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In many applications, conventional aerofoils are subject to a number of simultaneous
motions that complicate the prediction of flow separation. The purpose of this work
is to evaluate the impact of a large-amplitude free-stream oscillation on the timing of
vortex formation for a simultaneously surging and pitching wing. Experimental flow
field measurements were obtained on a NACA 0012 aerofoil over a wide range of
surge amplitudes (1.50 ≤ λ ≤ 2.25) and reduced frequencies (0.1 ≤ k ≤ 0.3). Particular
attention was paid to how various mechanisms of flow separation, specifically the velocity
induced by the trailing wake and unsteady effects in the boundary layer, were impacted by
a change in the properties of the surge motion. In the regime where k ≤ 0.3, a change in the
surge kinematics primarily manifested as a change in the relative strength of the trailing
wake. Boundary layer unsteadiness was found to have a negligible influence on the timing
of vortex formation in the same flow regime. Thus, the timing of leading-edge vortex
formation was well predicted by a combination of an unsteady inviscid flow solver and a
quasi-steady treatment of the boundary layer, a promising result for low-order predictions
of vortex behaviour in unsteady aerofoil flows.

Key words: separated flows, vortex dynamics, boundary layer separation

1. Introduction

The flow over an aerofoil undergoing unsteady motion is a difficult phenomenon
to predict. Although inviscid models that capture the trailing wake physics of an
unsteady aerofoil (Theodorsen 1935; Sears 1938; Greenberg 1947) have been developed,
a low-order representation of viscous flow mechanisms, particularly the formation of
large-scale vortical structures, remains elusive. The leading-edge vortex (LEV) is one
such vortical structure that causes significant discrepancies in force production compared
to conventional aerodynamic theories (Eldredge & Jones 2019). The LEV has been
investigated at length in a number of fundamental studies regarding surging, pitching and
rotating flat plates (Ellington et al. 1996; Birch & Dickinson 2001; Kriegseis, Kinzel &
Rival 2013; Mancini et al. 2015; Panah, Akkala & Buchholz 2015; Manar 2018), and its
growth has been successfully modelled for cases where the timing of vortex formation is
known beforehand (Wang & Eldridge 2013; Wong & Rival 2015; Manar & Jones 2019).
In more realistic flows, however, the question of when flow separation occurs becomes
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a driving factor in understanding LEV formation. For an arbitrary unsteady motion, the
rounded leading edge of an aerofoil supports a finite pressure gradient, and unlike the case
of a flat plate, flow separation is not guaranteed at the leading edge of the wing throughout
its motion. The current work seeks to understand the onset of LEV formation on an aerofoil
with a rounded leading edge and focuses on a set of motion kinematics where the timing
of flow separation is a significant unknown.

When approaching this topic, one must first recognize that an LEV forms on an aerofoil
over a broad range of unique and complex flow environments. On a helicopter in forward
flight, for instance, the blades of the main rotor are subject to a time-varying free-stream
velocity, a time-varying pitch angle and a spanwise-varying flap velocity, all of which can
contribute to the formation of an LEV. Many researchers have thus approached separated
aerofoil flows by decomposing real-world environments into a series of simple unsteady
motions. One particularly well-known motion is the case of an aerofoil undergoing pitch
oscillations in a constant free stream, a configuration that has been studied extensively over
the past several decades (Carr, McAlister & McCroskey 1977; Beddoes 1979; McCroskey
1982; Lorber & Carta 1988). Collectively, these works define the basic stages of LEV
formation on a pitching aerofoil and address the sensitivity of the aerofoil’s aerodynamic
forces to variations in pitching kinematics. Their observations have also provided a
physical basis for many predictions of aerofoil flow separation (McAlister, Lambert &
Petot 1984; Leishman & Beddoes 1989; Deparday & Mulleners 2019). It must be kept in
mind, however, that the insights obtained from these works, and especially any empirical
modelling techniques, are limited to the subset of aerofoil kinematics where the pitching
motion is the dominant unsteady effect. In most practical applications, flow separation
occurs in an environment where numerous other unsteady features significantly impact the
timing of LEV formation, meaning methods for predicting the timing of flow separation
on a pitching aerofoil are not strictly valid.

More recent efforts have sought to expand the understanding of separated aerofoil
flows to cases where the free-stream velocity is time varying (Choi, Colonius & Williams
2015; Granlund, Ol & Jones 2016; Kocher et al. 2017; Kirk & Jones 2018). Of particular
note, Dunne & McKeon (2015) considered the case of a NACA 0018 wing undergoing
a simultaneous surging and pitching manoeuvre. Mirroring the periodic nature of a
vertical-axis wind-turbine blade, the authors implemented the following oscillatory motion
as a way of introducing the impact of free-stream variance on LEV formation

U(t) = U0 (1 + λ sin(Ωt)) , (1.1)

where Ω represents the frequency of the oscillation, U0 represents a mean free-stream
velocity and λ represents the amplitude of the free-stream oscillation. The authors
performed an extensive modal decomposition of the resulting flow field measurements
and linked the time scales of flow separation to the frequency of the free-stream oscillation
(Dunne, Schmid & McKeon 2016). A series of similar efforts have also been performed
that characterize the force production and flow field evolution on a surging and pitching
aerofoil under various surge amplitudes, frequencies and phase shifts relative to the
pitching kinematics (Gharali & Johnson 2013; Wang & Zhao 2016; Gharali et al. 2018;
Medina et al. 2018). Although a promising step forward in understanding vortex formation
on aerofoils in more realistic aerodynamic environments, each of these studies focuses on a
set of aerofoil kinematics where the surge amplitude is less than λ = 1. The portion of the
parameter space where λ > 1 is a unique flow regime, as the amplitude of the free-stream
oscillation is large enough that the aerofoil passes through a free-stream velocity of
U(t) = 0 during its deceleration, but it has yet to be studied in a fundamental context.
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FIGURE 1. Problem statement: an aerofoil with a rounded leading edge is subject to an unsteady
free-stream velocity (U(t)) and incidence (α(t)). The onset of flow separation is seen as a function
of (1) the instantaneous wing kinematics, (2) the velocity induced by the trailing wake and
(3) unsteady effects in the boundary layer.

This regime also represents a reasonable approximation of many real-world flow scenarios,
including the inboard elements of a high-speed helicopter shown to exhibit flow
separation during the deceleration (or ‘retreating’) portion of their oscillation cycle
(Lind et al. 2018), and the blades of vertical-axis wind turbines when encountering low tip
speed ratios (Parker & Leftwich 2016).

The current work seeks to experimentally investigate the onset of LEV formation in
this high-amplitude surge regime. The overall goal is to understand how the various
mechanisms of flow separation, particularly unsteady effects, impact the timing of
vortex formation on a high amplitude surging/pitching wing. The following sections will
introduce the experimental methodology, provide a qualitative overview of LEV formation
on a surging and pitching wing and investigate how a change in surge amplitude and
frequency impacts the timing of LEV formation. A final section will demonstrate how
these observations apply to the field of low-order aerodynamics modelling by explicitly
predicting the timing of vortex formation on a surging and pitching wing with a mixture
of potential flow and boundary layer theory.

2. Methodology

2.1. Theoretical approach
Before diving into the details of the current experimental set-up, it is first important to
establish what specific physical mechanisms impact the timing of flow separation, and
how the expected behaviour of these mechanisms informs our approach. Figure 1 provides
a basic sketch of an aerofoil undergoing an arbitrary surging and pitching manoeuvre.
Flow separation is triggered at the leading edge of this aerofoil when the pressure gradient
(or surface acceleration) becomes excessively large and adverse. The factors that influence
flow separation can thus be described based on how they impact the local pressure gradient
and the fluid momentum in a region near the leading edge of the wing.

The first mechanism in figure 1 is the steady contribution of the instantaneous incidence
(α(t)) and free stream (U(t)). These instantaneous kinematics determine the manner in
which the bulk flow is accelerated over the surface of the wing and account for a significant
portion of the suction peak near the leading edge. In terms of flow separation, an increase
in incidence (α(t)) increases the velocity gradient near the leading edge, which leads to a
larger adverse pressure gradient relative to the flow momentum. Likewise, an increase in
free stream leads to an increase in the instantaneous Reynolds number, which is associated
with a thinner boundary layer, a larger shear stress at the wing surface, and a delay in the
onset of flow separation. The steady contribution can thus be seen as a function of the
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relative magnitude of the adverse pressure gradient (controlled by the instantaneous angle
of attack) and the height of the boundary layer (controlled by the instantaneous Reynolds
number).

The second mechanism sketched in figure 1 is the unsteady contribution of the aerofoil’s
trailing wake. When an aerofoil undergoes an unsteady manoeuvre, its bound circulation
becomes a function of time, and the aerofoil must shed circulation into its wake to uphold
Kelvin’s theorem. As a result, the aerofoil is trailed throughout its motion by a rotational
region of the flow field. This region induces a velocity back on the surface of the wing and
can have a significant impact on the magnitude of the pressure gradient. In a general, an
acceleration leads to a trailing wake that decreases the relative magnitude of the pressure
gradient near the leading edge, delaying the onset of flow separation, while a deceleration
results in an increased pressure gradient near the leading edge, promoting the onset of flow
separation.

The final mechanism sketched in figure 1 is the presence of unsteady acceleration effects
within the boundary layer. Although the wake contribution accounts for unsteadiness in
the ‘external’ flow, fluid particles within the boundary layer experience an additional
mechanism of separation because of their proximity to an accelerating wall. Stated another
way, an accelerating boundary introduces the notion of a ‘Stokes layer’ into the overall
boundary layer structure, and the need to maintain a finite acceleration at the wall can
significantly impact the curvature of the resulting boundary layer profile. With this in
mind, an acceleration of the wing will generally delay separation, simply by imparting a
forward momentum to the fluid particles near the wall, while a deceleration will promote
separation.

Altogether, figure 1 identifies three mechanisms that govern the timing of flow
separation: (1) the instantaneous incidence and Reynolds number, (2) the velocity induced
by the trailing wake and (3) unsteady effects in the boundary layer. The current work
aims to understand the relative importance of each of these mechanisms in the process
of flow separation on a surging and pitching aerofoil, with a specific focus on the more
seldom-studied unsteady effects. To accomplish this task, flow field measurements were
collected on a pitching aerofoil undergoing a series of free-stream oscillations, each with
a different surge amplitude and reduced frequency. The pitching kinematics and mean
Reynolds number were held constant in each case, with the intent of minimizing changes
to the steady flow field contribution. The next section will describe how these flow field
measurements were obtained, before beginning an intensive analysis of the flow fields
themselves.

2.2. Experimental set-up
Flow field measurements were collected on a NACA0012 wing (c = 0.115 m, AR = 4)
in a 7 m × 1.5 m × 1 m free-surface water-filled tow tank located at the University of
Maryland. Figure 2 shows a photograph of the tow tank (a) and a simple sketch of the
mounting apparatus used to position the aerofoil beneath the tank’s free surface (b). This
apparatus is connected via two control rods to a magnetic track and gantry. The presence
of the mounting apparatus, together with the finite aspect ratio of the wing, means that
the flow will not be entirely two dimensional; however, force and flow field measurements
in the same test facility have compared well with strictly two-dimensional (2-D) models
of attached (Kirk & Jones 2018) and separated flows (Manar & Jones 2019). These past
results suggest that three-dimensionality, while certainly present, is expected to have a
small impact on the large-scale flow structures studied in the current experiments.
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Vortex formation on an aerofoil at high surging amplitudes 905 A22-5

Linear motors

Linear motors

Wing mount

Towing track

Towing track

U(t), surge velocity

(a)
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FIGURE 2. Photograph (a) and sketch (b) of the experimental set-up and water-filled tow
tank facility.

During each experimental run, a double-pulsed, Nd:YLF laser (Litron LDY304, 30 mJ,
10 kHz max) illuminated a planar region located one chord from the centreline of the
wing. Simultaneously, a high-speed camera (Phantom v641, 4 Mpx, 1450 f.p.s. max) was
mounted to the gantry and captured a wing-fixed field of view. The laser and camera
were operated such that a minimum of 800 images were collected over the deceleration
portion of the wing’s surge manoeuvre, equivalent to a sampling rate in the range of
250–500 Hz. The exact value of the sampling rate was dependent on the specific reduced
frequency of the run, and it remained constant throughout the oscillation. Note that all
flow field measurements were phase averaged over six successive runs of the experiment.
The convergence properties of the phase-averaging process will be briefly addressed in
later sections of this work.

Figure 3 provides a sample particle image (a) and processed vorticity field (b) to
highlight the resolution of the resulting flow measurements. Each flow field image extends
roughly 255 mm (or 2.2 chords) in the horizontal direction and 162 mm (or 1.4 chords) in
the vertical direction. The images were cross-correlated with an interrogation window that
achieved 215 × 137 vectors over our field of view, corresponding to roughly 97 vectors per
chord length, while a portion of the flow below the wing was obscured by the presence of
a laser shadow. A laser reflection, visible in the left-hand side of figure 3, further obscured
a thin region on the upper surface of the aerofoil, but this reflection appears much smaller
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905 A22-6 L. R. Smith and A. R. Jones

(a) (b)

FIGURE 3. Sample particle image (a) and phase-averaged vorticity field (b) for the baseline
surging and pitching condition of the aerofoil.

than the height of the aerofoil boundary layer, meaning it is unlikely to affect the flow field
statistics introduced later in our analysis.

The surging kinematics used in this study take the same basic form as those in (1.1).
A slightly modified, more illustrative version of this expression can be written as follows:

U(t) = U0

[
1 + λ sin (2kt∗)

]
, (2.1)

where the new parameter k represents the reduced frequency of the surge oscillation
(k = Ωc/2U0) and t∗ represents the convective time (t∗ = tU0/c). Equation (2.1) provides
a simple way of visualizing the relationship between the instantaneous surge velocity
and the non-dimensional properties of the oscillation. The surge amplitude λ controls the
maximum and minimum velocity achieved during the oscillation, the reduced frequency k
controls the amount of convective time required to complete the oscillation (but does not
affect the range of velocities achieved), and the mean velocity U0 sets an average Reynolds
number (Re0 = U0c/ν) for the motion. All three parameters (λ, k, and U0) directly scale the
maximum acceleration experienced by the aerofoil during its oscillation. In the sections
that follow, a parameter space encompassing the surge amplitude (1.50 ≤ λ ≤ 2.25) and
the reduced frequency (0.1 ≤ k ≤ 0.3) will be explored in regard to the timing of flow
separation, while the mean Reynolds number will be held constant at Re0 = 2 × 104.

A dynamic pitching motion was introduced at the same time as the surging oscillation
for each run of the experimental set-up. The pitching kinematics were again oscillatory in
nature and can be represented by the following simple relation:

α(t) = α0 + α1 sin
(

2kU0

c
t + φ

)
(2.2)

where α0 represents a mean pitch angle, α1 represents a pitch amplitude and φ is a phase
shift relative to the surging motion. Each of these three pitching parameters was held
constant (α0 = 15◦, α1 = 8◦, φ = π) for all cases as a way of isolating the role of an
unsteady free-stream velocity. The exact values of the mean pitch angle and amplitude
were chosen to ensure that the flow remained attached over some portion of the wing’s
surging and pitching oscillation; that is, because the angle of attack varies over the range
7◦ ≤ α ≤ 23◦, the flow can neither be assumed to be attached or separated throughout the
entire oscillation. A constant phase shift of φ = π was chosen to mirror the environment
of a helicopter in forward flight, where rotor blades are typically pitched up during their
deceleration as a way of maintaining a stable roll moment, and the wing pitching axis was
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FIGURE 4. Surging kinematics for each of the four surge amplitude cases.
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FIGURE 5. Surging kinematics for each of the four reduced frequency cases.
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FIGURE 6. Pitching kinematics for the current work.

set at the aerofoil quarter-chord (c/4), again inspired by a conventional helicopter blade in
forward flight.

Figures 4, 5 and 6 summarize the surging and pitching kinematics that will be
investigated in the following sections. In these figures, the motion kinematics of each test
case are plotted against a non-dimensional cycle time, defined as ψ = Ωt, which will be
used to identity each phase of the pitching/surging cycle. Note that in figure 5, the four
reduced frequency cases collapse to a single line when plotted with ψ , but each case is
performed at an increasing large value of the dimensional frequency Ω .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

74
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.741


905 A22-8 L. R. Smith and A. R. Jones

ωzc/U0–20

–1

0 90 180 270

(1)

(1) (2) (3) (4)

(2) (3) (4)

360

3

2

1

0

+20

U
/U

0

ψ (deg.)

FIGURE 7. Basic stages of LEV formation for the baseline kinematics (λ = 1.75, k = 0.165,
α0 = 15◦, α1 = 8◦). The aerofoil exhibits stages of (1) attached flow, (2) separation near the
leading edge, (3) vortex rollup and (4) vortex shedding.

3. Results

This section aims to assess the role of an unsteady free-stream velocity in the process of
vortex formation on a combined surging and pitching wing. In §§ 3.1 and 3.2, the stages
of vortex formation, and the relevant flow field statistics, are introduced for a baseline set
of surging/pitching kinematics. In §§ 3.3 and 3.4, the baseline kinematics are perturbed,
and the timing of LEV formation is investigated over a variety of reduced frequencies
(0.1 ≤ k ≤ 0.3) and surge amplitudes (1.50 ≤ λ ≤ 2.25). Section 3.5 introduces a novel,
computationally quick method for predicting the onset of flow separation based on the
physical conclusions gathered throughout this work.

3.1. Flow morphology
Figure 7 presents a series of flow field snapshots that illustrate the basic stages of vortex
formation for the baseline surge (λ = 1.75, k = 0.165) and pitch condition (α0 = 15◦,
α1 = 8◦, φ = π) of the aerofoil. Each snapshot is overlain with contours of
counter-clockwise vorticity (red) and clockwise vorticity (blue). The flow fields in figure 7
were measured over the range 160◦ < ψ < 270◦, which captures a significant portion of
the wing’s pitch-up motion, the period over which a vortex is expected to form at the blunt
edge of the wing. Note that each snapshot only includes measurements of the wing’s upper
surface, while the underside is masked due to a laser shadow.

Figure 7 identifies several unique stages of vortex formation on a surging and pitching
wing. At flow snapshot (1), for instance, the instantaneous velocity and pitch angle are
at their mean values, and no appreciable flow separation is observed on the surface
of the wing. The height of the boundary layer appears quite large, but the vorticity
within this region is all of the same sign and roughly follows the surface of the blade.
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Vortex formation on an aerofoil at high surging amplitudes 905 A22-9

Flow field snapshot (2) corresponds to ψ ≈ 200◦ and provides the first evidence of flow
separation. A shear layer has emerged at the leading edge of the wing, and a region of
counter-clockwise vorticity can be seen beneath the shear layer, indicating that the sign
of the local shear stress has reversed. The shear layer feeds an LEV until shortly after the
aerofoil passes through U(t) = 0, an event represented by snapshot (3), at which point
the LEV appears to have been ‘pinched off’ from the surface of the wing. In flow field
snapshot (4), the wing has transitioned fully into a period of free-stream reversal, and the
LEV has begun to convect in the direction of the free stream.

3.2. Flow field statistics
In many ways, the flow evolution described in figure 7 is similar to the canonical stages
of LEV formation found throughout the literature: flow separates near the leading edge,
a shear layer forms and the LEV is fed by the shear layer until it is shed from the wing.
The main differences are that (a) the flow in figure 7 remains mostly attached until nearly
midway through its oscillation cycle and (b) the ‘pinch off’ of the LEV appears to coincide
with the reversal of the free-stream velocity, rather than the LEV reaching some critical
size. The overall goal of this work is to understand the physics of (a), or to arrive at
a reasonable prediction of the time at which flow near the leading edge is no longer
attached. This goal can be aided by a direct, quantitative estimation of when the LEV
begins its formation, a measurement that takes advantage of the unique properties of the
flow morphology outlined in figure 7.

To illustrate the calculation of LEV initiation, consider the following equation, which
relates the growth rate of the LEV to its final strength

Γf =
∫ tf

ti

(
dΓ (t)

dt

)
dt, (3.1)

where Γf is the final strength of the LEV after being shed from the wing; ti is the time at
which vortex formation and growth begins; tf is the time at which vortex growth ends; and
dΓ/dt represents the time-resolved growth rate of the LEV. Equation (3.1) is useful in the
sense that it can be manipulated to isolate the time at which vortex formation begins (ti)
and the remaining terms can be approximated by simple flow field statistics.

The growth rate of the LEV (dΓ/dt), for instance, can be captured by considering the
shear layer at the rounded edge. Figure 7 illustrated that the LEV is fed by this shear
layer throughout its growth stage. The growth rate of the LEV can thus be determined
by calculating the instantaneous flux of vorticity in the shear layer at each time step. The
right-hand side of figure 8 shows a simple control volume used to accomplish this task.
As the LEV forms, its growth rate is represented by the flux of clockwise (blue) vorticity
out of this control volume, which is assumed to be equivalent to the flux of vorticity into
the LEV. The left-hand side of figure 8 shows the result of this flux measurement for the
wing at its baseline surging and pitching kinematics. Over the period of vortex formation,
the growth rate of the LEV is found to be a monotonically decreasing function in time,
reaching a value of zero shortly before the wing’s passage through U(t) = 0. This figure
also reveals that the measurement of vorticity flux, and thus the growth rate of the LEV, is
well converged when 6 runs are included in the phase-averaging process.

The final strength of the LEV (Γf ) can be computed in a similar fashion. Figure 7
revealed that after the end of its growth stage, the LEV convects with the local flow
velocity in the direction of the ‘reversed’ free stream, to the left of the wing’s rounded
edge. The right-hand side of figure 9 sketches a vertical flux plane located in the path of
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FIGURE 8. The flux of clockwise (blue) vorticity measured at the leading edge of the wing
throughout the baseline case. Note that this measurement is shown with an increasing number of
runs included in the phase-averaging process.
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FIGURE 9. Illustration of the calculation of final vortex strength Γf . A flux plane is drawn
beyond the rounded edge of the wing, and the LEV strength is determined by integrating the
flux of clockwise (blue) vorticity through this plane.

the LEV’s convection. If one were to compute the flux of clockwise vorticity through this
flux plane, the convection of the LEV would appear as a prolonged spike in the value
of vorticity flux over time. The left-hand side of figure 9 provides an example of the
LEV’s signature on the vorticity flux, and illustrates how this measurement behaves over
successive runs of the experimental set-up. The current work uses a temporal integration of
this ‘spike’, the bounds of which are denoted as 10 % of the maximum flux, as a reasonable
estimation of the total clockwise vorticity contained within the LEV. Again, the peak and
bounds are this spike appear to be relatively invariant when four or more runs are included
in the phase-averaging process, providing confidence that we are indeed measuring an
LEV with repeatable strength and convection properties.

The only remaining terms in (3.1) are the bounds of the integration, or the time at which
vortex growth begins (ti) and the time at which it ends (tf ). The flow morphology of figure 7
suggest that the end of LEV growth can be assumed to coincide the timing of free-stream
reversal, as the reverse flow region was observed to ‘cut off’ the growth of the vortex.
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FIGURE 10. The effect of reduced frequency (k) on the timing of vortex formation (ψvor) for a
constant surge amplitude (λ = 1.75) and set of pitching kinematics (α0 = 15◦, α1 = 8◦, φ = π).

If tf is replaced by trev in (3.1), ti becomes the sole unknown, and (3.1) can be rearranged
to isolate the time at which vortex formation begins. This process, wherein the onset of
vortex formation (ti) is estimated based on the vortex growth rate (dΓ/dt) and final vortex
strength (Γf ), is employed in the following sections to determine the timing of vortex
formation for each set of surging/pitching kinematics. Note that vorticity annihilation,
which has been suggested as an important mechanism of LEV growth on rotating wings
(Wojcik & Buchholz 2014; Medina & Jones 2016), was found to be insignificant in the
measurements described above, likely because the LEV is only close to the aerofoil surface
for a short period prior to free-stream reversal.

3.3. Variation in reduced frequency
Our analysis will begin by investigating how a change in the reduced frequency (k) impacts
the timing of vortex formation on a combined surging and pitching wing. From a physics
standpoint, the reduced frequency is an intuitive place to begin, as a change in reduced
frequency changes the wing acceleration while keeping the instantaneous velocity and
pitching kinematics constant (see figure 5). A change in the reduced frequency is thus
expected to manifest solely as a change in strength of the trailing wake and unsteadiness
in the boundary layer. This section is intended to illuminate the role that these unsteady
mechanisms play in triggering the onset of vortex formation.

Figure 10 plots the timing of vortex formation (ψvor), computed using the methodology
outlined in § 3.2, over a sweep of reduced frequencies (0.1 ≤ k ≤ 0.3). For each point
in figure 10, the surge amplitude (λ = 1.75) and pitching kinematics (α0 = 15◦, α1 = 8◦,
φ = π) were held constant, such that the steady contribution to the flow field was expected
to be identical in each case. The acceleration of the wing, in contrast, triples over the
range 0.1 ≤ k ≤ 0.3, meaning the unsteady mechanisms of separation, namely the wake
and unsteady boundary layer contributions, should see a significant change in magnitude.

Figure 10, however, reveals a rather unexpected result. Despite the large range of
accelerations experienced over 0.1 ≤ k ≤ 0.3, the timing of vortex formation appears
relatively insensitive to changes in the reduced frequency. The physical reason for this
insensitivity is not immediately obvious; that is, it is unclear whether unsteady effects have
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Wake control
volume

FIGURE 11. Illustration of the control volume used to estimate the strength of the near wake.

a low overall magnitude, or whether they interact in such a way that their effects negate
one another. The remainder of this section will explore the behaviour of the unsteady
mechanisms of flow separation, specifically the velocity induced by the trailing wake and
unsteady effects the boundary layer, in the hopes of explaining the trends observed in
figure 10.

3.3.1. Trailing wake effects
The trailing wake is main feature of the ‘external’ flow field affected by change in

oscillation frequency. For higher reduced frequencies, the wing completes its oscillation
in less convective time, and the circulation in the trailing wake has less time to convect
away from the surface of the wing. The trailing wake is thus expected to induce a larger
velocity at the surface of the wing at higher values of the reduced frequency due to the
closer proximity of trailing vorticity.

The velocity induced by the wake cannot be measured directly, but its magnitude can
be seen as proportional to certain properties of the wake. Figure 11 provides a sketch
of a rectangular control volume located a short distance (c/4) from the wing’s trailing
edge. In the current work, this control volume is assumed to represent the bounds of
the ‘near wake’, or the portion of the wake with the most significant impact on the
velocity induced on the wing surface. The strength of the near wake, and thus the relative
magnitude of the wake-induced velocity, can be estimated by performing a simple area
integral of all clockwise (blue) and counter-clockwise (red) vorticity contained within the
control volume and comparing the resulting strength among the various values of reduced
frequency.

Figure 12 plots the strength of the near wake (Γw) for each of the four reduced frequency
cases, during the portion of the oscillation that immediately precedes the onset of flow
separation. If the wake-induced velocity was in fact changing significantly with the
reduced frequency, the strength of the near wake would be expected to undergo a similar
change in its magnitude. Figure 12, however, reveals that the strength of the near wake, and
in turn the velocity induced by the wake, is largely insensitive to changes in the reduced
frequency. This does not mean that the velocity induced by the wake is small, but it does
imply that an increase in reduced frequency from k = 0.1 to k = 0.3 is not enough to
significantly impact the pressure gradient near the leading edge. We can conclude that
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FIGURE 12. The effect of reduced frequency (k) on the strength of the near wake (c/4 beyond
the trailing edge) at constant surge amplitude (λ = 1.75).

a major reason for the insensitivity of ψvort to reduced frequency is that the state of the
trailing wake, and the velocity it induces near the leading edge, is only a weak function of
the reduced frequency over the range 0.1 ≤ k ≤ 0.3.

3.3.2. Unsteady boundary layer effects
The presence of unsteadiness within the boundary layer, or unsteadiness due an

accelerating wall, is an additional mechanism of separation whose magnitude is expected
to have a strong link to the reduced frequency. Similar to the classical Stokes boundary
layer, the acceleration of the wing imparts its own momentum on fluid particles close
to the aerofoil boundary, and can play a significant role in separation if the acceleration
magnitude is sufficiently high (Dwyer & McCroskey 1971; Riley 1975). The insensitivity
of ψvor with reduced frequency, together with the invariance of the wake seen in figure 12,
imply that acceleration effects in the boundary layer are negligible over the range 0.1 ≤
k ≤ 0.3, but it is nonetheless important to establish an upper bound at which acceleration
effects become significant in the surging/pitching wing problem, as this has important
ramifications for the modelling efforts undertaken later in this work.

Such an upper bound can be established by leveraging figure 10 with the
expected magnitude of unsteadiness in the boundary layer. Equation (3.2) provides a
non-dimensional form of the incompressible boundary layer equation, which governs the
magnitude of the various mechanisms at play near the aerofoil surface

(
L

TU

)
∂u∗

∂t∗
+ u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ = − ∂p∗

∂x∗ + ∂2u∗

∂( y∗)2
. (3.2)

In (3.2), T is a characteristic time scale, U is a characteristic velocity, L is a characteristic
velocity scale and the terms marked with a ‘∗’ are all approximately of O(1). ‘Internal’
unsteady effects are represented by the first term on the left hand side of (3.2), with a
magnitude dependent on the flow’s characteristic length, time and velocity.

A number of these characteristic scales can be quite easily related to kinematics of the
surging and pitching wing problem. The velocity scale U, for instance, is likely of the same
order of magnitude as the aerofoil free-stream U(t), while the time constant T likely scales
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with the inverse of the oscillation frequency (1/Ω). Both of these selections are consistent
with classical steady and unsteady boundary layer theory (Schlichting 2017). The length
scale L, in contrast, is less clearly defined. A typical selection for L would be the airfoil
chord, which leads to the unsteady term scaling with twice the reduced frequency

L
TU

= Ωc
U(t)

= 2k. (3.3)

Although this leads to a simple relation between unsteady effects and the aerofoil
kinematics, (3.3) suggests that unsteady effects are comparable in magnitude to the
pressure gradient over the range 0.1 ≤ k ≤ 0.3, meaning that both mechanisms should play
a significant role in the structure of the boundary layer. Such an observation is inconsistent
with the insensitivity of ψvort to reduced frequency observed in figure 10.

An alternate approach would be to set the characteristic length scale L equal to the
distance of a given point from stagnation. This parameter, denoted here as x , is inherently
related to the height of the boundary layer and appears in a number of fundamental
analytical solutions to the boundary layer equations. This selection also means that the
unsteady term is scaled according to a very intuitive non-dimensional parameter, defined
as follows:

L
TU

= Ωx

U
=

(νx

U

) (
Ω

ν

)
=

(
δ

δs

)2

. (3.4)

In (3.4), δ is the order of the local boundary layer height (δ = (νx/U)1/2), while δs is the
expected height of the Stokes layer (δs = (ν/Ω)1/2). The Stokes layer effectively represents
the height of the boundary layer if acceleration were the only mechanisms influencing the
boundary layer structure, or if the problem were idealized to an accelerating infinite flat
plate. The parameter in (3.4) can thus be seen as a measure of how far the current boundary
layer flow deviates from the idealized case of an accelerating plate. If Ωx/U is much less
than O(1), for instance, the Stokes layer is expected to be large compared to the actual
boundary layer height, and unsteady effects are unlikely to be significant at the scales
relevant to the boundary layer. In contrast, if Ωx/U is O(1) or greater, the Stokes layer is
expected to be comparable to the actual height of the boundary layer, and unsteady effects
become significant.

With this in mind, figure 13 plots the scaling parameter from (3.4) for our four reduced
frequencies in the period immediately preceding the onset of flow separation. To generate
each line, the parameter x was set to 0.1c, a conservative estimate of the distance between
stagnation and the point of leading-edge separation. Figure 13 reveals that the behaviour of
Ωx/U is consistent with the relation between ψvor and k; that is, this scaling law predicts
a very low magnitude of acceleration effects in the boundary layer, even after the reduced
frequency is tripled from its base value. It also allows us to establish an upper bound at
which time-acceleration effects in the boundary layer are expected to become a significant
factor in the onset of flow separation: based on the trends in figure 13, unsteady boundary
layer effects appear likely to remain small as long as k remains below O(10). For reference,
most practical applications, including helicopter and wind turbine aerodynamics, generally
feature reduced frequencies of O(1) or lower.

As a brief summary, this section found that the timing of vortex formation has a weak
dependence on the reduced frequency. Over the range 0.1 ≤ k ≤ 0.3, a change in the
reduced frequency did not manifest as a significant change in the strength of the near
wake, nor did it give any indication of significant unsteadiness in the boundary layer.
Based on a simple scaling analysis, the preceding conclusion is expected to hold as long
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FIGURE 13. The expected magnitude of time-acceleration effects in the boundary layer relative
to the contribution of viscosity and the pressure gradient (both of which are assumed to be O(1)
in this figure) at constant surge amplitude (λ = 1.75).

as the reduced frequency k is of O(1) or lower; higher reduced frequencies (i.e. k > 1) are
expected to result in non-negligible unsteadiness within in the boundary layer.

3.4. Variation in surge amplitude
The next stage of this analysis will investigate how a change in the surge amplitude
(λ) impacts the timing of vortex formation on a surging and pitching wing. Similar to
the reduced frequency, a change in the surge amplitude corresponds to a change in the
acceleration of the aerofoil, and is thus expected to manifest as a change in the properties
of the trailing wake and the boundary layer. The main difference is that a change in
surge amplitude also impacts the range of instantaneous velocities experienced by the
aerofoil during its oscillation; the ‘steady’ contribution to the flow field cannot be assumed
constant across multiple surge amplitude. This section will explore the effects of surge
amplitude in terms of the steady contribution, the unsteady contribution, and their mutual
interaction, in the hopes of illuminating the main physical mechanisms linked to a change
in amplitude.

To begin, figure 14 shows the onset of vortex formation (ψvor) as it changes with surge
amplitude (λ) for a constant reduced frequency (k = 0.165) and set of pitching kinematics
(α0 = 15◦, α1 = 8◦, φ = π). This figure displays a very clear trend; the onset of vortex
formation occurs at progressively earlier times in the oscillation cycle for increasing values
of the surge amplitude. The intuition behind this assertion is straightforward (i.e. a more
aggressive surge manoeuvre leads to earlier flow separation), but the physical mechanisms
responsible for this trend are not immediately apparent. It is unclear whether figure 14
can be attributed to (i) a simple change in the instantaneous kinematics, (ii) unsteady
acceleration effects in the boundary layer or (iii) changes in the structure of the trailing
wake. The remainder of this section will walk through each mechanism individually and
assess whether or not it can account for the trend in figure 14.

3.4.1. Quasi-steady contribution
Let us begin with the steady effects brought about by changing the instantaneous

kinematics in each surge amplitude case. Referring to the kinematics in figure 4, the
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FIGURE 14. The effect of surge amplitude (λ) on the timing of vortex formation (ψvor) at
constant reduced frequency (k = 0.165) and pitching kinematics (α0 = 15◦, α1 = 8◦, φ = π).

higher surge amplitude cases reach a lower instantaneous free stream, and thus a lower
instantaneous Reynolds number, at earlier times in the oscillation cycle compared to the
lower surge amplitude cases. From a steady perspective, a lower instantaneous Reynolds
number is associated with a thicker boundary layer, and a thicker boundary layer is more
prone to an early flow separation. The ‘steady’ perspective would predict that the trends
in figure 14 are simply due to the higher amplitudes reaching lower Reynolds numbers at
earlier times.

It is unclear, however, whether this steady contribution alone is enough to account for
the trends seen in figure 4. One way to quantify the relative impact of steady effects is to
consider the height of the boundary layer near the leading edge in the moments leading
up to the onset of flow separation. If steady effects are truly responsible for the change in
ψvort with λ, the boundary layer height should increase significantly at higher values of the
surge amplitude, as these cases reach lower Reynolds numbers at earlier times.

With this in mind, boundary layer measurements were computed for each surge
amplitude case over the range 170◦ ≤ ψ ≤ 185◦. The process consisted of identifying a
point near the leading edge of the wing, drawing a line outward from the surface of the
wing, and interpolating for the vorticity along that line. The ‘edge’ of the boundary layer
was defined as the point at which the local vorticity decreased below a ‘threshold’ value
of ω0 = 2.5U0/c. The current work performs this calculation at 4 different points over the
range 0.1 ≤ x/c ≤ 0.15, then averages the resulting heights at each time step, ultimately
arriving at a smooth approximation of the leading edge boundary layer height over time.
A sample vorticity distribution, corresponding to the x/c = 0.12 at ψ = 182◦, is provided
in figure 15 for the baseline surging and pitching case.

Figure 16 presents measurements of the height of the boundary layer (δ) over the
portion of the aerofoil motion that immediately precedes separation. Despite the different
instantaneous Reynolds numbers experienced by each surge amplitude, the lines in
figure 16 all behave in a similar fashion, with no clear trend in the boundary layer height.
There are small variations among the cases, but the magnitude of these variations are
within the spatial resolution of the flow field measurements (0.0103 chords), meaning they
are likely a result of experimental noise. The main takeaway of figure 16 is thus that the
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FIGURE 15. The distribution of vorticity along a line normal to the c/10 chordwise position on
the aerofoil suction surface. The white dot represents the ‘edge’ of the boundary layer. Note that
this profile is taken from the baseline case (λ = 1.75, k = 0.165) at ψ = 182◦.
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FIGURE 16. The effect of surge amplitude (λ) on the instantaneous height of the boundary
layer at a position roughly c/10 from the leading edge of the wing.

height of the boundary layer is quite invariant with surge amplitude over the parameter
space of interest.

We conclude that the steady contribution to separation, or the notion that lower
instantaneous Reynolds numbers leads to an earlier separation, cannot completely account
for the trends in figure 14. This conclusion makes intuitive sense; a meaningful change
in the height of the boundary layer would likely only begin to be noticed once the
instantaneous Reynolds number is reduced by a full order of magnitude, which for the
current parameter space, occurs after the flow has already separated.
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FIGURE 17. The expected magnitude of time-acceleration effects in the boundary layer relative
to the contribution of viscosity and the pressure gradient (both of which are assumed to be O(1)
in this figure) at constant reduced frequency (k = 0.165).

3.4.2. Unsteady boundary layer effects
Next, we will address the relation between the surge amplitude and unsteadiness

within the boundary layer, or the effects of an accelerating wall. Since a change in the
surge amplitude leads directly to a change in the aerofoil acceleration, the magnitude
of time-acceleration effects in the boundary layer are expected to scale with the surge
amplitude; however, much like the reduced frequency, it can be shown through a simple
scaling analysis that unsteady boundary layer effects are negligible for realistic values of
the surge amplitude. Figure 17 plots the expected magnitude of the unsteady term, formally
introduced in § 3.3, for a variety of surge amplitudes in the moments that immediately
precede flow separation. Each line retains a very small magnitude throughout the
oscillation, even with a conservative estimate for the length scale (x = 0.1c), suggesting
that time-acceleration effects are negligible in the overall structure of the boundary layer.
We conclude, via a simple scaling law, that ‘internal’ unsteady effects in the boundary
layer play a small role in the timing of flow separation (assuming that λ and k are both of
O(1) or less).

3.4.3. Trailing wake effects
At this stage, our analysis has concluded that neither quasi-steady effects (i.e. the change

in instantaneous Reynolds number) nor unsteady boundary effects (i.e. changes in the
boundary layer structure due to an accelerating wall) can sufficiently explain the inverse
relationship between λ and ψvort observed in figure 14. The remaining mechanism of the
flow is the influence of the trailing wake. This section will outline why the velocity induced
by the wake, and specifically its magnitude relative to the instantaneous velocity of the
aerofoil, is the most likely explanation for the trends seen in figure 14.

To begin, figure 18 plots the strength of the near wake against non-dimensional
time, again computed using the control volume approach of § 3.3. Despite the different
accelerations imposed by each amplitude, figure 18 shows a weak relation between λ and
the strength of the wake. This observation simply implies that the change in acceleration
from λ = 1.50 to λ = 2.25 is not enough to significantly affect the circulation shed into
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FIGURE 18. The effect of surge amplitude (λ) on the strength of the near wake (Γw) for four
surge amplitudes at constant reduced frequency and pitching kinematics.
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FIGURE 19. Illustration of how the wake-induced velocity, which is reasonably constant across
the four surge amplitudes, increases the effective incidence near the leading edge.

the wake; however, it also implicitly points to a unique interaction between the wake and
the instantaneous free stream.

Consider, for example, two cases from figure 18, one case at the lowest surge amplitude
(λ = 1.50) and another case at a highest surge amplitude (λ = 2.25). The flow near the
leading edge in both cases can be roughly broken down into a ‘quasi-steady’ component
due to the instantaneous surge/pitch motion (U1 and U2) and an ‘unsteady’ component due
to the trailing wake (Uw). In dimensional form, figure 18 suggests that Uw is approximately
the same for λ = 1.50 and λ = 2.25; the quasi-steady component, in contrast, is lower for
λ = 2.25 when ψ > 180◦. The higher surge amplitude case is thus subject to a higher
effective incidence, which then leads to an earlier onset of flow separation. This process,
wherein a lower instantaneous free-stream velocity results in an earlier flow separation, is
illustrated in figure 19 and is valid as long as flow separation occurs after the wing passes
through ψ = 180◦.

To summarize, this section found that an increase in the surge amplitude λ results in an
earlier onset of vortex formation over the range 1.50 ≤ λ ≤ 2.25. This phenomenon could
not be attributed to ‘quasi-steady’ effects (i.e. the notion that higher surge amplitudes reach
lower instantaneous Reynolds numbers at earlier times in the oscillation) nor ‘internal’
unsteady effects in the boundary layer (i.e. effects due the accelerating wall), leaving only
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the influence of the trailing wake. Through direct measurements of its strength, the trailing
wake was shown to increase the effective incidence near the leading edge of the aerofoil at
higher surge amplitudes, which the current work posits as the most reasonable explanation
for the trends in vortex formation seen in figure 14.

3.5. Low-order prediction of vortex formation
Taken together, the preceding sections have uncovered a few important observations
regarding the physics of flow separation on a surging and pitching aerofoil. The velocity
induced by the trailing wake appears to drive an earlier flow separation at higher surge
amplitudes, while unsteadiness within the boundary layer appears to be small for practical
values of the reduced frequency and surge amplitude. These conclusions have important
ramifications for the prediction of vortex formation on a surging and pitching wing.
This section will revisit how vortex formation is typically predicted in popular low-order
models, and will attempt to identify further reductions of order based on the conclusions
noted above.

As a bit of background, low-order models of unsteady flows generally consist of
two components. The first is a model of the inviscid flow outside the boundary layer,
which range from conventional source/vortex panel methods (Hess 1990; Katz & Plotkin
2001) to those rooted in complex potential flow theory (Milne-Thompson 1938; Wang
& Eldridge 2013). The second is a viscous treatment of the rotational flow that occurs
within the boundary layer, which is typically handled by an ‘integral’ method of solving
the steady or unsteady boundary layer equations (Lock & Williams 1987; Cebeci et al.
1993; Ramos-Garcia, Sorensen & Shen 2014). Because of nonlinearities in the boundary
layer equations, these integral methods are too computationally expensive for use in many
design scenarios, especially those that deal with unsteady flows. It has thus become an
important goal of the unsteady aerodynamics community to find an alternate boundary
layer method that quickly and accurately computes the onset of vortex formation in an
unsteady environment.

Perhaps the most popular of these low-order methods is the leading-edge suction
parameter, or ‘LESP’ for short. The LESP is based on the hypothesis that a given airfoil
can support a finite amount of suction before experiencing massive flow separation at its
leading edge, and its validity has been explored over a range of airfoil geometries and
unsteady motions (Ramesh et al. 2012, 2014, 2017). In practice, the LESP is ideal for
low-order predictions of vortex formation, as it manifests as a simple check for separation
at the leading edge, but it remains somewhat limited in the types of flow it can accurately
predict. The ‘critical’ value of the LESP, for instance, is believed to be different for each
individual combination or aerofoil and Reynolds number, which makes it non-ideal for use
in design scenarios where the aerofoil geometry undergoes multiple iterations.

The current work proposes an alternate criterion for vortex formation, one based on the
observations of §§ 3.3 and 3.4, that improves upon some of the limitations of the LESP.
Consider, as a starting point, the governing equations of the boundary layer for a 2-D
surging and pitching aerofoil, stated formally as follows:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
(
∂Ue

∂t
+ Ue

∂Ue

∂x

)
+ ν

∂2u
∂y2

. (3.5)

In (3.5), u and v are velocity components within the boundary layer, Ue is the exterior
velocity of the boundary layer (obtained from the inviscid outer flow) and x and y are the
directions tangent and normal to the aerofoil surface.
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FIGURE 20. The value of the maximum non-dimensional pressure gradient (βmax ) computed in
a region near the leading edge (0 ≤ x/c ≤ 0.25) for a NACA 0012 over various surge amplitudes.

As discussed above, the methods for directly solving (3.5) are still too computationally
expensive for use in many applications. At this stage, we will make a few reasonable
assumptions to simplify (3.5) into a more mathematically convenient form. First, the
unsteady term (represented by ∂u/∂t) can be removed from (3.5) since ‘internal’
time-acceleration effects were found to be negligible over the parameter space of interest.
This assumption is expected to be valid as long as the reduced frequency k is O(1) or lower.
Likewise, we will assume that the boundary layer at the leading edge is locally self-similar,
meaning that the magnitude of the u(∂u/∂x) term near the surface is small compared to
the pressure gradient. This is expected to be a reasonable assumption given the very large
magnitude of the pressure gradient characteristic of flows with a leading-edge separation.
Together, these two assumptions lead us to the well-known Falkner–Skan formulation of
the boundary layer equations, stated as follows:

fηηη + ffηη + β
(
1 − f 2

η

) = 0. (3.6)

In (3.6), f is a transformed version of the streamfunction in the boundary layer, η is
the scaled wing-normal direction and β is non-dimensional representation of the local
pressure gradient. This equation is a ‘single-parameter’ ordinary differential equation and
is among the simplest iterations of the boundary layer equations. A solution for shear stress
at the surface, and thus a prediction for the timing of flow separation, can be ascertained
based only on the single parameter β, which is itself a function of the inviscid slip velocity
at a certain point along the aerofoil surface (β = (1/Ue)(∂Ue/∂x)). Solutions to (3.6) have
been documented for various values of the non-dimensional pressure gradient throughout
the literature, and the value of β ≈ −0.1988 has been analytically found to correspond to
the onset of flow separation.

The Falkner–Skan equation represents a simple, first-order approximation of when
the vortex formation process begins on an aerofoil in an unsteady flow, but it is
important to recognize that such an approach is only strictly valid for a laminar boundary
layer. The presence of turbulence, which becomes increasingly significant at higher
Reynolds numbers, plays a major role in energizing the boundary layer and maintaining
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FIGURE 21. The predicted timing of vortex formation (ψvor) compared to experimental
measurement for a sweep of surge amplitudes (λ, a) and reduced frequency (k, b).

flow attachment. The current work, taking inspiration from the LESP, posits that the
influence of turbulence manifests as a change in the ‘critical’ value of the Falkner–Skan
parameter β. That is, for a turbulent boundary layer, separation occurs at a magnitude
higher (i.e. more negative) than β = −0.1988, and this specific value depends only on the
mean Reynolds number of the aerofoil motion.

To illustrate this idea, figure 20 plots the maximum magnitude of β, computed using
an unsteady version of the Hess–Smith panel method for a NACA 0012 (Hess 1990), for
each of the four surge amplitude cases. The maximum adverse value of the Falkner–Skan
parameter (βmax ) is seen to monotonically increase for each case in figure 20, leading up to
the experimentally measured timing of vortex formation (denoted with a blue dot). More
importantly, figure 20 shows that βmax is roughly constant at the onset of vortex formation,
with ψvor occurring at roughly βmax = −2.1 for each case. The onset of leading-edge
separation thus appears to coincide with a critical value of the Falkner–Skan parameter,
with the presence of turbulence increasing the magnitude of this critical value above the
laminar point of laminar separation (βmax = −0.1988).

In a similar vein, figure 21 applies this idea to the trends in vortex formation with surge
amplitude (a) and reduced frequency (b). For each set of kinematics, the inviscid outer flow
was predicted with a simple unsteady panel method, and the timing of flow separation was
predicted based on the value of the Falkner–Skan parameter near the leading edge. The
results of this prediction are plotted as solid black dots in figure 21, while the experimental
measurements are plotted as blue dots. The critical value of the Falkner–Skan parameter
was set to βmax = −2.1 for each case, as there is no change in the mean Reynolds number
of the aerofoil motion. The left-hand side of figure 21, which corresponds to the sweep
in surge amplitude, shows very good agreement between the experimental measurement
and the prediction of vortex formation, with both the magnitude and trends in ψvor being
well represented. The right-hand side shows that the method is also successful at capturing
the insensitivity of ψvor to changes in reduced frequency, although it has a slight error in
magnitude.

As a final comment, we will also note that there is a strong resemblance between
the method outlined above and the more well-known leading-edge suction parameter.
In both methods, one computes the inviscid flow outside the boundary layer using an
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unsteady panel method, then checks some leading-edge flow property against a critical
value that corresponds to flow separation. The main difference is that the critical value
of the Falkner-Skan parameter, since it is based firmly in boundary layer theory, is not
expected to vary with aerofoil geometry. The influence of geometry is largely captured by
the inclusion of ∂Ue/∂x , and by explicitly changing the aerofoil shape in the inviscid step.
It is only the influence of turbulence that needs to be handled empirically. The critical value
of the Falkner–Skan parameter should then only depend on the mean Reynolds number of
the aerofoil motion, making it more versatile in the way it approaches vortex formation.

4. Conclusions

The formation of a leading-edge vortex on a conventional aerofoil is a difficult process
to understand and predict. Although numerous works have addressed the growth and
shedding stages of LEV development on flat plates, it remains unclear how to predict
the transition from attached to separated flow on a wing with a rounded leading edge, a
critical event in many external flow applications. In this work, a series of experimental
flow field measurements were used to investigate the mechanisms responsible for flow
separation on a simultaneously surging and pitching aerofoil at high surge amplitudes (λ)
and reduced frequencies (k). The exact surging and pitching kinematics were chosen to
be perfectly out-of-phase with one another to mirror the unsteady free stream and pitch
oscillations observed in rotary wing applications. Experiments focused on the impact
of the free-stream oscillation and consisted of a sweep four surge amplitudes (1.50 ≤
λ ≤ 2.25) and four reduced frequencies (0.1 ≤ k ≤ 0.3). The following conclusions were
reached:

(i) For a surging/pitching aerofoil with a phase difference of φ = π, leading-edge flow
separation was consistently found to occur during the pitch-up/deceleration portion
of the aerofoil’s motion, leading to the formation of a strong vortex at the blunt
leading edge.

(ii) When the surge amplitude exceeded λ = 1, a period of free-stream reversal was
present in the wing’s surging kinematics and acted to ‘cut off’ the growth of the
LEV. As a result, the LEV convected beyond the blunt edge of the aerofoil as the
wing continued to surge in reverse flow.

(iii) The onset of vortex formation was found to be insensitive to the reduced frequency
over the range 0.1 ≤ k ≤ 0.3. The reason for this insensitivity was assessed in
relation to trailing wake effects and ‘internal’ acceleration effects. A large change
in reduced frequency had little effect on the strength of the near-wake over 0.1 ≤
k ≤ 0.3, meaning the wake-induced velocity remained reasonably constant over a
large range of reduced frequencies. Likewise, the magnitude of unsteadiness within
the boundary layer was addressed through a scaling analysis and was found to be an
order of magnitude smaller than the leading-edge pressure gradient. It was predicted
that unsteady boundary layer effects would be negligible in the onset of vortex
formation as long as k is of O(1) or lower, which was supported by the trend in
the timing of vortex formation with reduced frequency.

(iv) The onset of vortex formation was found to occur at earlier times in the oscillation
cycle with increasing surge amplitude. This was attributed to an increase in the
relative strength of the aerofoil’s trailing wake at higher values of the surge
amplitude. Again, unsteady effects in the boundary layer were determined to be quite
small in this regime, with a low order of magnitude compared to the local pressure
gradient at separation.
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(v) The timing of flow separation in both the surge amplitude and reduced frequency
sweeps was well predicted by a simple combination of an inviscid panel method
and a quasi-steady treatment of the boundary layer equations. This reinforces the
notion that unsteady boundary layer effects are negligible in the regime studied here.
Likewise, by using the computationally inexpensive Falkner-Skan equation, a novel
shedding criterion was proposed based on a ‘critical’ value of the Falkner–Skan
parameter (β = (1/Ue)(∂Ue/∂x)) in a region near the leading edge. The ‘critical’
value of this parameter is expected to be independent of aerofoil geometry, varying
only with the degree of turbulence in the boundary layer, and provides a promising
avenue for future efforts in modelling the onset of LEV formation.
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