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There is a set of n bandits and at every stage, two of the bandits are chosen to play a
game, with the result of a game being learned. In the “weak regret problem,” we suppose
there is a “best” bandit that wins each game it plays with probability at least p > 1/2,
with the value of p being unknown. The objective is to choose bandits to maximize the
number of times that one of the competitors is the best bandit. In the “strong regret
problem”, we suppose that bandit i has unknown value vi, i = 1, . . . , n, and that i beats
j with probability vi/(vi + vj). One version of strong regret is interested in maximizing
the number of times that the contest is between the players with the two largest values.
Another version supposes that at any stage, rather than choosing two arms to play a
game, the decision maker can declare that a particular arm is the best, with the objective
of maximizing the number of stages in which the arm with the largest value is declared
to be the best. In the weak regret problem, we propose a policy and obtain an analytic
bound on the expected number of stages over an infinite time frame that the best arm is
not one of the competitors when this policy is employed. In the strong regret problem, we
propose a Thompson sampling type algorithm and empirically compare its performance
with others in the literature.

Keywords: applied probability, simulation, stochastic modeling

1. INTRODUCTION

In the classical stochastic multi-armed bandit problem (MAB), in each time period, the
learner selects an arm from a given set of n arms and then observes a random reward for
that selected arm. The goal of the learner is to minimize the cumulative regret, defined as
the expected difference between the sum of rewards that could have been received by always
playing the best arm and the sum of rewards actually received. In this paper, we study the
dueling bandit problem, a variant of classical MAB, where the action is to compare a pair
of arms rather than pulling one single arm. More specifically, at each time step, the learner
chooses 2 arms and then observes which of the two arms is preferred (or, equivalently, which
arm is the winner of a duel between these arms). The problem arises naturally in domains
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where feedback is represented in the form of pairwise comparison, such as recommendation
systems, ad replacements, and information retrieval.

There are two types of optimality criteria that are generally considered in dueling ban-
dits: weak regret and strong regret. Weak regret is concerned with minimizing the expected
number of times that the best arm is not one of the two arms selected. In this paper, for
the weak regret problem, we assume that there is an unknown arm i∗ and an unknown
probability p > 1/2, such that, independent of anything that came earlier, arm i∗ is the
winner of each of its duels with probability at least p. (Thus, we assume nothing about the
probabilities concerning games not involving i∗, nor even whether such games are condition-
ally independent given their players.) In Section 2, we propose an algorithm, called Beat
the Winner (BTW) and show that the expected weak regret over an infinite time horizon
is bounded by an O(n2), where n is the number of arms. We also propose a modification
of this rule, called Modified Beat the Winner (MBTW) and empirically show that it has a
smaller regret than both BTW and another algorithm, called WS-W, recently considered in
the literature (see [2]). We also show in this section that the analytic bound for the expected
infinite horizon weak regret of WS-W given in Chen and Frazier [2] can be improved.

We consider two types of strong regret. In strong regret 1, not previously considered in
the literature, we suppose that the objective is to maximize the expected number of times
that the two best arms (to be defined) are chosen. In strong regret 2, it is supposed that the
two arms in the duel may be the same arm and the objective is to maximize the expected
time that the best arm is chosen as both of the dueling arms. (A more natural description
of strong regret 2 is that at any time, rather than choosing two arms to duel, one can
make a declaration that a specified arm is the best.) We consider the strong regret problem
under the assumption that arm i has an unknown associated value vi, i = 1, . . . , n and the
probability of arm i beating arm j is vi/(vi + vj). In Section 3, we present a Thompson
sampling algorithm, which utilizes an MCMC simulation approach to sample associated
values of arms from the posterior distribution, with these sampled values then used to
decide which arms to next pair. Empirical evaluation is made to compare our procedure
with others in the literature.

Dueling bandit problem was originally raised by Yue et al. [8] and has been primarily
studied under the strong regret 2 criterion. Various definitions of the best arm (winner)
have been considered. Early algorithms, such as IF ([8]) and BTM ([]), assumed that i is
the winner over j with unknown probability pij , i �= j, and supposed that the arms are
totally ordered in that for some permutation i1, . . . , in of 1, . . . , n, pij ,ik

> 0.5 when j > k.
Both algorithms adopted an exploration then exploitation strategy to control the regret. As
an extension, the Condorcet winner model only assumes that there exists an arm who beats
any other arm with probability greater than 0.5. Zoghi et al. [10] proposed RUCB algorithm
by adopting the UCB framework and provided the theoretical guarantee that the cumulative
regret is upper bounded by O(n2 log m) where m is the time horizon. The later proposed
merge RUCB in Zoghi et al. [12] further tightened the regret upper bound to O(n log m).
Other algorithms including RMED ([3]) and WS-S ([2]) also achieved O(n log m) regret
upper bound. Beyond the Condorcet winner setting, some other notions of winner, such as
Copeland winner and Borda score, have also attracted much attention ([1,4,6,12]). In our
work, we consider the model under the strong regret where each arm has an associated
value and those values explicitly specify the winning probability.

Dueling bandits under the weak regret criterion have also previously been considered
([2,8]). To the best of our knowledge, the recent work of Chen and Frazier [2] seems to be the
only paper that studied the weak regret and designed a specific algorithm (called WS-W)
for it. A brief description of WS-W is as follows. Let the score of each arm be the number of
wins minus the number of losses in all games that arm has played. Round k + 1, k ≥ 0, will
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begin with one arm having score (n − 1)k and all others having score −k. The player with
score (n − 1)k will play with a randomly chosen one of the other arms a series of games that
ends when one of their scores is −k − 1. At that point, the player with score −k − 1 stops
playing in round k + 1 and the other plays with a randomly chosen one of the remaining
arms until one of their scores hits −k − 1, and so on. It was shown in Chen and Frazier [2]
that WS-W has O(n2) bound under the Condorcet winner setting and O(n log n) if arms
are totally ordered.

There are various applications of dueling bandits. For instance, content recommendation
systems, such as the in-app restaurant recommendations of Grubhub and UberEATS, have a
goal of learning user preferences and presenting a short list of personalized recommendations.
The algorithm learns user preferences over a large set of items from the choices users make
when presented with pairs of recommendations. After each pair of items is presented, we can
observe the one that is preferred by the user, and the algorithm must choose the next pair
of items to present. This online recommendation problem can be cast as our dueling bandit
problem where the item corresponds to arms and the goal is to recommend customers’
favorite item.

2. WEAK REGRET: BEAT THE WINNER

In this section, we propose two algorithms, named Beat the winner (BTW) and Modified
Beat the winner (MBTW) for dueling bandits in the weak regret criterion. We first introduce
our model assumptions. Suppose that there is a set of n arms. At each time step, the learner
chooses two arms to play a game and observes the winner. We let pi,j denote the probability
that arm i beats arm j when i plays with j. We assume that there exists a Condorcet winner,
that is, there is an unknown arm i∗ and an unknown probability p > 1/2, such that arm
i∗ is the winner of each its duels with probability at least p. We call i∗ the best arm. The
binary weak regret r(t) at time period t is r(t) = 0 if the best arm is one of the chosen arms
and r(t) = 1 otherwise. Our objective is to minimize the cumulative weak regret

∑∞
t=1 r(t)

over the infinite time horizon.

2.1. Beat the Winner

We now present our BTW algorithm. The BTW algorithm proceeds in rounds, with round
k, k ≥ 1, consisting of two arms playing a sequence of games until one of them has won k
times.

Beat the Winner Rule

• Arms are initially put in the queue in a random order.
• For round k = 1, 2, . . ..

◦ Top two arms in queue play a sequence of games. The winner of the round is
the first to win k games.

◦ The loser goes to the end of the queue, and the winner stays at the top of the
queue.

Now we show the expected cumulative regret over an infinite time horizon of BTW is
upper bounded by O(n2).

Lemma 2.1: Let Lk be the event that the best arm i∗ is the loser of round k. With a = 2p − 1

P(Lk) ≤ exp{−ka2}
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Proof: Because i∗ must play in round k to be the loser of that round,

P(Lk) ≤ P(Lk | i∗ plays in round k}
Now, it follows by a coupling argument that P(Lk|i∗ plays in round k} is upper bounded
by the probability that a total of k heads occurs before a total of k tails in a sequence of
independent trials that each results in a head with probability q = 1 − p. Hence, with B
being a binomial (2k − 1, q) random variable,

P(Lk) ≤ P(B ≥ k)

= P(B − (2k − 1)q ≥ ka + q)

≤ exp
{
−2(ka + q)2

2k − 1

}

≤ exp{−ka2}
where the second inequality follows from Chernoff’s bound. �

Theorem 2.2: With X being the total number of games that do not involve i∗,

E[X] ≤ (n − 2)2 + e−a2
(2K3 + (2n − 5)K2)

where K = 1/(1 − e−a2
).

Proof: Let R be last round lost by i∗. Lemma 2.1 gives

P(R ≥ r) = P

(⋃
k≥r

Lk

)
≤ K exp(−ra2)

Hence,

E[R] =
∑
r≥1

P(R ≥ r) ≤ K2 e−a2

and

E[R2] = 2
∑
r≥1

r P(R ≥ r) − E[R]

≤ 2K3 e−a2 − E[R]

Because there are at most 2k − 1 games in round k, and i∗ plays in all rounds after round
R + n − 2

X ≤
R+n−2∑

i=1

(2i − 1) = (R + n − 2)2

yielding that

E[X] ≤ (n − 2)2 + e−a2
(2K3 + (2n − 5)K2) (2.1)

�

Note that the regret bound of the BTW matches that of the WS-W proposed in Chen
and Frazier [2] without assuming pij �= 0.5 for any pair i, j (We will show later that WS-W
actually does not need that assumption.) However, in practice, BTM is not very competitive
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for small n since the BTM takes relatively long time to identify and extensively play the best
arm. This is also indicated by the regret bound derived in Eq. (2.1), where n2 is dominated
by the constant K3 when n is small. On the other hand, when n is large, the performance
of BTW roughly matches WS-W and enjoys the advantage of having a smaller variance.
Numerical instances will be shown in the next section along with our proposed MBTW
algorithm.

2.2. Modified Beat the Winner

Note that one of the main drawbacks of the BTW is that it does not utilize any past records
of arms. Hence, two apparently bad arms could play a large number of games, where we gain
no meaningful information. To overcome this drawback, we consider allowing the learner
to keep track of some records of arms. Specifically, for each arm, we want to record the
difference between the number of rounds an arm wins and the number of rounds it loses.
Based on such information, we propose the MBTW algorithm and empirically show that it
significantly outperforms both BTM and WS-W.

Similar to BTW, MBTW also plays games in a round fashion, where each round consists
of a series of games. However, the number of games is no longer determined by the number
of past rounds, but by the records of the arms in the duel. We now show how to define the
records of the arms, and how to choose the players of the next round.

Modified Beat the Winner Rule

• The initial value of ri, the score of arm i, is ri = 1, i = 1, . . . n

• Choose an arm uniformly at random as the host, and let h denote the index of the
host. The current host is always one of the players of the next round.

• For each round
◦ Let i, i �= h, be the opponent of arm h with probability ri/

∑
i�=h ri. The arm i

so chosen and h play a sequence of games until one of them has won rh games.
Let w and l denote the indices of the winner and loser.

◦ Reset rw = rw + 1
◦ Reset rl = max(rl − 1, 1)
◦ Set h = w. (The winner of the current round becomes the host.)

Two simulated numerical instances with 100 arms and 1,000 arms are shown in Figures 1
and 2, including the plot of cumulative regret and standard deviation at fixed time horizon
T . The WS-W method is used as the benchmark to evaluate our proposed algorithms.
In each case, the simulated results are based on 2,000 simulation runs, where each run
begins with generating the probabilities pi,j from uniform (0.2, 0.8) random variables for
i < j, i, j �= i∗, and generating pi∗,j from uniform (0.5, 0.8) for the 100 arms case and from
uniform (0.55, 0.8) for the 1000 arms case. Note that we increase the lower bound of the
winning probability of the Condorcet winner in the second instance so as to speed up the
convergence.

2.3. A Revisit to WS-W

For the rest of this section, we provide a supplementary proof of WS-W showing that the
upper bound of expected cumulative regret under the Condorcet winner setting can be
further improved over what was shown in Chen and Frazier [2]. Compared to the original
proof, our proof is still valid when there exists a pair i, j with pi,j = 0.5 and thus regret
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Figure 1. Experiments with 100 arms. (a) Cumulative regret over 100 replications. (b)
Standard deviation of cumulative regret for T = 105.

Figure 2. Experiments with 1000 arms. (a) Cumulative regret over 100 replications. (b)
Standard deviation of cumulative regret for T = 106.

bound only depends on the smallest winning probability of the Condorcet player when
matched with the other players.

Now consider the WS-W algorithm. Let Wk and Lk be the event that the best arm
wins round k and loses round k, respectively. To slightly simplify the following analysis, we
assume that there are n + 1 arms in total.

Lemma 2.3: Condition on whether the best arm is the winner of round k − 1, the probability
that the best arm wins round k is

P (Wk |Wk−1) ≥ 1 − (q/p)nk−n+k

1 − (q/p)n(k+1)

P (Wk |Lk−1) ≥ 1 − (q/p)
1 − (q/p)n(k+1)

Lemma 2.4: The probability that the best arm loses round k is bounded by

P (Lk) < 2
(

q

p

)k
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Lemma 2.5: Consider gambler’s ruin problem which stops when the gambler is either up
m − 1 or down 1. Let Ep[X] be the mean number of games when the gambler wins each bet
with probability p. Then for ∀p ∈ (0, 1)

Ep[X] < 2m

The proofs of Lemmas 2.3, 2.4 and 2.5 can be found in the Appendix.

Theorem 2.6: The expected cumulative regret of WS-W is bounded by (2p2/(2p − 1)2)
(n2 + n)

Proof: Let X be the total cumulative regret over infinite time horizon. If we let r = q/p,
then

E[X] =
∑
k≥1

E[regret at round k]

≤
∑
k≥1

2rk−1k(n2 + n)

=
2p2

(2p − 1)2
(n2 + n)

where the inequality follows by Lemmas 2.3 and 2.4. �

3. STRONG REGRET: THOMPSON SAMPLING APPROACH

In this section, we restrict ourselves to the scenario where each arm has an unknown asso-
ciated value vi, i = 1, . . . , n. The probability that arm i is preferred over j is vi/(vi + vj).
The objective is to minimize two versions of cumulative strong regret. Specifically, under
the notion of strong regret 1, two different arms are picked at each time slot and one can
avoid the regret only if the two best arms (i.e. two arms with largest vi) are selected.
On the other hand, under the strong regret 2 model, one is allowed to pick the same arm
in the duel. The strong regret 2 objective then is to minimize the number of times that the
best arm is not chosen as both the dueling arms. Note that we use binary regret under both
settings, meaning that regret is 0 if the corresponding optimal criteria are satisfied and 1
otherwise.

We propose a new algorithm by adopting the Thompson sampling approach, originally
introduced by Thompson [5] for the classical MAB problem. The existing works that employ
the Thompson sampling idea on dueling bandits start by assuming that the quantities
pi,j , i < j are the values of

(
n
2

)
independent uniform (0, 1) random variables and define the

best arm as the i that maximizes
∑

j �=i pi,j . In this manner, the posterior random variables
are independent beta random variables, and so are easy to simulate from (see RCB [11]
and DT [7]). In our model, however, the preference probability is completely determined
by the associated values and thus the joint posterior distribution of the values is no longer
independent. In the following work, we develop an MCMC sampling approach that allows
us to sample values of arms from the posterior distribution. We then empirically compare
our algorithm to five benchmarks.
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3.1. The Sampling Approach

The approach of sampling values of arms at each time stage is as follows. We imagine that
the unknown values v1, . . . , vn, are the values of independent mean 1 exponential random
variables V1, . . . , Vn. Given this, it follows that if wi,j denotes the current number of times
player i has beaten j, then the conditional density of V1, . . . , Vn is

f(x1, . . . , xn) = Ce−
∑

i xi

∏
i�=j

(
xi

xi + xj

)wi,j

(3.1)

for a normalization factor C. Our algorithmic approach for strong regret 2 is to simulate
V(1) = (V (1)

1 , . . . , V
(1)
n ) and V(2) = (V (2)

1 , . . . , V
(2)
n ) independently according to Eq. (3.1),

then let

I = argmaxiV
(1)
i , J = argmaxiV

(2)
i

and choose I and J to play with each other in the next round. (Note that if I = J then
(3.1) need not be updated.) For strong regret 1, we simulate only V(1) = (V (1)

1 , . . . , V
(1)
N )

and choose the two indices with the largest values to play the next game.
However, because directly simulating V from Eq. (3.1) does not seem computation-

ally feasible (for one thing C is difficult to compute), we utilize the Hasting–Metropolis
algorithm to generate a Markov chain whose limiting distribution is given by Eq. (3.1). The
Markov chain is defined as follows. When its current state is x = (x1, . . . , xn), a coor-
dinate that is equally like to be any of 1, . . . , n is selected. If i is selected, a random
variable Y is generated from an exponential distribution with mean xi, and if Y = y,
then (x1, . . . , xi−1, y, xi+1, . . . , xn) is considered as the candidate next state. In other
words, letting y = (x1, . . . , xi−1, y, xi+1, . . . , xn), the density function for the candidate next
state is

q(y |x) =
1
n

1
xi

e−y/xi

If x is the current state and y the candidate next state, then the next state of the Markov
chain is x with probability α(x,y), or y with probability 1 − α(x,y), where

α(x,y) = min
{

f(y)
f(x)

q(x |y)
q(y |x)

, 1
}

• For strong regret 1, the simulation of the Markov chain stops after, say, k iterations
and we use the indices of two largest values of the final state vector as the choice of
players for the next round.

• For strong regret 2, we let the simulation of Markov chain stop after 2k iterations.
We choose index of largest value of the vector at iteration k and 2k as the choice of
the first player and the second player, respectively.

Suppose that the final stage vector (k iterations for strong regret 1 and 2k iterations for
strong regret 2) is x0

1, . . . , x
0
n. Once that round has been completed, and we have updated

the values of wi,j , we let the initial value of the Markov chain used to obtain the next pair
of duelists be x0

1, . . . , x
0
n. Because the conditional density should not change by much after

a single game, we expect this will speed the convergence of the chain. In practice, it turns
out that k = O(N) would be enough for each simulation. In addition, we compute α(x,y),
by using the identity α = exp(log(α)).
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Figure 3. Experiments with five arms on exponential (1) strengths. Replication: 200
times.

Figure 4. Experiments with five arms on uniform (0, 1) strengths. Replication: 200 times.

3.2. Numerical Experiments

We empirically compare our Thompson sampling approach with five benchmarks (WS-S,
RUCB, D-TS, D-TS* and RCB) over the simulated data under strong regret 2 criteria. The
comparison is conducted in two scenarios, where i.i.d. exponential (1) and uniform (0,1)
random variables are generated as the strengths of arms. When strengths are generated from
exponential (1), Figure 3 shows that our TS approach empirically seems to outperform all
benchmarks, except for some time horizons where WS-S performs only slightly better than
TS. When strengths are generated from uniform (0,1), as shown in Figure 4, TS outperforms
all benchmarks, except for some time horizons where DT S+ and WS-S and WS-S perform
slightly better than TS. Overall, TS performs either better or in some limited cases only
slightly worse than other benchmarks. We were comfortable drawing these conclusions from
a possibly small sample size of 200 replications as with this sample size the resulting variation
was small enough. We are confident in the ordering of the performance of the approaches
and our overall qualitative conclusions.
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APPENDIX

Proof of Lemma 2.3: If the best arm is the winner of the round k − 1, the best arm needs to
beat all components to win round k no matter in what order, which gives

P (Wk |Wk−1) =
N∏

i=1

P (best player wins iteration i)

≥
N∏

i=1

1 − (q/p)N(k−1)+k+i−1

1 − (q/p)N(k−1)+k+i

=
1 − (q/p)Nk−N+k

1 − (q/p)N(k+1)
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On the other hand, if the best arm is the challenger at round k and suppose that it comes to play
at iteration j, 1 ≤ j ≤ N ,

P (Wk |Lk−1) =
1 − (q/p)

1 − (q/p)N(k−1)+k+j

N∏
i=j+1

1 − (q/p)N(k−1)+k+i−1

1 − (q/p)N(k−1)+k+i

=
1 − (q/p)

1 − (q/p)N(k+1)

�

Proof of Lemma 2.4: Let r = q/p. By conditioning on whether the best player wins round k − 1

P (Lk) = P (Lk|Wk−1)P (Wk−1) + P (Lk|Lk−1)P (Lk−1)

= (1 − P (Wk|Wk−1))P (Wk−1) + (1 − P (Wk|Lk−1))P (Lk−1)

=
rNk−N+k − rN(k+1)

1 − rN(k+1)
(1 − P (Lk−1)) +

(
r − rN(k+1)

1 − rN(k+1)

)
P (Lk−1)

=
r − rNk−N+k

1 − rN(k+1)
P (Lk−1) +

rNk−N+k − rN(k+1)

1 − rN(k+1)

< rP (Lk−1) + rN(k−1)+k

Solving the recursion formula gives us

Ep[X] =
n

2p − 1

(
1 − (q/p)

1 − (q/p)n
− 1

n

)
p �= 1

2

Ep[X] = n − 1 p =
1

2

�

Proof of Lemma 2.5:

Ep[X] =
n

2p − 1

(
1 − (q/p)

1 − (q/p)n
− 1

n

)
p �= 1

2

Ep[X] = n − 1 p =
1

2

Let r = q/p and thus p = 1/(1 + r). When p �= 1/2, substitute p by r

Ep[X] =

(
n(1 − r)

1 − rn
− 1

)
1 + r

1 − r

For r > 1

Ep[X] − 2n =

(
−n +

rn − 1

r − 1
− 2n

rn − 1

1 + r

)
1 + r

rn − 1

=

(
−n − (2r − 2)n

r + 1
+ 1

) i−1∑
i=0

ri 1 + r

rn − 1

< 0
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For r < 1

Ep[X] − 2n =

(
n − rn − 1

r − 1
+ 2n

rn − 1

1 + r

)
1 + r

1 − rn

>

(
n − rn − 1

r − 1
+ n(rn − 1)

)
1 + r

1 − rn

=

(
−

n−1∑
i=0

ri + nrn

)
1 + r

1 − rn

< 0

The proof is complete. �
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