial capital levels.

1. For u1 = 0,1,…,b1 −1; u2 = 0,1,…,b2 − 1, the premium income of 1 for both lines will be added
to the respective surplus levels, and no dividends are payable at time 1. If the claims X1,1 and X2,1

are no larger than u1 and u2, respectively, then the bivariate process will continue and there will
be potential future dividends; otherwise ruin occurs and no dividends will ever be paid. We arrive
at, for k = 1, 2:

Vd
k ðu1; u2; b1; b2Þ ¼ e�α

Xu1
i¼ 0

Xu2
j¼ 0

gði; jÞVd
k ðu1 + 1� i; u2 + 1� j; b1; b2Þ (5)

2. For u1 = b1; u2 = 0,1,…,b2 − 1, line 1’s premium income of 1 will be paid out as dividend if there
is no claim for this line. Both lines will survive at time 1 if the claims X1,1 and X2,1 are no larger
than b1 – 1 and u2, respectively, resulting in potential future dividends. This leads to

Vd
1 ðb1; u2; b1; b2Þ ¼ e�α

X1
j¼ u2 + 1

gð0; jÞ + e�α
Xu2
j¼ 0

gð0; jÞ½1 +Vd
1 ðb1; u2 + 1� j; b1; b2Þ�

+ e�α
Xb1
i¼ 1

Xu2
j¼ 0

gði; jÞVd
1 ðb1 + 1� i; u2 + 1� j; b1; b2Þ

¼ e�α
X1
j¼ 0

gð0; jÞ + e�α
Xu2
j¼ 0

gð0; jÞVd
1 ðb1; u2 + 1� j; b1; b2Þ

+ e�α
Xb1
i¼ 1

Xu2
j¼ 0

gði; jÞVd
1 ðb1 + 1� i; u2 + 1� j; b1; b2Þ ð6Þ

and

Vd
2 ðb1; u2; b1; b2Þ ¼ e�α

Xu2
j¼ 0

gð0; jÞVd
2 ðb1; u2 + 1� j; b1; b2Þ

+ e�α
Xb1
i¼ 1

Xu2
j¼0

gði; jÞVd
2 ðb1 + 1� i; u2 + 1� j; b1; b2Þ ð7Þ

3. For u1 = 0,1,…, b1 −1;u2 = b2, the analyses are identical to those in Case 2 except that the roles
of line 1 and line 2 are reversed. Hence, we have

Vd
1 ðu1; b2; b1; b2Þ ¼ e�α

Xu1
i¼ 0

gði; 0ÞVd
1 ðu1 + 1� i; b2; b1; b2Þ

+ e�α
Xu1
i¼ 0

Xb2
j¼1

gði; jÞVd
1 ðu1 + 1� i; b2 + 1� j; b1; b2Þ ð8Þ

and

Vd
2 ðu1; b2; b1; b2Þ ¼ e�α

X1
i¼0

gði; 0Þ + e�α
Xu1
i¼0

gði; 0ÞVd
2 ðu1 + 1� i; b2; b1; b2Þ

+ e�α
Xu1
i¼ 0

Xb2
j¼ 1

gði; jÞVd
2 ðu1 + 1� i; b2 + 1� j; b1; b2Þ ð9Þ
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4. For u1 = b1; u2 = b2, each line will pay out the premium income of 1 as dividend if it has no
claim, plus potential future dividends if both lines survive time 1. This results in

Vd
1 ðb1; b2; b1; b2Þ ¼ e�αgð0; 0ÞVd

1 ðb1; b2; b1; b2Þ + e�α
X1
j¼ 0

gð0; jÞ

+ e�α
Xb2
j¼ 1

gð0; jÞVd
1 ðb1; b2 + 1� j; b1; b2Þ + e�α

Xb1
i¼ 1

gði; 0ÞVd
1 ðb1 + 1� i; b2; b1; b2Þ

+ e�α
Xb1
i¼ 1

Xb2
j¼ 1

gði; jÞVd
1 ðb1 + 1� i; b2 + 1� j; b1; b2Þ ð10Þ

and

Vd
2 ðb1; b2; b1; b2Þ ¼ e�αgð0; 0ÞVd

2 ðb1; b2; b1; b2Þ + e�α
X1
i¼ 0

gði; 0Þ

+ e�α
Xb2
j¼ 1

gð0; jÞVd
2 ðb1; b2 + 1� j; b1; b2Þ + e�α

Xb1
i¼ 1

gði; 0ÞVd
2 ðb1 + 1� i; b2; b1; b2Þ

+ e�α
Xb1
i¼ 1

Xb2
j¼ 1

gði; jÞVd
2 ðb1 + 1� i; b2 + 1� j; b1; b2Þ ð11Þ

To conclude, for fixed b1 and b2, the b1b2 equations of (5) at k = 1, b2 equations of (6), b1
equations of (8) and the single equation (10) form a system of (b1 + 1)(b2 + 1) linear equations for
{V1

d(u1, u2; b1, b2) : u1 = 0,1,…,b1; u2 = 0,1,…,b2} to be solved. Similarly, {V2
d(u1, u2; b1, b2) :

u1 = 0,1,…,b1; u2 = 0,1,…,b2} can be solved from equation (5) at k = 2 and equations (7), (9)
and (11).

2.2. Deriving the approximation

Our goal is to approximate the expected discounted dividends Vk defined in equation (2) for the
continuous-time model (equation (1)) using the quantity Vk

d defined in equation (4) for the discrete-time
model (equation (3)). To this end, we follow similar steps to those in Dickson & Waters (1991), who
studied the finite-time survival probabilities. Their approximation also proved to be useful in studying
dividend problems as well (see Dickson &Waters, 2004; Cheung &Drekic, 2008). However, the above
applications were all conducted under univariate risk processes. Under the present bivariate framework,
there are additional complications concerning the use of copula as well as a bivariate Panjer’s recursion
(see section 2.3). The derivation of the approximation consists of the following four steps.

1. Step 1: Change of monetary unit
First, we apply a change of monetary unit in the continuous-time model (equation (1)). In
particular, for some positive constants β1 and β2 (known as scaling factors), define the random
variables Yk

(1) = βkYk and Zk
(1) = βkZk for k = 1, 2. If Vk

(1)(u1, u2; b1, b2) denotes the expected
discounted dividends for line k in the continuous-time model with generic jumps Y1

(1), Y2
(1) and

(Z1
(1), Z2

(1)), Poisson rates λ11, λ22 and λ12, force of interest δ, premium rates (β1c1, β2c2), initial
surplus levels (u1, u2) and barrier levels (b1, b2), it is immediate that Vk in equation (2) satisfies

Vkðu1; u2; b1; b2Þ ¼
1
βk

Vð1Þ
k ðβ1u1; β2u2; β1b1; β2b2Þ (12)
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Note that the copula for the scaled version (Z1
(1), Z2

(1)) is also C(⋅,⋅), i.e., identical to that of
(Z1, Z2) (see e.g. Denuit et al. 2005, Proposition 4.4.4(i)).

2. Step 2: Discretisation of Y1
(1), Y2

(1), Z1
(1) and Z2

(1)

The random variables Y1
(1), Y2

(1), Z1
(1) and Z2

(1) defined in Step 1 are then discretised on {0,1, …} to
give the discretised versions Y1

(2), Y2
(2), Z1

(2) and Z2
(2). The “mean preserving method” (see e.g. De

Vylder & Goovaerts, 1988, section 7; Dickson, 2005: 80) is suggested and it is known to yield
good results (see Dickson & Waters, 1991, 2004; Cheung & Drekic, 2008). The pmf of Yk

(2) is
given by, for k = 1, 2:

hkkðiÞ ¼ βk

ð i + 1
βk

i
βk

FkkðyÞdy�
ð i

βk

i�1
βk

FkkðyÞdy
 !

; i ¼ 0; 1; ¼ (13)

For the discretised random vector (Z1
(2), Z2

(2)), we apply the same copula C(⋅,⋅) as the dependency
structure (see e.g. Bargès et al., 2009, section 5.2). Therefore, the joint pmf of (Z1

(2), Z2
(2)), namely

h12(i, j), can be calculated from the associated joint cdf:

Xi
k¼ 0

Xj
l¼ 0

h12ðk; lÞ ¼ C β1

ð i + 1
β1

i
β1

F1�ðyÞdy; β2
ð j + 1

β2

j
β2

F�2ðyÞdy
 !

; i; j ¼ 0; 1; ¼ (14)

Denote by Vk
(2)(u1, u2; b1, b2) the expected discounted dividends for line k in the continuous-time

model with discrete generic jumps Y1
(2), Y2

(2) and (Z1
(2), Z2

(2)), Poisson rates λ11, λ22 and λ12, force of
interest δ, premium rates (β1c1, β2c2), initial surplus levels (u1, u2) and barrier levels (b1, b2). If
Y1
(2), Y2

(2) and (Z1
(2), Z2

(2)) are good approximations of Y1
(1), Y2

(1) and (Z1
(1), Z2

(1)) (i.e. when β1 and β2
are “large”), respectively, then

Vð2Þ
k ðu1; u2; b1; b2Þ ’ Vð1Þ

k ðu1; u2; b1; b2Þ
and hence from equation (12) one has

Vkðu1; u2; b1; b2Þ ’ 1
βk

Vð2Þ
k ðβ1u1; β2u2; β1b1; β2b2Þ (15)

3. Step 3: Change of time unit
We now change the time unit of the continuous-time model with discrete claims in Step 2 such
that the premium income per time unit is 1. To achieve this, β1 and β2 introduced in Step 1 are
chosen such that β1c1 = β2c2. The model in Step 2 is then equivalent to a model in which the
discrete generic jumps are Y1

(2), Y2
(2) and (Z1

(2), Z2
(2)), the Poisson rates are λ11/β1c1, λ22/β1c1 and

λ12/β1c1, the force of interest is α = δ/β1c1, the premium rates are (1, 1), the initial surplus levels
are (u1, u2) and the barrier levels are (b1, b2). If we denote by Vk

(3)(u1, u2; b1, b2) the expected
discounted dividends for line k under the above setting, then

Vð3Þ
k ðu1; u2; b1; b2Þ ¼ Vð2Þ

k ðu1; u2; b1; b2Þ

and hence from equation (15) we arrive at

Vkðu1; u2; b1; b2Þ ’ 1
βk

Vð3Þ
k ðβ1u1; β2u2; β1b1; β2b2Þ (16)

4. Step 4: Replacement of continuous-time model by discrete-time model
In this final step, the continuous-time model with discrete claims in Step 3 is replaced by a
discrete-time one (in which the event of ruin and the payment of dividend (if any) are only
monitored once per period). One can then approximate Vk

(3)(u1, u2; b1, b2) by

Vð3Þ
k ðu1; u2; b1; b2Þ ’ Vd

k ðu1; u2; b1; b2Þ (17)
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where Vk
d(u1, u2; b1, b2) is defined by equation (4) under the force of interest α = δ/β1c1 and the

generic discrete claims, for k = 1, 2:

Xk ¼
XMkk

n¼ 1

Yð2Þ
k;n +

XM12

n¼1

Zð2Þ
k;n (18)

In the above representation, Mkk has a Poisson distribution with mean γkk = λkk/β1c1 whereas
M12 has a Poisson distribution with mean γ12 = λ12/β1c1. Moreover, fYð2Þ

k;ng1n¼ 1 is i.i.d. with
generic variable Yk

(2), and fðZð2Þ
1;n;Z

ð2Þ
2;nÞg1n¼ 1 is also i.i.d. with generic vector (Z1

(2),Z2
(2)). In addition,

M11,M22, M12, fYð2Þ
1;ng1n¼1; fYð2Þ

2;ng1n¼ 1 and fðZð2Þ
1;n;Z

ð2Þ
2;nÞg1n¼ 1 are all mutually independent. Hence

X1 and X2 are dependent compound Poisson random variables. When β1 (and hence β2) is
“large”, the time intervals between the points where the surplus levels are checked are small, since
one time unit in the present step is equivalent to 1/β1c1 time unit in the original continuous-time
model (equation (1)). Then equation (17) will be a good approximation. To conclude, one has
from equation (16) that

Vkðu1; u2; b1; b2Þ ’ 1
βk

Vd
k ðβ1u1; β2u2; β1b1; β2b2Þ (19)

and one requires β1u1, β2u2, β1b1 and β2b2 to be integers.

Formula (19) suggests that its left-hand side, namely the expected discounted dividends Vk in
equation (2) for the continuous-time model (equation (1)), can be approximated by its right-hand
side that is in terms of Vk

d defined in equation (4) for the fully discrete model (equation (3)). It remains
to evaluate the joint pmf of (X1, X2), namely g(i, j), in order to apply the results in section 2.1 to find
Vk
d. This will be the subject matter of the next subsection via the use of Panjer-type recursion (see e.g.

Klugman et al., 2008, Chapter 6.8). Note also that the above approximation is different from that in
Yuen et al. (2006, section 3), who approximated a bivariate compound Poisson risk model by a
bivariate compound binomial model. Their approximation does not involve Panjer’s recursion for
compound distribution, and in their model a common shock does not result in dependent claims in
the two lines.

2.3. Bivariate Panjer's recursion for dependent compound Poisson distributions

With the components of the random vector (X1, X2) given by equation (18), the derivation of its joint
pmf g(i, j) can be done by slightly modifying the results in Walhin & Paris (2000, section 4) who
considered the case where Z1

(2) and Z2
(2) are independent and distributed as Y1

(2) and Y2
(2), respectively.

Under the current setting, defining the probability generating function ĝðr; sÞ ¼P1
i¼0

P1
j¼ 0 r

isjgði; jÞ,
it can be proved that

ĝðr; sÞ ¼ e�γ11½1� ĥ11ðrÞ� � γ22½1� ĥ22ðsÞ� � γ12½1� ĥ12ðr;sÞ�

where ĥ11ðrÞ ¼
P1

i¼0 r
ih11ðiÞ, ĥ22ðsÞ ¼

P1
j¼ 0 s

jh22ðjÞ and ĥ12ðr; sÞ ¼
P1

i¼ 0

P1
j¼ 0 r

isjh12ði; jÞ are
the probability generating functions pertaining to the pmf’s h11(⋅), h22(⋅) and h12(⋅,⋅) defined via
equations (13) and (14) in Step 2; whereas γ11 = λ11/β1c1, γ22 = λ22/β1c1 and γ12 = λ12/β1c1
according to Step 4. By differentiating the above equation with respect to r, multiplying the resulting
equation by r and then equating coefficients of ri, we arrive at

gði; jÞ ¼ γ11
Xi
k¼1

k
i
h11ðkÞgði� k; jÞ + γ12

Xi
k¼1

Xj
l¼0

k
i
h12ðk; lÞgði� k; j� lÞ;

i ¼ 1; 2; ¼ ; j ¼ 0; 1; ¼ ð20Þ

Luyin Liu and Eric C. K. Cheung

10

https://doi.org/10.1017/S1748499514000165 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499514000165


Similarly,

gði; jÞ ¼ γ22
Xj
l¼1

l
j
h22ðlÞgði; j� lÞ + γ12

Xi
k¼ 0

Xj
l¼ 1

l
j
h12ðk; lÞgði� k; j� lÞ;

i ¼ 0; 1; ¼ ; j ¼ 1; 2; ¼ ð21Þ
The starting point of the recursion is

gð0; 0Þ ¼ e�γ11½1� h11ð0Þ� � γ22½1� h22ð0Þ� � γ12½1�h12ð0;0Þ� (22)

2.4. Numerical illustrations of the approximation

This subsection aims at demonstrating the quality of the approximation derived in section 2.2. Since
the same approximation will be used in various numerical illustrations for the rest of the paper, we
highlight the procedures as far as programming work is concerned to approximate Vk(u1, u2; b1, b2)
for k = 1, 2.

∙ Specify the parameters and distributional assumptions of the continuous-time model (equation (1)),
which include the premium rates (c1, c2), the Poisson rates (λ11, λ22, λ12), the cdfs F11(⋅), F22(⋅) and
F12(⋅,⋅), and the copula C(⋅,⋅). Specify the force of interest δ for the dividend function in equation (2).

∙ Select the scaling factors (β1, β2) such that β1u1, β2u2, β1b1 and β2b2 are integers, and β1c1 = β2c2.

∙ Apply equations (13) and (14) to find h11(⋅), h22(⋅) and h12(⋅,⋅).

∙ With γ11 = λ11/β1c1, γ22 = λ22/β1c1 and γ12 = λ12/β1c1, evaluate g(⋅,⋅) recursively using equations
(20) and (21) subject to the starting point in equation (22).

∙ Set α = δ/β1c1. Apply equations (5)–(11) (with b1 and b2 replaced by β1b1 and β2b2, respectively)
to calculate {V1

d(u1, u2; β1b1, β2b2): u1 = 0,1,…, β1b1; u2 = 0,1,…, β2b2} and {V2
d(u1, u2; β1b1,

β2b2) : u1 = 0,1,…, β1b1; u2 = 0,1,…, β2b2}.

∙ Apply equation (19) to approximate Vk(u1, u2; b1, b2) for k = 1, 2.

It is instructive to note that as the scaling factors β1 and β2 increase (such that β1c1 = β2c2), the
approximation of the continuous-time bivariate process by a discrete-time one gets more accurate
because (i) the discretisation in Step 2 in section 2.2 gets finer (i.e. continuous claims are better
approximated by discrete ones); and (ii) the approximating discrete-time process in Step 4 is checked
more frequently (and becomes closer to the continuous-time model). Note that two opposing sources
of errors always occur when one approximates the dividend function Vk by Vk

d. First, dividends are
paid immediately in the continuous-time model once the surplus of an individual line reaches its
barrier; whereas in the discrete-time model, reaching the barrier does not immediately result in a
dividend unless there is no claim in the next period. In this aspect, Vk

d tends to underestimate the true
value Vk due to discounting. In contrast, the discrete-time model tends to survive longer due to the
protection from delayed dividend payments, which means that there can be more potential future
dividends. This may cause Vk

d to overestimate Vk. In the following example, we shall gradually
increase the scaling factors in computing the approximated dividend values. Simulations are also
conducted to verify the accuracy of the approximations and check whether one of the aforementioned
effects is always more dominant.

Example 1 In this example, we assume the Poisson rates λ11 = λ22 = λ12 = 1 and the premium rates
c1 = 2.8 and c2 = 4.2. Line 1 is subject to claims with pdf f11(y) = f1∙(y) = 0.8e−0.8y; whereas the
claims of line 2 have pdf f22(y) = f∙2(y) = 0.5e−0.5y. Their means are 1.25 and 2, respectively, and
they both have coefficient of variation of 1. In the case of a common shock, it is assumed that Z1 and
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Z2 are independent of each other, i.e., the independence copula C(u,v) = uv for 0≤u, v≤1 is used.
The loading conditions c1 = 2.8>2.5 = λ11E[Y1] + λ12E[Z1] and c2 = 4.2>4 = λ22E[Y2] + λ12E[Z2]
are satisfied. The force of interest is assumed to be δ = 0.05, and the barrier values are fixed to be

Table 1. Approximated dividends in the two lines for various sets (β1, β2): (a) V1 and (b) V2.

u2

u1 0 1 2

(a) V1

(β1, β2) = (3, 2)
0 0.425 0.486 0.507
1 0.832 0.971 1.024
2 1.526 1.721 1.805

(β1, β2) = (6, 4)
0 0.417 0.473 0.491
1 0.826 0.958 1.003
2 1.524 1.716 1.790

(β1, β2) = (15,10)
0 0.413 0.467 0.482
1 0.824 0.951 0.991
2 1.526 1.715 1.782

(β1, β2) = (30, 20)
0 0.412 0.465 0.479
1 0.823 0.949 0.987
2 1.527 1.715 1.780

(β1, β2) = (60, 40)
0 0.411 0.464 0.478
1 0.823 0.948 0.985
2 1.527 1.715 1.778

(b) V2

(β1, β2) = (3, 2)
0 0.957 1.493 2.268
1 1.193 1.869 2.717
2 1.267 2.003 2.886

(β1, β2) = (6, 4)
0 0.956 1.496 2.276
1 1.187 1.869 2.725
2 1.253 1.990 2.882

(β1, β2) = (15,10)
0 0.958 1.501 2.285
1 1.184 1.870 2.733
2 1.245 1.984 2.881

(β1, β2) = (30, 20)
0 0.958 1.503 2.289
1 1.184 1.871 2.736
2 1.243 1.982 2.881

(β1, β2) = (60, 40)
0 0.959 1.504 2.291
1 1.184 1.872 2.738
2 1.242 1.981 2.881
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b1 = b2 = 2 (see section 5 for an explanation regarding the choice of low barriers). According to the
computational procedures outlined at the beginning of this subsection, we require β1c1 = β2c2, or
equivalently β1 = 1.5β2. The approximated values of the expected discounted dividends for the two
lines using different sets of (β1, β2) are given in Tables 1a and 1b.

From Table 1, it is clear that for a given set of (β1, β2), the dividend functions for both lines
are increasing in the initial surplus levels u1 and u2 as they must be. When we increase the values of
(β1, β2) for each fixed pair of initial surplus levels (u1, u2), the dividend values of line 1 always
decrease (except when (u1, u2) = (2, 0)); whereas those of line 2 either increase or decrease. In all
cases, the dividends for both lines appear to be converging as (β1, β2) increases. To further verify the
results, we have also run some simulations in the continuous-time risk model and obtained Tables 2a
and 2b for the dividend functions of the two lines. In Table 2, each pair of (V1, V2) is calculated using
1,000,000 sample paths generated up to the joint ruin time. Comparing Table 1 with Table 2, it can
be seen that scaling factors of (β1, β2) = (60, 40) produce very good results: the dividend values are
always the same up to at least two decimal places. More interestingly, the results obtained by smaller
scaling factors of, say (β1, β2) = (15, 10), are indeed still comparable to those by simulations. However,
the simulation results are sometimes a bit larger than and sometimes a bit smaller than the discrete-time
approximations. Therefore, one cannot conclude whether our approximation tends to underestimate
or overestimate the true value of dividends, i.e., neither the effect of delayed dividends nor the effect of
prolonged survival is always more dominant. Nonetheless, for each fixed pair of initial surplus levels
(u1, u2), the approximated values in Table 1 approach the corresponding simulated values in Table 2
either from above or below as (β1, β2) increase. (Indeed, we have separately run the Dickson−Waters
type of algorithm in Cheung & Drekic, 2008 for a single line dual risk process with a dividend barrier.
It was found that the approximated dividend values either increase or decrease to the true value as the
scaling factor increases, depending on the initial surplus and the barrier level). □

3. Three Different Types of Dependencies

In this section, we examine the bivariate risk process described by equation (1) in which the two lines
of business are subject to different types of dependencies via some numerical examples. These include
(i) common shocks; (ii) copulas; and (iii) proportional reinsurance. Throughout this entire section, the
barrier values b1 = b2 = 2 are applied because high scaling factors (β1, β2) will be used (see concluding
remarks in section 5).

Table 2. Simulated dividends in the two lines: (a) V1 and (b) V2.

u2

u1 0 1 2

(a) V1

0 0.411 0.463 0.476
1 0.823 0.945 0.983
2 1.527 1.715 1.777

(b) V2

0 0.959 1.506 2.292
1 1.182 1.870 2.739
2 1.240 1.979 2.880
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3.1. Different levels of common shocks

Example 2 In this example, we aim at examining the impact of different levels of common shocks on
the dividends by varying the values of λ11, λ22 and λ12 while keeping λ11 + λ12 = λ22 + λ12 = 2 fixed,
i.e., each individual line of business is subject to the same total claim arrival rate of 2. To illustrate
the versatility of the approximation, we use the more complicated density functions
f11ðyÞ ¼ f1�ðyÞ ¼ 8e�2ysin2y, f22(y) = f∙2(y) = (1/4)(0.62ye −0.6y) + (3/4)(92ye −9y). These two distribu-
tions have rational Laplace transforms, and they were used in Cheung & Drekic (2008). They both
have mean 1, and their coefficients of variation are 0.50 and 1.80, respectively. While f22(y)
represents a standard mixture of two Erlang (2) distributions, the less common f11(y) is the pdf of a
damped squared sine distribution with low variability. In particular, the density f11(y) is strictly
increasing starting from f11(0) = 0 until it reaches the global maximum of 0.83152 at
π/4 = 0.78540, from which f11(y) is strictly decreasing until zero is reached at π = 3.14159. Due
to the periodicity induced by the sine function, f11(y) also achieves (i) global and local minimum of
zero at y = nπ for n = 1,2,…; and (ii) local maximum at y = nπ+ π/4 for n = 1,2,…. Nonetheless,
f11(y) is very very close to zero for y> π, and f11(y) is strictly unimodal for y≥ 0. The premium rates
are assumed to be c1 = 2.2 and c2 = 3.3, so that the loading conditions c1 = 2.2>2 = λ11E[Y1] + λ12E
[Z1] and c2 = 3.3>2 = λ22E[Y2] + λ12E[Z2] hold true. (Note that the premium of line 2 is assumed to
have a larger loading factor because its claims have larger variance.) The remaining model assumptions
are same as those in Example 1: Z1 and Z2 are independent in case of a common shock; the force of
interest is δ = 0.05, and the barrier values are b1 = b2 = 2. Using the scaling factors (β1, β2) = (60, 40),
we follow the approximation procedures outlined at the beginning of section 2.4 and the resulting
dividend values are listed in Tables 3a and 3b. The tables start with the extreme case of λ11 = λ22 = 2
and λ12 = 0 in which the two lines of business only face their own claims independently with no
common shocks at all. Then as we move down the tables, λ11 and λ22 are decreased by 0.5 whereas λ12
is increased by 0.5 each time until we reach another extreme case where λ11 = λ22 = 0 and λ12 = 2. The
last case indicates that the two lines are only subject to common shocks.

A look at Table 3 reveals that the dividend values for both lines increase as the rate of common
shocks increases. This can be interpreted as follows. For the case where λ11 = λ22 = 2 and λ12 = 0,
the surplus processes of the two lines are indeed independent, and the mean total number of claim
events per unit time, namely λ11 + λ22 + λ12, is 4. As we move towards the most dependent case of
λ11 = λ22 = 0 and λ12 = 2 where there are common shocks only, the mean total number of claim
events per unit time decreases to 2. Since each instant of a claim event can potentially be the joint
ruin time T = min(T1, T2), the bivariate process is likely to survive longer when there are more
common shocks (keeping the total claim arrival rate for each line fixed), resulting in more dividends.
Note that the dividends for both lines cease once ruin has occurred in one of the two lines. Another
interpretation of our results is that when there are no common shocks at all, one of the lines in fact
has positive surplus at the joint ruin time T but no further dividends are paid, i.e., the situation is not
economical. In contrast, when common shocks are more frequent, it is more likely that both lines
have negative surplus at the joint ruin time T anyway, i.e., there is less chance that resources are
wasted. These observations complement the numerical results in Gong et al. (2012, figure 1) who
studied the joint ruin probability in the absence of dividends. □

3.2. Different copulas

In this subsection, we apply different parametric copulas to describe the dependency between Z1 and
Z2 when a common shock strikes both lines. Three copulas will be considered: (i) Ali−Mikhail−Haq
(AMH) copula (e.g. Nelsen, 2006, Exercises 2.14(d) and 5.10); (ii) Farlie−Gumbel−Morgenstern
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(FGM) copula (e.g. Nelsen, 2006, Examples 3.12 and 5.2); and (iii) Gaussian (or normal) copula
(e.g. Denuit et al., 2005, Chapter 4.3.3 and Exercise 5.4.6). Each copula’s definition and Kendall’s τ (or
Kendall’s rank correlation coefficient) are summarised in Table 4.

Table 3. Approximated dividends in the two lines for different levels of common shocks:
(a) V1 and (b) V2.

u2

u1 0 1 2

(a) V1

λ11 = λ22 = 2, λ12 = 0
0 0.260 0.303 0.308
1 0.689 0.801 0.816
2 1.404 1.601 1.627

λ11 = λ22 = 1.5, λ12 = 0.5
0 0.305 0.342 0.347
1 0.769 0.873 0.886
2 1.503 1.688 1.712

λ11 = λ22 = 1, λ12 = 1
0 0.358 0.387 0.390
1 0.857 0.950 0.962
2 1.609 1.781 1.803

λ11 = λ22 = 0.5, λ12 = 1.5
0 0.419 0.437 0.439
1 0.955 1.035 1.045
2 1.722 1.880 1.900

λ11 = λ22 = 0, λ12 = 2
0 0.490 0.493 0.494
1 1.062 1.127 1.135
2 1.842 1.986 2.004

(b) V2

λ11 = λ22 = 2, λ12 = 0
0 0.906 1.401 2.113
1 1.637 2.458 3.318
2 1.946 2.910 3.846

λ11 = λ22 = 1.5, λ12 = 0.5
0 1.041 1.538 2.260
1 1.799 2.621 3.483
2 2.092 3.067 4.005

λ11 = λ22 = 1, λ12 = 1
0 1.193 1.686 2.417
1 1.971 2.791 3.655
2 2.244 3.231 4.170

λ11 = λ22 = 0.5, λ12 = 1.5
0 1.365 1.845 2.584
1 2.156 2.969 3.834
2 2.402 3.401 4.341

λ11 = λ22 = 0, λ12 = 2
0 1.558 2.018 2.763
1 2.352 3.155 4.022
2 2.566 3.578 4.519
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In the definition of the Gaussian copula, Φ(⋅) is the standard normal cdf whereas Φθ(⋅,⋅) represents
the bivariate standard normal cdf with covariance θ. Note that the Kendall’s rank correlation
coefficient, as a measure of dependency, is only specific to a given copula and is independent of the
marginal distributions (e.g. Nelsen, 2006, Theorem 5.1.3). In all three copulas, θ = 0 corresponds to
the case of independence (i.e. C(u, v) = uv for 0≤u, v≤ 1), and the resulting Kendall’s τ is zero. It is
instructive to note that all these three copulas have one parameter. This means that from the point of
view of calibration, if one of these copulas has been identified as suitable for a given set of data, then
the parameter follows in a straightforward manner once the Kendall’s rank correlation has been
estimated (see e.g. McNeil et al., 2005, section 5.5.1).

The application of copulas as a tool for risk management in finance and insurance was discussed
extensively in Embrechts et al. (2002, 2003), and we also refer interested readers to Frees & Valdez
(1998), Klugman & Parsa (1999) and Trivedi & Zimmer (2005) for general actuarial applications
and fitting of bivariate loss distributions using copulas. The reasons for the choice of the above three
copulas are as follows. First, the AMH copula belongs to the class of Archimedean copulas, which
possess nice properties and are popular for modelling (see e.g. Genest & MacKay, 1986; Denuit
et al., 2005, Chapter 4.5; Nelsen, 2006, Chapter 4). See also Denuit et al. (2004) for the use of
Archimedean copulas in non-life insurance. A plot of the AMH copula pdf can be found in Panjer
(2006, figure 8.8). Second, the FGM copula belongs to the class of polynomial copulas (see e.g.
Drouet-Mari & Kotz, 2001, Chapter 4.5.2). It is a tractable copula that is a first-order approximation
of both the Plackett copula and the Frank copula (see e.g. Nelsen, 2006, Exercises 3.39 and 4.9). Owing
to its simplicity, the FGM copula has become increasingly popular in modelling aggregate claims in
insurance risk models (see e.g. Cossette et al., 2010; Bargès et al., 2011; Woo & Cheung, 2013, section
4; Chadjiconstantinidis & Vrontos, 2014). While AMH and FGM copulas only allow moderate
dependence (which is evident from the range of Kendall’s τ), stronger dependency can be modelled
by the Gaussian copula that is commonly used for comparison purposes. See e.g. Denuit et al. (2005,
figure 4) that depicts the increasing dependency of the components of a bivariate Gaussian copula
as θ increases. It is known (e.g. Trivedi & Zimmer, 2005, Chapter 2.3.3) that the bivariate Gaussian
copula attains the Fréchet lower and upper bounds, respectively, when θ tends to −1 and 1.

Example 3 In this example, we follow the same assumptions as in Example 2 of section 3.1 under
the Poisson rates λ11 = λ22 = λ12 = 1, except that the three copulas in Table 4 are applied to the pair
(Z1, Z2) arising from common shocks. For a fair comparison among different copulas, we fix the
value of Kendall’s τ and then solve for the appropriate parameter θ. First, setting τ = 0.2 yields
θ = 0.71349, θ = 0.9 and θ = 0.30902, respectively, for AMH, FGM and Gaussian copulas.
Tables 5a and 5b summarise the approximated dividend values calculated using the procedures at
the beginning of section 2.4 under the scaling factors (β1, β2) = (60, 40). If we instead fix a negative
Kendall’s τ = −0.2, it is found that θ = −0.9 and θ = −0.30902 for FGM and Gaussian copulas,

Table 4. Copulas and their Kendall’s rank correlation coefficients.

Copula C(u, v) for 0≤ u, v≤ 1 Range of θ Kendall’s τ Range of τ

AMH
uv

1� θð1�uÞð1� vÞ −1≤ θ≤1
3θ� 2
3θ

� 2ð1� θÞ2 lnð1�θÞ
3θ2

−0.181173≤ τ≤0.33333

FGM uv+ θuv(1− u)(1 − v) −1≤ θ≤1
2
9
θ −0.22222≤ τ≤0.22222

Gaussian Φθ(Φ −1(u), Φ −1(v)) −1< θ<1
2
π
arcsin θ −1< τ<1
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respectively; whereas the AMH copula cannot reach such a Kendall’s τ according to the last column
of Table 4. The corresponding approximated dividend values are given in Tables 6a and 6b.

Within each of the four Tables 5a & 5b and 6a & 6b, it is clear that the dividend values are
considerably close for different copulas with the Kendall’s τ being fixed. When one compares the
values across Tables 3 (i.e. the case with λ11 = λ22 = λ12 = 1), 5 and 6, the dividend function for
each line increases as the Kendall’s τ changes from −0.2 to 0 and then to 0.2. The intuition behind is
as follows. For each of the three copulas, for fixed (u, v) the value of C(u, v) increases with the
parameter θ, which in turn increases with the Kendall’s τ. Thus, for fixed values of z1 and z2, the joint cdf
F12(z1,z2) = C(F1∙(z1), F∙2(z2)) increases with respect to the Kendall’s τ. In other words, when dependency
is positive, the possibility for (Z1, Z2) to lie outside (0, z1]× (0, z2] is smaller, leading to less chance of ruin
of the bivariate process from a given common shock and hence more dividends. □

3.3. Proportional reinsurance

In this subsection, we illustrate the interpretation and application of our model described by
equation (1) in problems involving proportional reinsurance (see Remark 1). To begin, we first
discuss the formulation and some notations that will be used throughout. In the absence of any

Table 5. Approximated dividends in the two lines for different copulas with τ = 0.2:
(a) V1 and (b) V2.

u2

u1 0 1 2

(a) V1

AMH
0 0.369 0.398 0.402
1 0.881 0.975 0.987
2 1.636 1.810 1.831

FGM
0 0.371 0.401 0.404
1 0.885 0.980 0.991
2 1.641 1.815 1.837

Gaussian
0 0.372 0.401 0.405
1 0.887 0.982 0.994
2 1.643 1.818 1.840

(b) V2

AMH
0 1.230 1.727 2.458
1 2.035 2.863 3.729
2 2.307 3.304 4.244

FGM
0 1.236 1.733 2.465
1 2.045 2.876 3.743
2 2.318 3.318 4.258

Gaussian
0 1.239 1.736 2.468
1 2.052 2.885 3.752
2 2.327 3.330 4.271
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reinsurance, it is assumed that line 1 of business faces two independent classes of aggregate claims
with Poisson arrival rates λ11 and λ12 and generic claim severities Y1 andW, respectively. In addition,
line 2 is only subject to an aggregate claims process with Poisson rate λ22 and generic claim Y2.
Suppose that the generic claimW is more dangerous than Y1 (e.g.W is heavy-tail and Y1 is light-tail),
and line 1 wants to reduce its risk exposure by purchasing reinsurance from line 2 for part of the risk
W. We assume a proportional reinsurance contract such that line 1 retains a proportion s1 of each
claim W (and reinsures the remaining portion of 1 − s1) for some 0< s1<1. Under the reinsurance
arrangements described above, the model in equation (1) is applicable by letting (Z1, Z2) = (s1W,
(1 − s1)W). With FW(⋅) being the cdf of the positive continuous random variable W, one has
F1∙(y1) = FW(y1/s1) and F∙2(y2) = FW(y2/(1 − s1)). Because Z1 and Z2 are comonotonic, the como-
notonicity copula C(u, v) = min(u, v) for 0≤u, v≤ 1 should be applied. It is assumed that line 1
imposes the security loading factors η11 and η12 to the claims Y1 and W; whereas line 2 imposes the
loadings η21 and η22 to Y2 and Z2. Thus, the net premium income rates c1 and c2 are given by

c1 ¼ ð1 + η11Þλ11E½Y1� + ð1 + η12Þ�ð1 + η22Þð1�s1Þ½ �λ12E½W�
c2 ¼ ð1 + η21Þλ22E½Y2� + ð1 + η22Þð1�s1Þλ12E½W�

(
(23)

Practically, the loading factor η22 charged by the reinsurer is no less than the loading η12. Otherwise,
line 1 can simply reinsure the entire risk W to earn a risk-free profit. In addition, line 1 of business
should not choose to accept the risk W unless it can generate positive expected net profit. This gives
rise to the condition

ð1 + η12Þ� ð1 + η22Þð1� s1Þ½ �λ12E½W�> s1λ12E½W� (24)

The left-hand side of the above equation represents the net premium income of line 1 upon accepting
the risk W and reinsuring part of it; while the right-hand side is line 1’s expected net claims arising
from W after reinsurance.

Table 6. Approximated dividends in the two lines for different copulas with τ = −0.2:
(a) V1 and (b) V2.

u2

u1 0 1 2

(a) V1

FGM
0 0.345 0.374 0.377
1 0.831 0.923 0.935
2 1.578 1.748 1.770

Gaussian
0 0.344 0.373 0.376
1 0.830 0.921 0.933
2 1.577 1.746 1.768

(b) V2

FGM
0 1.153 1.640 2.371
1 1.901 2.709 3.570
2 2.173 3.148 4.085

Gaussian
0 1.152 1.639 2.369
1 1.901 2.708 3.569
2 2.172 3.147 4.084
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Example 4 In this example, we assume λ11 = λ22 = λ12 = 1, f11ðyÞ ¼ 8e�2ysin2y, fW(y) = 5 ⋅85/(y+8)6

and f22(y) = (1/4)(0.62ye −0.6y) + (3/4)(92ye −9y). Note that Y1 and Y2 are both light-tail with mean 1
while W is heavy-tail with mean 2. As in previous examples, the force of interest is assumed to be
δ = 0.05 and the barrier values are (b1, b2) = (2, 2). In addition, the loading factors are η11 = 0.2,
η12 = η21 = 0.5 and η22 = 1. Plugging in these assumptions into the inequality (equation (24)) yields
s1> 0.5. Then, the values of c1 and c2 are calculated according to equation (23) based on different
choices of s1. We shall again apply the approximation procedures stated in section 2.4 to produce
the dividend values. Note that it is not possible to apply the same scaling factors (β1, β2)
for different values of s1 due to the constraint β1c1 = β2c2. In order to make a fair comparison
of the dividends across different s1, the values of β1 (or β2) are chosen such that the resulting values
of β1c1 (or β2c2) are comparable for different s1, so that the approximating discrete-time processes
are checked at roughly the same frequency. (Recall that one time unit in the approximating discrete-
time model is equivalent to 1/β1c1 time unit in the continuous-time model.) Our study is performed
under a set of (β1, β2) whose values of β1c1 are all around 160. The approximated expected
discounted dividends for the two lines as well as their sums for various values of s1 are given in
Tables 7a − 7c.

From Table 7, it can be observed that for each fixed pair of initial capital levels under consideration, the
dividend values for line 1 increase while those for line 2 decrease as s1 increases by steps of 0.05 from
0.55 to 0.75. (We have also tested larger values of s1 up to s1 = 1 and the same pattern prevails.) If one’s
interest is to maximise the sum of the dividend functions of the two lines, we note that the maximum is
attained at different values of s1 depending on the initial surplus levels. Among the nine pairs of initial
surplus levels, six of them have the optimal joint dividends achieved at s1 = 0.55. The exceptions include
the cases of (u1, u2) = (0, 0) and (u1, u2) = (0, 2) for which the optimal s1 is 0.65, along with the case of
(u1, u2) = (0, 1) for which the optimal s1 is 0.7. The results suggest that in order to maximise the joint
dividends in a proportional reinsurance contract, the optimal retention level s1 should not be chosen at
the extremes of 0 or 1, i.e., the risk should be shared. □

4. The Optimal Dividend Barriers for the Bivariate Process

In the standard univariate compound Poisson risk process under a dividend barrier strategy, it is
known (see Gerber et al., 2006, section 4) that the optimal dividend barrier b� that maximises the
expected discounted dividends until ruin (with respect to the barrier level b) is independent of the
initial surplus u≥0, as long as u≤b�. If u>b, it is typically assumed that the excess amount u −b
over the barrier is paid immediately as a lump sum dividend so that the process will be starting at b.
Under this setting, Gerber et al. (2006, section 5) found that the dividend function also attains a local
maximum at b = b� even for u> b�, and they commented that in many cases this is expected to be
the global maximum as well. See also Gerber et al. (2010, section 5) for discussion of the optimal
dividend barrier in a univariate discrete-time model.

Under a bivariate risk model, we will adopt the convention that if a certain line of business has its
initial surplus above its own barrier level then the excess is paid immediately as dividend. Therefore,
in the continuous-time setting one has

V1ðu1; u2; b1; b2Þ ¼
V1ðu1; b2; b1; b2Þ; 0≤ u1 ≤ b1; u2 >b2

u1� b1 +V1ðb1; u2; b1; b2Þ; u1 > b; 0≤ u2 ≤ b2

u1� b1 +V1ðb1; b2; b1; b2Þ; u1 > b; u2 > b2

8>><
>>:
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Table 7. Approximated dividends for different s1 with β1c1≈ 160: (a) V1, (b) V2 and
(c) Sum.

u2

u1 0 1 2

(a) V1

s1 = 0.55, (β1, β2) = (66, 48), β1c1 = 158.4
0 0.696 0.750 0.757
1 1.361 1.563 1.578
2 2.157 2.481 2.516

s1 = 0.6, (β1, β2) = (62, 52), β1c1 = 161.2
0 0.829 0.899 0.907
1 1.553 1.778 1.796
2 2.370 2.727 2.758

s1 = 0.65, (β1, β2) = (58, 56), β1c1 = 162.4
0 0.966 1.053 1.064
1 1.743 1.991 2.012
2 2.579 2.966 2.996

s1 = 0.7, (β1, β2) = (54, 60), β1c1 = 162
0 1.104 1.211 1.224
1 1.931 2.202 2.227
2 2.783 3.196 3.229

s1 = 0.75, (β1, β2) = (50, 64), β1c1 = 160
0 1.242 1.372 1.388
1 2.114 2.411 2.440
2 2.982 3.420 3.458

(b) V2

s1 = 0.55, (β1, β2) = (66, 48), β1c1 = 158.4
0 1.642 2.214 2.968
1 2.391 3.399 4.280
2 2.594 3.770 4.732

s1 = 0.6, (β1, β2) = (62, 52), β1c1 = 161.2
0 1.523 2.085 2.828
1 2.173 3.123 3.995
2 2.342 3.453 4.389

s1 = 0.65, (β1, β2) = (58, 56), β1c1 = 162.4
0 1.392 1.942 2.673
1 1.950 2.844 3.706
2 2.091 3.131 4.048

s1 = 0.7, (β1, β2) = (54, 60), β1c1 = 162
0 1.252 1.788 2.506
1 1.727 2.565 3.416
2 1.843 2.809 3.713

s1 = 0.75, (β1, β2) = (50, 64), β1c1 = 160
0 1.106 1.626 2.331
1 1.505 2.289 3.128
2 1.601 2.494 3.385
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for line 1. Similar definition applies to line 2 and for the discrete-time model as well. We are mostly
interested in the optimal pair of dividend barriers that maximise the sum of the dividend functions of
the two lines. However, the techniques used to analyse the optimal barrier in the single line case as in
Gerber et al. (2006) do not apply to the bivariate continuous-time model. Consequently, we will
work with the discrete-time model and apply the approximation procedures in section 2.4 to give
some numerical illustrations that will provide more insights to the problem.

4.1. Are the optimal barriers independent of the initial surplus levels?

Under the bivariate (or more generally multivariate) framework, one does not expect the pair of
optimal dividend barriers to be independent of the initial surplus levels. In the following brief
example, we provide a fully discrete case to justify our claim.

Example 5 We consider the discrete bivariate risk process introduced in section 2.1. The generic
claims X1 and X2 are assumed independent so that g(i, j) = g1(i)g2(j) for i, j = 1,2,…. It is assumed
that X1 and X2 follow different zero-modified geometric distributions. For line 1, we assume
g1(0) = 0.78 and g1(k) = 0.55× 0.6(1 −0.6)k for k = 1,2,…, and thus E[X1] = 0.367. For line 2,
g2(0) = 0.8 and g2(k) = 0.4× 0.5(1 − 0.5)k for k = 1,2,…, and hence E[X2] = 0.4. Let the force of
interest be α = 0.05. Using the system of equations developed in section 2.1, we have computed the
dividend values for integer values of barriers (b1, b2) (as the barriers can only take integer values in the
fully discrete model) and searched for the optimal barriers ðb�1; b�2Þ that maximise the total dividends
Vd

1 ðu1; u2; b1; b2Þ +Vd
2 ðu1; u2; b1; b2Þ. For 1≤u1; u2 ≤ 9, the optimal barriers are provided in Table 8,

Table 7. (Continued )

u2

u1 0 1 2

(c) Sum
s1 = 0.55, (β1, β2) = (66, 48), β1c1 = 158.4
0 2.338 2.964 3.725
1 3.752 4.962 5.858
2 4.751 6.251 7.248

s1 = 0.6, (β1, β2) = (62, 52), β1c1 = 161.2
0 2.353 2.984 3.735
1 3.725 4.901 5.790
2 4.712 6.181 7.147

s1 = 0.65, (β1, β2) = (58, 56), β1c1 = 162.4
0 2.358 2.995 3.736
1 3.693 4.835 5.718
2 4.669 6.097 7.044

s1 = 0.7, (β1, β2) = (54, 60), β1c1 = 162
0 2.356 2.999 3.730
1 3.657 4.768 5.643
2 4.626 6.005 6.942

s1 = 0.75, (β1, β2) = (50, 64), β1c1 = 160
0 2.348 2.998 3.719
1 3.620 4.700 5.568
2 4.583 5.914 6.843
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and the resulting optimal total dividend values are given in Table 9. It is clear from Table 8 that
although most combinations of initial surplus levels do share the same pair of optimal barriers
ðb�1; b�2Þ ¼ ð5; 6Þ, in general the values of ðb�1; b�2Þ do depend on the initial surplus levels (u1, u2).

4.2. Examination of the table of the joint dividends

For the rest of the paper, we follow closely the model settings as in Example 2 in section 3.1 with
Poisson rates λ11 = λ22 = λ12 = 1, i.e., the premium rates are c1 = 2.2 and c2 = 3.3, the claim pdf’s
are f11ðyÞ ¼ f1�ðyÞ ¼ 8e�2ysin2y and f22(y) = f∙2(y) = (1/4)(0.62ye −0.6y) + (3/4)(92ye −9y) with Z1 and
Z2 independent, and the force of interest is δ = 0.05. The approximation procedures outlined at the
beginning of section 2.4 will be applied throughout. Because we will look at larger barrier levels, the
smaller scaling factors of (β1, β2) = (3, 2) will be applied throughout (see concluding remarks in
section 5). As in the fully discrete Example 5, we have tested that the optimal barriers depend on the
initial capital levels. Since we use (β1, β2) = (3, 2), the initial surplus levels (u1, u2) and the barriers
(b1, b2) (and hence the optimal barriers ðb�1; b�2Þ) in the continuous-time model being approximated
can be in the fractional form of e.g. 9 1

3 ; 10
1
2

� �
. However, for illustrative purposes, we only consider

integer values of (u1, u2) and (b1, b2) for convenience.

Table 8. The optimal pair of barriers ðb�1;b�2Þ for 1≤u1, u2≤9.

u2

u1 1 2 3 4 5 6 7 8 9

1 (5,6) (5,6) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5)
2 (5,6) (5,6) (5,6) (5,5) (5,5) (5,6) (5,6) (5,6) (5,6)
3 (5,6) (5,6) (5,6) (5,6) (5,5) (5,6) (5,6) (5,6) (5,6)
4 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)
5 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)
6 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)
7 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)
8 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)
9 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)

Table 9. The optimal total dividends for 1≤u1, u2≤9.

u2

u1 1 2 3 4 5 6 7 8 9

1 11.248 12.995 14.345 15.501 16.634 17.634 18.634 19.634 20.634
2 12.918 14.898 16.404 17.660 18.823 19.889 20.889 21.889 22.889
3 14.106 16.230 17.832 19.145 20.317 21.439 22.439 23.439 24.439
4 15.187 17.324 18.981 20.329 21.521 22.652 23.652 24.652 25.652
5 16.187 18.369 20.042 21.401 22.599 23.732 24.732 25.732 26.732
6 17.187 19.369 21.042 22.401 23.599 24.732 25.732 26.732 27.732
7 18.187 20.369 22.042 23.401 24.599 25.732 26.732 27.732 28.732
8 19.187 21.368 23.042 24.401 25.599 26.732 27.732 28.732 29.732
9 20.187 22.368 24.042 25.401 26.599 27.732 28.732 29.732 30.732

□

Luyin Liu and Eric C. K. Cheung

22

https://doi.org/10.1017/S1748499514000165 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499514000165


In order to study how the barrier values affect the total expected discounted dividends, we have fixed
(u1, u2) to be (5, 5), (5, 6) and (5, 7) in turn and then tabulated the approximated total dividend
values for various choices of (b1, b2) in Tables 10–12. The bold number in each table shows

Table 11. Approximated total dividends when (u1, u2) = (5, 6).

b2

b1 1 2 3 4 … 9 10 11 12

1 12.741 11.912 11.045 10.139 … 6.469 6.197 6.009 5.879
2 13.596 13.158 12.670 12.083 … 8.567 8.067 7.648 7.297
3 13.638 13.583 13.537 13.396 … 10.942 10.382 9.861 9.384
4 13.175 13.391 13.704 13.973 … 13.010 12.519 12.013 11.513
… … … … … … … … … …

8 11.174 11.567 12.221 13.014 … 15.726 15.763 15.668 15.469
9 11.029 11.385 12.000 12.765 … 15.619 15.718 15.681 15.534
10 10.943 11.267 11.845 12.576 … 15.450 15.584 15.583 15.471
11 10.893 11.193 11.739 12.436 … 15.264 15.415 15.434 15.343

Table 10. Approximated total dividends when (u1, u2) = (5, 5).

b2

b1 1 2 3 4 … 9 10 11 12

1 11.741 10.912 10.045 9.139 … 6.175 5.988 5.859 5.770
2 12.596 12.158 11.670 11.083 … 7.978 7.568 7.224 6.936
3 12.638 12.583 12.537 12.396 … 10.144 9.656 9.202 8.786
4 12.175 12.391 12.704 12.973 … 12.063 11.621 11.167 10.719
… … … … … … … … … …

8 10.174 10.567 11.221 12.014 … 14.603 14.641 14.556 14.374
9 10.029 10.385 11.000 11.765 … 14.500 14.596 14.567 14.435
10 9.943 10.267 10.845 11.576 … 14.336 14.467 14.473 14.374
11 9.893 10.193 10.739 11.436 … 14.155 14.303 14.329 14.251

Table 12. Approximated total dividends when (u1, u2) = (5, 7).

b2

b1 1 2 3 4 … 9 10 11 12

1 13.741 12.912 12.045 11.139 … 6.881 6.485 6.212 6.023
2 14.596 14.158 13.670 13.083 … 9.248 8.641 8.131 7.704
3 14.638 14.583 14.537 14.396 … 11.786 11.150 10.556 10.012
4 14.175 14.391 14.704 14.973 … 13.960 14.422 12.864 12.310
… … … … … … … … … …

8 12.174 12.567 13.221 14.014 … 16.794 16.831 16.726 16.508
9 12.029 12.385 13.000 13.765 … 16.686 16.785 16.740 16.577
10 11.943 12.267 12.845 13.576 … 16.514 16.648 16.640 16.512
11 12.893 12.193 12.739 13.436 … 16.324 16.475 16.487 16.381
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the largest dividend value for its specific combination of (u1, u2). We first look at Table 10 for which
(u1, u2) = (5, 5). If one fixes b1 = 1, b1 = 2 or b1 = 3, then the total dividend value is decreasing in b2,
i.e., b2 = 1 gives the largest total dividends. If the value of b1 is fixed to be larger, then a larger value of
b2 is required to maximise the total dividends. This is also depicted graphically in Figure 1, which plots
the approximated total dividends against the barrier value b2 for each fixed b1 = 2, 4, 6, 8, 10, 12.
Similar phenomenon is observed if one instead fixes the value of b2 and varies b1, and the same is true
even when one looks at Tables 11 and 12. This suggests that in order to achieve high joint dividends,
the barriers should be fairly close to each other. In addition, as indicated by the bold number in each
table, it is found that the maximum total dividend value is achieved at the barriers ðb�1; b�2Þ = (8, 10)
for all three pairs of initial surplus levels considered. This will be further discussed in section 4.3.

Note that each of Tables 10–12 is divided into four sections: (i) b1<u1 and b2<u2; (ii) b1≥u1 and
b2< u2; (iii) b1< u1 and b2≥u2; and (iv) b1≥u1 and b2≥u2. In the first section, the barrier level is
lower than the initial surplus for each line, and therefore each line pays a dividend at time 0 and the
bivariate process actually starts at (b1, b2). Going from Table 10 to Table 11, the only change is that
line 2 possesses one more unit of initial capital, and this explains the fact that each dividend value in
Table 11 is exactly one unit larger than the corresponding value in Table 10 within the first section.
The same observation applies to Tables 11 and 12 as well. For the second section, the dividend
values show the same properties as those in the first section because it is line 2 that pays a dividend at
time 0 and then the process starts at (u1, b2). In the third section, line 1 (instead of line 2) needs to
pay the excess of u1 over b2 and then the process starts at (b1, u2). In the fourth section, none of the
two lines pay out immediate dividends at time 0. Note that all the dividend values in Table 12 are
higher than the corresponding ones in Table 11, which are in turn larger than those in Table 10. This
is expected since the dividends must be increasing in the initial capital u2.

4.3. Optimal barriers and restricted optimal barriers

In this section, we are interested in the pair of optimal barriers for every combination of (integer
values of) (u1, u2) for 1≤u1≤9 and 1≤u2≤ 12. The optimal barriers and the corresponding optimal
joint dividend values are given in Tables 13 and 14, respectively.
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Total dividends
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Figure 1. Plot of approximated total dividends against b2 when (u1, u2) = (5, 5).
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From Table 13, although the optimal barriers ðb�1; b�2Þ vary with the initial surplus level (u1, u2), they
often take the value of ðb�1; b�2Þ ¼ 8; 10ð Þ. The anomalies of lower optimal barriers usually happen
when u1 or u2 is small. In particular, when line 1 possesses low initial surplus of u1 = 1 or u1 = 2,
the optimal barriers ðb�1; b�2Þ are mostly the small values of (3, 1). Intuitively, when one of the two
lines possesses low initial surplus, the bivariate process is likely to ruin early anyway. To optimise
joint dividends, it is important to ensure that some early dividends are paid before ruin (in terms of
immediate dividend at time 0 or reaching the barrier early), resulting in lower optimal barriers
ðb�1; b�2Þ. However, this effect is a bit less obvious when u2 is low. One possible explanation is that
line 2 has a higher security loading (as it has higher premium rate but the same expected claim costs
compared to line 1) and hence lower chance of early ruin than line 1, all else being equal. It is also
instructive to note that the optimal barriers are always either both high or both low, i.e., it is not
optimal for one insurer to set a high barrier if the other one has a low barrier and vice versa. This can
be attributed to the fact that dividend payments for both lines cease at the joint ruin time T, and if
one of the lines has large positive surplus at time T it would have been better paid as a dividend at the
beginning (see section 3.1 for similar comments).

Turning to Table 14, it is clear that the discounted dividend increases with respect to both initial
surplus levels. The table can also help us study an optimal allocation problem as well if the criterion is

Table 13. The optimal barriers for 1≤u1≤9 and 1≤u2≤12.

u2

u1 1 2 3 4 5 6 7 8 9 10 11 12

1 (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1)
2 (8,9) (8,9) (7,8) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1)
3 (8,9) (8,9) (8,9) (8,9) (8,9) (7,8) (7,8) (7,8) (7,8) (7,8) (7,8) (7,8)
4 (8,10) (8,10) (8,10) (8,10) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9)
5 (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10)
6 (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10)
7 (6,8) (7,9) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10)
8 (6,8) (7,9) (7,9) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,11) (9,11)
9 (6,8) (7,9) (7,9) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,11) (9,11)

Table 14. Approximated optimal dividends for 1≤u1≤9 and 1≤u2≤12.

u2

u1 1 2 3 4 5 6 7 8 9 10 11 12

1 4.309 5.309 6.309 7.309 8.309 9.309 10.309 11.309 12.309 13.309 14.309 15.309
2 5.839 6.752 7.644 8.622 9.622 10.622 11.622 12.622 13.622 14.622 15.622 16.622
3 7.250 8.400 9.498 10.534 11.521 12.498 13.473 14.460 15.460 16.460 17.460 18.460
4 8.371 9.701 10.959 12.133 13.241 14.295 15.315 16.318 17.316 18.316 19.316 20.316
5 9.291 10.766 12.156 13.445 14.641 15.763 16.831 17.863 18.874 19.875 20.875 21.875
6 10.083 11.672 13.164 14.539 15.807 16.986 18.098 19.160 20.189 21.198 22.198 23.198
7 11.012 12.537 14.074 15.512 16.831 18.051 19.193 20.276 21.318 22.332 23.332 24.332
8 12.012 13.537 15.044 16.467 17.810 19.049 20.206 21.300 22.348 23.374 24.383 25.383
9 13.012 14.537 16.044 17.467 18.810 20.049 21.206 22.300 23.348 24.379 25.390 26.390
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to maximise the total dividends of the two lines. (See also e.g. Loisel, 2005, section 5 or Gong et al.,
2012, section 6.3 for discussion of a capital allocation that minimises multivariate risk measures.)
Suppose that both business lines belong to a larger corporation who wants to choose (u1, u2) to
maximise V1(u1, u2; b1, b2) +V2(u1, u2; b1, b2) subject to the constraint u1 + u2 = K (and of course
u1≥ 0 and u2≥ 0) for a given total initial capital of K> 0. This can be regarded as a two-step
procedure. First, the optimal pairs of barriers ðb�1; b�2Þ and the resulting optimal joint dividends are
determined as in Tables 13 and 14. Then, we can look at the line u1 +u2 = K in Table 14 to find
the optimal combination of ðu�1; u�2Þ that gives the highest dividend value. For easy reference, we
additionally plot the optimal joint dividends against the capital u2 allocated to line 2 given that
K = 5, 6, 7, 8, 9, 10 in Figure 2. For example, if K = 7 then u�2 ¼ 3 yields the highest joint dividends
and hence u�1 ¼ K�u�2 ¼ 4; if K = 10 then ðu�1; u�2Þ ¼ ð5; 5Þ (and in both cases ðb�1; b�2Þ ¼ ð8; 10Þ).
It is noted that the optimal allocation ðu�1; u�2Þ appears to occur at places where the total capital K is
roughly equally split. The intuitive reason is that if the allocation is at either extreme end, then it is
more likely that one of the two lines possesses positive surplus at the joint ruin time T and resources
are wasted (see section 3.1).

So far, when we maximise the joint dividends we place no restrictions on whether the barriers should
be below or above the respective initial surplus levels of the two lines. However, we already know
from Table 13 that this could lead to optimal barriers that are much lower than the initial surplus
levels, leading to earlier ruin than the case if higher barriers are applied. Practically, early ruin may
not be desirable for risk management purposes even dividends are maximised. These lead to the idea
of maximising dividends under a penalty at ruin or a ruin probability constraint (see e.g. Dickson &
Waters, 2004; Dickson & Drekic, 2006; Gerber et al., 2006; Thonhauser & Albrecher, 2007). In the
present context, we can delay ruin by maximising the joint dividends under the constraint that the
barrier levels should be no less than the respective initial surplus levels. The resulting barrier levels
will be called “restricted optimal barriers”. Tables 15 and 16 give the restricted optimal barriers and
the resulting joint dividend values, respectively.

In both Tables 15 and 16, the numbers in bold correspond to the positions where the values are
identical to those in Tables 13 and 14. These cells are mainly where the initial surplus levels are of
fairly balanced values. At many other positions, the restricted optimal barriers in Table 15 are much
higher than the globally optimal barriers in Table 13. Moreover, since Table 16 is a result of
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Figure 2. Plot of approximated optimal dividends against u2 under u1 + u1 = K.
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constrained optimisation, its values are no larger than those in Table 14. However, it is instructive to
note that except when u1 = 1 the dividend values in Table 16 are still comparable to those in
Table 14. This suggests that applying the restricted optimal barriers can actually delay ruin (due
to higher barriers) without sacrificing much dividends. Nonetheless, Table 15 shows the same
phenomenon as in Table 13 that the restricted optimal barriers of the two lines are always of similar
values. The intuitive reason is similar to that for the globally optimal barriers. When one turns to the
problem of capital allocation based on the restricted optimal barriers, the results of the optimal
allocation are identical to the case where the globally optimal barriers are used, at least up to K = 10,
this is depicted in Figure 3.

4.4. A modified type of barrier strategy

In this section, we shall study a modified type of barrier strategy based on some observations from
Table 14 regarding the dividend values under the globally optimal barriers. It has been always
assumed that at time 0 the two lines of business fix their barrier levels that will not be changed later
on. But if time 0 is a decision time to set the barriers, it would make sense to allow immediate
dividends to be paid at time 0 so that the bivariate process moves to a better starting position from
which the new globally optimal barriers are implemented.

Table 15. The restricted optimal barriers for 1≤ u1≤9 and 1≤u2≤12.

u2

u1 1 2 3 4 5 6 7 8 9 10 11 12

1 (3,1) (3,2) (4,3) (5,4) (5,5) (6,6) (7,7) (7,8) (8,9) (8,10) (9,11) (9,12)
2 (8,9) (8,9) (7,8) (7,8) (5,5) (6,6) (7,7) (7,8) (8,9) (8,10) (9,11) (9,12)
3 (8,9) (8,9) (8,9) (8,9) (8,9) (7,8) (7,8) (7,8) (8,9) (8,10) (9,11) (9,12)
4 (8,10) (8,10) (8,10) (8,10) (8,9) (8,9) (8,9) (8,9) (8,9) (8,10) (9,11) (9,12)
5 (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,12)
6 (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,12)
7 (7,9) (7,9) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,12)
8 (8,10) (7,9) (7,9) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,11) (9,12)
9 (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,12)

Table 16. Approximated restricted optimal dividends for 1≤u1≤9 and 1≤u2≤12.

u2

u1 1 2 3 4 5 6 7 8 9 10 11 12

1 4.309 4.906 5.553 6.222 6.899 7.532 8.108 8.634 9.089 9.483 9.812 10.092
2 5.839 6.752 7.644 8.505 9.397 10.354 11.231 12.037 12.736 13.345 13.854 14.289
3 7.250 8.400 9.498 10.534 11.521 12.498 13.473 14.460 15.359 16.146 16.804 17.369
4 8.371 9.701 10.959 12.133 13.241 14.295 15.315 16.318 17.316 18.245 19.026 19.699
5 9.291 10.766 12.156 13.445 14.641 15.763 16.831 17.863 18.874 19.875 20.751 21.511
6 10.083 11.672 13.164 14.539 15.807 16.986 18.098 19.160 20.189 21.198 22.143 22.970
7 10.932 12.537 14.074 15.512 16.831 18.051 19.193 20.276 21.318 22.332 23.324 24.199
8 11.680 13.395 14.998 16.467 17.810 19.049 20.206 21.300 22.348 23.374 24.383 25.288
9 12.267 14.068 15.747 17.281 18.678 19.960 21.151 22.273 23.344 24.379 25.390 26.306
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The above idea can be illustrated with a concrete example as follows. Suppose that the bivariate risk
process starts with initial surplus levels (u1, u2) = (3, 8). From Tables 13 and 14, we know that the
optimal joint dividend value is 14.460 under the optimal barriers (7, 8). However, if line 2 pays an
immediate dividend of 1, then the bivariate process moves to the new position (3, 7) and the optimal
barriers for the initial surplus levels (3,7) (which happen to be (7, 8) also) can be applied. This will
result in higher total joint dividends of 1 + 13.473 = 14.473. But if line 2 continues paying an
immediate dividend of 1, moving the bivariate process to (3, 6), then the total joint dividends will be
even higher at 14.498. The procedure continues, and no further improvement is possible upon
reaching position (3, 4) where total joint dividends of 14.534 can be enjoyed. To summarise, starting
with (u1, u2) = (3, 8), the overall strategy would be for line 2 to pay 4 at time 0, and then implement
the barriers (8, 9) so that the expected present value of future dividends is 10.534.

Following the above arguments, we have tabulated the optimal parameters of the modified barrier
strategy in Table 17. In each cell, the upper pair is the target starting position while the lower pair
represents the optimal barriers for the new starting position. Table 18 gives the dividend values
accordingly.

First, the cells in Tables 17 and 18 with white background indicate positions (i) where there does not
exist any modified barrier strategy that can beat the (globally) optimal barrier strategy in Tables 13
and 14; (ii) that are not the target starting positions for other starting initial surplus levels under
consideration; and (iii) that do not involve any immediate dividends at time 0. Second, a (partial)
column or row with black numbers and the same grey background in Tables 17 and 18 represents
positions that all collapse to the uppermost or leftmost cell within that (partial) column or row. For
example, as long as u1 = 3 and 4≤u2≤12, line 2 should pay a dividend of u2 − 4 at time 0 and then
the two lines should implement (8, 9) as the barriers. As another example, within the group where
5≤u1≤ 9 and u2 = 2, line 1 immediately pays out u1 −5 and then the two lines apply the barriers
(8, 10). Except for the target positions, all these cells with grey background in Table 18 have strictly
higher dividend values than the corresponding ones under the (globally) optimal barrier strategy
given in Table 14. Finally, each remaining cell with the darkest background and white number
actually has the same modified barrier strategy as the (globally) optimal barrier strategy, but the
interpretation is slightly more complicated. For example, when u1 = 5 and 10≤u2≤12, Table 13
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Table 18. Approximated optimal dividends under modified barrier strategy.
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indicates (globally) optimal barriers of ðb�1; b�2Þ ¼ ð8; 10Þ. Since u2 ≥b�2, this essentially means that
line 2 should pay an immediate dividend of u2 −10 (moving the bivariate process to (5, 10)) and
continue to apply the barriers (8, 10). Again from Table 13, it is known that the (globally) optimal
barriers corresponding to the initial surplus levels (u1, u2) = (5, 10) are also (8, 10). Therefore, the
above description is indeed identical to the modified strategy given in Table 17, with (5, 10) being the
target starting position and (8, 10) the new barriers.

It is instructive to note that the dividend values in Table 18 are no less than those in Table 14 under
the (globally) optimal barriers. More importantly, in some cases where the (globally) optimal
barriers are low in Table 13, application of our proposed modified barrier strategy can lead to later
ruin time as well. For example, when u1 = 2 and 4≤u2≤12, under both strategies in Tables 13 and
17 the bivariate process essentially starts at the initial surplus levels (2, 1) after payment of an
immediate dividend at time 0. But the higher barriers of (8, 9) applied under the modified strategy
(compared with the barriers (3, 1) in Table 13) mean that the bivariate process can now survive
longer. Therefore, our proposed modified strategy could have the advantage of increased joint
dividends and delayed ruin time in comparison with the standard barrier strategy. Finally, Figure 4
shows that our modified barrier strategy leads to the same optimal capital allocation as in Figures 2
and 3 for at least up to K = 10.

5. Concluding Remarks

In this paper, a discretisation procedure is developed to approximate a continuous-time bivariate risk
process. Applications to related optimal problems in reinsurance, capital allocation and dividends
are illustrated with numerical examples. A modified dividend barrier strategy that can lead to
increased dividends and longer survival time is proposed.

There are various directions for future research. First, with the barrier levels (b1, b2) in the
continuous-time model along with the scaling factors (β1, β2), one needs to solve a system of
(β1b1 + 1)(β2b2 +1) linear equations in the discrete model according to the approximation procedures
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outlined at the beginning of section 2.4. In cases where (b1, b2) and (β1, β2) are both large, the
computer can actually run out of memory. (This explains the choices of low barriers in section 3 and
low scaling factors in section 4.) More efficient computational methods should be explored. Second,
in principle, our procedures can be extended from bivariate to multivariate processes. But the
calculations will be far more tedious, and again better algorithms will be needed. Third, the present
model may be modified so that capital transfer between lines (e.g. Hult & Lindskog, 2006) is
possible when one business line is in danger while the other has abundant capital. Finally, one may
also attempt to obtain explicit expressions under the simplest model assumptions such as exponential
claims with common shocks only or under proportional reinsurance. We leave these as open
questions.
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