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We prove the existence of global minimisers for a class of attractive–repulsive interaction potentials
that are in general not radially symmetric. The global minimisers have compact support. For poten-
tials including degenerate power-law diffusion, the interaction potential can be unbounded from
below. Further, a formal calculation indicates that for non-symmetric potentials global minimisers
may neither be radial symmetric nor unique.
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1 Introduction

Energy functionals with attractive–repulsive interaction potentials have received a lot of attention
in the recent years. In most cases, however, the interaction potential is assumed to be symmetric.
To the best of our knowledge, there are only few results available so far for non-symmetric
potentials. Examples are [14] and [7]. In this paper, we analyse minimisers for not necessarily
symmetric attractive–repulsive potentials and consider the following energy functional

E(ρ) =
ε

m

∫
Rd

ρm(x)dx +
1

2

∫
Rd

∫
Rd

W (x − y)ρ(x)ρ(y)dxdy , ε ≥ 0, m > 1, d ≥ 1. (1.1)

Here ρ ∈ Lm ∩P(Rd) for ε > 0, and ρ ∈P(Rd) for ε = 0, where P(Rd) is the set of all Borel
probability measures on R

d .
The potential W may be non-symmetric and is not necessarily negative, and therefore may con-

tribute to repulsive effects. For symmetric potentials, many results on the existence of minimisers
have been obtained.

For ε = 0, it was shown in [3] that a minimiser of (1.1) exists if

(H1) W is bounded from below, i.e. W (x) > −C1 for a suitable constant C1 > 0.
(H2) W ∈ L1

loc(Rd).
(H3) W is symmetric, i.e. W (x) = W (−x) for all x ∈R

d.
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(H4) lim|x|→∞ W (x) = W∞ exists and W is unstable, i.e. there exists a ρ ∈P(Rd) such that
E(ρ) < 1

2 W∞.
(H5) W is lower semicontinuous.
(H6) There exists an R6 > 0 such that W is strictly increasing on Rk−1 × [R6, ∞) ×R

d−k as
function of the k−th variable, for all k ∈ {1, 2, . . . , d}.

Remark 1 (H6) is needed to obtain compactness of minimisers. (H6) is weaker than assuming

that there exists an R6 > 0 such that W (x) > W (y), for all |x| > |y| ≥ R6.

For ε > 0, minimisers of (1.1) are well studied when W is radially symmetric and purely
attractive (see e.g. [10, 11] for details and further related references, [15] for m = 1 and not
necessarily negative W in the periodic setting, and some more recent results in [4, 6]).

Our main aim in this paper is to prove the existence of minimisers for non-symmetric and not
necessarily negative W , and to analyse their characteristics. Thus condition (H3) is not needed
for our considerations, and we have to replace (H6) as indicated in [3, Remark 2.8] by e.g.

• There exists an R6 > 0 and an 0 < δk ≤ R6 for every k ∈ {1, . . . , d} such that W (x − δ) <

W (x), for all x ∈R
d with xk ≥ R6.

Further W (x + δ) < W (x) for all x ∈R
d with xk ≤ −R6.

Here δ := (0, . . . , 0, δk , 0, . . . , 0) ∈R
d with the k-th coordinate being δk.

Define W−(x) := W (−x). We assume even more generally that

(H6) There exists an R6 > 0 and an 0 < δk ≤ R6 for every k ∈ {1, ..., d} such
that 1

2 (W + W−)(x − δ) < 1
2 (W + W−)(x) for all x ∈R

d with xk ≥ R6, where
δ := (0, . . . , 0, δk , 0, . . . , 0) ∈R

d with the k-th coordinate being δk.

Remark 2 An equivalent statement to (H6) would be that there exists an R6 > 0 and an 0 <

δk ≤ R6 for every k ∈ {1, . . . , d} such that 1
2 (W + W−)(x + δ) < 1

2 (W + W−)(x) for all x ∈ Rd

with xk ≤ −R6 where δ = (0, . . . , δk, . . . , 0).

Condition (H6) is needed to prove that two separated parts of the support of a minimiser of E
cannot be arbitrarily far from each other.

For ε > 0, we can relax some of the previous conditions of (H2) and we need a slightly dif-
ferent condition than (H4). More precisely, we consider a not necessarily symmetric potential W

which fulfils (H6) and

(H2) W+ ∈ L1
loc(Rd) and W− ∈ Lp,∞(Rd), where p > max

{
1, 1

m−1

}
,

(H4) There exists W∞ ∈R such that lim|x|→∞ W−(x) = W∞, where w.l.o.g W∞ = 0.
Furthermore, there exists ρ ∈P(Rd) such that E(ρ) < 0.

Here W− denotes the negative part and W+ the positive part of W .

Remark 3 An example satisfying (H1), (H2), (H4), (H5) and (H6) is

W (x) =
C1

|x|α + 1
−

C2

|x − x∗|
β + 1

, 0 < β < α, 0 6= x∗ ∈R
d , and constants 0 < C2 < C1.
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First, we briefly review some known results regarding minimisers of E .
As already mentioned, for ε = 0, the existence of a compactly supported minimiser of (1.1)

was proved in [3], assuming (H1)–(H6). See also [16] and further references therein.
The case ε > 0:

For d = 3, and m > 4
3 it was proved in [1] that a minimiser exists, when (−W ) is the Newtonian

potential.
In [13, Propositions IV.1, IV.3 and Remark IV.8] existence of minimisers was proved for

0 ≥ W ∈ Lp,∞(Rd) being radially symmetric, 1 < p < ∞, m >
p+1

p
, inf

ρ∈Lm∩P
E(ρ) < 0 and either

m ≤ 2 or W (r)d + W ′(r)r ≥ 0 for almost every r ≥ 0.
In [14], existence of minimisers for E(ρ) with non-symmetric potential W was proved by

showing that every minimising sequence is relatively compact if and only if strict subadditivity
holds for E(ρ). This is the case for m ≤ 2, when there exists a ρ with negative energy. For
m > 2, the result was shown under suitable growth conditions on W in [14], Corollary II.1 and
Remark II.5.

In [2], existence of a minimiser was ensured for 0 ≥ W ∈ Lp,∞(B1(0)) ∩ Lq(Rd \ B1(0)) being
radially symmetric and monotonically decreasing, 1 < p ≤ ∞, 1 ≤ q < ∞, and either m = 2 and
ε < ‖W‖L1 , or m > 2.

One could consider the critical case m = p

p+1 too, in case ε > C for a suitable C = C(W ) > 0,
as it was done in [1, 13] and [10]. This is quite technical, since one roughly has to specify the
constant C. Therefore we do not deal with this case here.

Our main result for possibly non-symmetric potentials W reads as follows:

Theorem 1 (a) ε = 0:
Let W : Rd →R∪ {∞} satisfy (H1), (H2), (H4), (H5) and (H6). Then, there exists a global

minimiser ρ ∈P(Rd) of E in (1.1). Furthermore, there exists a K = K(W , d) > 0, such that every

minimiser of E has compact support with diameter ≤ K.

(b) ε > 0 and m > 2:
Let (H2), (H4) and (H6) be satisfied. Then, there exists a global minimiser ρ ∈ Lm(Rd) ∩P(Rd)
of E . Furthermore, there exists a constant K = K(W , d) > 0, such that every minimiser of E has

compact support with diameter ≤ K.

(c) ε > 0 and 1 < m ≤ 2:
Let (H2) and (H4) be satisfied. Then, there exists a global minimiser ρ ∈ Lm(Rd) ∩P(Rd) of E .

If additionally (H6) is satisfied, then there exists a constant K = K(W , d) > 0, such that every

minimiser of E has compact support with diameter ≤ K.

Remark 4 (i) For ε > 0 and 1 < m ≤ 2, one can show that every global minimiser has com-

pact support by assuming (H2) and (H4). A uniformly bounded size of the support is,

however, not clear, unless (H6) is assumed (see [3, Remark 1.6]).
(ii) Suppose that W− ∈ Lp,∞(Rd), W+ ∈ L1

loc(Rd), 1 < p ≤ ∞, W (x) → 0 as |x| → ∞,

inf
ρ∈Lm∩P

E(ρ) < 0, and either m > 2 and (H6), or m ≤ 2. Our results do not need radial

symmetry as was assumed in [2]. Further, our potential W is not necessarily negative

and may not fulfil all conditions assumed in [14]. We generalise the results for m > 2
here and recover the cases for m ≤ 2.
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(iii) The method of our proof is based on the strategy given in [3], where an attractive–

repulsive energy without a diffusive part is considered. We extend the approach in [11],
where, among others, the method from [3] is used to prove the existence of minimisers

for ε > 0 and W being radially symmetric, bounded and purely attractive. The ideas in

[3] share similarities with the approach in [1], by first reducing the problem in R
d to

BR(0), the ball with radius R around 0.

(iv) In (H4) and (H4), it is assumed that W is unstable. For general potentials, this is

certainly not true. For ε > 0, we give some conditions for m, ε and W such that

inf
ρ∈Lm∩P

E(ρ) < 0 (see Lemmas 6 and 7).

Our paper is organised as follows. In Section 2, we present the proof of Theorem 1. Section 3
provides some conditions for unstable potentials. Further, we give a formal argument for a non-
radial minimiser in case of a non-symmetric potential.

2 Proof of Theorem 1

For convenience we define PR(Rd) := {ρ ∈P(Rd) : supp ρ ⊂ BR} for all R > 0.
Case (a) ε = 0 in Theorem 1 is the simplest one to prove.

Proof of (a), Theorem 1: First note that a minimiser of the energy E in (1.1) with potential W

is also a minimiser of the same energy with potential W−, since∫
Rd

(W ∗ ρ)(x) dρ(x) =

∫
Rd

∫
Rd

W (x − y) dρ(y)dρ(x) =

∫
Rd

∫
Rd

W (x − y) dρ(x)dρ(y)

=

∫
Rd

∫
Rd

W−(y − x) dρ(x)dρ(y) =

∫
Rd

(W− ∗ ρ)(y) dρ(y).

Thus assuming (H6) would not be sufficient. We need to control W− at infinity; therefore we
assume (H6) instead of (H6). The problem can now be reduced to the symmetric case via the
symmetrised potential 1

2 (W + W−), and thus (following the same procedure as in [3]) the case
ε = 0 is also valid for non-symmetric potentials. This completes the proof.

Now consider ε > 0. For any m > 1, a minimiser ρm of E satisfies

ερm−1
m +

1

2
(W + W−) ∗ ρm = 2E[ρm] −

∫
Rd

ε
( 2

m
− 1

)
ρm

m (y) dy (2.1)

in supp ρm (see e.g. [10, 11]). Since in our situation W + W− is in general not purely attractive,
we have to modify the existing techniques in a subtle way. From now on, we assume any of the
hypotheses (H1)–(H6) and (H2), (H4), (H6) only, if this is explicitly stated. We will prove both
cases, (b) and (c), in Theorem 1 via a series of lemmas. The first step is to show that E is lower
semicontinuous. By modifying the proof in [14, Theorem 2.1] (also used in [8, Lemma 3.3] and
[9]) for our problem in BR(0), we obtain

Lemma 2 Let W− ∈ Lp,∞(Rd) with p > 1 and m >
p+1

p
. Then the energy E in (1.1) is weakly

lower semicontinuous in Lm(BR(0)).
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Proof Obviously, the first term of the energy E is weakly lower semicontinuous. Therefore, it
is left to prove that∫

Rd

∫
Rd

W (x − y)ρ(y)ρ(x) dydx ≤ lim inf
n→∞

∫
Rd

∫
Rd

W (x − y)ρn(y)ρn(x) dydx

for a sequence (ρn)n∈N ⊂ Lm(BR(0)) converging weakly to some ρ ∈ Lm(BR(0)).
It is sufficient to consider WS := WχBS (0) for some S > 0, which is large enough, e.g. S > 2R.

Rewriting WS = WS,+ − WS,− with WS,+, WS,− ≥ 0, being the positive and negative part of WS , it
holds that∫

Rd

∫
Rd

WS,+(x − y)ρn(y)ρn(x) dydx ≥

∫
Rd

∫
Rd

(WS,+ ∧ M)(x − y)ρn(y)ρn(x) dydx

for all M > 0. Define W M
S := (WS ∧ M) ∨ (−M), then due to Hölder’s and Young’s inequality

for convolutions we have∫
Rd

∫
Rd

(
WS,− −

[
WS,− ∧ (M)

])
(x − y)ρn(y)ρn(x) dydx

≤ ‖ρn‖
L

2q
2q−1 (BR(0))

‖(WS,− −
[
WS,− ∧ (M)

]
) ∗ ρn‖L2q

≤ ‖ρn‖
2

L

2q
2q−1 (BR(0))

‖WS,− −
[
WS,− ∧ (M)

]
‖Lq

≤ C‖WS,− −
[
WS,− ∧ (M)

]
‖Lq(1+δ)

∣∣{x ∈R
d
∣∣ W−(x) > M

}∣∣ δ
q(1+δ) ≤ CM

−
pδ

q(1+δ) ,

where p+1
2 < q < p, i.e. p > 1, and δ > 0 is sufficiently small such that q(1 + δ) < p. The last

expression is getting arbitrarily small by choosing M > 0 large enough.
Hence, it is sufficient to prove for each fixed M > 0 that∫

Rd

∫
Rd

W M
S (x − y)ρn(y)ρn(x) dydx →

∫
Rd

∫
Rd

W M
S (x − y)ρ(y)ρ(x)dydx

for n → ∞ in order to obtain weak lower semicontinuity of E instead of proving this convergence
for WS .

Since W M
S ∈ L1 ∩ L∞, we know that by weak convergence

(W M
S ∗ ρn)(x) → (W M

S ∗ ρ)(x) almost everywhere in x ∈ BR(0)

for n → ∞ and that

‖W M
S ∗ ρn‖Lm′ ≤ ‖W M

S ‖
L

m
2m−2

‖ρn‖Lm ≤ C for
1

m
+

1

m′
= 1 .

We note that the above integral is uniform, since W M
S is bounded and compactly supported.

Furthermore, for every ε there exists δ = δ(ε) such that if E ⊂ BR(0) satisfies |E| < δ, then for
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every n we have
∫

E

∣∣W M
S ∗ ρn

∣∣m′

dx < ε. By Vitali’s convergence theorem, it follows that W M
S ∗

ρn → W M
S ∗ ρ in Lm′

(BR(0)). Thus we obtain∣∣∣ ∫
Rd

∫
Rd

W M
S (x − y)ρn(y)ρn(x) dydx −

∫
Rd

∫
Rd

W M
S (x − y)ρ(y)ρ(x) dydx

∣∣∣
≤

∣∣∣ ∫
Rd

∫
Rd

W M
S (x − y)ρn(y)

(
ρn(x) − ρ(x)

)
dydx

∣∣∣
+

∣∣∣ ∫
Rd

∫
Rd

W M
S (x − y)

(
ρn(y) − ρ(y)

)
ρ(x) dydx

∣∣∣
=

∣∣∣ ∫
Rd

ρn(y)
(
W M

S ∗ ρn − W M
S ∗ ρ

)
(y)dy

∣∣∣ + ∣∣∣ ∫
Rd

∫
Rd

W M
S (x − y)

(
ρn(y) − ρ(y)

)
ρ(x)dydx

∣∣∣
≤ ‖W M

S ∗ ρn − W M
S ∗ ρ‖

Lm′ (BR(0))‖ρn‖Lm +
∣∣∣ ∫

Rd

(
ρn(y) − ρ(y)

)
(W M

S ∗ ρ)(y) dy

∣∣∣
→ 0 for n → ∞. Here we have used Hölder’s inequality.

Remark 5 Due to our assumptions on p and m, the energy E is bounded from below. This follows

from Hölder’s inequality and Young’s inequality for convolutions.

Let ρR ∈PR(Rd) be a global minimiser of (1.1), which exists due to Lemma 2 and Remark
5. Now we prove that (ρR)R≥R′ is uniformly bounded in L∞, by using uniform boundedness of
(ρR)R≥R′ in Lm and

ερm−1
R (x) +

(
1

2
(W + W−) ∗ ρR

)
(x) = 2E[ρR] −

∫
Rd

ε
( 2

m
− 1

)
ρm

R (y) dy (2.2)

in supp ρR. With assumption (H4), there exists an R′ > 0 such that E[ρR′] < 0.

Lemma 3 Let (H2) and (H4) be satisfied. Let (ρR)R≥R′ be a sequence of minimisers in BR(0),
and let R′ > 0 be large enough such that E[ρR′] < K̃ < 0 for some constant K̃. Then, there exists

a constant C > 0 such that ‖ρR‖L∞ ≤ C for all R ≥ R′.

Proof Since (ρR)R≥R′ is a minimising sequence for E in Lm(Rd) ∩P(Rd), we have that ‖ρR‖Lm

is uniformly bounded, i.e. ‖ρR‖Lm ≤ Cm.
Due to W− ∈ Lp,∞(Rd) and (H4), there exists a constant S > 0 such that (W−)χBS(0) ∈ Lq1(Rd)

for 1 ≤ q1 < p, and W−(x) ≤ 1 for x ∈R
d \ BS(0). Therefore, for q2 > p we can see that∫

Rd\BS (0)
|W−|q2 ≤ −

∫ 1

0
αq2 dλW− (α) ≤ C̃q2

∫ 1

0
αq2−p−1dα < ∞,

where λW− (α) := |{x| |W−| > α}| < C̃α−p. Indeed, let W̃− := (W−)χRd\BS (0), then λW̃−
(α) := 0

for any α ≥ 1, and∫
Rd\BS (0)

|W−|q2 =

∫
Rd

∣∣W̃−

∣∣q2
= −

∫ ∞

0
αq2 dλW̃−

(α) = −

∫ 1

0
αq2 dλW̃−

(α)

= q2

∫ 1

0
αq2−1λW̃−

(α)dα ≤ q2

∫ 1

0
αq2−1λW− (α)dα ≤ C̃q2

∫ 1

0
αq2−p−1dα < ∞.

Thus (W−)χRd\BS(0) ∈ Lq2(Rd).
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In order to obtain a uniform bound in L∞, we extend some ideas of the proofs in [1, Proposition
5 and Theorem A] to our more general case. Due to (2.2), we have

ερm−1
R (x) < −

(
1

2
(W + W−) ∗ ρR

)
(x) − ε

( 2

m
− 1

)
‖ρR‖m

Lm

≤

(
1

2
(W + W−)− ∗ ρR

)
(x) − ε

( 2

m
− 1

)
‖ρR‖m

Lm

(2.3)

in supp ρR. Now we consider integrability.

1 < m ≤ 2: Using W− ∈ Lp,∞(Rd) gives integrability of the convolution term on the right-hand
side of (2.3) and thus integrability of ρm−1

R for 1 < m ≤ 2. More precisely, ‖ρR‖Ll is finite for
1 ≤ l ≤ m, since ρR ∈ L1 ∩ Lm. In case p > m

m−1 , choose q1 = m
m−1 , then Young’s inequality for

convolutions yields

‖[(W + W−)−]χBS(0) ∗ ρR‖L∞ ≤ ‖[(W + W−)−]χBS(0)‖Lq1 ‖ρR‖Lm .

Similarly, since for the Hölder conjugate we have q′
2 < m for q2 > p, we obtain that

‖[(W + W−)−]χRd\BS(0) ∗ ρR‖L∞ ≤ ‖[(W + W−)−]χRd\BS (0)‖Lq2 ‖ρR‖
L

q′
2
. (2.4)

In case p ≤ m
m−1 , and for q2 > m

m−1 , the estimate (2.4) holds as well.
Next we estimate [(W + W−)−]χBS(0) ∗ ρR, for m = 2 and for 1 < m < 2.

m = 2: There exists a 1 < q1 < p such that

‖[(W + W−)−]χBS(0) ∗ ρR‖Lα ≤ ‖[(W + W−)−]χBS(0)‖Lq1 ‖ρR‖L2 ,

for 1/α = 1/q1 − 1/2. Now consider the iterative formula

‖[(W + W−)−]χBS(0) ∗ ρR‖Lαi ≤ ‖[(W + W−)−]χBS(0)‖Lq1 ‖ρR‖L
αi−1 , (2.5)

where α0 = 2,

αk =
q1

1 − q1 + q1
αk−1

, k ∈N \ {0}.

The sequence {αk} is strictly increasing as long as its elements are positive. We stop the iteration
in (2.5), when αk−1 ≥ q1/(q1 − 1) and then obtain by Young’s convolution inequality that

‖[(W + W−)−]χBS (0) ∗ ρR‖L∞ ≤ ‖[(W + W−)−]χBS(0)‖Lq1 ‖ρR‖
L

q1
q1−1

. (2.6)

1 < m < 2 and p > 1
m−1 : We have

‖[(W + W−)−]χBS(0) ∗ ρR‖
L

m

(m−1)2
≤ ‖[(W + W−)−]χBS(0)‖

L
1

m−1
‖ρR‖Lm ,

therefore ρR ∈ L
m

m−1 . Define m0 = m/(m − 1)2 and consider the iterative inequality

‖[(W + W−)−]χBS(0) ∗ ρR‖Lmk ≤ ‖[(W + W−)−]χBS (0)‖
L

1
m−1

‖ρR‖
L

(m−1)mk−1 , where (2.7)

1

mk

=
1

(m − 1)mk−1
+ m − 2, k = 1, 2, . . . . (2.8)

Repeat the iteration (2.7) as long as the mk are positive.
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Obviously we have m0 > 1/(m − 1). Now suppose that mk−1 > 1/(m − 1). Then

1

mk

=
1

(m − 1)mk−1
+ m − 2 < 1 + m − 2 = (m − 1) , so mk >

1

m − 1
.

Further, mk > mk−1 as long as mk > 0, due to

1 + (1 − m)

(m − 1)mk−1
+ m − 2 =

1

(m − 1)mk−1
+ m − 2 −

1

mk−1
< 0.

Therefore, also in this case the sequence {mk} is strictly increasing as long as all its elements are
positive. Iterating until mk ≥ 1

(m−1)(2−m) and then stopping give

‖[(W + W−)−]χBS(0) ∗ ρR‖L∞ ≤ ‖[(W + W−)−]χBS(0)‖
L

1
m−1

‖ρR‖
L

1
2−m

. (2.9)

Therefore, from (2.6) to (2.9) it follows due to (2.3) that ‖ρR‖L∞(Rd ) is uniformly bounded
for m ≤ 2.

m > 2:
Here we only consider the set where ρm−1

R (x) > −ε
(

2
m

− 1
)
Cm

m , with Cm := ‖ρR‖Lm , and derive
(2.9) via an L∞-estimate and integrability of the convolution term. We have ρR ∈ L1. If the above
set is empty, ρR is bounded. Further

‖(W + W−)− ∗ ρR‖Lr

≤ C
(
‖[(W + W−)−]χBS(0) ∗ ρR‖Lr + ‖[(W + W−)−]χRd\BS (0) ∗ ρR‖Lr

)
.

Using Young’s inequality for convolutions, it follows that

‖[(W + W−)−]χBS(0) ∗ ρR‖Lr ≤ ‖[(W + W−)−]χBS(0)‖Lq1 ‖ρR‖Lm

with q1 < p and r =
(

1
m

−
(

1 − 1
q1

))−1
= q1m

q1−(q1−1)m , for m <
q1

q1−1 .

For m = q1
q1−1 , we take r = ∞. Analogously,

‖[(W + W−)−]χRd\BS (0) ∗ ρR‖Lr ≤ ‖[(W + W−)−]χRd\BS (0)‖Lq2 ‖ρR‖Lm

with q2 > p,

r =
q2m

q2 − (q2 − 1)m
for m <

q2

q2 − 1
, and r = ∞ for m =

q2

q2 − 1
.

Since ‖ρR‖Lm ≤ Cm, we have ‖(W + W−)− ∗ ρR‖Lr(Rd ) ≤ Cr with r = ∞ if m = q2
q2−1 and for

any r with p < r <
pm

p−(p−1)m and m <
p

p−1 . This is due to the following. Since q1 < p < q2, we
have

q1m

q1 − (q1 − 1)m
<

pm

p − (p − 1)m
<

q2m

q2 − (q2 − 1)m
.

We also observe that

‖[(W + W−)−]χBS(0) ∗ ρR‖Lq1 ≤ ‖[(W + W−)−]χBS(0)‖Lq1 ‖ρR‖L1 < ∞,

and thus [(W + W−)−]χBS(0) ∗ ρR ∈ Lq1 ∩ L
q1m

q1−(q1−1)m . Similarly,

‖[(W + W−)−]χRd\BS (0) ∗ ρR‖Lq2 ≤ ‖[(W + W−)−]χRd\BS(0)‖Lq2 ‖ρR‖L1 < ∞,
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and so [(W + W−)−]χRd\BS (0) ∗ ρR ∈ Lq2 ∩ L
q2m

q2−(q2−1)m .
Thus, [(W + W−)−] ∗ ρR ∈ Lr(Rd) with the following range of r:

q2 = max{q1, q2} ≤ r ≤ min

{
q1m

q1 − (q1 − 1)m
,

q2m

q2 − (q2 − 1)m

}
=

q1m

q1 − (q1 − 1)m
.

Since q1 and q2 are arbitrary with q1 < p < q2, we get p < r <
pm

p−(p−1)m .
If m >

p

p−1 , then we already have ‖(W + W−)− ∗ ρR‖L∞(Rd ) ≤ C∞, and thus ‖ρR‖L∞(Rd ) is uni-
formly bounded, due to the following. Take 1 < q1 < p, so that m = q1/(q1 − 1). This is always
possible since q1/(q1 − 1) > p/(p − 1). We then have via Young’s inequality

‖[(W + W−)−]χBS(0) ∗ ρR‖L∞ ≤ ‖[(W + W−)−]χBS (0)‖Lq1 ‖ρR‖Lm . (2.10)

Next, we choose m2 with 1 < m2 < p/(p − 1). We note that ρR ∈ Lm2 (Rd), since m >
p

p−1 . Taking
q2 > p so that m2 = q2/(q2 − 1), we have

‖[(W + W−)−]χRd\BS (0) ∗ ρR‖L∞ ≤ ‖[(W + W−)−]χRd\BS (0)‖Lq2 ‖ρR‖Lm2 .

Therefore due to (2.3), we obtain uniform boundedness of ρR.
Consider the case p+1

p
< m ≤ p

p−1 . There exists δ > 0 such that m = p+1
p

+ δ and, since ρR ∈

L1(Rd) and ερm−1
R < − 1

2 (W + W−)− ∗ ρR − ε
(

2
m

− 1
)
‖ρR‖m

Lm , we have that ‖ρR‖Ls(Rd ) is uni-

formly bounded for s = (m − 1)r and pm
/ (

p − (p − 1) p+1
p

)
= mp2 < r < pm

/
(p − (p − 1)m).

This can be seen as follows. Using the previous range of r, i.e. p < r <
pm

p−(p−1)m , in case that
(p + 1)/p < m ≤ p/(p − 1), we replace m in the denominator by (p + 1)/p, and then obtain

p <
pm

p − (p − 1) p+1
p

= mp2 < r <
pm

p − (p − 1)m
.

We can estimate

(m − 1)r > (m − 1)mp2 >
(1

p
+ δ

)(
1 +

1

p
+ δ

)
p >

p + 1

p
+ (2 + p)δ >

p + 1

p
+ 2δ.

Hence, ρR is uniformly bounded in Lm̃(Rd), where m̃ = p+1
p

+ 2δ. Thus ρR is uniformly bounded

in Ls̃(Rd), where s̃ = (m − 1)r̃ and r̃ = pm̃

p−(p−1)m̃ . In case m̃ >
p

p−1 , then, as computed earlier,
we have ‖(W + W−)− ∗ ρR‖L∞(Rd ) < ∞. Therefore, ‖ρR‖L∞(Rd ) is uniformly bounded due to
(2.3) and (2.10) by choosing m̃ = q1/(q1 − 1) with 1 < q1 < p. In case m̃ <

p

p−1 , we repeat the

above calculations and obtain that ρR is uniformly bounded in L
˜̃m(Rd) with ˜̃m = p+1

p
+ 3δ. With a

bootstrapping argument via (2.3), we obtain, after k > 1/(δp(p − 1)) iterations, that ρR ∈ Ll(Rd),
where l = p+1

p
+ kδ >

p

p−1 . As before, we choose l = q1/(q1 − 1) with 1 < q1 < p such that (2.10)
holds. This implies that ρR is bounded.

Now, we prove that the mass cannot become too broadly distributed. This result is analogous
to [3, Lemma 2.6], but in our case the potential W is not necessarily bounded from below.

Lemma 4 Let (H2) and (H4) be satisfied. Let R′ be as introduced in Lemma 3. Then there exist

constants r = r(W ) and c = c(W ) such that for all R ≥ R′ global minimisers ρR of (1.1) satisfy∫
Br(x0)

ρR(x)dx ≥ c > 0 for all x0 ∈ supp ρR .
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Proof Since W− ∈ Lp,∞(Rd) with p > max
{
1, 1

m−1

}
, we have

Mp
∣∣{x ∈R

d : W−(x) > M
}∣∣ ≤ C for all M > 0.

Define SM := {x ∈R
d : W−(x) > M} and S∁

M :=R
d \ SM , then |SM | ≤ CM−p. Rewrite

(W ∗ ρR)(x0) =

∫
SM

W (y)ρR(x0 − y) dy +

∫
S∁M

W (y)ρR(x0 − y) dy.

For every µ > 0 there exists a sufficiently large M > 0, such that for some q < p we have∣∣∣∣∫
SM

W−(y)ρR(x0 − y) dy

∣∣∣∣ ≤ ‖ρR‖L∞ ‖W−‖Lq(SM ) |SM |
q−1

q ≤ Cµ,

since ρR is uniformly bounded in L∞ and |SM | ≤ CM−p. For each A < 0, there exists an r > 0
such that W−(x) < −A for all |x| > r, due to (H4). Therefore∫

S∁M
W (y)ρR(x0 − y) dy =

∫
S∁M ∩Br(0)

W (y)ρR(x0 − y) dy +

∫
S∁M \Br(0)

W (y)ρR(x0 − y) dy

≥ −M

∫
S∁M ∩Br(0)

ρR(x0 − y) dy + A

∫
S∁M \Br(0)

ρR(x0 − y) dy

= −M

∫
S∁M ∩Br(x0)

ρR(y) dy + A − A

∫
Rd\

{
S∁M \Br(0)

} ρR(x0 − y) dy

≥ −(M + A)
∫

Br(x0)
ρR(y) dy + A.

Summing up, we obtain

2E(ρR) −

∫
Rd

ε

(
2

m
− 1

)
ρm

R (y) dy − ερm−1
R (x0)

=
(W + W−)

2
∗ ρR(x0) ≥ −(M + A)

∫
Br(x0)

ρR(y) dy + A − Cµ.

Since E(ρR) < K < 0, this implies

(M + A)
∫

Br(x0)
ρR(y) dy ≥ A − Cµ − 2K +

∫
Rd

ε

(
2

m
− 1

)
ρm

R (y) dy + ερm−1
R (x0).

Testing both sides with ρR(x0)dx0, we obtain

(M + A)
∫

Br(x0)
ρR(y) dy ≥ A − Cµ − 2K +

∫
Rd

ε

(
2

m
− 1

)
ρm

R (y) dy + ε

∫
Rd

ρm
R (x0) dx0

= A − Cµ − 2K +
2ε

m

∫
Rd

ρm
R (y) dy > A − Cµ − 2K.

Thus ∫
Br(x0)

ρR(y) dy ≥
A − Cµ − 2K

M + A
:= c > 0,

since |A| can be chosen small compared to K and µ is very small.

Next, we prove that there exists a uniform bound for the distance between two arbitrary dis-
connected subsets of the support of the minimisers in BR(0). For 1 < m ≤ 2, we use the strategy
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in the proof of [16, Theorem 3.2]. We do not need any growth assumption on W . For m > 2, we
use the strategy in [3, Lemma 2.7]. Here we need the growth assumption (H6).

For 1 < m ≤ 2, we consider one of the disconnected parts, rescale its mass to one and prove
that its respective energy is smaller than the minimising one. In this case the diffusive part of the
energy does not grow faster than the interaction part when considering αρ and α > 1 instead of
ρ in E .

For m > 2, this is not the case, and we need a growth condition for W in order to move the
disconnected parts of the support together. It would be interesting to see whether there is another
method of proof, which could do without a growth condition like (H6).

Lemma 5 Let (H2) and (H4) hold, and ρR be a minimiser of E in Lm(Rd) ∩PR(Rd).

(i) Let 1 < m ≤ 2 and R > 0 large enough such that E[ρR] <
1

2
inf

ρ∈Lm∩P
E(ρ). If ρR =

ρR,1 + ρR,2 with supp ρR,1, supp ρR,2 6= ∅, then there exists a constant D > 0 such that

dist(supp ρR,1, supp ρR,2) < D for all R > 0 and for all possible choices of ρR,1 and ρR,2.

(ii) Let m > 2 and let additionally (H6) hold. Then, for all R > 0 each coordinate of the

support of ρR cannot have gaps larger than 2R6, where R6 is the constant in (H6).

Proof 1 < m ≤ 2:
Suppose there exists a splitting such that dist(supp ρR,1, supp ρR,2) > D for some R > 0. Define
|ρR,i| :=

∫
Rd ρR,i(x) dx for i ∈ {1, 2}. Due to Lemma 4, for D > 0 large enough we have m̃ ≤

|ρR,1|, |ρR,2| ≤ 1 − m̃ for some 0 < m̃ ≤ 1
2 . In order to rule out dichotomy, as in the proof of [16,

Theorem 3.2], we choose D > 0 such that

W− <
m̃

8(1 − m̃)

∣∣∣ inf
ρ∈Lm∩P

E(ρ)
∣∣∣ for all |x| > D.

This is possible due to (H4). Since supp ρR,1 ∩ supp ρR,2 = ∅, it holds that

E[ρR] ≥ E[ρR,1] + E[ρR,2] −
m̃

8(1 − m̃)
| inf E |.

Now we assume w.l.o.g. that
E[ρR,1]

|ρR,1|
≤

E[ρR,2]

|ρR,2|
=

E[ρR,2]

1 − |ρR,1|
.

Since
E[ρR,2]

1 − |ρR,1|
≤

1

1 − |ρR,1|

(
E[ρR] +

1

8
| inf E | − E[ρR,1]

)
,

we have (
1

|ρR,1|
+

1

1 − |ρR,1|

)
E[ρR,1] ≤

1

1 − |ρR,1|

(
E[ρR] +

1

8
| inf E |

)
. Thus

1

|ρR,1|
E[ρR,1] ≤ E[ρR] +

1

8
| inf E | <

1

2
inf E +

1

4
| inf E | ≤

1

2
inf E −

1

4
inf E =

1

4
inf E .
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Since 1 < m ≤ 2, we obtain a contradiction, because ρR is a minimiser and

E

[ ρR,1

|ρR,1|

]
− E[ρR] ≤

( 1

|ρR,1|2
− 1 −

1 − |ρR,1|

|ρR,1|

)
E[ρR,1] +

m̃

8(1 − m̃)
| inf E |

≤
1

|ρR,1|

( 1

|ρR,1|
− 1

)
E[ρR,1] +

|ρR,1|

8(1 − |ρR,1|)
| inf E |

≤
( 1

|ρR,1|
− 1

)(1

4
inf E +

1

8
| inf E |

)
< 0,

where we used in the last inequality that |ρR,1| < 1 and inf E < 0.
Also for m > 2 we assume, as in [3, Lemma 2.7], that the claim is not true. Consider HR ⊂ Rd

and HL ⊂ Rd with gap in k-direction of at least R6. Hereby, HR denotes the ‘right side’, and HL the
‘left side’, respectively. Assume that the support of some minimiser ρ is split into two parts such
that we can write ρ = ρ|HL

+ ρ|HR
. Use δk from (H6) to move ρ|HR

towards ρ|HL
, i.e. consider

ρδ(x) := ρδ|HL
(x) + ρδ|HR

(x), where

ρδ|HL
(x) = ρ|HL

(x), ρδ|HR
(x) = ρ|HR

(x + δ), δ = (0, . . . , δk, . . . , 0).

Direct computations show that

E[ρδ] −
ε

m

∫
Rd

ρm
δ

=
1

2

∫
Rd

∫
Rd

W (x − y)ρHL
(y)ρHL

(x) dydx +
1

2

∫
Rd

∫
Rd

W (x − y)ρHR
(y + δ)ρHR

(x + δ) dydx

+
1

2

∫
Rd

∫
Rd

W (x − y)ρHL
(y)ρHR

(x + δ) dydx +
1

2

∫
Rd

∫
Rd

W (x − y)ρHR
(y + δ)ρHL

(x) dydx

=
1

2

∫
Rd

∫
Rd

W (x − y)ρHL
(y)ρHL

(x) dydx +
1

2

∫
Rd

∫
Rd

W (x − y)ρHR
(y)ρHR

(x) dydx

+
1

2

∫
Rd

∫
Rd

W (x − y − δ)ρHL
(y)ρHR

(x) dydx +
1

2

∫
Rd

∫
Rd

W (x − y + δ)ρHR
(y)ρHL

(x) dydx

=
1

2

∫
Rd

∫
Rd

W (x − y)ρHL
(y)ρHL

(x) dydx +
1

2

∫
Rd

∫
Rd

W (x − y)ρHR
(y)ρHR

(x) dydx

+
1

2

∫
Rd

∫
Rd

[W (x − y − δ) + W (−x + y + δ)]ρHL
(y)ρHR

(x) dydx

< E[ρ] −
ε

m

∫
Rd

ρm

since x ∈ HR and y ∈ HL, i.e. xk − yk ≥ R6. Since translations have no influence on the Lm-norm
and we only shift a part of ρ, we have ‖ρδ‖Lm = ‖ρ‖Lm , and thus, E[ρδ] < E[ρ]. Hence, we have
a contradiction, since ρ is a minimiser.

The above computations also work for the case ε = 0, which is a part of the proof for
Theorem 1 (a). Their details were omitted.

Proof of (b) and (c) in Theorem 1. Using Lemmas 4 and 5, we conclude that there exists a
constant S > 0 such that the global minimisers ρR in Lm ∩P are identical for all R > S, and
thus a minimiser belongs to Lm ∩P (see [3, Lemma 2.10] or [11, Lemma 16]). Hence, there
exists a global minimiser of E in Lm ∩P which is compactly supported. Since the support of
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ρR is independent of R, we can use the analogous result for ρ in Lemma 4 to conclude that
every global minimiser of E in Lm ∩P with negative energy has compact support (compare [3,
Corollary 1.5]). This completes the proof.

3 Conditions for unstable potentials

Now we provide some conditions for (H4) to be satisfied, i.e. there exists ρ ∈ Lm(Rd) ∩P(Rd)
with E[ρ] < 0. For m ≥ 2, we extend the approach in [2, Lemma 1].

Lemma 6 Let W− ∈ Lp,∞(Rd), W+ ∈ L1(Rd) and
∫
Rd W (x) dx < 0. Suppose either m > 2 and

ε > 0, or m = 2 and 0 < ε < −
∫
Rd W (x) dx. Then, there exists a function ρ ∈ Lm(Rd) ∩P(Rd)

with E[ρ] < 0.

Proof Let ρ ∈ Lm(Rd) ∩P(Rd), then ρλ(x) := λdρ(λx) is also an admissible function for λ > 0.
It holds that

E[ρλ] = λd
(
λ(md−2d) ε

m
‖ρ‖m

Lm +
1

2
λ−d

∫
Rd

∫
Rd

W
(x − y

λ

)
ρ(y)ρ(x) dydx

)
.

Splitting up the second term into its positive and negative part, we consider

λ−d

∫
Rd

∫
Rd

W+

(x − y

λ

)
ρ(y)ρ(x) dydx − λ−d

∫
Rd

∫
Rd

W−

(x − y

λ

)
ρ(y)ρ(x) dydx,

with W = W+ − W− and W−, W+ ≥ 0. Then

λ−d

∫
Rd

∫
Rd

W+

(x − y

λ

)
ρ(y)ρ(x) dydx ≤ ‖W+‖L1‖ρ‖2

L2 , and

−λ−d

∫
Rd

∫
Rd

W−

(x − y

λ

)
ρ(y)ρ(x) dydx

≤ −λ−d

∫
Rd

∫
Rd

W−

(x − y

λ

)
χBλR(0)(|x − y|)ρ2(x) dydx

−λ−d

∫
Rd

∫
Rd

W−

(x − y

λ

)
χBλR(0)(|x − y|)

(
ρ(y) − ρ(x)

)
ρ(x) dydx

= −‖W−χBR(0)‖L1‖ρ‖2
L2 − λ−d

∫
Rd

∫
Rd

W−

( y

λ

)
χBλR(0)(|y|)

(
ρ(x − y) − ρ(x)

)
ρ(x) dydx

= A1 + A2.

Here the first equality follows from Fubini since ρ does not depend on y.
Following the strategy in the proof of [12, Theorem 2.16], and using Hölder’s inequality and

a change of variables, we obtain

A2 = −λ−d

∫
Rd

∫
Rd

W−

( y

λ

)
χBλR(0)(|y|)

(
ρ(x − y) − ρ(x)

)
ρ(x) dydx

≤ ‖ρ‖L2

[
λ−d

∫
Rd

( ∫
Rd

W−

( y

λ

)
χBλR(0)(|y|)

∣∣ρ(x − y) − ρ(x)
∣∣ dy

)2
dx

] 1
2

= ‖ρ‖L2

[ ∫
Rd

( ∫
Rd

W−(y)χBR(0)(|y|)
∣∣ρ(x − λy) − ρ(x)

∣∣ dy
)2

dx
] 1

2
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= ‖ρ‖L2

[ ∫
Rd

( ∫
Rd

W
1
2
− (y)χBR(0)(|y|)W

1
2
− (y)χBR(0)(|y|)

∣∣ρ(x − λy) − ρ(x)
∣∣ dy

)2
dx

] 1
2

≤ ‖ρ‖L2

[
‖W

1
2

− χBR(0)‖
2
L2

∫
Rd

W−(y)χBR(0)(|y|)
∫
Rd

(
ρ(x) − ρ(x − λy)

)2
dxdy

] 1
2

= ‖ρ‖L2

[
‖W−χBR(0)‖L1

∫
Rd

W−(y)χBR(0)(|y|)
∫
Rd

(
ρ(x) − ρ(x − λy)

)2
dxdy

] 1
2

≤ ‖ρ‖L2

[
‖W−χBR(0)‖L1

∫
Rd

W−(y)χBR(0)(|y|)
( ∫

Rd

(
ρ(x) − ρ(x − λy)

)
ρ(x) dxdy

+

∫
Rd

(
ρ(x) − ρ(x + λy)

)
ρ(x) dxdy

)] 1
2
,

where we used∫
Rd

(
ρ(x) − ρ(x − λy)

)
ρ(x − λy) dx =

∫
Rd

(
ρ(x + λy) − ρ(x)

)
ρ(x) dx.

Hence, by dominated convergence, this term converges to zero for λ → 0. Therefore, for every
δ > 0 there exists 1 >> λ > 0 such that for large R > 0 we have

E[ρλ] ≤ λd
(
λmd−2d ε

m
‖ρ‖m

Lm +
1

2
‖W+‖L1‖ρ‖2

L2 −
1

2
‖W−χBR(0)‖L1‖ρ‖2

L2 + δ
)

≤ λd
(
λmd−2d ε

m
‖ρ‖m

Lm +
1

2

∫
Rd

(WχBR(0))(x) dx‖ρ‖2
L2 + 2δ

)
.

Remark 6 For m = 2 and W− /∈ L1(Rd), the potential W is unstable for all ε > 0.

Lemma 7 Let 1 < m < 2, p > 1, and W− ∈ Lp,∞(Rd), W+ ∈ L
1

m−1 (Rd). Let q ≤ p. If m >
q+1

q

and W−(x) ≥ C|x|
− d

q for all |x| > R ≥ 0, then there exists a function ρ ∈ Lm(Rd) ∩P(Rd) with

E[ρ] < 0 for all ε > 0.

Proof As in the proof of Lemma 6, consider the rescaled function ρλ and split up W into
its positive and negative part. Denoting W+,λ(x) = W+(x/λ) and using Hölder’s inequality, we
obtain ∫

Rd

∫
Rd

W+

(x − y

λ

)
ρ(y)ρm−1(x)ρ2−m(x) dydx

≤ ‖W+ ∗ ρ‖
L

m

(m−1)2

∥∥ρm−1
∥∥

L
m

m−1

∥∥ρ2−m
∥∥

L
1

2−m

≤
∥∥W+,λ ∗ ρ

∥∥
L

m

(m−1)2
‖ρ‖m−1

Lm ‖ρ‖2−m

L1 ≤
∥∥W+,λ ∗ ρ

∥∥
L

m

(m−1)2
‖ρ‖m−1

Lm

≤ λ(m−1)d ‖W+‖
L

1
m−1

‖ρ‖m
Lm .

Here we used Young’s inequality and a change of variables in the last inequality. Moreover, for
λ < 1 it holds that

−

∫
Rd

∫
Rd

W−

(x − y

λ

)
ρ(y)ρ(x) dydx

≤ −

∫
Rd

∫
Rd

W−

(x − y

λ

)
χRd\BλR(0)(|x − y|)ρ(y)ρ(x) dydx

≤ −λ
d
q C

∫
Rd

∫
Rd

|x − y|
− d

q χRd\BR(0)(|x − y|)ρ(y)ρ(x) dydx.
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Therefore, we have

E[ρλ] ≤ λ(m−1)d
( ε

m
‖ρ‖m

Lm +
1

2
‖W+‖

L
1

m−1
‖ρ‖m

Lm

)
− λ

d
q C̃(ρ, R, q).

For λ > 0 sufficiently small this gives our statement, since (m − 1)d > d
q

and choosing ρ not only
being concentrated in BR(0). This completes the proof.

Acknowledgements

GK was employed at the University of Münster (WWU), Institute for Analysis and Numerics
when this work was done. KK’s work was partially supported by NRF- 2017R1A2B4006484.
He was a Research Fellow of the Faculty of Mathematics and Informatics at WWU, and he was
hosted by the MPI for Mathematics in the Sciences, Leipzig. AS was supported by the DFG
(German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587,
Mathematics Münster: Dynamics–Geometry–Structure.

Conflicts of Interest

None.

References

[1] AUCHMUTY, J. F. G. & BEALS, R. (1971) Variational solutions of some nonlinear free boundary
problems. Arch. Rational Mech. Anal. 43(4), 255–271.

[2] BEDROSSIAN, J. (2011) Global minimizers for free energies of subcritical aggregation equations with
degenerate diffusion. Appl. Math. Lett. 24(11), 1927–1932.

[3] CAÑIZO, J., CARRILLO, J. A. & PATACCHINI, F. (2015) Existence of compactly supported global
minimisers for the interaction energy. Arch. Ration. Mech. Anal. 217(3), 1197–1217.

[4] CARRILLO, J. A., DELGADINO, M. G. & PATACHINI, F. S. (2019) Existence of ground states for
aggregation-diffusion equations. Anal. Appl. (Singap.) 17(3), 393–423.

[5] CARRILLO, J. A., FIGALLI, A. & PATACCHINI, F. S. (2017) Geometry of minimizers for the inter-
action energy with mildly repulsive potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(5),
1299–1308.

[6] CARRILLO, J. A., HITTMEIR, S., VOLZONE, B. & YAO, Y. (2019) Nonlinear Aggregation-
Diffusion Equations: Radial Symmetry and Long Time Asymptotics. https://doi.org/10.1007/
s00222-019-00898-x

[7] CARRILLO, J. A., MATEU, J., MORA, M. G., RONDI, L., SCARDIA, L. & VERDERA, J. (to appear)
The ellipse law: Kirchhoff meets dislocations. Comm. Math. Phys.

[8] CHOKSI, R., FETECAU, R. & TOPALOGLU, I. (2015) On minimizers of interaction functionals with
competing attractive and repulsive potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(6),
1283–1305.

[9] CRAIG, K. & TOPALOGLU, I. Aggregation-Diffusion to Constrained Interaction: Minimizers &
Gradient Flows in the Slow Diffusion Limit. Preprint, arXiv:1806.07415.

[10] KAIB, G. (2016) Stationary States of an Aggregation Equation with Degenerate Diffusion and

Attractive Potential. PhD thesis, University of Münster, Germany.
[11] KAIB, G. (2017) Stationary states of an aggregation equation with degenerate diffusion and bounded

attractive potential. SIAM J. Math. Anal. 49(1), 272–296.
[12] LIEB, E. H. & LOSS, M. (2001) Analysis, 2nd ed. Graduate Studies in Mathematics, Vol. 14. American

Mathematical Society, Providence, RI.
[13] LIONS, P.-L. (1981) Minimization problems in L1(R3). J. Funct. Anal. 41(2), 236–275.

https://doi.org/10.1017/S0956792519000299 Published online by Cambridge University Press

https://doi.org/10.1007/s00222-019-00898-x
https://doi.org/10.1007/s00222-019-00898-x
https://arXiv.org/abs/1806.07415
https://doi.org/10.1017/S0956792519000299


Global minimisers for anisotropic attractive–repulsive interactions 869

[14] LIONS, P.-L. (1984) The concentration-compactness principle in the calculus of variations. The locally
compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145.

[15] PRIMI, I., STEVENS, A. & VELÁZQUEZ, J. J. L. (2009) Mass-selection in alignment models with
non-deterministic effects. Comm. Part. Diff. Equ. 34(4–6), 419–456.
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Appendix

Generally it is an open question, whether or not global minimisers are radial, even for radial
symmetric potentials. Some specific cases for existence and non-existence of radial minimisers
for radial symmetric potentials are given in [5, 8] and [6]. We expect that global minimisers are
not radial for non-symmetric potentials W with non-radially symmetric, symmetrised potential
1
2 (W + W−), in two and higher dimensions, but do not have a rigorous proof yet. Below, we give
a formal example in the limiting case where the potential is non-symmetric and the interaction is
local, i.e. a Dirac delta.

Let e1 = (1, 0, . . . , 0) ∈R
d, d ≥ 2. Consider

E(ρ) =
1

2

∫
Rd

∫
Rd

W (x − y − e1)dρ(x)dρ(y), (A.1)

where W (x) = −δ0. First note that for

E0(ρ) =
1

2

∫
Rd

∫
Rd

W (x − y)dρ(x)dρ(y),

and with W (x) = −δ0, the minimiser is the Dirac mass at the origin (up to translation), i.e. ρmin =

δ0 and E0(ρmin) = −1.
On the other hand, for the above given asymmetric potential E , we look for minimisers that

are compactly supported. It turns out that the minimisers are

ρmin = αδ−e1 +
1

2
δ0 +

(
1

2
− α

)
δe1 , (A.2)

where α ∈ [0, 1/2] (up to translation), and E(ρmin) = −1/8. Thus minimisers are neither radially
symmetric nor unique.

Indeed, if compactly supported, minimisers must be of the form

ρmin =

k∑
j=1

mjδz0+je1 ,
k∑

j=1

mj = 1 , 0 < mi < 1.

Therefore, we have the following minimising problem

E(ρmin) = −

k−1∑
j=1

mjmj+1 ,
k∑

j=1

mj = 1 , 0 < mi < 1.

This can be reformulated as a maximising problem in the following way:

maximise
k−1∑
j=1

mjmj+1 ,
k∑

j=1

mj = 1, , 0 < mi < 1.
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Due to the method of Lagrange multipliers, there exists a constant λ such that

λ〈1, 1, . . . , 1〉 = 〈m2, (m1 + m3), (m2 + m4), . . . , (mk−2 + mk), mk−1〉.

If k ≥ 4, then m2 = λ = m2 + m4, therefore m4 = 0, which contradicts our hypothesis that mi > 0.
Therefore, k ≤ 3. The case k = 2 implies

λ〈1, 1〉 = 〈m2, m1〉 =⇒ m1 = m2 =
1

2
. (A.3)

This is a special case of (A.2). For k = 3, we obtain

λ〈1, 1, 1〉 = 〈m2, m1 + m3, m2〉 =⇒ m2 =
1

2
, m1 + m3 =

1

2
. (A.4)

From (A.3) and (A.4), we obtain (A.2).
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