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Beginning in 1999, Curtis Signorino challenged the use of traditional logits and probits

analysis for testing discrete-choice, strategic models. Signorino argues that the complex

parametric relationships generated by even the simplest strategic models can lead to wildly

inaccurate inferences if one applies these traditional approaches. In their stead, Signorino

proposes generating stochastic formal models, from which one can directly derive a maxi-

mum likelihood estimator. We propose a simpler, alternative methodology for theoretically

and empirically accounting for strategic behavior. In particular, we propose carefully and

correctly deriving one’s comparative statics from one’s formal model, whether it is stochastic

or deterministic does not particularly matter, and using standard logit or probit estimation

techniques to test the predictions. We demonstrate that this approach performs almost

identically to Signorino’s more complex suggestion.

1 Introduction

Political scientists are regularly concerned with the strategic nature of political decision
making. This concern reflects the fact that political actors do not simply make choices
independent of the anticipated actions and reactions of other political actors. Rather, they
make their decisions specifically contingent on those anticipated choices. For example,
when one country is considering whether to attack another country, the potential aggressor
does so anticipating how the other country is likely to react. Will it respond militarily, or
will it back down? Under many conditions, the potential aggressor’s decision will be
contingent on that expected response.

In a series of articles beginning in 1999, Curtis Signorino used this notion of strategic
behavior to challenge how political scientists empirically study political behavior (see also
Smith 1999; Lewis and Schultz 2003). In this challenge, Signorino argues that strategic be-
havior generates complex parametric relationships that confound traditional logit and probit
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analyses.1 As a result, he claims, these traditional approaches can lead to wildly inaccurate
inferences and should not beused. Signorino insteadproposes an alterative approachofwriting
stochastic formal models from which one can directly derive maximum likelihood estimators
(MLEs) to test strategic theories (Signorino 1999, 2003; Signorino and Yilmaz 2003).2

The importance of this challenge cannot be oversold. If Signorino is right, existing
quantitative tests of strategic behavior in political science are potentially deeply flawed.
Further, Signorino’s identified solution is no quick fix. It requires scholars to rederive
existing deterministic theories as stochastic formal models and then test the new stochastic
model by deriving an MLE as well. Thus, there is no ‘‘off-the-shelf’’ solution on either the
theoretical or empirical front.

This challenge has quickly gained wide notoriety and acceptance. Signorino’s work has
been published in the leading journals in the discipline, including the American Political
Science Review (APSR), the American Journal of Political Science, and Political Analysis.
That work is already widely cited, with the 1999 APSR article alone having over 60
citations, and National Science Foundation–funded Empirical Implications of Theoretical
Models summer workshops make a point of teaching graduate students and young faculty
his approach. Thus, it appears that Signorino has found a serious problem in the study of
strategic behavior and that his solution is penetrating the discipline.

We very much agree with the emphasis Signorino places on careful theoretical and
empirical modeling of strategic behavior. Strategic behavior will lead to complex para-
metric relationships, and, as a result, simply including a list of covariates in a linear-form
logit is almost certainly a fatal misspecification of the theory. Any well-designed test of
a strategic theory must entail accurate operationalization of precisely derived predictions.

However, we believe that Signorino’s approach makes the process of accurately testing
strategic theories appear unnecessarily complicated. The anticipatory behavior that gen-
erates complex parametric relationships can lead the incautious researcher to functional
form misspecification; however, it does not cause the use of established logit techniques to
fail. If the only complexity is anticipatory behavior, we propose an alternative, simpler

1As discussed in more detail below, it is unclear whether Signorino uses the term ‘‘traditional’’ to refer to the use
of logits and probits in general or whether he is referring to just standard functional forms of these estimation
techniques (specifically, the linear link). Thus, we leave the term intentionally undefined here as well.
2In a minimalist reading of this critique, Signorino simply is critiquing the existing applications of logit and probit.
Scholars generally operationalize linear logits and probits, and these typical logits and probits fail because
relationships between the independent variables, or parameters of the model, and the dependent variables, either
observed behavior or outcomes, are often nonlinear. With this reading, Signorino is simply using the technique of
writing a stochastic formal model and deriving MLEs directly from the theoretical model as a way of illustrating
the problems with typical logit and probit specifications. In a maximalist reading of this critique, Signorino is
critiquing the entire enterprise of using logits and probits to test strategic models period and is suggesting that the
discipline needs new statistical techniques, that is, his approach, if one is going to accurately test models of
strategic behavior.

Although nowhere in his published work does Signorino unambiguously state that he is making the maxi-
malist critique, it is not an implausible conclusion. First, throughout his work, Signorino makes statements that
read as critiques of using logits or probits in general. For example, in motivating the logit quantal response model
in his 1999 article, Signorino (1990, 280) states, ‘‘[I]n sum, logit models of international conflict are unlikely to
capture the real or theorized structure of strategic interaction.’’ Similarly, he concludes his Monte Carlo analysis
by stating: ‘‘The question posed at the beginning of this section was: How well does traditional logit model
strategic interaction?’’ (Signorino 1999, 287). Thus, Signorino often does not qualify his statements by indicating
that he is critiquing a particular empirical specification. Second, Signorinomotivates using his LQRE approach as
if it is necessary for incorporating strategic interdependence into a statistical model: ‘‘I analyze the effects of
using a logit model when two states behave strategically. To do this, however, we need a method for incorporating
the structure of strategic interdependence into statistical models of conflict’’ (Signorino 1999, 281). Third, and
perhaps most importantly, at no point in any of his work does Signorino propose the obvious alternative to typical
logit and probit specifications or to the LQRE approach, appropriately deriving standard comparative statics
approaches to generate predictions and test them in a logit or probit model.
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methodology. Simply put, we recommend that scholars directly derive comparative statics
from their strategic models and use established estimation techniques to test the predic-
tions generated through the comparative static analysis. Our proposed approach thus
reinforces the importance of Signorino’s insights while at the same time substantially
simplifying their implementation.

To demonstrate our claims, we proceed in three parts. First, we demonstrate that the
complex parametric relationships derived by Signorino in his crisis bargaining models to
illustrate the failure of traditional estimation techniques can be derived using standard
comparative statics. Second, we demonstrate that these complex relationships do not rely
upon the stochastic formal modeling assumption; that is, that one can get exactly those
complex relationships using a simple deterministic formal model. Third, we demonstrate
that if one directly derives the estimators in Signorino’s examples, they are established
variants of standard models for binary responses.

2 Nonlinearities, Stochastic Modeling, and Comparative Statics Analysis

This section proceeds in three parts. First, we summarize in more detail Signorino’s
critique of, and solution to, existing empirical work as argued in Signorino (1999) and
Signorino and Yilmaz (2003). Second, we reanalyze the parametric relationships from
these papers and demonstrate that correctly derived comparative statics capture the central
nonlinearities used by Signorino to demonstrate the failure of traditional estimation tech-
niques.3 Finally, we also demonstrate that making the model stochastic is not central to
deriving these nonlinear relationships.

2.1 Signorino’s Argument

In ‘‘Strategic interaction and the statistical analysis of international conflict,’’ Signorino
(1999) first challenges the use of traditional logit analysis in the face of strategic interde-
pendence. His challenge starts by characterizing ‘‘the problem with traditional methods
of estimation’’ in empirical studies of international conflict (Signorino 1999, 280). The core
of this critique is ‘‘the typical use of logit,’’ by which he means including an array of
plausible covariates in a logit predicting the occurrence of conflict at the nation-year,
dyad-year, or monad-dispute level. Signorino states that there are a number of reasons to
be wary of this form of analysis, including ‘‘if observed actions are the results of [perhaps
complex] strategic interaction, then it is unlikely that a simple logit functional form will
capture the structure of that strategic interdependence.’’

Focusing on this problem, Signorio argues that one needs ‘‘a method for incorporating
the structure of strategic interdependence into statistical models of conflict’’ to demon-
strate the failure of the traditional logit. To do so, he derives the logit quantal response
equilibrium (LQRE). This is a statistical model in which one writes down a discrete-choice
formal model, derives a quantal response equilibrium (QRE), and then directly derives the
MLE from the statistical formal model.4 By deriving such an estimator, one can be assured
of capturing the behavioral interdependence that arises in strategic situations.

3This functional form critique is also central to part of Signorino’s (2003) analysis. In the first part of that study, he
demonstrates that the MLEs one derives from a strategic and nonstrategic model are fundamentally different.
This is certainly true. However, this difference arises predictably from the fact that predicted behavior is going to
differ across the two models, since incentives and choices differ. If one derived a series of comparative statics-
based predictions from the two models, one would also arrive at different functional forms from one’s logit or
probit as well. Thus, in the end, this analysis is also a demonstration of the importance of correctly deriving one’s
predictions from one’s theory.
4See McKelvey and Palfrey (1998) for derivation of the QRE solution concept. Also, note that QRE is another
name for the agency error stochastic model mentioned in Signorino (2003).
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To demonstrate the superiority of the LQRE model over traditional logits, Signorino
characterizes a ‘‘typical bilateral crisis game.’’ This game is slightly more complex than
the crisis bargaining game used in subsequent work (Signorino 2003; Signorino and
Yilmaz 2003); Fig. 1 characterizes the game. First, player 1 chooses whether to fight
(F) or not (;F). Once player 1 makes his/her decision, player 2 then chooses whether
to fight ( f ) or not (;f ). If player 1 choose not to fight and player 2 chooses to fight, player
1 then must choose whether to fight or not. If neither player chooses to fight, the outcome
is the status quo (SQ); whereas if player i chooses to fight and player j chooses not to fight,
the outcome is capitulation by player j (Cj), and if both players choose to fight, the out-
come is war (W).

Assuming that the world operates according to the crisis game and assuming the QRE
solution concept, Signorino generates a Monte Carlo simulation and compares the per-
formance of his LQRE estimation technique to that of the ‘‘typical’’ logits. In particular,
he operationalizes a naive logit in which both player’s military capabilities and assets
are included linearly, a more sophisticated ‘‘balance of power’’ logit in which ‘‘military
concentration’’ variables are created from the capabilities and assets variables, and
finally another more sophisticated ‘‘joint-utility’’ logit in which the joint utility of war
u1(W)u2(W) is included as a regressor. Signorino demonstrates not only that only the
LQRE model correctly retrieves the underlying parameters that generated the data set
but also that one would actually draw incorrect inferences from the other three logits. To
illustrate why these logit analyses fail, Signorino demonstrates that country 1’s military
power is nonlinearly related to the probability of war. Whereas the LQRE successfully
recaptures this nonlinear relationship, the other logit models do not. From this analysis,
Signorino concludes,

The question posed at the beginning of this section was: How well does traditional logit model

strategic interaction? At least for the simple crisis interaction model here, the answer appears

to be: Not very well at all. Perhaps more troubling are the highly significant results in each

case, which would be interpreted by the typical researcher as supporting one model or another.

Hence, out of a single data set, support could be ‘‘found’’ for a number of different theories of

international relations—all of which are wrong.

Signorino and Yilmaz (2003) extend this illustration of the failure of traditional logit
by demonstrating that strategic misspecification is the equivalent of omitted variable bias.
Once again, they rely upon a crisis bargaining model to illustrate the effects of strategic

Fig. 1 A typical bilateral crisis game.
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misspecification. Here, however, they use an even simpler model, as characterized in
Fig. 2.5 The first player chooses whether to attack (A) or not (;A). If he/she does not
attack, the game ends and both players receive the payoff associated with the status quo. If
he/she does attack, the second player gets to choose to retaliate (R) or not (;R). If player
2 retaliates, both players receive their payoffs associated with war. If player 2 does not
retaliate, they both receive their payoffs associated with the second player capitulating.

To demonstrate the omitted variable bias, Signorino and Yilmaz show that the linear
logit (i.e., a model with parameters included only linearly) omits higher order terms in-
cluded in a Taylor expansion of the strategic model. Once again, this omission arises from
the fact that strategic behavior generates nonlinear relationships among the parameters.
In fact, Signorino and Yilmaz demonstrate that the linear logit is adequate only when rela-
tionships are unconditionally monotonic. Once again, they prove this point through simple
illustration.

Signorino’s proposed solution to the failure of the traditional logit is to directly derive
one’s MLE from a stochastic formal model. In his 1999 paper, this is the LQRE. However,
the actual estimator will depend upon the precise error structure one assumes in the formal
model (Signorino 2003). Although nowhere does Signorino explicitly rule out careful
derivation of comparative statics, he also never proposes it as an alternative solution for
dealing with complex strategic interdependence.

2.2 Comparative Statics Analysis and Deterministic Modeling

Signorino’s observations are clearly important. However, they are a critique of poor
hypothesis generation and testing, not of estimation failure. Careful comparative statics
generation is more than adequate for resolving the complex relationships between param-
eters and outcomes that arise in the presence of strategic interdependence. To demonstrate
this point, we reanalyze Signorino’s two crisis bargaining models.

We first consider the simpler variant characterized in Signorino’s later work (Signorino
2003; Signorino and Yilmaz 2003). For simplicity, we will discuss the solution in terms of
a random-utility version of the model, though in this example the agency error version
actually yields the same solution if we define e1w 5 e1c:

Fig. 2 A strategic deterrence model.

5Drawn from Signorino (2003) and Signorino and Yilmaz (2003).
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The solution to this game is straightforward. Player 2 retaliates when u2(War) þ e2w .

u2(Cap) 5 0 þ e2c. Thus, if we define G to be the cumulative density function (CDF) of
e2c � e2w, we can define the probability of player 2 retaliating as Q [ G[u2(War)].
Similarly, player 1 attacks when the expected utility of going to war is greater than the
payoff for the status quo6; that is, when E[u1(A)] [ Q � [u1(War) þ e1w] þ (1 � Q) �
[u1(Cap) þ e1c] . 0 þ e1sq. Thus, player 1 attacks when e1sq � Qe1w þ (1 � Q)e1c ,
Q[u1(War)] þ (1 � Q)[u1(Cap)]. Defining F as the CDF of e1sq � Qe1w þ (1 � Q)e1c, the
probability that player 1 attacks is P 5 Ffu1(Cap) � Q[u2(War)][u1(Cap) � u1(War)]g.

Having derived equilibrium behavior, we can now derive comparative statics. Equa-
tions (1)–(4) are the first derivatives of each player’s probabilistic moves with respect to
the parameters of interest.

@Q

@u2ðWÞ5 g½u2ðWÞ� � 0; ð1Þ

@P

@u1ðWÞ5G½u2ðWÞ�

� ffu1ðCÞ � G½u2ðWÞ�½u1ðCÞ � u1ðWÞ�g � 0; ð2Þ

@P

@u1ðCÞ
5 f1� G½u2ðWÞ�g

� ffu1ðCÞ � G½u2ðWÞ�½u1ðCÞ � u1ðWÞ�g � 0; ð3Þ

@P

@u2ðWÞ5� ½u1ðCÞ � u1ðWÞ� � g½u2ðWÞ�

� ffu1ðCÞ � G½u2ðWÞ�½u1ðCÞ � u1ðWÞ�g: ð4Þ
Equation (1) is obviously positive, whereas equation (2) is positive since it consists of
a product of cumulative and density functions. Equation (3) is similarly positive since it
consists of one minus a cumulative function and a density function. Equation (4) is un-
signed because it can be either positive or negative depending on the relative size of the
capitulation and war payoffs.

Substantively, these results are all intuitive. Most obviously, player 2 should be more
likely to retaliate, the more player 2 values war. Also fairly clearly, player 1 should be
more likely to attack, the more player 2 values both war and capitulation. These are the two
possible outcomes if he/she attacks, and each has a strictly positive probability of occur-
ring. Finally, and perhaps least obviously, whether player 1’s probability of attacking is
increasing or decreasing in player 2’s value of war depends on whether player 1 values war
or capitulation more. If player 1 values capitulation more, the expected value of attacking
decreases as player 2’s value of war increases because the war outcome is more likely, the
more player 2 values war. The opposite relationship holds if player 1 values war more.

These relationships yield exactly the relationships that Signorino and Yilmaz derive in
their MLE. In particular, note that we have derived, through standard comparative statics,
both the nonlinear and the ‘‘conditionally monotonic’’ relationships illustrated in Fig. 5 of
Signorino and Yilmaz (2003, 562) and reproduced below as Fig. 3 (with a relabeling of the

6The payoff is an expected value because player 1 does not know with certainty what player 2 is going to do if
attacked.
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axes for ease of exposition). To see why, let us consider the two parameters of interest
separately.

First consider the relationship between player 2’s value of war and the probability of
player 1 attacking. When player 1’s value of capitulation is less than player 1’s value for
war, which is fixed at zero in the figure, the probability of attack is increasing in player 2’s
value of war, and when the opposite is true the probability of attack is decreasing in player
2’s value of war. This conditional relationship is identical to the comparative static derived
in equation (4).

Next consider the relationship between player 1’s value of capitulation and player 1’s
probability of attacking. One might suppose that the comparative static yields an uncon-
ditionally monotonic relationship because its sign is unconditionally positive. However,
in fact it does not. To see why, note that equation (3) consists of two parts, the density
function f(�) and 1 � G[u2(War)]. As player 2’s value of war increases, the value of the
first derivative @P=½@u1ðCapÞ� decreases. Interpreting this as a slope, we see that the
probability of player 1 attacking is much less sensitive to player 1’s value of capitulation
as player 2’s value of war increases. Thus, we derive exactly the same relationships
through comparative statics that we would if we wrote Signorino’s version of a strategic
empirical model. The only difference between traditional comparative statics and what
we have just done is that we have taken advantage of all the information provided in the
comparative static, not just its sign.

All this analysis has been performed assuming a stochastic formal model. However,
none of these derived relationships rely upon the random-utility assumption. That is, we
would derive exactly the same relationships between the parameters and the values of
interest from a deterministic version of the same model. Using subgame perfection and
solving backward, we know that player 2 will retaliate when u2(Cap) 5 0 , u2(War).
Further, we know that player 1’s decision to attack will depend upon what player 1 an-
ticipates player 2 will do. If u2(War) . 0, then player 1 will attack if u1(War) . u1(SQ)

Fig. 3 Stochastic probabilities of attacking: strategic. Following Signorino (1999), this graph was
generated using a type I extreme value distribution. The mean and variance, however, are different;
here, the mean is 0 and the variance is 1, creating a graph that is shifted and stretched a little
differently from Signorino’s, but that still reflects the same dynamics for the game.
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(i.e., if u1(War) . 0), whereas if u2(War) , 0, then player 1 will attack if u1(Cap) .
u1(SQ).

7

Now compare the probability of player 1 attacking across the two models. In the de-
terministic version, player 1’s decision to attack depends conditionally on the three param-
eters. Player 1 attacks when u1(War) is sufficiently large if u2(War) is sufficiently large,
and attacks when u1(Cap) is sufficiently large if u2(War) is not sufficiently large. Figure 4
compares this solution to the stochastic version’s solution, focusing on player 1’s utility for
war and player 2’s utility for war. As can be seen, the solutions are not as different as one
might have initially suspected. When u2(War) is small, the probability player 2 plays R is
small, and both models predict that p1(A) is basically independent of u1(War). When
u2(War) is large, the probability player 2 plays R is large, and both models predict that
p1(A) is almost perfectly predicted by u1(War). The only place that the two model’s
predictions substantially differ are when u2(War) is moderate. In this case, the determin-
istic model either predicts no attack with certainty (when u2(War) , 0) or attack with
certainty (when u2(War) . 0), whereas the stochastic model predicts that p1(A) probabi-
listically increases as u1(War) increases. Thus, aside from some smoothing of the cut
points, the predicted relationships across the two versions of the model are basically
identical.8

Next consider the more complex crisis bargaining model from Signorino’s (1999)
article. For simplicity and brevity, we derive solely the subgame perfect, deterministic

Fig. 4 Deterministic probabilities of attacking: strategic.

7Note that this solution is identical to the solution for Signorino’s (2003) regressor error version of a stochastic
game theoretic model. In Signorino’s regressor error model, as above, behavior is deterministic; only the
regessor’s ability to measure actor utility is stochastic.
8The same findings hold with regards to the probability of war as well; we omit that discussion here for the sake of
brevity. On a related note, Signorino (2003) makes a seemingly contradictory point of demonstrating that the
type of error matters. That is, it matters whether one assumes regressor error, error on the part of the scholar in
measuring parameters of the model, or agent or utility error, error built into the solution concept of the game
itself. He demonstrates this point in two ways. First, he assumes that the random-utility model is the correct error
specification and then demonstrates that the mean-squared error of the random-utility and agent error models are
smaller than the regressor error model. Second, still assuming a data generation process based on the random-
utility model, he demonstrates that the regressor error model will have higher average and maximal deviations
from the true probabilities than the random-utility or agent error versions. He conjectures, but does not dem-
onstrate, why this would be the case. We believe that all these differences are driven by the ‘‘smoothing’’ process
of the random-utility and agent error models. Differences in point predictions along these curves should generate
increased mean-squared errors, increased average differences in probabilities, and increased maximal differ-
ences in probabilities. Although plausible and interesting, this issue is not critical. If one assumes, as we stated
above, that deterministic models are approximations of reality and that we generate implicitly probabilistic
hypotheses from these deterministic models, then we get the same smoothed relationships whether we rely upon
a stochastic or deterministic model. That is, the differences that Signorino identifies are a construct of the
assumption that one would operationalize a deterministic model with hard cut points if one could.

472 Clifford J. Carrubba, Amy Yuen, and Christopher Zorn

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pm
00

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpm008


conditions that lead to war. Referring back to Fig. 1, Signorino defines the payoffs for each
outcome as follows:

uiðSQÞ5Dij;

uiðCiÞ5�Ai;

uiðCjÞ5Aj; and

uiðWÞ5 piAj þ ð1� piÞð�Ai �MiÞ;

where pi 5Mi=ðMi þMjÞ. Substantively, Mi are state i’s military assets, Ai are state i’s
other assets (e.g., land and natural resources), and pi is the probability that state i wins
a military conflict.

Assuming state 1 did not initiate conflict, state 1 fights back when u1(W2) . u1(C1).
Substituting and simplifying yields M2 , A1 þ A2; if this constraint holds, state 2
chooses to fight when u2(W2) . u2(SQ). Similarly, substituting and simplifying yields
M1 , ðM2A1Þ=ðA2 þM2Þ; if this constraint does not hold, state 2 chooses to fight when
u2(C1) . u2(SQ), which in turn yields A1 . Dij. If, on the other hand, we assume state 1
initiated the conflict, state 2 fights back when u2(W1) . u2(C2), which yields M1 , A1 þ
A2. Finally, state 1 will initiate a fight when u1(argmax2fW1, C2g) . u1(argmax2fSQ,
argmax1fC1, W2gg), where argmaxif�g identifies the outcome that maximizes the utility
for player i. For brevity, we do not list out all the constraints generated by this con-
dition here.

With this solution in hand, let us reconsider Signorino’s conclusions. Using Monte
Carlo analysis, Signorino demonstrates that his strategic model recaptures parameters
correctly, whereas the naive, balance of power, and joint-utility models do not. He dem-
onstrates that the failure arises from the inability of the other models to correctly capture
the nonlinear relationships between parameters and outcomes that are generated by stra-
tegic interdependence.

Figure 5 reproduces Signorino’s Fig. 3 and 4, in which he illustrates this point with
regards to the relationship between country 1’s military power and the probability of war.
The relationship in the strategic model is curvilinear: as country 1’s military capability
increases, the probability of war increases quickly, drops close to zero, increases again,
and then tails off. In contrast, the naive and balance of power logits predict the relationship
to be monotonic and convex, respectively.

We certainly agree that Signorino has demonstrated the failure of these typical logits.
However, none of the three logits estimated by Signorino rely upon correctly derived
comparative statics. If one derives a comparative static over country 1’s military capability
from the deterministic solution characterized above, we observe exactly the curvilinear
relationship derived in the QRE version of the game.9 The probability of war is large when
country 1’s military capabilities are either moderately small or moderately large, whereas
the probability of war is small when country 1’s military capabilities are moderate, quite
small, or quite large (see the Appendix for a proof); this solution is graphed in Fig. 6. As
with the comparison between the deterministic and stochastic versions of the crisis bar-
gaining game discussed in the previous section, the only difference is that the QRE version

9As in Signorino (1999), we fix M2 5 20, A1 5 40, A2 5 40, and D12 5 0 to generate the graph.
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of the game ‘‘smooths’’ the cut points in the deterministic solution and explicitly makes all
the derived relationships probabilitistic.

In sum, much of Signorino’s critique is a functional form critique that has more to do
with correctly deriving ones hypotheses from an underlying model than with the actual
estimation technique used to test those hypotheses. Thus, much of the failure of traditional
logit analysis can be resolved with more careful generation of comparative statics. Nothing
in the functional form critique requires one to move to generating estimators from sto-
chastic formal models. Next we consider appropriate estimation techniques for testing
these models.

3 Estimation Techniques

Can we use existing logit and probit models to test strategic theories of politics? In fact,
existing empirical models can be perfectly appropriate estimation techniques for testing
such theories. To illustrate this point, we return to the simple crisis bargaining model used
in the majority of Signorino’s work.10 For this discussion we assume errors are indepen-
dently drawn, as Signorino does in all of his work except for that in 2002.11 We derive
three possible estimators and illustrate their validity through Monte Carlo simulations.

Fig. 5 Logit QRE–, naive logit–, and balance of power–predicted probabilities of war.

10Identical results hold for Signorino’s LQRE version of the more complex crisis bargaining model. Because
deriving through these results would be redundant with those for this simpler model, we omit the additional
proofs.

11In his International Interactions paper, Signorino (2002) performs a simulation of a strategic model with
correlated errors but concludes that such a model is extremely complicated and recommends using an estimator
that correctly captures the strategic behavior at the sacrifice of modeling the correlated errors. Thus, because
Signorino never promotes estimating a model with strategic behavior and correlated errors, in this study we
focus on the model with uncorrelated errors.
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3.1 Some Estimators for Strategic Models

Consider again the strategic deterrence model in Fig. 2. Note at the outset that we can
reexpress the probabilities of the events of interest as

p2ðRÞ5Pr½e2c � e2w � u2ðWarÞ� ð5Þ
and

p1ðAÞ5Prfe1sq � Pr2ðRÞe1w þ ½1� Pr2ðRÞ�e1c � u1ðCapÞ
� Pr2ðRÞ½u1ðCapÞ � u1ðWarÞ�g: ð6Þ

Equations (5) and (6) are restatements of equilibrium behavior derived in the previous
section; they characterize player 2’s probability of retaliating and player 1’s probability of
attacking, respectively. In equation (5), the left-hand side is a difference of errors and the
right-hand side is a parameterized cut point. Thus, equation (5) yields a simple logit or
probit, depending upon whether we assume the errors have a type I extreme value or
normal distribution.

Equation (6) is more complex because player 1 is making an expected utility calcula-
tion. Player 1 is comparing settling for the status quo to choosing the lottery of attacking,
where the value of the lottery depends upon player 1’s assessment of the likelihood that
player 2 will retaliate, Pr2(R). As a result, both the error distribution and the cut point are
functions of Pr2(R). Although this construction makes the error term appear more com-
plex, it simply yields a weighted combination of errors. And, since the individual error
terms are mean zero, we know the weighted combination of errors must also be mean zero
(i.e., Efe1sq � Pr2(R)e1w þ [1 � Pr2(R)]e1cg 5 0). Thus, the error distribution is un-
problematic. The only substantively important added complexity arises on the right-hand

Fig. 6 LQRE- and subgame perfect–predicted probabilities of war.
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side of the equation, where the cut point is a function of player 1’s payoffs and the
probability that player 2 retaliates.

Equations (5) and (6) provide the basis for three possible estimation techniques. First,
one can use probits (or logits) ‘‘all the way up.’’ That is, one can estimate the second stage
[equation (5)] using a probit (or logit), recover the predicted values, and use those pre-
dicted values in equation (6) to estimate the first-stage equation.12 Second, one could
derive an MLE that allows one to estimate just the first-stage equation; such a model is
similar in form to Achen’s (2006) ‘‘double probit’’ model. Although this approach has the
disadvantage of losing information (because the analyst is not taking advantage of having
information on player 2’s decision to retaliate or not), it nonetheless identifies a model that
will recover unbiased and consistent estimates of all the coefficients, including the impact
of the covariates on the decision of player 2 to retaliate. One might choose to use this
approach if, for example, the second-stage dependent variable is of particularly poor
quality. Finally, one can derive an MLE that allows one to estimate both equations simul-
taneously; this last option is equivalent to Signorino’s strategic model.13

Finally, suppose one instead derives a deterministic model and wishes to test its pre-
dictions. Recall that the only difference between the deterministic and the stochastic
versions of Signorino’s models is that the deterministic version does not smooth the cut
points. As such, the deterministic model’s prediction is that the impact of player 1’s utility
of war and capitulation depends on whether player 2 is likely to choose to retaliate or not.
If the researcher recognizes player 1’s decision is implicitly an expected utility calculation,
again assuming we do not believe that the world is actually deterministic, then the re-
searcher could use any one of the three estimators characterized above. Alternatively, if the
researcher did not recognize player 1’s decision as an expected utility calculation, then
a researcher might simply include interaction terms in the equation for player 1’s decision
fu1(War) � p2(R), u1(Cap) � [1 � p2(R)]g. This ‘‘interactive probit’’ fails to achieve
precisely the right functional form because both u1(War) and u1(Cap) would be interacted
linearly with the covariates for p2(R), Xb, rather than with a nonlinear transformation of
those covariates,F(Xb). However, even this model would be right to a first-order approx-
imation, particularly in instances where the probabilities in question were in the neighbor-
hood of 0.5.

3.2 Monte Carlo Analysis

To assess the relative viability of these models, we conduct a series of Monte Carlo sim-
ulations. We estimate each set of simulations on data sets of size N 5 250, N 5 1000,
and N 5 10,000. We denote covariates that impact player 1’s probabilities by Z:

u1ðCapÞi5 ZCi
; ð7Þ

u1ðWarÞi 5ZWi
; ð8Þ

u1ðSQÞi 5ZSQi
; ð9Þ

12In a recent paper, Bas, Signorino, and Walker (2006) independently derive this technique and demonstrate its
properties; see also Caldeira, Wright, and Zorn (1999), Brueckner (2003), Erdem et al. (2005), Bajari et al.
(2006), and Haile, Hortacxsu, and Kosenok (2006).

13See Quinn, Martin, andWhitford (1999) for a treatment of higher order Markov Chain Monte Carlo models that
could be another approach to estimating this sort of model.
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whereas those influencing player 2’s utility are denoted with X:

u2ðWarÞi5Xi; ð10Þ

and where we assume u2(Cap)i 5 0 without loss of generality. We draw ZCi
; ZWi

; ZSQi
; and

Xi from independent N(0, 1) distributions, and generate

p2ðRÞi5Uð5Xi þ e2iÞ; ð11Þ

where e2i ; N(0, 1). As we note above, player 1’s propensity to attack depends in part on
its best guess as to player 2’s probability of defending, denoted Pr2(R)i. We therefore
generate a continuous (and, under normal circumstances) latent propensity for player 1
to attack—corresponding to that in equation (6)—as:

Attacki 5Pr2ðRÞið5ZWi
Þ þ f½1� Pr2ðRÞi� � ð5ZCi

Þg � ð5ZSQi
Þ þ e1i; ð12Þ

where we let Pr2(R)i 5 U(5Xi) and once again e1i;Nð0; 1Þ: The binary attack/no attack
indicator is then defined as

Ai5
0; if Attacki, 0
1; if Attacki � 0

:

�
ð13Þ

The true parameters are therefore equal to 5.0 for X, ZC, and ZW, and �5.0 for ZSQ.
We conduct our analyses on five models. The first is a ‘‘naive’’ probit of player 1’s

decision to attack, of the form:

PrðAi 5 1Þ5U½bN1Xi þ bN2ZSQi
þ bN3ZCi

þ bN4ZWi
�: ð14Þ

where we use the subscript N to denote the results from this model. This corresponds to the
sort of approach Signorino (rightly) criticizes existing work for adopting; we include it
here as a point of reference. A second model is an ‘‘interactive probit’’ of the sort described
above (and denoted with the subscript I), in which the variables which impact player 1’s
utility for war are interacted with that for player 2’s utility for war:

PrðAi 5 1Þ5U½bI1Xi þ bI2ZSQi
þ bI3ZCi

þ bI4ZWi
þ bI5XiZCi

þ bI6XiZWi
�: ð15Þ

As we mentioned previously, this model should be a relatively good first-order approxi-
mation of the true data-generating process in equations (11)–(13).

Yet, a third alternative model is the two-stage approach discussed above, where we
include information about the empirical predicted probabilities from the second-stage
estimate in the model of player 1’s attack behavior:

PrðAi 5 1Þ5U½bT1ZSQi
þ bT2ẐCi

þ bT3ẐWi
�: ð16Þ

Here, ẐWi
5 ZWi

� U½Xib̂� and ẐCi
5 ZWi

� f1� U½Xib̂�g, where U½Xib̂� corresponds to the
predicted probabilities of player 2’s defending, obtained from estimating equation (11).

A fourth model is what we term the ‘‘attack-only’’ approach (denoted with the subscript
A), where we estimate only the influence of the covariates on the probability of player 1
attacking:

PrðAi 5 1Þ5UfbA2ZSQi
þ bA3ZCi

þ ½UðbA1XiÞ�bA4ZWi
þ ½UðbA1XiÞbA3ZCi

�g: ð17Þ

Note that this model, unlike those in equations (14)–(16), cannot be estimated using
standard logit/probit software, requiring instead that the (relatively simple) likelihood
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be programmed and estimated. Finally, our fifth model simultaneously estimates Pr(Ai)
and Pr(Di) as part of a single likelihood. As we note above, this is equivalent to Signorino’s
strategic model and should recover the underlying parameters perfectly.

We begin by simulating 1000 data sets with N 5 250, 1000, and 10,000 each, with
variables corresponding to the data-generating process outlined above. We then estimate
each of the five models and retain the recovered parameter values for each.14 Table 1
reports the median values of the recovered parameters across the 1000 data sets, along with
their empirical 5th and 95th percentile values, for each of the five models. From the Monte
Carlo results, several things are apparent. First, as in Signorino (1999), the naive model
does a particularly poor job of recovering the correct parameter values. Interpretation of
the results for the interactive probit model are complicated by the fact that they include
interactive terms; we therefore return to them below.

All three subsequent models—the two-stage probit, the ‘‘attack-only’’ model, and the
simultaneous model—accurately recover the true parameter values; moreover, all three do

Table 1 Monte Carlo results

Model parameter n 5 250 n 5 1000 n 5 10,000

Naive probit

bN1 (X) �0.01 [�0.21, 0.20] �0.002 [�0.10, 0.10] �0.001 [�0.03, 0.03]
bN2 (ZSQ) �1.56 [�1.95, �1.27] �1.50 [�1.69, �1.36] �1.49 [�1.54, �1.45]
bN3 (ZC) 0.78 [0.53, 1.06] 0.75 [0.64, 0.88] 0.75 [0.71, 0.79]
bN4 (ZW) 0.78 [0.56, 1.04] 0.75 [0.65, 0.88] 0.75 [0.71, 0.79]

Interactive probit

bI1 (X) �0.01 [�0.38, 0.40] 0.002 [�0.16, 0.15] �0.002 [�0.05, 0.05]
bI2 (ZSQ) �3.10 [�4.52, �2.37] �2.83 [�3.28, �2.50] �2.75 [�2.87, �2.64]
bI3 (ZC) 1.55 [1.10, 2.34] 1.41 [1.20, 1.70] 1.38 [1.31, 1.45]
bI4 (ZW) 1.57 [1.11, 2.29] 1.41 [1.21, 1.69] 1.37 [1.30, 1.45]
bI5 (X � ZC) �1.44 [�2.28, �0.90] �1.24 [�1.56, �0.97] �1.18 [�1.27, �1.09]
bI6 (X � ZW) 1.44 [0.86, 2.26] 1.24 [0.97, 1.57] 1.18 [1.09, 1.27]

Two-stage probit

bT1 (ZSQ) �5.23 [�8.05, �3.92] �5.05 [�6.03, �4.39] �5.00 [�5.28, �4.77]
bT2 ðẐCÞ 5.22 [3.95, 8.14] 5.06 [4.40, 6.02] 5.01 [4.78, 5.29]
bT3 ðẐWÞ 5.25 [3.87, 8.19] 5.07 [4.37, 6.06] 5.01 [4.76, 5.29]

Attack only

bA1 (X) 4.99 [3.10, 10.20] 5.00 [3.97, 6.52] 4.99 [4.66, 5.43]
bA2 (ZSQ) �5.50 [�8.38, �4.13] �5.13 [�6.09, �4.42] �5.01 [�5.27, �4.78]
bA3 (ZC) 5.56 [4.12, 8.49] 5.13 [4.41, 6.12] 5.01 [4.77, 5.29]
bA4 (ZW) 5.54 [4.00, 8.69] 5.14 [4.43, 6.04] 5.01 [4.78, 5.29]

Simultaneous model

bS1 (X) 5.01 [3.83, 7.07] 5.03 [4.38, 5.84] 5.00 [4.78, 5.24]
bS2 (ZSQ) �5.28 [�8.27, �4.04] �5.08 [�6.07, �4.40] �5.00 [�5.24, �4.78]
bS3 (ZC) 5.37 [3.98, 8.15] 5.09 [4.38, 6.08] 5.01 [4.78, 5.26]
bS4 (ZW) 5.34 [3.92, 8.32] 5.08 [4.37, 6.10] 5.00 [4.78, 5.25]

Note. Cell entries are median coefficient estimates (1000 iterations); numbers in brackets are empirical 5th and

95th percentiles of the distributions. See text for details.

14The Stata code for each of these estimators is available in a Web appendix.
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so with an increasing degree of reliability as the sample size increases. As a general rule,
the accuracy of the simultaneous model is greater than that for the attack-only model, and
the ranges between the 5th and 95th percentiles are slightly smaller in the simultaneous
model as well; this likely reflects the latter’s greater accuracy vis-à-vis the data-generating
process. It is notable, however, that the two-stage model yields results which are generally
as accurate as those for the simultaneous model; this, combined with the fact that it can be
estimated using standard statistical software, confirms the fact that there is nothing about
the error structure arising in strategic models of this sort that requires anything more
complicated than a series of sequential binary-choice models.

Additionally, the findings from the interactive probit model deserve further mention.
The interactive specification constitutes a first-order approximation of the true data-
generating process. Because the strategic component of the model is captured in the in-
teraction terms, direct recovery of the parameters of interest is not possible (cf. Friedrich
1982). However, it is instructive to consider the predicted probabilities that arise from the
model. Figure 7 plots predicted values of the probability of attack against values of X and
ZC with values in the range [�1, 1], using the median estimated parameter values for the
N 5 10,000 analyses reported in Table 1. Those predictions closely mirror the values for
the theoretical probabilities of an attack plotted in Fig. 3, suggesting that the interactive
model offers a reasonable empirical approximation of the random-utility stochastic model
described above. To the extent that the interactive model requires nothing more than
incorporation of multiplicative interaction terms into a standard binary-response model,
this represents a significantly more tractable approach than derivation and estimation of
the model’s full set of structural parameters.

4 Conclusion

Recent developments in integrating theoretical and empirical models have unquestionably
improved scholars’ ability to specify and test models of strategic interaction. Beyond
international security, recent examples include work in American politics (e.g., Carson

Fig. 7 Simulated predicted probabilities of attack, interactive model.
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2003) and political economy (e.g., Leblang 2003). Like these scholars and others, we
recognize the importance of incorporating insights from models of strategic interaction
into empirical models of political phenomena. In this respect, then, Signorino (1999) is
exactly correct, in that one must carefully operationalize predictions generated by strategic
behavior. Specifying naive models that atheoretically include a host of covariates and
loosely operationalizing predictions predicated on strategic models can both lead to in-
accurate inferences. Thus, we completely agree that to correctly test a theory, one must
correctly operationalize those tests.

That said, a number of approaches exist for deriving and operationalizing strategic
models that do not entail the complex machinery endorsed by Signorino and his coauthors.
For example, as previously demonstrated, a deterministic version of Signorino’s crisis
bargaining model predicts exactly the same relationships as the stochastic version, the
only difference being that the deterministic version does not smooth the cut points. Thus,
as long as the researcher recognizes that the deterministic version predicts interaction
effects, where the weight to be assigned to the payoff from any given state depends on
the probability of that state arising, the researcher will generate the same functional form
for the empirical estimator as he/she would if he/she derived a stochastic formal model.15

Similarly, we believe that correctly specifying comparative statics, even from simple
deterministic models, and testing those predictions using a logit or probit is a perfectly
appropriate alternative strategy to deriving and programming a full model-based likeli-
hood. Correctly derived comparative statics can and do successfully capture all the non-
linear and conditionally monotonic relationships that Signorino uses to highlight the
failure of traditional logit analyses, and the error structures generated in simple strategic
games are appropriately modeled in standard logits and probits. Particularly promising in
this light are two-step estimators, which include (correctly specified) functions of empir-
ical second-stage predictions in first-stage equations of interest. Such an approach has the
advantage of corresponding to a simple equilibrium concept (subgame perfection) as well
as being substantively easy to understand and extremely simple to implement.16 Likewise,
models incorporating linear-interactive effects can also provide very good first-order
approximations of more complicated strategic models and require nothing more than
theoretically informed inclusion of conditioning variables.

In sum, the presence of strategic behavior does not imply that one must necessarily
adopt Signorino’s approach to testing models of that behavior.17 Writing down a determin-
istic model, carefully deriving predictions from that model, and recognizing that the world
is not deterministic when generating the empirical estimator is enough to ensure consis-
tency between one’s theory and one’s test. Thus, one does not have to write a stochastic
formal model or derive one’s estimator directly from that stochastic model to appropriately
test strategic theories of politics. At the same time, we believe our study underscores the
significance of Signorino’s core insight: that, in the presence of strategic behavior,
researchers must work hard to ensure that their empirical model accurately tests the
predictions generated by the theory. By providing a more tractable method for estimating

15By implication, there is no zero probability event problem for the estimator, since the prediction generated by
the deterministic model is being treated ‘‘as if’’ it is probabilistic, and the empirical estimator correctly captures
that intuition.

16Note that, as a practical matter, analysts adopting such methods should adjust the standard error estimates
obtained to account for the introduction of stochastic variation into right-hand–side variables. This can be done
in a number of ways; see Murphy and Topel (1985) and Bas, Signorino, and Walker (2006) for discussions.

17Moreover, recent work by Haile, Hortacxsu, and Kosenok (2006) has demonstrated the manifold difficulties with
empirically testing predictions derived from quantal response models.
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such models, we hope to facilitate incorporation of Signorino’s key theoretical contribu-
tions in the discipline.

Appendix: Comparative Statics of a Simple Crisis Game (from Signorino 1999)

Using backward induction, the cut points in the deterministic model can be derived at
each node of the game, fully characterizing the relationship between the probability of
war and player 1’s military capability. The first cut point (termed M‘

1) corresponds to
the last decision node in which player 1 decides to fight, given that he/she chose not to
fight at the first node but then was challenged by player 2 at the second node:

u1ðWarÞ. u1ðCapÞ5
M1

M1 þM2
A2 þ

M2

M1 þM2
ð�A1 �M1Þ. �A1

0M1ðA1 þ A2 �M2Þ. 0:

Substituting A1 5 A2 5 40 and M2 5 20, we get:

M‘
1 . 0: ðA1Þ

The second cut point (denoted Mc
1) marks the upper bound on M1 at which player 2 will

issue a challenge, given that player 1 did not challenge at the first node:

u2ðWarÞ. u2ðSQÞ5
M2

M1 þM2
A1 þ

M1

M1 þM2
ð�A2 �M2Þ.D5 0

0Mc
1 ,

M2A1

A2 þM2
:

Substituting yields:

Mc
1 ,

800

60
5 13:33: ðA2Þ

The third cut point (Mr
1) marks where player 2 would decide to fight, given that player 1

challenged at the first node. This sets the upper bound on war for M1:

u2ðWarÞ. u2ðCap2Þ5
M2

M1 þM2
A1 þ

M1

M1 þM2
ð�A2 �M2Þ. �A2

0Mr
1 ,A1 þ A2:

Substituting yields:

Mr
1 , 80: ðA3Þ

The final cut point (Mm
1 ), denotes the amount of military capability player 1 would require

to challenge at the first node:

u1ðWarÞ. u1ðSQÞ5
M1

M1 þM2
A2 þ

M2

M1 þM2
ð�A1 �M1Þ.D5 0

0Mm
1 .

M2A1

A2 �M2
:
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Substituting yields:

Mm
1 . 40: ðA4Þ
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