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In this article, the multipolar vortex instability of the flow in a finite cylinder is
addressed. The experimental study uses a rotating elastic deformable tube filled
with water which is elliptically or triangularly deformed by two or three rollers.
The experimental control parameters are the cylinder aspect ratio and the Reynolds
number based on the angular frequency.

For Reynolds numbers close to threshold, different instability modes are visualized
using anisotropic particles, according to the value of the aspect ratio. These modes
are compared with those predicted by an asymptotic stability theory in the limit
of small deformations and large Reynolds numbers. A very good agreement is
obtained which confirms the instability mechanism; for both elliptic and triangular
configurations, the instability is due to the resonance of two normal modes (Kelvin
modes) of the underlying rotating flow with the deformation field. At least four
different elliptic instability modes, including combinations of Kelvin modes with
azimuthal wavenumbers m = 0 and m = 2 and Kelvin modes m = 1 and m = 3 are
visualized. Two different triangular instability modes which are a combination of
Kelvin modes m = −1 and m = 2 and a combination of Kelvin modes m = 0 and
m = 3 are also evidenced.

The nonlinear dynamics of a particular elliptic instability mode, which corresponds
to the combination of two stationary Kelvin modes m = −1 and m = 1, is examined
in more detail using particle image velocimetry (PIV). The dynamics of the phase and
amplitude of the instability mode is shown to be predicted well by the weakly nonlinear
analysis for moderate Reynolds numbers. For larger Reynolds number, a secondary
instability is observed. Below a Reynolds number threshold, the amplitude of this
instability mode saturates and its frequency is shown to agree with the predictions
of Kerswell (1999). Above this threshold, a more complex dynamic develops which is
only sustained during a finite time. Eventually, the two-dimensional stationary elliptic
flow is reestablished and the destabilization process starts again.

1. Introduction
Strong vorticity filaments have been evidenced in turbulent flows experimentally

(Cadot, Douady & Couder 1995) and numerically (see Jiménez & Wray 1998 and
references therein). The discovery of these coherent structures has renewed the interest
in vortex dynamics, as it was outlined by Pullin & Saffman (1998) in their recent review.
The formation of these filaments was related to shear flow instabilities by Passot et
al. (1995). However, several issues concerning the dynamics of these structures in
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turbulent flows and their breakdown are still open. In recent numerical simulations of
transition to turbulence of gravity waves, Arendt, Fritts & Andreassen (1998) showed
the presence of Kelvin modes on vortex filaments which cannot be explained by the
usual vorticity tilting and stretching arguments. One aim in this study is to provide
a possible mechanism for the apparition of these modes in terms of an instability of
vorticity filaments caused by the surrounding turbulent flow: namely the multipolar
instability.

A model commonly used for vorticity filaments in turbulence is the Burgers (1948)
vortex. This axisymmetric vortex, of Gaussian vorticity profile, is a stationary solution
of the Navier–Stokes equations for which viscous diffusion is exactly compensated by
axial stretching. Moffatt, Kida & Ohkitani (1994) (see also Ting & Tung 1965) showed
that an external strain field would induce a first-order correction to the Burgers model
which deforms the streamlines inside the core from circles to ellipses. Using numerical
simulations of turbulent flows (Kida & Ohkitani 1992), Moffatt et al. (1994) also
showed that the energy dissipation field of vortex filaments is reproduced remarkably
well by this elliptically distorted Burgers vortex. Prochazka & Pullin (1998) later
showed the bi-dimensional stability of Moffatt et al.’s (1994) solution but Eloy & Le
Dizès (1999) established its sensitivity to the tri-dimensional elliptic instability. This
instability could explain the appearance of Kelvin modes on the filament since they
are its natural modes.

The elliptic instability was (re)discovered by Pierrehumbert (1986) and Bayly (1986)
in the context of parallel shear flows as a secondary instability of Kelvin–Helmoltz
vortices (see also Bayly, Holm & Lifschitz 1996 and references therein). However,
the first stability studies of vortices with elliptic streamlines are due to Gledzer
et al. (1975), Moore & Saffman (1975) and Tsai & Widnall (1976). In a recent
review, Kerswell (2002) stressed how the elliptic instability has been discovered in
the 1970s and then rediscovered in 1986 in a different context (see this review for a
comprehensive bibliography on the subject). The physical mechanism of this instability
can be understood as follows. First, we should assume the existence of Kelvin
modes which are neutral normal modes characterized by their axial wavenumber,
azimuthal wavenumber and frequency [k, m, ω]. Then, the elliptic deformation of the
streamlines should be interpreted as an intrinsic mode of characteristics [k, m, ω] =
[0,±2, 0]. The instability mechanism is a triadic resonance of this intrinsic mode and
two Kelvin modes of the same axial wavenumber, same frequency and azimuthal
wavenumbers differing by 2. Moore & Saffman (1975) showed that combinations
of stationary (ω = 0) and helical (m = ±1) Kelvin modes are always resonant and
unstable. However, as pointed out by Billant, Brancher & Chomaz (1999), the elliptic
instability is not limited to these particular combinations. Indeed, Eloy & Le Dizès
(2001) analysed all the possible resonances for the Rankine vortex and demonstrated
that a combination of a bulging Kelvin mode (m = 0) and a splitting mode (m = 2)
could appear spontaneously.

The mechanism of the elliptic instability has been generalized to flows with higher
azimuthal symmetry by Le Dizès & Eloy (1999) and Eloy & Le Dizès (2001). It
appears that a vortex subject to an n-fold multipolar strain field is always unstable
if n = 2, 3 or 4, giving rise to what has been called the multipolar instability. For
symmetry of higher degree, the flow is unstable only if the external strain field is
sufficiently strong.

The experimental study of the elliptic instability began with the pioneering work
of Gledzer et al. (1974, 1975). They used a rigid cylinder of elliptic cross-section (an
ellipsoid in their 1974 paper) filled with water seeded with reflective particles. This
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container was rotated until solid-body rotation was reached and then it was sharply
stopped. During the transient decay of the flow, the streamlines are elliptical and this
may lead to the elliptic instability. Later Chernous’ko (1978) used the same set-up
and studied the wavelength of the instability as a function of two control parameters
of the experiment: the eccentricity of the elliptic cylinder and its aspect ratio. His
results agree remarkably well with the theoretical prediction of Gledzer & Ponomarev
(1992) for undulating modes (a combination of two stationary helical Kelvin modes).
Nevertheless, this set-up has two main inconveniences: first, the instability develops
on a transiently decaying flow (thus during a limited time); and a competitive
centrifugal instability appears near the wall. To avoid the shortcomings of Gledzer’s
experiment, Malkus (1989) and Malkus & Waleffe (1991) used a deformable elastic
cylinder rotated at constant angular speed. Using a belt or two rollers, this cylinder
could be deformed elliptically, such that the axes of the ellipse were kept still in the
laboratory frame. This experiment produced a stationary elliptic basic flow on which
the undulating modes already reported by Gledzer et al. (1975) were observed. This
experiment showed the intermittent character of the instability at high rotation rate.
Indeed, the amplitude of the instability modes was not observed to saturate in the
regimes studied; a cycle of instability growth, mode breakdown and relaminarization
took place, as will be described in detail.

Besides the physics of small-scale turbulent structures, another important field where
the elliptical instability could have a considerable interest is astro- and geophysics.
Indeed, the tidal effects experienced by rotating planets or other astrophysical objects
created by the proximity of others are of great interest. In particular, we can easily
imagine that the Earth molten iron outer core is deformed by the gravitational strains
of the Moon and Sun and therefore is subject to an elliptical instability. Kerswell
(1994) estimated that the global loss due to friction and ohmic dissipation has the
same order of magnitude as the growth rates of unstable modes in rotating spheroids.
Thus, the energy gained by the elliptic instability could very well be part (with
convective and precessional instabilities) of the energy source required to sustain the
geodynamo effect. For instance, Kerswell & Malkus (1998) interpreted Io’s magnetic
signature by the distortion of its inner molten core due to the gravitational field
of Jupiter. The first experiments on rotating flows inside ellipsoids were due to
Gledzer et al. (1974). Later, a series of experiments and calculations by Aldridge et al.
(1997) and Seyed-Mahmoud, Henderson & Aldridge (2000) also showed the existence
of such an instability inside a rotating deformable shell which models the Earth’s
interior with its inner solid core. Note that, in this particular geometry, the math-
ematical existence of inertial waves deserves its own particular mathematical analysis
(Rieutord & Valdetarro 1997).

In addition, the elliptic instability was observed in open flow configurations such
as counter-rotating (Leweke & Williamson 1998a) and co-rotating vortex filaments
(Meunier & Leweke 2001, 2002). It was also identified as a mechanism for secondary
instability in parallel shear flows (Bayly, Orszag & Herbert 1988) and wakes (Leweke
& Williamson 1998b).

In the present study, we investigate the elliptic instability and its generalization
to the ‘triangular’ instability both experimentally and theoretically. Our work can be
viewed as a continuation and a generalization of earlier studies by Malkus and co-
workers (Malkus 1989; Malkus & Waleffe 1991). It is also a more detailed account of
the results briefly reported in Eloy, Le Gal & Le Dizès (2000). The paper is organized
as follows. In § 2, the set-up and the experimental procedure are presented. In § 3,
the theoretical linear stability of this flow is addressed using asymptotic analysis in
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Roller Plastic transparent cylinder

R

H
Ω

Roller

Transparent lid

Figure 1. Experimental set-up. A plastic deformable cylinder, filled with water is rotated at constant
angular speed Ω. Two or three rollers can be positioned to apply a dipolar or tripolar constraint
on the cylinder.

the large-Reynolds-number and weak-deformation limits. This allows us to take into
account viscosity and finite cylinder aspect ratio which are shown to select particular
modes in § 3.2. The experimental results obtained by visualization and particle image
velocimetry (PIV) measurements are presented in § 4 for low- and high-Reynolds-
number flows. Theoretical and experimental instability diagrams are compared in
§ 4.1 for both elliptic and triangular configurations. Sections 4.2 and 4.3 focus on the
weakly nonlinear regime and the intermittent cycle of the stationary mode of the
elliptic instability. Finally, the results are summarized in § 5.

2. Experimental set-up
The experimental set-up used in this study (figure 1) has been inspired by the work

of Malkus (1989) (see also Malkus & Waleffe 1991). The core of the experiment is
a transparent plastic extruded cylinder of radius R = 2.75 cm and variable length
H = 8–23 cm. Thanks to the small thickness of its elastic wall (0.5 mm), this cylinder
can be deformed in the stationary laboratory frame with two or three rollers parallel to
its axis. This deformed cylinder is rotated at chosen angular speed (Ω = 0.5–10 rad s−1)
by a 300 W electric motor. The angular speed, measured by an optical coder linked
to the axis, is shown to be reasonably stable (variations are kept within 2%).

The cylinder, set with its axis parallel to the vertical direction (in contrast to all the
pictures presented in this paper which have been rotated by 90◦ for convenience), is
filled with water by an aperture located at an endwall. For visualizations, anisotropic
particles (Kalliroscope) are added to the water and a light sheet is formed in a plane
containing the cylinder axis, using a 4 W argon laser. This visualization technique does
not allow us to have precise information on the velocity field as shown by Gauthier,
Gondret & Rabaud (1998). Nevertheless, the axial wavelength and the frequency
of the mode appearing in the cylinder can be measured by filming the flow with a
standard video camera and analysing the images.

Particle image velocimetry (PIV) has also been performed by adding calibrated
30 µm reflective spherical particles to the water. A laser sheet perpendicular to the
axis is used to illuminate the particles. A 1000× 1000 pixel DCC video camera is
placed at one end of the cylinder and the particles are filmed through the transparent
lid (see figure 1). The video camera is controlled by a computer which can record
300 images, thus allowing us to compute 150 velocity fields for each experiment. The
numerical algorithm used to process the images has been developed using the Matlab
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software by Meunier & Leweke (2001, 2002) and can therefore be run on a common
PC computer. Typically, it takes about 4 h to compute 150 velocity fields (containing
60× 60 velocity vectors each).

To limit experimental artefacts, attention is paid to several crucial points. First, the
orthogonality of the endwalls and the cylinder axis is checked with good precision
to avoid precession type instability. The mechanical properties of the elastic cylinder
being modified by its ageing, care is also taken by using cylinders for fairly short
periods of time and by avoiding important constraints. Finally, the presence of bubbles
in the flow is prevented by waterproofing the whole cylinder.

The two dimensionless control parameters of this experiment are:

Re =
ΩR2

ν
: Reynolds number, (2.1a)

H

R
: aspect ratio, (2.1b)

which can be varied in the limits Re = 300–8000 and H/R = 3–8.2. From a practical
point of view, two sets of rollers have been used allowing the aspect ratio to be varied
in the ranges H/R = 3–4 and 7–8.2. The third control parameter of the experiment
would be the strength of the constraint imposed by the rollers on the cylinder, but
the variation of this parameter has not been considered in the present study.

In all the experiments presented in this paper, the same protocol has been followed:
(i) The two or three rollers used to deformed the cylinder are positioned;
(ii) When the fluid is assured to be at rest (after at least 10 min), the cylinder is

suddenly rotated at constant angular speed;
(iii) During all the experiment, the roller position and the cylinder speed are kept

constant.
The linear stability of the flow produced by this set-up is addressed theoretically in
the next section. Experimental results are presented in § 4 and discussed in § 5.

3. Linear stability study
3.1. Inviscid analysis

The experimental arrangement described above is aimed at producing a flow of
constant vorticity subjected to a dipolar or tripolar strain. The basic flow can therefore
be described, in cylindrical coordinates (r, θ, z), by the streamfunction:

ψ = − 1
2
r2 +

ε

n
rn sin(nθ), (3.1)

where ε measures the deformation of the streamlines (ε is the eccentricity of the ellipses
for n = 2) and n is the degree of azimuthal symmetry of the flow or equivalently the
number of rollers deforming the elastic cylinder (see figure 2). Here, the variables
are made dimensionless using the characteristic length R and time Ω−1. The position
of the rollers in the experiment is such that the deformation of the streamlines is
ε ≈ 0.10 for n = 2 and ε ≈ 0.12 for n = 3. In the present theoretical analysis, ε is
considered as a small parameter. The outer streamline of the flow, given by ψ = − 1

2
,

corresponds to the cylinder boundary. Note that the streamfunction (3.1) describes a
flow with largest velocities in the large curvature regions whereas, in the experiment,
velocity is uniform on the boundary. This difference can be taken into account by
considering viscous boundary layers on the wall. However, as will be shown below,
these boundary layers have negligible influence on the selection of the instability
modes in the limit of small ε.
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(a) (b)

Figure 2. Streamlines of the basic flow given by (3.1). The parameters are ε = 0.25 and: (a) n = 2;
(b) n = 3. The flow is rotating counterclockwise.
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Figure 3. Dispersion relation of the Kelvin modes inside a cylinder. Eight branches are shown in
the (k, ω)-plane for m = −1 (solid lines) and m = 2 (dashed lines).

The stability of the basic flow (3.1) has been studied using a local approach by
Le Dizès & Eloy (1999). It has been shown to be unstable in the limit of vanishing
viscosity with the dimensionless growth rate σ = 9

16
ε for n = 2 and σ = 49

32
ε for n = 3.

The stability of the same flow embedded in an irrotational flow was considered by
global methods in Eloy & Le Dizès (2001). The selection of the instability modes by
both finite size and viscous effects was analysed in details. Here, the basic flow (3.1) is
embedded in a cylinder which makes the stability results slightly different. However,
since the method of analysis is the same as in Eloy & Le Dizès (2001), we shall not
detail the calculation but only outline its different stages in the following.

For purely axisymmetric flow (ε = 0), normal Kelvin modes (Kelvin 1880) can be
superimposed linearly to the basic flow. Their velocity field can be written as:

v(r, θ, z, t) = U (r) ei(kz+mθ−ωt) + c.c., (3.2)

where k, m and ω are the axial wavenumber, the azimuthal wavenumber and the
frequency and U (r) is given in the Appendix (the notation c.c. simply refers to the
complex conjugate). These Kelvin modes are marginally stable for an axisymmetric
and inviscid flow. Upon imposing the boundary condition on the cylinder wall (in
r = 1), a dispersion relation connecting the different wavenumbers can be found
(see the Appendix). This dispersion relation is illustrated in figure 3. For a chosen
azimuthal wavenumber m, there is an infinity of branches in the (k, ω)-plane which
accumulate in ω = m in the limit of small k and in ω = m ± 2 in the limit of
infinite k.
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Elliptic Triangular

i (−1, 1, i) (0, 2, i) (1, 3, i) (−1, 2, i) (0, 3, i) (1, 4, i)

1 1.58 2.33 3.04 3.67 5.18 6.61
2 3.29 4.12 4.92 7.18 8.81 10.36
3 5.06 5.92 6.75 10.72 12.40 14.01

Table 1. Table of the axial wavenumbers k for a few principal modes. These wavenumbers can be
slightly modified in a cylinder of finite aspect ratio and in the presence of viscosity.

In the limit of small deformation ε, Kelvin modes still exist. As mentioned in the
introduction, two Kelvin modes can resonate with the basic flow if they have same
k, same ω and have azimuthal wavenumbers m1 and m2 such that m2 − m1 = n. For
instance, in figure 3, the crossing points of the dispersion relations for m1 = −1 and
m2 = 2 then correspond to points of resonance for a triangular deformation of the
vortex (n = 3). A stability study similar to that of Eloy & Le Dizès (2001) shows that
all Kelvin mode resonances are unstable. However, crossing points of branches with
the same label (see figure 3) are significantly more amplified than the others. These
particular combinations of Kelvin modes are called principal modes and are denoted

(m1, m2, i), (3.3)

hereinafter, where m1 and m2 are the azimuthal wavenumbers of the two Kelvin
modes and i is the common label of the dispersion relation branches. Note that i
is an increasing function of the axial wavenumber k. Table 1 gives the value of the
first axial wavenumbers k as a function of i for a few principal modes. Owing to
the asymptotic symmetry of the dispersion relation, the frequency of principal modes
satisfies ω ≈ 1

2
(m1 +m2). In the following, only the principal modes will be taken into

account in the analysis since their inviscid growth rate is about 100 times larger than
that of other combinations of resonant Kelvin modes.

For an infinite cylinder and in the limit of vanishing viscosity, the growth rate of
the different principal modes can be found by similar techniques to those detailed in
Eloy & Le Dizès (2001). The results for the inviscid growth rate σi are summarized
in figure 4. For elliptic deformation (n = 2), the maximum inviscid growth rate is
σi = 9

16
ε. It is reached in the limit of large k either when the azimuthal wavenumber

m1 tends to infinity for a fixed label i or when i tends to infinity for fixed m1.
However, the instability is not very selective in the elliptic case, since the inviscid
growth rates of the different principal modes are all within 10% of the maximum.
For the triangular deformation (n = 3), the inviscid growth rate is maximum in the
limit of large azimuthal wavenumber m1, for fixed label i. This maximum is σi = 49

32
ε.

Note that, in the triangular case, the selection of the different principal modes is much
more efficient. As for the Rankine vortex (Eloy & Le Dizès 2001), the local maximum
growth rate found in Le Dizès & Eloy (1999) is recovered in the limit of large k for
elliptic deformation and in the limit of large m1 and k for triangular deformation.

3.2. Effects of viscosity and aspect ratio

As seen above, in the absence of viscosity and for infinite cylinder, the maximum
growth rate is reached for infinite k. Under these approximations, the selected modes
would have infinite axial wavenumber for n = 2 and infinite axial and azimuthal
wavenumber for n = 3. Of course, this result cannot hold when viscosity is added
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Figure 4. Inviscid growth rate σi for (a) n = 2 and (b) n = 3 as a function of the axial wavenumber
k. The growth rate of principal modes (m1, m1 + n, i) are presented with: +, m1 = −1; �, m1 = 0;
�, m1 = 1; 4, m1 = 10 and ©, m1 = 20. The solid line corresponds to the first principal modes
(m1, m1 + n, 1) for −1 6 m1 6 39. The asymptotic values of the inviscid growth rate are pictured by
dotted lines: (a) σi = 9

16
ε; (b) σi = 49

8π2 ε and σi = 49
32
ε.

since it tends to damp the modes with the largest wavenumbers. In this section,
boundary viscous effects and volume viscous effects are first taken into account in
the stability analysis. Then, the effect of the finite aspect ratio of the cylinder will be
analysed. As will be shown, these two effects can efficiently select particular modes. A
similar study, in a different context, has also been carried out by Racz & Scott (2001a).

As described above, the inviscid (dimensionless) growth rate of principal modes
is σi = O(ε). The distinguished scaling for viscosity is obtained when the decay rate
due to viscous effects is of same order. Now the effects of volume viscous damping
account for a decay rate σvol = −O(Re−1k2). In addition, Kelvin modes, as described
by (3.2), do not satisfy viscous boundary conditions on the wall of the cylinder. To
achieve this condition, we have to consider a viscous boundary layer on the wall. This
layer has a thickness δ = O(Re−1/2). Because of the z- and θ-dependence of Kelvin
modes, this boundary layer is not uniform, giving rise to pumping flow in the core
of the cylinder. Therefore, it modifies the principal mode at an O(Re−1/2) order. It
results in a surface viscous effect of decay rate σsurf = −O(Re−1/2) (see Greenspan
1968 for details). The distinguished scaling is then obtained when Re = O(ε−2). For
this scaling, volume viscous effects are negligible as soon as k � Re1/4 and therefore
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should not be taken into account in the analysis for k = O(1). Note, however, that
the damping rate of viscous surface effects depends slightly on the geometry of the
mode whereas volume viscous effects have the property of selecting modes with the
smallest wavenumbers (since their damping rate is proportional to k2). Besides, when
volume and surface viscous effects are calculated for ε ≈ 0.1 (as is the case in the
experiments presented in this paper), they are shown to be of same order as soon as
k ≈ 1. For these reasons, we have retained volume viscous effects in the analysis.

The different effects can be summarized by writing down the amplitude equations.
The two Kelvin modes of azimuthal wavenumbers m1 and m2 have complex amplitudes
A1(t) and A2(t), respectively, which follow the dynamical equations:

dA1

dt
= εn1A2 + (−Re−1/2s1 − Re−1v1 + i(k − k0)q1)A1, (3.4a)

dA2

dt
= εn2A1 + (−Re−1/2s2 − Re−1v2 + i(k − k0)q2)A2, (3.4b)

where the terms n1 and n2 are real numbers and describe the Kelvin mode interaction
driven by the multipolar strain of strength ε. The terms s1 and s2 are complex numbers
and correspond to the surface viscous effects whereas v1 and v2 are real and describe
volume viscous effects. Finally, the last terms q1 and q2 are real and correspond
to a shift in axial wavenumber k away from the perfectly resonant wavenumber k0

(calculated in the absence of viscosity). In the absence of viscosity and for k = k0,
we recover the inviscid growth rate σ2

i = ε2n1n2. All the constants appearing in these
equations are O(1) and have been computed from the formulae given in the Appendix
for each principal mode (m1, m2, i).

Viscous effects can be summarized by plotting the marginal stability curves (figure 5)
of all principal modes in the (k, Re)-plane. Figure 5 shows that below a critical value
of the Reynolds number (Rec = 435 for n = 2, ε = 0.1 and Rec = 398 for n = 3,
ε = 0.12), all modes are damped by viscosity and the flow is stable. Above this critical
value a first mode is destabilized for a given axial wavenumber k. Both for n = 2 and
3, this mode corresponds to the mode with the smallest axial wavenumber. When
the Reynolds number is increased again, a large number of modes gradually become
unstable. Each principal mode is unstable over a finite band of axial wavenumbers.
The width of these instability bands is roughly proportional to ε for large Re. Note
that there is a non-trivial effect of viscosity which tends to modify slightly the resonant
axial wavenumber and frequency of the principal modes as Re varies (this is due to
the non-zero imaginary part of s1 and s2 in (3.4a, b)).

The selection of particular instability modes can also be performed by imposing
a finite aspect ratio of the cylinder. Indeed, when the condition of no outward flow
is imposed in z = 0 and z = H/R, some principal modes can be discarded. This
condition is fulfilled only if the principal mode is a standing wave (formed as the
superposition of two counter travelling waves) of axial wavenumber k = lπR/H ,
where l is an integer. For finite cylinder, the surface damping rate is also modified by
additional bottom and top boundary layers. As in Kudlick (1966) (see also Racz &
Scott 2001a), these viscous terms can be estimated by supposing that the boundary of
the cylinder is sufficiently regular, i.e. the radius of curvature of the surface is always
larger than the boundary-layer thickness. Even if this approximation does not hold
near the edges of the cylinder, it gives a very good estimation of this viscous decay
rate, as shown numerically by Kerswell & Barenghi (1995). Note that an alternative
approach which avoids the problem associated with corners can also be used (see
Racz & Scott 2001a).
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Figure 5. Marginal stability curves of all principal modes. These curves have been calculated
for a infinite cylinder and: (a) n = 2, ε = 0.10; (b) n = 3, ε = 0.12.

The combined effects of viscous damping and mode selection by aspect ratio are
summarized in figure 9. As a function of the two experimental control parameters (the
Reynolds number and the aspect ratio), the principal mode with the largest growth
rate is represented. This figure shows that, depending on the choice of the parameters,
a large number of different principal modes should be observed. The mode selection
is different in the elliptic and triangular cases. Indeed, for elliptic deformation, many
modes can be selected over the available range of aspect ratios without varying the
Reynolds number, whereas, for triangular deformation, the mode predicted at low
Reynolds number is always the mode (−1, 2, 1) as soon as H/R > 5.6. This difference
is mainly because the mode wavenumbers k are larger in the triangular case (see
table 1 and figure 5). To improve mode selection for n = 3, we would have to reduce
the width of the instability bands by decreasing ε.

4. Experimental results
In this section, we present the results of the experimental study. First, the mode

selection by the Reynolds number and the aspect ratio is analysed with flow visual-
izations and compared with the theoretical predictions. Then, the weakly nonlinear
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regime of a particular mode (the stationary undulating mode of the elliptic insta-
bility) is studied using PIV measurements. Results in agreement with the amplitude
equations are obtained. In § 4.3, the flow for large Reynolds number (far from the
instability threshold) is described. In this regime, a cycle of instability growth and
breakdown is evidenced and characterized.

4.1. Low-Reynolds-number flow

For Reynolds number slightly above the threshold, the observed flow evolution can
be decomposed in three successive phases:

(i) The spin-up of the flow takes over on a time scale of order τ = H(Re/Ω)1/2 as
described by Wedemeyer (1964) and Watkins & Hussey (1977) for an axisymmetric
cylinder.

(ii) Once solid-body rotation is achieved, a principal mode eventually grows after
a time related to its growth rate (which varies typically between one minute and one
hour).

(iii) The principal mode reaches a saturated amplitude. The flow is now time-
periodic and z-periodic. Wavelength and frequency of the observed mode can be
measured by image analysis.

To test the mode selection by varying the aspect ratio, four experiments have been
carried out for an elliptic deformation at the same Reynolds numbers, for four different
aspect ratios (H/R = 7.13, 7.49, 7.96 and 8.20). Figure 6 shows the flow obtained
by Kalliroscope visualizations when the mode amplitude has reached saturation. In
each case, the aspect ratio has been chosen such that an experimental wavenumber
which is given by k = lπR/H , where l is an integer, is close to the most unstable
theoretical wavenumber of a given mode. Here, for the four different aspect ratios,
we should observe the modes (1, 3, 1), (−1, 1, 2), (−1, 1, 1) and (0, 2, 1), respectively
(as seen in figure 9). The most unstable wavenumbers, which are calculated for an
infinite Reynolds number and an infinite cylinder are reported in table 2 together
with their frequency. The experimental wavenumber can be measured by counting
the number of wavelengths observed along the cylinder (in figure 6 for instance, 3.5,
4, 2 and 3 wavelengths can be identified for each aspect ratio, respectively). These
measured wavenumbers kexp are not exactly equal to the theoretical most unstable
wavenumbers. These slight differences in wavenumber as well as the finiteness of the
Reynolds number can be taken into account in the theory. They induce a small shift
in the frequencies ∆ω which is indicated in table 2. The experimental frequency is
obtained by image analysis of Kalliroscope visualizations. A spatio-temporal diagram
is constructed by extracting the same horizontal line in each image of the video
sequence and by laying the lines on the same figure (figure 7 for instance). These
spatio-temporal diagrams show the time-periodicity of the flow and permit us to
measure the frequencies ωexp which are reported in table 2. Note that the modes
displayed in figures 6(b) and 6(c) are stationary, as predicted by the theory. The two
periodic modes shown in figures 6(a) and 6(d ) also have frequencies very close to the
theoretical predictions. These good agreements permit us to identify unambiguously
the modes observed with the modes predicted by the theory.

The same experiments have been performed for the triangular deformation. Figure 8
shows visualizations of the modes (−1, 2, 1) and (0, 3, 1) and their associated spatio-
temporal diagrams. Wavelength and frequency of these modes (measured with the
same techniques as for elliptic deformation) are given in table 2. However, the
frequency of the mode (−1, 2, 1) at Re = 1200, measured in figure 8(c), is ω = 0.55.
This value is different from the theoretical prediction which is ω = 0.656. This
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n mode ωth ωexp ∆ω kth kexp Figure

2 (1, 3, 1) 2.044 2.0 2.0× 10−4 3.035 3.1 6(a)
2 (−1, 1, 2) 0.000 0.00 0 3.286 3.4 6(b)
2 (−1, 1, 1) 0.000 0.00 0 1.579 1.6 6(c)
2 (0, 2, 1) 1.038 1.0 7.7× 10−4 2.326 2.3 6(d )
3 (−1, 2, 1) 0.656 0.55 8.8× 10−4 3.674 3.7 8(a)
3 (0, 3, 1) 1.608 1.5 3.4× 10−3 5.185 5.0 8(b)

Table 2. Theoretical prediction for the frequency ωth and axial wavenumber kth of a few principal
modes (for inviscid flow and infinite cylinder) compared to experimental measurements ωexp and
kexp. For Re = 2500 and for a cylinder of the same length as in the corresponding experiment, the
theory predicts a slight shift of frequency ∆ω. The last column gives the number of the figure where
the mode is displayed.

(a)

(b)

(c)

(d)

Figure 6. Elliptic instability. Visualizations of the flow for n = 2, Re = 2500 and: (a) H/R = 7.13;
(b) 7.49; (c) 7.96; (d ) 8.20. They correspond to the principal modes (1, 3, 1), (−1, 1, 2), (−1, 1, 1) and
(0, 2, 1), respectively. Note that (c) and (d ) are also reproduced in Kerswell (2002) (unfortunately,
with inverted captions).

discrepancy may come from nonlinear effects which tend to detune the frequency
when the mode amplitude grows, as shown by Waleffe (1989). For a Reynolds number
closer to the threshold (Re = 460), the measured frequency is closer to the predicted
one: ω = 0.65 (not shown here). The difference between the frequencies of the modes
(−1, 2, 1) and (0, 3, 1) is particularly visible on the spatio-temporal diagrams of figures
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1 2 76543

35
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25
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15
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5

Ωt

z /R

Figure 7. The spatio-temporal diagram of the mode (1, 3, 1). Experimental parameters are n = 2,
Re = 2500 and H/R = 7.13. The signal is here time-periodic with a frequency ωexp = 2Ω where Ω
is the angular frequency of the cylinder rotation.

0 321
z /R

1055

1060

1065

(b)

(d )

(a)

(c)

0 321
z /R

670

675

680

685

Ω t

Figure 8. Triangular instability. Visualizations of the modes (a) (−1, 2, 1) and (b) (0, 3, 1). Exper-
imental parameters are: n = 3, Re = 1200 and (a) H/R = 3.4, (b) 3.8. The spatio-temporal diagrams
(c) and (d ) correspond to visualizations (a) and (b), respectively.

8(c) and 8(d ) where the time axes have the same scale. Several radial structures have
been observed in the Kalliroscope visualization. However, as already mentioned, it
is hazardous to associate them with any radial structure of the velocity field (see
Gauthier et al. 1998).
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(1,3,1) (–1,1,2) (–1,1,1) (0,2,1)
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(b)

(0,3,1)

(1,4,1)

(2,5,1)

(–1,2,1)

3 4 5 6 7 8
H /R

Figure 9. Comparison of the predicted and observed principal mode as a function of the exper-
imental control parameters (H/R, Re) for (a) n = 2 and (b) n = 3. Each grey tone corresponds to the
most dangerous principal mode, i.e. the mode with the largest growth rate. The symbols represent
experiments: (a) ©, (−1, 1, 1); ∗, (−1, 1, 2); 4, (0, 2, 1); +, (1, 3, 1) and (b) ©, (−1, 2, 1); +, (0, 3, 1).
×, visualizations where no distinct mode was observed.

The comparison between theoretical predictions and experimental observations
is summarized in figure 9. For each experiment (a single symbol in figure 9), the
observed principal mode is reported and compared to the most unstable mode
found theoretically. In the elliptic case, the agreement is excellent except close to the
threshold where no distinct principal mode has been observed. This is probably due
to the small amplitude of the mode for low Reynolds numbers in agreement with the
supercriticality of the bifurcation (Mason & Kerswell 1999). It will be seen in § 4.2,
that PIV permits us to observe the mode (−1, 1, 1) closer to the threshold.

In the triangular case (figure 9b), there is good agreement between the observed
and predicted principal modes close to the threshold. However, when the Reynolds
number is increased, the mode predicted by linear stability theory is not recovered
experimentally. Indeed, we always observe the same mode as the Reynolds number is
increased. This phenomenon could be related to either nonlinear or transient effects.
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Unusual effects have also been found for H/R = 3.8, Re = 4300 and 5500. For these
parameters, a non-periodic cycle between the principal modes (−1, 2, 1) and (0, 3, 1)
has been observed reproducibly.

4.2. The stationary undulating mode (−1, 1, 1)

In this section, we focus on the stationary mode (−1, 1, 1) which was previously
observed in a similar experiment by Malkus (1989) and by Malkus & Waleffe (1991).
This particular mode can be observed for an elliptic deformation of the cylinder
(n = 2), for an aspect ratio ranging from H/R = 7.7 to 8 and for a large range
of Reynolds numbers (as described by figure 9). All the results presented in the
following were obtained for an aspect ratio of H/R = 7.96 which corresponds to
the visualization of two wavelengths of the mode (−1, 1, 1) along the length of
the cylinder. We first present the characteristics of the flow produced by the mode
(−1, 1, 1), then the theoretical results obtained by a weakly nonlinear analysis. Finally,
the experimental results obtained by PIV measurements are compared to the theory.

By definition, the principal mode (−1, 1, 1) is the sum of two counter helical
stationary modes which give rise to a stationary wave. If we neglect the elliptic
deformation of the streamlines, the total velocity field can be written, in the linear
regime, as

v(r, θ, z) =

 0
r
0

+ 2a

 Ur(r) cos(kz) sin(θ − ϕ)
Uθ(r) cos(kz) cos(θ − ϕ)
Uz(r) sin(kz) sin(θ − ϕ)

 , (4.1)

where the first term corresponds to the solid-body rotation and the second term is
the stationary wave of complex amplitude A = ae−iϕ, where a and ϕ are two real
numbers. The functions Ur(r), Uθ(r) and Uz(r) are given in the Appendix. To satisfy
the inviscid boundary conditions, the radial velocity is such that Ur(1) = 0 and the
axial wavelength k such that kH/R = 4π, i.e. k = 1.579 as shown in the previous
section. There are particular points within the cylinder where the velocity field is
exactly zero. The coordinates (r, θ, z) of these points are such that sin(θ−ϕ) = 0 and
r satisfies the following implicit equation

2aUθ(r) cos(kz) cos(θ − ϕ) + r = 0, (4.2)

where z can take any value. The projection of the velocity field in a plane perpendicular
to the z-axis is always a rotation around a particular point whose position in the
plane θ = ϕ is given by (4.2).

The position of this new rotation axis is obtained by solving (4.2) for all z. In
the linear stability theory, the angle ϕ is predicted to remain zero: this corresponds
to an undulation of the vortex centre in the plane of stretching (θ = 0). Figure 10
compares a Kalliroscope visualization of the mode (−1, 1, 1) and the loci of the
centre of rotation for an amplitude a = 0.03. Note that we have taken into account,
in figure 10(b), the optical effect of the convex cylinder surface which makes the
mode appear about 1

3
larger. In figure 10(a), we can see that the demarcation line

between the dark zone and the illuminated zone corresponds remarkably well with
the position of the rotation centre in figure 10(b). For this particular mode, the
Kalliroscope technique would allow us to obtain quantitative information on the flow
field, which is not generally the case. Theoretically, if the rotation centre stays in
the plane of visualization, we should be able to measure the mode amplitude a as a
function of time by this method. However, this is not possible in practice as nonlinear
effects tend to rotate the plane of undulation and therefore to shift the rotation centre
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Figure 10. Comparison between visualization and theoretical prediction of the mode (−1, 1, 1).
(a) Kalliroscope visualization for Re = 2500 and H/R = 7.96 in the (x, z)-plane (i.e. θ = 0) and
(b) theoretical prediction of the centre of rotation by the linear stability theory for a mode amplitude
A = 0.03.

outside the plane of visualization. For this reason, we analyse experimentally the flow
in a plane perpendicular to the cylinder axis and use PIV measurements to track the
evolution of the rotation centre.

From a theoretical point of view, to understand the dynamics of the mode amplitude
and particularly the rotation of its phase ϕ, we have to consider the nonlinear
modification of the basic flow. Waleffe (1989) first performed a weakly nonlinear
analysis of the elliptic instability in the absence of viscosity (see also Sipp 2000)
and Racz & Scott (2001b) carried out a viscous weakly nonlinear analysis of a
parametric instability similar to the elliptic instability. Racz & Scott (2001b) showed
that the effects of viscosity are not as simple as initially guessed by Waleffe (1989).
Finally, Mason & Kerswell (1999) performed a weakly nonlinear analysis of the elliptic
instability (in a cylinder with modified boundary conditions) focusing on the saturated
state of the mode amplitude. Here, in order to compare theory with the PIV measure-
ments, we have to perform a weakly nonlinear analysis of the elliptic instability
including viscous effects and dynamical effects. Since the analysis is quite long and
does not involve new methods, the reader is referred to the above papers for technical
details. In the present paper, we merely outline the analysis for the distinguished
scaling and we then jump to the amplitude equations.

Following classical asymptotic methods, the amplitude A is expanded in powers
of the small eccentricity ε. The distinguished scaling for weakly nonlinear effects is
obtained when the amplitude is O(ε1/2). The Reynolds number is chosen to be O(ε−2)
such that the viscous flow induced by boundary layers is O(ε3/2) (this viscous flow is
proportional to Re−1/2A). The nonlinear correction of the basic flow forced by the
principal mode is a O(ε) geostrophic flow. This flow has vanishing axial and radial
velocity and its azimuthal velocity v0 depends only on radius r. It can be decomposed
on the basis of Bessel functions J1(K

(i)r) all vanishing in r = 1:

v0(r) =

∞∑
i=1

a
(i)
0 J1(K

(i)r), (4.3)

with each real amplitude a(i)
0 of order ε.
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The amplitude A of the mode (−1, 1, 1) and the amplitudes a(i)
0 are supposed to vary

on a slow time scale εt such that dA/dt = O(ε3/2) and da(i)
0 /dt = O(ε2). The amplitude

equations for A and a
(i)
0 are therefore obtained by solvability conditions at orders

ε3/2 and ε2, respectively. At order ε3/2, the dynamics of A is driven by the interaction
of the mode (−1, 1, 1) with the geostrophic mode giving rise to a flow proportional
to a

(i)
0 A and by the triple interaction of the mode (−1, 1, 1) with itself producing a

flow proportional to |A|2A. The equations describing the dynamics of the geostrophic
flow are obtained at order ε2. They result from the nonlinear interaction of the mode
(−1, 1, 1) with the elliptic deformation and the boundary-layer corrections. Finally,
both the mode (−1, 1, 1) and the geostrophic flow are damped by viscosity. The
balance of this O(Re−1/2) damping term with the O(ε) instability growth rate justifies
a posteriori the scaling chosen for Re.

The resulting amplitude equations are (still with A = ae−iϕ):

da

dt
= (εσi cos 2ϕ− Re−1/2µ0)a, (4.4a)

dϕ

dt
= δ + Da2 − εσi sin 2ϕ+

∞∑
i=1

ξ(i)a
(i)
0 , (4.4b)

da(i)
0

dt
= 2ελ(i)

1 a
2 cos 2ϕ+ Re−1/2λ

(i)
2 a

2 − Re−1/2µ
(i)
1 a

(i)
0 , (4.4c)

with the inviscid growth rate σi = 0.5312 and the nonlinear coefficient D = 2.015.

The damping coefficients are µ0 = 0.801 + 9.97Re−1/2, µ(i)
1 = 0.125 +K (i)2Re−1/2 where

the first term of µ0 and µ
(i)
1 originates from viscous boundary layers and the second

term from volumic viscous effects. The constants K (i) appearing in µ(i)
1 and the other

coefficients λ(i)
1 , λ(i)

2 and ξ(i) are given in table 3 (for i 6 4). Here, as above, we have
included the viscous volumic effects in the viscous coefficients µ0 and µ1 even if they
appear at a larger order. The first amplitude equation (4.4a) reflects the modification
of the growth rate when the angle ϕ is not zero. It appears that the growth rate
in the weakly nonlinear regime is simply equal to the linear growth rate multiplied
by the factor cos 2ϕ, which is the local normalized stretching rate for θ = ϕ. In
this equation, the viscous damping rate Re−1/2µ0 also appears. The critical Reynolds
number is obtained when growth and damping rates compensate, i.e. µ0Re

−1/2 = εσi

which gives Rec = 537 (we recover the same critical Reynolds number as in the linear
theory for H/R = 8). In (4.4b), the term δ reflects the detuning associated with aspect
ratio variation which tends to modify the angle ϕ. In the following, the coefficient
δ is assumed to be negligible, i.e. the cylinder is assumed to be perfectly tuned. In
(4.4b), we can also see that the geostrophic flow modifies the angle ϕ. The third
equation (4.4c) describes the dynamics of the geostrophic flow through the different
amplitudes a(i)

0 . It is worth noticing that the coefficients λ(i)
1 , λ(i)

2 and ξ(i) rapidly decay
as i increases. This permits us to justify a truncation of the sum appearing in (4.4b).
It is also important to note that λ(i)

1 and λ
(i)
2 are of opposite sign. This means that

elliptic and viscous effects tend to compensate when considering the evolution of the
geostrophic flow.

As demonstrated by Racz & Scott (2001b) on a similar system, the equation
system (4.4a)–(4.4c) admits non-trivial fixed points. The first equation gives the
angle of those fixed points which simply satisfies cos 2ϕ = Re−1/2µ0/εσi. For this
angle, elliptic destabilizing effects are exactly balanced by viscous damping. Note
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i K (i) ξ(i) λ
(i)
1 λ

(i)
2

1 3.83 −0.223 −18.47 43.50
2 7.01 −0.153 −3.33 9.36
3 10.2 0.056 0.76 −2.64
4 13.3 −0.033 −0.33 1.45

Table 3. The different coefficients appearing in the nonlinear amplitude equations (4.4a)–(4.4c) for
i 6 4. These coefficients are only valid for the mode (−1, 1, 1) and for H/R = 8.

that the amplitude a of the fixed point does not intervene in the fixed point an-
gle. Figures 11 and 12 illustrate the possible dynamical behaviours of amplitude
A for different Reynolds numbers. To obtain these figures, the equation system
(4.4a)–(4.4c) has been solved numerically with the initial conditions a = 10−5, ϕ = 0
and a

(i)
0 = 0 for all i. When the amplitude is small, the dynamics follow the property

of linear stability analysis, i.e. the amplitude a grows exponentially and ϕ remains
zero. As a continues to grow, the first effect of nonlinearity is to shift the angle ϕ,
thus decreasing the growth rate, as described by (4.4a). Eventually, the amplitude
A converges towards a fixed point by spiralling in the complex plane (as seen in
figure 12). The oscillating behaviour is more and more pronounced as the Reynolds
number increases. For infinite Reynolds number, the nonlinearity has a peculiar effect.
Indeed, in this case, a should eventually decrease back to zero after a given time, as
stressed by Sipp (2000). However, this kind of trajectory is singular; for any finite
Reynolds number, the trajectory always converges to a fixed point different from
zero.

To compare the theoretical predictions of the weakly nonlinear stability theory with
experimental results, we have performed PIV measurements. For this purpose, the
cylinder is illuminated by a laser sheet in the plane z/H = 0.75, corresponding to a
maximum displacement of the rotation centre. The time interval between two images
can be varied from 5 to 100 ms according to the rotation frequency of the cylinder.
As illustrated by figure 13, the PIV algorithm allows us to measure the projection
of the velocity field in the plane of the laser sheet. Thus, it provides the position
of the rotation centre. Both ϕ and a can be determined from this position. The
angle ϕ corresponds to the physical angle between the direction of stretching and
the position of this rotation centre. The amplitude a can be inferred from equation
(4.2) for cos(kz) = 1, by measuring the distance r between the rotation centre and the
centre of the cylinder.

A succession of PIV analyses permits us to follow the evolution of a and ϕ
as a function of time. Such evolutions are shown in figure 14 for three different
Reynolds numbers. For all Reynolds numbers, the first stage of the experiment is
the spin-up of the flow (not shown in these figures). During spin-up, a large part of
the core of the cylinder is motionless, thus not permitting us to define precisely the
position of the rotation centre. After spin-up, the rotation centre is located near the
cylinder centre, i.e. the mode amplitude a is small. At this stage, the measurement of
the angle ϕ is impossible (on the left of the dashed line in figure 14b). Eventually, the
mode amplitude grows until it reaches a saturated state (a = 0.04 for Re = 790 and
a = 0.06 for Re = 1600) and as it grows, the angle ϕ increases from zero to a fixed
value (ϕ = 14◦ for Re = 790 and ϕ = 26◦ for Re = 1600). For Re = 1600, saturation
of amplitude occurs when 300 < Ωt < 450. For larger times, another dynamic begins
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Figure 11. Illustration of the weakly nonlinear dynamics of the amplitude A by (a) its norm a and
(b) phase φ for three different Reynolds numbers: ——–, Re = 790; – – – –, 1600; · · · · · ·, 4700.

at time Ωt = 450 which converges to a slightly different fixed point (a = 0.07 and
ϕ = 24◦). This new dynamic is reproducible and appears for 1000 < Re < 4000. For
the highest Reynolds number, Re = 4700, no saturation of the amplitude could be
observed. This case is discussed in more detail in the next section.

For Re = 790, the agreement between theory and experiment is excellent (see
figures 11 and 14), even if the amplitude a and angle ϕ of the fixed point observed
in the experiment are slightly below the theoretical predictions. For Re = 1600,
agreement is also quite good until Ωt = 450. After this time, a new phenomenon, not
taken into account in the weakly nonlinear theory (probably linked to a secondary
instability as will be discussed below), comes into play and modifies the dynamics.
Finally, for Re = 4700, the agreement is only correct during the exponential growth
of the amplitude. After that, at time Ωt ≈ 300, the weakly nonlinear theory is not
sufficient to describe the collapse of the amplitude.

Another way of comparing between weakly nonlinear theory and experiments is
to plot the measured saturated amplitude asat and saturated angle ϕsat of the fixed
points as a function of the Reynolds number, as in figure 15. In this figure, the
value of the first fixed point reached by the amplitude is plotted (for Re = 1600, it
corresponds to time 300 < Ωt < 450 as explained above) since we believe that the
following dynamics are due to higher-order nonlinear effects not taken into account
in the theory. In figure 14(a), the mode amplitude plotted is deduced from (4.2) for
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Figure 12. Trajectories of the amplitude A in the complex plane for the same
Reynolds numbers as figure 11.

Figure 13. Illustration of a typical PIV velocity field of the mode (−1, 1, 1). The dashed and dotted
lines represent the stretching and compression axis, respectively. Close to the cylinder wall, the
velocity field could not be measured because of illumination problems due to the presence of the
rollers.

cos(kz) cos(θ − ϕ) = −1. However, when a is large, an important geostrophic flow
is produced which makes the amplitudes a(i)

0 in the amplitude equation system (4.4)
non-negligible. Knowing the angle ϕ and given the Reynolds number, the amplitudes
a

(i)
0 of the geostrophic modes can be calculated at saturation using (4.4c). They are

shown to be proportional to a2. Thus, (4.2) can be modified into a second-order linear
equation for a to take into account the geostrophic flow v0(r). The solutions of this
corrected equation correspond to the crosses in figure 15(a). This corrected saturated
amplitude is about 20% lower than the amplitude shown in figure 14(a). It shows a
posteriori that figure 14(a) gives only qualitative information on the mode dynamics.

From figure 15, we can see that there is a fairly good agreement between the
predicted critical Reynolds number (Rec = 537) and the one that could be inferred
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Figure 14. PIV measurements of (a) the amplitude and (b) the angle of the mode (−1, 1, 1) as a
function of time for ∗, Re = 790; 4, 1600; ©, 4700.

from experiments. It is, however, important to mention that close to the threshold, the
experiments were difficult to carry out owing to the fatigue of the cylinder material
during the long period of time needed by the experiment (over 3 h). In figure 15(b), the
measured saturated angle is compared with that predicted by (4.4a) for saturation. The
good agreement confirms that the angle of saturation is simply the angle for which
the stabilizing effect of viscosity and the destabilizing effect of ellipticity compensate.
A small shift of 5◦ can be observed (it could be due to a lack of accuracy when
defining the direction of stretching).

For Re > 1000, a periodic dynamic is observed superimposed on the stationary
mode (−1, 1, 1). This phenomenon can be associated with a secondary instability
which has been identified in numerical simulations by Kerswell (1999) and Mason &
Kerswell (1999) (see also Fabijonas, Holm & Lifschitz 1997; Lifschitz & Fabijonas
1996). By Kalliroscope visualization, we also observed the saturated state of this
secondary instability as displayed in figure 16. As can be seen on these six successive
images representing one period, a global oscillation of the flow is superimposed on
the basic deformation of the axis of rotation due to the primary mode (−1, 1, 1).
During half a period of this secondary instability, the centre part of the flow is
strongly illuminated in contrast to the end parts which stay darker. In the following
half-period, the opposite situation occurs where the centre part of the flow stays
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Figure 15. Bifurcation diagrams. (a) Saturated amplitude asat and (b) angle ϕsat as a function of the
Reynolds number. The solid lines are deduced from weakly nonlinear theory; ©, PIV measurements;
+, corrected amplitudes taking into account the geostrophic flow.

dark while the extremities of the cylinder are illuminated. However, owing to the
difficulties in interpreting these Kalliroscope images (see Gauthier et al. 1998), we
only calculate the frequency of these oscillations from the video images. The spatio-
temporal diagram associated with this dynamic is shown in figure 17. In this figure,
the periodicity of the flow is shown and its frequency is measured with good accuracy:
ω = 2.31Ω. This is in agreement with the frequency of one of the instability modes
predicted by Mason & Kerswell (1999): ω = 2.27Ω. Note that this frequency does
not correspond to the frequency of the damped oscillations seen in figure 14(a) for
Re = 1600 and Ωt > 450 which are much slower: ω ≈ 0.045Ω. Nevertheless, as
for the fundamental mode, we expect the secondary instability to modify the basic
flow by the generation of geostrophic modes through nonlinear interaction. This new
geostrophic flow would imply a modification of the amplitude equations (4.4a)–(4.4c).
The low-frequency damped oscillations of the mode amplitude seen in figure 14(a) are
probably linked to the slow dynamics of the system of coupled modes. Apparently,
for such low Reynolds numbers, the amplitude of the secondary instability mode
also saturates and a final state composed of the saturated mode (−1, 1, 1) and the
saturated secondary instability mode can be obtained. As explained by Kerswell
(1999), the physical mechanism of this secondary instability is a triadic resonance of
the mode (−1, 1, 1) with two Kelvin modes. For the frequency ω = 2.27Ω, these two
modes are such that their axial, azimuthal wavenumbers and frequency are: k1 = 1

2
k0,
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(a)

(b)

(c)

(d )

(e)

( f )

Figure 16. Secondary instability mode. Six successive pictures of the flow for the following exper-
imental parameters: n = 2, Re = 2100 and H/R = 7.80. The first picture is taken after 3 min, i.e.
Ωt = 514. The time interval between two pictures is Ω∆t = 0.54 such that the six pictures represent
a full period of the dynamics.

m1 = 2, ω1 = 2.27Ω and k2 = 3
2
k0, m2 = 3, ω2 = 2.27Ω, with k0 = 1.579 the axial

wavenumber of the mode (−1, 1, 1). Mason & Kerswell (1999) predict the presence
of a secondary instability mode of frequency ω = 2.27Ω as soon as a > 0.014 (this
number is different from that found in their paper because of different normalizations
of the Kelvin modes). In our measurements, the oscillation of the amplitude A after
saturation was only observed for Re > 1000 which corresponds to asat > 0.05. This
apparent discrepancy may be due to the fact that the amplitude of the secondary
instability has to be sufficiently large to be observed experimentally. For Re < 4000,
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Figure 17. Spatio-temporal diagram of the secondary instability mode. This diagram is constructed
by extracting a horizontal video line in the top quarter of the cylinder (as seen in figure 16). The
experimental parameters are identical to those indicated in figure 16. The signal is time-periodic
with a frequency ωexp = 2.31Ω.

we always observed the saturation of the primary mode and its secondary instability
(when present). However, for higher Reynolds numbers, the flow exhibits a new
behaviour, as described in the next section.

4.3. High-Reynolds-number flow

For Re > 4000, the weakly nonlinear theory, as exposed in the previous section, is
not sufficient to describe what can be seen by Kalliroscope visualizations. For time-
periodic modes of the elliptic instability (all modes different from (−1, 1, 1)), or for
modes of the triangular instability (all time-periodic), no saturation of the mode
amplitude has been observed. Figure 18 shows three successive pictures of the flow
for the mode (−1, 2, 1) of the triangular instability. For Re = 4700, 4.5 wavelengths
of the mode (−1, 2, 1) are first observed along the length of the cylinder (figure 18a).
This oscillation grows (figure 18b) until it eventually leads after a few periods of
rotation to an apparent disordered flow (figure 18c) which is maintained forever.
Unfortunately, because of the short time scale of the phenomenon affecting these
periodic modes, it is difficult to carry out PIV measurements and the visualization
gives only a qualitative picture of the flow. The apparent small-scale disorder could
be the result of the superposition of several modes of the multipolar instability
and secondary instability modes. In the literature, this apparent disorder has been
called ‘resonant collapse’ (McEwan 1971), ‘wave collapse’ (Malkus 1989), ‘breakdown’
(Kerswell 1999) or ‘explosion’ (Eloy et al. 2000). In the following, we shall use these
terms indifferently even if we believe that this state could be explained by a weakly
nonlinear interaction of modes as is argued below.

For the stationary mode (−1, 1, 1) of the elliptic instability, the evolution of the flow
appears to be different. As mentioned in Eloy et al. (2000), there is no saturation of the
mode amplitude for such high-Reynolds-number flows. A cycle of instability, explosion
and relaminarization can be observed with Kalliroscope visualization (figure 5 of
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(a)

(b)

(c)

Figure 18. Three successive pictures of the flow [mode (−1, 2, 1)] for n = 3, Re = 4700 H/R = 8
and (a) Ωt = 330; (b) Ωt = 350; (c) Ωt = 420.

Eloy et al. 2000). The first two stages are comparable to what has been observed
for time-periodic modes; the instability grows until the flow becomes very disordered
(apparently), similar to what can be seen in figure 18 for the mode (−1, 2, 1). This
disorder which is characterized by the apparition of small scales appears suddenly
(on a time scale comparable to the rotation period) and gives the impression of an
‘explosion’ of the flow. However, in contrast to time-periodic modes, these ‘small
scales’ are not maintained and the flow eventually relaminarizes to a solid-body
rotation. At this stage, the instability can grow again, leading to a characteristic
intermittent cycle.

Figure 14 shows how the mode amplitude and phase vary as measured with PIV
for Re = 4700. It can be seen that the amplitude first grows exponentially until
Ωt = 250. At this moment, the amplitude seems to saturate (a ≈ 0.7) as does its phase
(ϕ ≈ 35◦). But when Ωt = 300, the ‘explosion’ occurs and the amplitude decreases
until Ωt = 370. During this decay, the phase varies rapidly giving the impression that
the amplitude is spiralling back to zero. Then, from Ωt = 400 to 500, the unstable
mode (−1, 1, 1) grows again until the second explosion. The PIV recording ends when
the flow has relaminarized for the second time at Ωt = 600. During the whole cycle,
the velocity field as measured by PIV is a rotation around a single point (except for
very rare velocity fields at the end of the amplitude decay for which there seem to be
two rotation centres close to each other). Moreover, the impression of ‘small scales’
given by the Kalliroscope visualizations is not recovered by PIV measurements. This
means that during the cycle, the flow is mainly composed of the mode (−1, 1, 1).

Several scenarios have been proposed in the past to explain the violent explosion
observed on visualizations. In the context of forced Kelvin modes, McEwan (1971)
first proposed that this ‘resonant collapse’ (as he named it) could be triggered by the
triadic interactions of three Kelvin waves. In the context of precessing instabilities,
Kobine (1995) and Manasseh (1996) observed a similar ‘collapse’. It has been argued
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(a)

(b)

(c)

Figure 19. Three successive pictures of the flow for Re = 6600, H/R = 8 and (a) Ωt = 61;
(b) Ωt = 63; (c) Ωt = 80.

that boundary-layer instabilities or a centrifugal instability could be responsible for
this collapse. Malkus & Waleffe (1991) proposed a third scenario. They claimed
that, owing to nonlinear interactions, the basic flow enters a regime (defined by
dΓ 2/dr < Γ 2/r where Γ (r) is the circulation) where Kelvin modes no longer exist.
They attributed the ‘collapse’ to this regime. Finally, Mason & Kerswell (1999) and
Kerswell (2002) argued that the secondary instability could be the first step of a
bifurcation cascade (in the spirit of Ruelle–Takens) leading to the violent collapse.
Despite the number of scenarios, no clear experimental fact has so far been able to
clarify the mechanism of ‘explosion’.

In our experiment, we have tried to test the different scenarios. We first analysed the
velocity field given by PIV measurements. It appeared that the Rayleigh criterion for
centrifugal instability and the criterion on the circulation Γ (r) proposed by Malkus
& Waleffe (1991) were never satisfied throughout the whole cycle of instability
and explosion. These two scenarios can therefore be discarded. As explained in the
previous section, for sufficiently small Reynolds number (Re < 4000), the secondary
instability described by Kerswell (1999) has been shown experimentally. However,
it was also shown that the presence of this secondary instability does not lead to
explosion in this regime. For larger Reynolds numbers, this secondary instability is
probably also present even if it is difficult to visualize experimentally because of the
short duration of the explosion. On particular visualizations such as those in figure
19, just prior to explosion, two different modes of the primary elliptic instability have
been observed. In figure 19(a), we can see the two wavelengths characterizing the
mode (−1, 1, 1) and, a short time later (less than half the rotation period), a mode
with 3 wavelengths in figure 19(b). A spatio-temporal diagram (not shown here)
permits us to measure the period of the flow: ω = 1.0Ω, and therefore confirms that
the second mode observed is the primary mode (0, 2, 1). This means that these two
modes can coexist before explosion. Their interaction could thus play a role in the
collapse observed later. Note, however, that this superposition of the mode (−1, 1, 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

02
00

29
99

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112002002999


Elliptic and triangular instabilities in rotating cylinders 383

and (0, 2, 1) is not always observed in Kalliroscope visualizations and that it was not
observed in PIV measurements.

Based on these experimental facts, we can argue that the mechanism of ‘collapse’
is likely to be a nonlinear interaction of several modes of the primary or secondary
instability. However, it is difficult to distinguish which mode interacts with the mode
(−1, 1, 1) since both the secondary instability mode and the mode (0, 2, 1) involve
a Kelvin mode of azimuthal wavenumber m = 2 and with a wavelength λ such
that 3λ = H/R. As Mason & Kerswell (1999) observed numerically, the secondary
instability could force the mode (0, 2, 1). This may explain why it can be visible on
few visualizations. Besides, any defect of the experiment (such as a non-homogeneous
cylinder material) may drive a forcing at the rotation frequency Ω which is precisely
the frequency of the mode (0, 2, 1). We can imagine that the mode (0, 2, 1) created
this way could also force the secondary instability mode. In any case, the presence
of another mode modifies the weakly nonlinear amplitude equations obtained in
the previous section. Indeed, the equation for the geostrophic modes would have to
take into account the presence of these additional modes. This could be sufficient to
completely change the dynamics of the (−1, 1, 1) mode amplitude and generate the
cycle of instability–explosion observed.

5. Conclusion
In this paper, we have studied experimentally and theoretically the stability of

a vortex subjected to a dipolar or tripolar stationary strain. The experimental
apparatus is made of an elastic deformable cylinder rotated at constant angular
speed. This cylinder is constrained by two or three rollers to deform it elliptically
or triangularly. We have studied the flow under the variation of two dimension-
less control parameters: the aspect ratio of the cylinder which can be varied by
changing its length and the Reynolds number based on the angular speed. The
third control parameter could be the strength of the applied constraint, but its vari-
ation has not been studied in the present paper. We have shown theoretically by
studying the viscous linear stability of the flow that these two control parameters
are able to select particular modes of the instability. A diagram showing the most
unstable mode as a function of the Reynolds number and aspect ratio has been
constructed (figure 9). This predicted diagram shows excellent agreement with the
experimentally observed modes close to the instability threshold. In particular, we
have exhibited time-periodic modes which were not reported by previous experimental
studies.

The instability has also been studied for Reynolds numbers far from the threshold
for the stationary undulating modes. For the first time, we have demonstrated that
a viscous weakly nonlinear analysis is able to predict the dynamics of the mode
amplitude as measured by PIV up to Re = 4000. The weakly nonlinear interaction
of the mode with itself drives a geostrophic mode whose effect is to modify the
basic flow. The growth of the geostrophic mode forces a detuning of the mode
phase which yields a stabilizing effect. In all cases, the weakly nonlinear equations
lead to stable fixed points with saturated amplitude. The amplitude of the pre-
dicted fixed points depends on the Reynolds number, it compares well with the
PIV measurement of the saturated mode amplitude. Through Kalliroscope visual-
izations, we have also shown the presence of a secondary instability as predicted
by Kerswell (1999) in his numerical study. The secondary instability mode am-
plitude has been shown to saturate experimentally for Re < 4000. However, for
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higher Reynolds number, the flow exhibits a new behaviour. After the growth of
the unstable mode, an ‘explosion’ of the flow has been observed. This ‘collapse’ is
probably due to the growth of a geostrophic mode driven by the nonlinear inter-
action of secondary instability modes or other modes of the primary instability. This
geostrophic mode modifies the mean flow and therefore changes the dynamics of
the mode amplitude giving the impression of a violent ‘explosion’. In other words,
this apparent ‘collapse’ could be nothing but a complex weakly nonlinear interaction
of the fundamental modes with secondary instability modes and the geostrophic
flow.

In this paper, we have investigated the multipolar instability which is a resonant
vortex instability. Its physical mechanism lies in the interaction of two natural Kelvin
modes of the vortex with the applied constraint. In the case studied here, the con-
straint can be viewed as a two-dimensional stationary intrinsic ‘mode’, i.e. with axial
wavenumber, azimuthal wavenumbers and frequency k = 0, m = n and ω = 0. In
the context of turbulent flows, it would be interesting to study the effect of any
general intrinsic mode [k;m;ω]. Indeed, combinations of such general modes would
give a model of the turbulent field surrounding vortex filaments. Such a constraint is
likely to drive a resonant instability similar to the multipolar instability. The richness
of this kind of resonant instability could explain the splitting and undulation of
vortex filaments seen in turbulent flows both experimentally (Cadot et al. 1995) and
numerically (Arendt et al. 1998).

We would like to acknowledge the valuable help of Patrice Meunier during the
experimental study.

Appendix. Mathematical expressions
A.1. Kelvin modes

The velocity–pressure field of a Kelvin mode is defined by (3.2) where U = (−iUr;
Uθ;Uz;P ) is given by:

Ur(r) = (m− ω)δJ ′|m|(δr) +
2m

r
J|m|(δr), (A 1a)

Uθ(r) = 2δJ ′|m|(δr) +
m(m− ω)

r
J|m|(δr), (A 1b)

Uz(r) = − k

m− ω [4− (m− ω)2]J|m|(δr), (A 1c)

P (r) = [4− (m− ω)2]J|m|(δr), (A 1d)

where Jµ is the Bessel function of the first kind and J ′µ its derivative. The scalar δ in
these expressions is the ‘radial wavenumber’ and is defined as:

δ2 =
k2(2 + m− ω)(2− m+ ω)

(m− ω)2
. (A 2)

The dispersion relation D(k, m, ω) = 0 is given by

D(k, m, ω) = (m− ω)δJ ′|m|(δ) + 2mJ|m|(δ). (A 3)
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A.2. Operators

The operators required to calculate amplitude equations (3.4a), and (3.4b) are:

J =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 , (A 4)

Q =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 , (A 5)

N =
1

2


D1 − (n− 1)rn−2 −i(n− 2)rn−2 0 0

−inrn−2 D1 + (n− 1)rn−2 0 0

0 0 D1 0

0 0 0 0

 , (A 6)

with

D1 = −rn−1 ∂

∂r
+ mrn−2, (A 7)

L =


D2 − 1

r2
−2im

r2
0 0

2im

r2
D2 − 1

r2
0 0

0 0 D2 0

0 0 0 0

 , (A 8)

and

D2 =
1

r

∂

∂r
+
∂2

∂r2
− m2

r2
+

∂2

∂z2
. (A 9)

A.3. Linear amplitude equations

As in Moore & Saffman (1975) and Eloy & Le Dizès (2001), linear amplitude
equations are obtained from solvability conditions. Explicit and compact expressions
for the linear coefficients can be obtained if we introduce the scalar product:

〈X |Y 〉 =

∫ 1

0

(XrYr +XθYθ +XzYz +XpYp)r dr, (A 10)

and the notation:

N2|1 = 〈U (2)|NU (1)〉, (A 11)

where U (1) and U (2) are the velocity–pressure fields of the first and second Kelvin
modes, respectively. Using similar techniques to those in Eloy & Le Dizès (2001), we
obtain for the coefficients appearing in (3.4a) and (3.4b)

n1 =
N1|2 − I1

J1|1
, v1 = −L1|1

J1|1
, q1 =

Q1|1
J1|1

, (A 12a–c)
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n2 =
N2|1 − I2

J2|2
, v2 = −L2|2

J2|2
, q2 =

Q2|2
J2|2

, (A 12d–f )

where the bar denotes complex conjugation, the terms I1 and I2 originate from the
inviscid elliptic boundary conditions and are evaluated in r = 1:

I1 = 1
2
P (1)

(
U

(2)
θ +

1

n

∂U(2)
r

∂r

)
, (A 13a)

I2 = 1
2
P (2)

(
U

(1)
θ − 1

n

∂U(1)
r

∂r

)
. (A 13b)

The terms s1 and s2 come from the viscous boundary conditions. Kudlick (1966) gave
explicit expressions:

s1 =
(4− ζ2

1 )

4
√

2(m2
1 + k2 + 1

2
m1ζ1)

R

H

[
(1− i)

2− ζ1√
2 + ζ1

(
m2

1 + k2 +
2m1ζ1

2− ζ1

)
(A 14a)

+ (1 + i)
2 + ζ1√
2− ζ1

(
m2

1 + k2 +
2m1ζ1

2 + ζ1

)
+ (1− i)

(
m2

1 + k2
) H
R

√
ζ1

]
, (A 14b)

s2 =
(4− ζ2

2 )

4
√

2(m2
2 + k2 − 1

2
m2ζ2)

R

H

[
(1 + i)

2− ζ2√
2 + ζ2

(
m2

2 + k2 − 2m2ζ2

2− ζ2

)
(A 14c)

+ (1− i)
2 + ζ2√
2− ζ2

(
m2

2 + k2 − 2m2ζ2

2 + ζ2

)
+ (1 + i)

(
m2

2 + k2
) H
R

√
ζ2

]
, (A 14d)

with

ζ1 = |ω − m1|, ζ2 = |ω − m2|. (A 15a, b)
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