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We propose a simple model of random interval graphs generated by immigration–
death processes (also known as M/G/∞ queuing processes), where the length of each
interval follows a subexponential distribution, and provide a condition under which
the stationary degree distribution is also subexponential. Furthermore, we consider
the conditional expectation of the cluster coefficient of a vertex given the degree and
show that it vanishes in the limit as the degree goes to infinity under the same condition
as that for obtaining the tail asymptotics of the stationary degree distribution.

1. INTRODUCTION

Scale-free graphs have recently attracted much attention since so-called scale-free
phenomena have really appeared in various physical and social networks, where we
say that a graph is scale-free if the distribution of degrees (the numbers of edges
incident to respective vertices) has a power-law tail. To throw light on such phenomena
in the real world, many models of random graphs realizing the scale-free property have
so far been proposed and investigated since the early works by Watts and Strogatz [17]
and Barabási and Albert [3]. Among them, the authors’ previous work [13] proposed
a simple model of random interval graphs generated by immigration–death processes
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(also known as M/G/∞ queuing processes; see, e.g., Cox and Isham [6, Sect. 5.6]) and
showed that when the interval lengths follow a power-law distribution, the generated
interval graph is scale-free. Here, a graph G = (V , E) is said to be an interval graph
when G has an interval representation I, the set of intervals on the real line, such that
each vertex v ∈ V corresponds to an interval Iv ∈ I and there is an edge (u, v) ∈ E
connecting two vertices u,v ∈ V if and only if Iu ∩ Iu �= ∅. In [13], each interval is
then given as the period of a customer’s stay in the M/G/∞ queue; that is, the interval
lengths correspond to the service (sojourn) times of customers. Interval graphs form
one of the most important classes of graphs since they have several nice features, so
they have been studied thoroughly in graph theory (see, e.g., Golumbic [10, Chap. 8]
and McKee and McMorris [12]).

In the current paper, we generalize the result in [13] to the model where the dis-
tribution of interval lengths is subexponential (see, e.g., Embrechts, Klüppelberg, and
Mikosch [8, Sect. 1.3 andA3] or Rolski, Schmidli, Schmidt, and Teugels [15, Sect. 2.5]
for subexponential distributions)—namely we consider random interval graphs gen-
erated by immigration–death processes with subexponential lifetime distributions,
which we call subexponential interval graphs. We provide a condition on the life-
time (service time, interval length) distribution F under which the stationary degree
distribution of the generated interval graph has a tail equivalent to that of F(x/λ);
that is, the stationary degree distribution is also subexponential, where λ denotes the
arrival rate of intervals. This derivation is based on the recent results on sampling of
a stochastic process at random times according to subexponential distributions (see
Asmussen, Klüppelberg, and Sigman [2], Foss and Korshunov [9], and Jelenković,
Momčilović, and Zwart [11]).

Furthermore, we consider the conditional expectation of the cluster coefficient of
a vertex given its degree. In a given graph, the cluster coefficient of a vertex represents
the fraction of couples of its neighbors such that the couple is also connected by an
edge, and it is observed that many scale-free graphs have high cluster coefficients
(see, e.g., Newman [14]). In fact, the previous work [13] also demonstrated by a
combinatorial argument that the random interval graphs similar to ones in this article
have high cluster coefficients, on average, over vertices. In this article, however, we
show that the conditionally expected cluster coefficient given the degree vanishes in
the limit as the degree goes to infinity under the same condition as that for obtaining
the tail asymptotics of the stationary degree distribution. This result states that the
vertices with high degrees, which correspond to very long intervals, have extremely
small cluster coefficients and does not contradict the result in [13], in which relatively
short intervals play an essential role.

The rest of the article is organized as follows. In the next section, we describe
the immigration–death process and exhibit an algorithm constructing random interval
graphs based on that process. In Section 3 we analyze the subexponential interval
graph generated by the immigration–death process in the steady state, in which we
discuss the tail asymptotics of the stationary degree distribution and the conditionally
expected cluster coefficient of a vertex given its degree in the limit as the degree goes
to infinity. Finally, Section 4 is a concluding remark.
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2. INTERVAL GRAPHS GENERATED BY IMMIGRATION–DEATH
PROCESSES

In this section, we describe an immigration–death process (also known as an M/G/∞
queuing process; see, e.g., [6, Sect. 5.6]) and construct a random interval graph
based on that process. Let {Tn}n∈Z+ denote a random sequence on R+ satisfying
0 = T0 < T1 < T2 < · · · , at each of which an individual arrives and enters a system.
We refer to the individual arriving at Tn as individual n (∈ Z+). The lifetime (ser-
vice time) of individual n in the system is denoted by Ln (≥ 0), so that individual n
departs from the system at Tn + Ln. We assume that {Tn}n∈N follows a homogeneous
Poisson process with intensity λ ∈ (0, ∞) and {Ln}n∈Z+ is a sequence of mutually
independent nonnegative random variables according to a common distribution F,
where {Tn}n∈N and {Ln}n∈Z+ are also independent of each other. The distribution F is
assumed to have its mean μ−1 = ∫ ∞

0 F(x) dx < ∞, where F(x) = 1 − F(x), x ≥ 0.
Let In = [Tn, Tn + Ln], n ∈ Z+, and Z(t) = ∑

n∈Z+ 1In(t), t ≥ 0, where 1A denotes the
indicator function for set A. Note that Z(t) represents the number of individuals in
the system at time t ≥ 0 (the reason for the choice of In = [Tn, Tn + Ln] rather than
[Tn, Tn + Ln)will be clarified in Remark 1). It is well known that {Z(t)}t≥0 has a station-
ary regime when both λ and μ are nonzero and finite (see, e.g., [6, Sect. 5.6] or Takács
[16, Sect. 3.2]).

Based on this immigration–death process, we consider a random inter-
val graph G0 = (V0, E0) with interval representation I0 = {In}n∈V0 , where V0 =
{0, 1, . . . , n0 − 1} and n0 is a predetermined positive integer—namely each individual
in V0 corresponds to a vertex of the graph and two vertices n and m ∈ V0 are connected
by an edge if and only if In ∩ Im �= ∅. Note that such a graph has no multiedges or self-
loops. Given n0, λ, and distribution F, a simple algorithm constructing such random
interval graphs is as follows, where Sample(F) denotes the sampled value extracted
according to F and Exp(λ) denotes the exponential distribution with parameter λ.

procedure generate_graph(n0, λ, F)

T = 0, V = {0}, E = ∅, Q = {0}, U0 = Sample(F), n = 1; {Q: Set of individuals
in the system; Un: departure time of individual n}
while n < n0 do

T ← T + Sample(Exp(λ)); V ← V ∪ {n}; {Individual n arrives ⇒ Add
vertex n}
for i such that i ∈ Q do

if Ui < T then
Q ← Q \ {i};

else
E ← E ∪ {(i, n)}; {Individual i is still in the system at individual n’s
arrival ⇒ Add edge (i, n)}

end if
end for
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Un = T + Sample(F); Q ← Q ∪ {n};
n ← n + 1;

end while

Remark 1: When n0 is large, the random interval graph constructed by the above
algorithm ends up having many connected components with random but finite sizes
and the size of any connected component does not tend to infinity even as n0 → ∞.
Against such a feature, one might want to have one large connected graph. In such
a case, it can be realized by adding extra intervals Jn = [An, Bn], n ∈ N, where
An = inf{t > Bn−1 | Z(t) = 0} and Bn = infk∈N{Tk > An} with B0 = 0; that is, Jn,
n ∈ N, represent the idle periods of the corresponding M/G/∞ queue. Two con-
nected components in the original graph G0 are then connected through a vertex
with two edges in the modified graph G̃0, which has the interval representation
{In}n∈V0 ∪ {Jm}m∈W0 with W0 = {m ∈ Z+ : Bm < Tn0} (note that for any m ∈ W0, there
exists an n ∈ V0 such that Bm = Tn).

3. STATIONARY ANALYSIS OF SUBEXPONENTIAL INTERVAL GRAPHS

In this section, we analyze the subexponential interval graph—that is, the random
interval graph proposed in the preceding section such that the lifetime (interval
length) distribution is subexponential. In the analysis, we extend the time range
of the immigration–death process to the whole real line R and consider it to be
stationary; namely a sequence {Tn}n∈Z follows a homogeneous Poisson process
with intensity λ ∈ (0, ∞) satisfying · · · < T0 ≤ 0 < T1 < · · · and {Ln}n∈Z denotes
a sequence of mutually independent nonnegative random variables according to the
identical distribution F with mean μ−1 ∈ (0, ∞), where {Ln}n∈Z is also independent
of {Tn}n∈Z. Let Q(t), t ∈ R, denote the set of individuals in the system at time t;
that is, Q(t) = {n ∈ Z : t ∈ In} for In = [Tn, Tn + Ln]. Then, clearly, |Q(t)| = Z(t) =∑

n∈Z
1In(t), t ∈ R, where |A| denotes the cardinality of set A. When Z(t) > 0, let

ni(t), i = 1, . . . , Z(t), denote the ith element of Q(t) satisfying ni(t) < nj(t) when
i < j. Also let R(i)(t) = Tni(t) + Lni(t) − t (≥ 0), i = 1, . . . , Z(t); that is, the resid-
ual lifetime of individual ni(t) at time t ∈ R. It is then known that (see, e.g., [16,
Sect. 3.2]) when both λ and μ are positive and finite, the stationary distribution of
{Z(t), R(i)(t), i = 1, . . . , Z(t)}t∈R is given by

P
(
Z(0) = l, R(1)(0) ≤ x1, . . . , R(l)(0) ≤ xl

) = (λ/μ)l

l! e−λ/μ

l∏
i=1

Fe(xi),

l ∈ Z+, x1, . . . , xl ∈ R+, (1)

where Fe denotes the equilibrium residual lifetime distribution of F defined by
Fe(x) = μ

∫ x
0 F(y) dy, x ≥ 0, and when l = 0, the left-hand side is just reduced to

P(Z(0) = 0) and, conventionally,
∏0

i=1 · = 1 on the right-hand side. Formula (1) states
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that, in the steady state, the number of individuals in the system follows the Poisson
distribution with mean λ/μ, and the residual lifetimes of the individuals in the sys-
tem are mutually independent and identically distributed according to Fe. By the
PASTA (Poisson arrivals see time averages) property (see Wolff [18]), the right-hand
side of (1) also gives the distribution of {Z(Tn−), R(i)(Tn−), i = 1, . . . , Z(Tn−)}n∈Z

just before the arrivals of individuals.
In the following two subsections, we consider the infinite size of random interval

graph G = (V , E), V = Z, with interval representation I = {In}n∈Z and the subexpo-
nential interval length (lifetime) distribution F. We discuss the tail asymptotics of the
stationary degree distribution and the conditionally expected cluster coefficient of a
vertex given its degree in the limit as the degree goes to infinity. In the analysis, we use
the standard notation that for any two real functions f (x) and g(x) on R, f (x) ∼ g(x)
as x → a stands for limx→a f (x)/g(x) = 1, where a is possibly infinity.

3.1. Degree Distribution

A random graph G = (V , E) is said to be scale-free if its degree distribution has a
power-law tail; that is, for some constants C > 0 and γ > 0,

P(D0 = k) ∼ C

kγ
as k → ∞, (2)

where Dn = ∑
i∈V 1E(n, i) denotes the degree of vertex n ∈ V . Note that D0 satis-

fying (2) has the mth moment if γ > m + 1. Previous work [13] showed that, in
a discrete-time model setting, the random interval graph G = (V , E) with interval
representation I = {In}n∈Z is scale-free in the steady state when the interval length
distribution F has a power-law tail. Here we extend this by applying the recent results
on sampling of a stochastic process at random times according to subexponential dis-
tributions (see [2,9,11]) and provide a more general condition on F under which the
stationary degree distribution satisfies

P(D0 > k) ∼ F

(
k

λ

)
as k → ∞. (3)

We will see that the power-law distribution F such that F(x) ∼ c/xα as x → ∞ with
c > 0 and α > 1 fulfills the provided condition, so that (3) leads to P(D0 > k) ∼
c (λ/k)α as k → ∞, which implies (2) with C = cαλα and γ = α + 1.

To provide the condition on the lifetime distribution under which (3) holds, we
first give the definition of subexponential distributions. A distribution F and corre-
sponding random variables are said to be subexponential (see, e.g., Chistyakov [4]
or [8, Sects. 1.3 and A3], [15, Sect. 2.5]) if F(x) > 0 for all x ≥ 0 and

lim
x→∞

F∗2(x)

F(x)
= 2, (4)

where F∗n denotes the nth-fold convolution of F with itself. Note that if F is subex-
ponential, then F(x + a) ∼ F(x) as x → ∞ for any a ∈ R; that is, subexponential
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distributions are long-tailed. The following is a well-known and basic property of the
subexponential distributions.

Lemma 1 (see, e.g., Cline [5]): Let F denote a subexponential distribution and let Gi,
i = 1, 2, denote distributions on [0, ∞) such that limx→∞ Gi(x)/F(x) = ci ∈ [0, ∞).
Then limx→∞ G1 ∗ G2(x)/F(x) = c1 + c2, where G1 ∗ G2 denotes the convolution of
G1 and G2.

Another important class of heavy-tailed distributions is recently introduced in [11]
in problems of random time sampling and reduced load equivalence (see also [2,
9]). A distribution F and corresponding random variables are said to be square-root
insensitive if F(x) > 0 for all x ≥ 0 and

lim
x→∞

F(x − √
x)

F(x)
= 1. (5)

Note that if F is square-root insensitive, then F(x − a
√

x) ∼ F(x) as x → ∞ for
any a ∈ R. Additionally, a random variable X is square-root insensitive if and only
if

√
X+ is long-tailed; that is, P(

√
X+ > x + a) ∼ P(

√
X+ > x) as x → ∞ for any

a ∈ R (see [11]), where x+ = max(x, 0) for x ∈ R. It is known that distribution F is
square-root insensitive when its tail is heavier than exp(−xβ) with β < 1/2, whereas
any distribution with a tail lighter than e−√

x is not square-root insensitive (see [2]).

Lemma 2 (see [2,9,11]): Let N denote a (delayed or nondelayed) renewal process
with interrenewal sequence {τi}i∈Z+ satisfying E(τ1

2) < ∞ and let L denote a non-
negative random variable independent of N. If L follows a square-root insensitive
distribution F, then P(N((0, L]) > k) ∼ P(λ L > k) = F(k/λ) as k → ∞, where
λ = 1/Eτ1.

Asmussen et al. [2] and Jelenković et al. [11] considered a more general case
including that N in Lemma 2 is replaced with a regenerative process. Foss and
Korshunov [9] also considered another general case in which E(τ1

β) < ∞ for
β ∈ [1, 2). In this article, however, the above form of the lemma is sufficient to show
the following.

Theorem 1: If the lifetime distribution F is subexponential and square-root
insensitive—that is, F fulfills (4) and (5)—then the stationary degree distribution
of the random interval graph G = (V , E) satisfies (3).

Theorem 1 states that if the lifetime distribution F is subexponential and square-
root insensitive, then so is the stationary degree distribution of the obtained random
interval graph. The power-law distributions are subexponential and square-root insen-
sitive, so that Theorem 1 covers the previous result in [13]. In the proof below and
thereafter, N denotes the counting measure corresponding to {Tn}n∈Z; that is, N(A)
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represents the number of points of {Tn}n∈Z in A ∈ B(R), where B(R) denotes the
Borel σ -field on R.

Proof: Here we consider the Palm version satisfying T0 = 0; that is, an arrival occurs
at the origin. It is then known that {Tn}n∈Z\{0} is also the Poisson process with the same
intensity λ (see, e.g., Daley and Vere-Jones [7, Example 13.1(c)]). We can observe
that the degree of vertex 0 consists of the number of individuals in the system just
before the arrival of individual 0 and the number of new arrivals during the lifetime
of individual 0; that is,

D0 =
∑
n<0

1E(0, n) +
∑
n>0

1E(0, n) = Z(0−) + N(I0) a.s. (6)

Since a Poisson process has independent increments and the lifetimes of individuals
are mutually independent, Z(0−) and N(I0) are also independent of each other, so that
the distribution of D0 is given as the convolution of those of Z(0−) and N(I0). Since F
is square-root insensitive, Lemma 2 implies that P(N(I0) > k) ∼ F(k/λ) as k → ∞.
By (1), on the other hand, Z(0−) follows the Poisson distribution with mean λ/μ,
so that P(Z(0−) > k)/F(k/λ) → 0 as k → ∞ since F is subexponential. Hence, we
have by Lemma 1 that

P(D0 > k) = P(Z(0−) + N(I0) > k) ∼ F

(
k

λ

)
as k → ∞.

�

3.2. Conditionally Expected Cluster Coefficient

In a given graph, the cluster coefficient of a vertex represents the fraction of couples of
its neighbors such that the couple is also connected by an edge. The cluster coefficient
of vertex 0 of graph G = (V , E), V = Z, is then given by

C0 =

∑
n∈Z

∑
m>n

1E(0, n) 1E(0, m) 1E(n, m)(
D0

2

) . (7)

The previous work [13] demonstrated by a combinatorial argument that the random
interval graph in the discrete-time model setting has the high cluster coefficient, on
average, over vertices. Here, however, we provide a contrastive result that the condi-
tional expectation E(C0 | D0 > k) converges to zero as k goes to infinity under the
same condition as in Theorem 1.

Theorem 2: If the lifetime distribution F is subexponential and square-root
insensitive—that is, F fulfills (4) and (5)—then limk→∞ E(C0 | D0 > k) = 0.
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This result states that the vertices with high degrees, which correspond to very
long intervals, have extremely small cluster coefficients and does not contradict the
result in [13], in which relatively short intervals play an essential role. To prove
Theorem 2, we need the following lemma.

Lemma 3: Let N and L be the same as in Lemma 2. Then, for any constant c > 0,

E

[{(
1 − c

L

)+}2

1{N((0,L])>k}

]
∼ P(N((0, L]) > k) ∼ P(λL > k) = F(k/λ)

as k → ∞.

The proof of Lemma 3 follows that of Theorem 3.6 in [2] (see also the proof of
Theorem 3 in [11]) and is given in the Appendix. With this lemma, we now provide
the proof of Theorem 2.

Proof of Theorem 2: We consider the Palm version satisfying T0 = 0 as in the
proof of Theorem 1 and demonstrate that E(C0 1{D0>k})/P(D0 > k) → 0 as k → ∞.
For simplicity of notation, we write the event A(0, n, m) = {(0, n) ∈ E, (0, m) ∈
E, (n, m) ∈ E}, n, m ∈ Z (n < m). Recall that D0 = Z(0−) + N(I0) a.s., as seen in
(6). We then have from (7) that

E(C0 1{D0>k}) =
∞∑

l=k+1

2

l (l − 1)
E

[∑
n∈Z

∑
m>n

1E(0, n) 1E(0, m) 1E(n, m) 1{D0=l}

]

=
∞∑

l=k+1

2

l (l − 1)

l∑
j=0

∑
n∈Z

∑
m>n

P
(
A(0, n, m), Z(0−) = j, N(I0) = l − j

)
= S{n < m < 0} + S{n < 0 < m} + S{0 < n < m}, (8)

where the sum over −∞ < n < m < +∞ is separated into three cases: (i) n < m < 0,
(ii) n < 0 < m, and (iii) 0 < n < m, and each case is denoted by S{·} in the last
equality. We show below that each case leads to the term of o(P(D0 > k)) as k → ∞.

(i) Case of n < m < 0. Whenever (0, n) ∈ E and (0, m) ∈ E for n, m < 0, it is
necessary that (n, m) ∈ E since individuals n and m are in the system when
individual 0 arrives, so that

−2∑
n=−∞

−1∑
m=n+1

P
(
A(0, n, m), Z(0−) = j, N(I0) = l − j

)
=

(
j

2

)
P
(
Z(0−) = j, N(I0) = l − j

)
.
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Substituting this into (8), we have

S{n < m < 0} =
∞∑

l=k+1

l∑
j=2

j (j − 1)

l (l − 1)
P
(
Z(0−) = j, N(I0) = l − j

)

=
(

λ

μ

)2 ∞∑
l=k+1

1

l (l − 1)

l∑
j=2

P(Z(0−) = j − 2)

× P(N(I0) = l − j),

where we use the fact that Z(0−) follows the Poisson distribution with
mean λ/μ, so that j (j − 1) P(Z(0−) = j) = (λ/μ)2 P(Z(0−) = j − 2), j =
2, 3, . . .. Additionally, for any ε > 0, there exists a kε > 0 such that 1/[l (l −
1)] < ε for l > kε . Thus, we have S{n < m < 0} ≤ ε

(
λ/μ

)2
P(D0 > k − 2)

for k ≥ kε . Since D0 is long-tailed and ε is arbitrarily small, this implies that
S{n < m < 0} = o(P(D0 > k)) as k → ∞.

(ii) Case of n < 0 < m. Given that Z(0−) = j, we have by (1) that the residual life-
times of these j individuals at time 0 are independent and identically distributed
according to Fe. Additionally, given that L0 = x (> 0) and N(I0) = l − j, the
property of Poisson processes implies that the arrival times of these l − j
individuals are independent and uniformly distributed on [0, x] (see, e.g., [7,
Sect. 2.1]). Note that interval In, n < 0, has an overlap with interval Im,
m > 0, which has its left end point at y ∈ [0, x], when the residual lifetime of
individual n at time 0 is longer than y. Therefore,

−1∑
n=−∞

+∞∑
m=1

P
(
A(0, n, m), Z(0−) = j, N(I0) = l − j

)
=

−1∑
n=−∞

+∞∑
m=1

∫ ∞

0
P
(
A(0, n, m), Z(0−) = j, N(I0) = l − j | L0 = x

)
dF(x)

= j (l − j)
∫ ∞

0

1

x

∫ x

0
Fe(y) dy P

(
Z(0−) = j, N((0, x]) = l − j

)
dF(x)

≤ j (l − j) P
(
Z(0−) = j, N(I0) = l − j

)
,

where (1/x)
∫ x

0 Fe(y) dy ≤ 1, x > 0, is used in the last inequality. Applying
this in (8), we have

S{n < 0 < m} ≤
∞∑

l=k+1

l−1∑
j=1

2 j (l − j)

l (l − 1)
P(Z(0−) = j, N(I0) = l − j)

≤ 2 λ

μ

∞∑
l=k+1

l−1∑
j=1

l − j

l (l − 1)
P(Z(0−) = j − 1) P(N(I0) = l − j),
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where we use j P(Z(0−) = j) = (λ/μ) P(Z(0−) = j − 1), j = 1, 2, . . .. Here,
for any ε > 0, there exists a kε > 0 such that (l − j)/[l (l − 1)] ≤ ε for l > kε

and 1 ≤ j < l, so that we have S{n < 0 < m} ≤ 2 ε (λ/μ) P(D0 > k − 1) for
k ≥ kε . Since D0 is long-tailed and ε is arbitrarily small, this leads to S{n <

0 < m} = o(P(D0 > k)) as k → ∞.

(iii) Case of 0 < n < m. Given that L0 = x (> 0) and N(I0) = l − j, the arrival
times of these l − j individuals are independent and uniformly distributed on
[0, x]. The event that interval In whose left end point is at y ∈ [0, x] has an
overlap with interval Im whose left end point is at z ∈ [y, x] is realized when
Ln > z − y, so that

+∞∑
n=1

+∞∑
m=n+1

P
(
A(0, n, m), Z(0−) = j, N(I0) = l − j

)
=

+∞∑
n=1

+∞∑
m=n+1

∫ ∞

0
P
(
A(0, n, m), Z(0−) = j, N(I0) = l − j | L0 = x

)
dF(x)

=
(

l − j

2

)∫ ∞

0

2

x2

∫ x

0

∫ x

y
F(z − y) dz dy

× P
(
Z(0−) = j, N((0, x]) = l − j

)
dF(x). (9)

Here, an easy calculation yields

2

x2

∫ x

0

∫ x

y
F(z − y) dz dy = 1 − E

⎡⎣{(
1 − L1

x

)+}2
⎤⎦ ,

where L1 denotes a random variable according to distribution F and indepen-
dent of L0 and N . Thus, taking this into account and substituting (9) into (8),
we have

S{0 < n < m} ≤
∞∑

l=k+1

l−2∑
j=0

P(Z(0−) = j)

× E

⎛⎝⎡⎣1 −
{(

1 − L1

L0

)+}2
⎤⎦ 1{N(I0)=l−j}

⎞⎠ , (10)

where (l − j) (l − j − 1)/[l (l − 1)] ≤ 1 for l > 1 and 0 ≤ j < l is used. We
now consider a random variable XH , which is independent of Z(0−) and has
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the following proper distribution:

P(XH ≤ k) = E
([

1 − {
(1 − L1/L0)

+}2]
1{N(I0)≤k}

)
E
(
1 − {

(1 − L1/L0)+
}2) , k ∈ Z+.

Then (10) yields

S{0 < n < m} ≤ E

⎛⎝1 −
{(

1 − L1

L0

)+}2
⎞⎠ P

(
Z(0−) + XH > k

)
. (11)

By Lemma 3, on the other hand, since L1 is independent of L0 and N , we have

P(XH > k)

P(N(I0) > k)
= 1

E
(
1 − {

(1 − L1/L0)+
}2)

×
(

1 − E
({

(1 − L1/L0)
+}2

1{N(I0)>k}
)

P(N(I0) > k)

)
→ 0 as k → ∞.

Hence, applying Lemma 1 in (11) leads to S{0 < n < m} = o(P(N(I0) >

k)) = o(P(D0 > k)) as k → ∞.

�

Remark 2: In considering the connected interval graph G̃ in Remark 1, we have to
modify slightly the result on the stationary degree distribution in Theorem 1. The fact
that P(Z(0−) = 0) = e−λ/μ from (1) states that {An}n∈Z is a stationary point process
with intensity λ e−λ/μ. Thus, since the superposed point process {Tn}n∈Z ∪ {An}n∈Z

has intensity λ (1 + e−λ/μ), the probability that an arbitrary chosen vertex is not
the one that is extraneously added in Remark 1 is given by (1 + e−λ/μ)−1, so that
the tail asymptotics of the stationary degree distribution in the modified graph G̃
becomes P(D̃0 > k) ∼ (1 + e−λ/μ)−1 F(k/λ) as k → ∞. The limit of the condition-
ally expected cluster coefficient, on the other hand, remains the same as that in the
original G.

4. CONCLUDING REMARK

In this article, we have analyzed the stationary subexponential interval graphs gener-
ated by immigration–death processes—namely we have derived the tail asymptotics of
the stationary degree distribution when the lifetime distribution of the immigration–
death process is subexponential and square-root insensitive. Furthermore, we have
shown that the conditionally expected cluster coefficient of a vertex given its degree
vanishes in the limit as the degree goes to infinity under the same condition as that for
obtaining the tail asymptotics of the stationary degree distribution. In future works, we
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can consider problems like evaluating the stationary distribution of the sizes of con-
nected components and the diameter of a connected component, which represents the
length of the shortest path connecting any pair of vertices in the connected component.
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APPENDIX PROOF OF LEMMA 3

Here we provide the proof of Lemma 3, which mainly follows those of Theorem 3.6 in [2]
and Theorem 3 in [11]. In the following, for any two real functions f (x) and g(x) on R,
f (x) � g(x) and f (x) � g(x) as x → a stand for respectively lim supx→a f (x)/g(x) ≤ 1 and
lim infx→a f (x)/g(x) ≥ 1, where a is possibly infinity.
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For the asymptotic upper bound, it is clear that

E

[{(
1 − c

L

)+}2

1{N((0,L])>k}

]
� P(N((0, L]) > k) as k → ∞,

since {(1 − c/L)+}2 ≤ 1 a.s. We now consider the asymptotic lower bound. We have for a > 0,

E

[{(
1 − c

L

)+}2

1{N((0,L])>k}

]

≥ E

[{(
1 − c

L

)+}2

1{N((0,L])>k, L>k/λ+a
√

k/λ}

]

≥
{(

1 − λc

k

)+}2

P

(
N

((
0,

k

λ
+ a

√
k

λ

])
> k

)
F

(
k

λ
+ a

√
k

λ

)
,

where we use {(1 − c/L)+}2 ≥ {(1 − λc/k)+}2 a.s. and N((0, L]) ≥ N
((

0, k/λ + a
√

k/λ
])

a.s.
when L > k/λ + a

√
k/λ in the second inequality. Here, one obtains for k ≥ a2 λ,

P

(
N

((
0,

k

λ
+ a

√
k

λ

])
> k

)

= P

(
N((0, k/λ + a

√
k/λ]) − (k + a

√
λ k)√

k/λ + a
√

k/λ
> − aλ√

1 + a
√

λ/k

)

≥ P

(
N((0, k/λ + a

√
k/λ ]) − (k + a

√
λ k)√

k/λ + a
√

k/λ
> − aλ√

2

)
.

Additionally, for any ε > 0, there exists a kε > 0 such that {(1 − λc/k)+}2 > 1 − ε for k ≥
kε . Therefore, the square-root insensitivity of F and the central limit theorem for renewal
processes (see, e.g., Asmussen [1, Chap. V, Thm. 6.3]) result in, for an appropriate σ > 0,

E

[{(
1 − c

L

)+}2

1{N((0,L])>k}

]
� (1 − ε) 	

(
a λ

σ
√

2

)
F

(
k

λ

)
as k → ∞,

where 	 denotes the standard normal distribution. Finally, letting ε → 0 and a → ∞ completes
the proof.
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