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The paper deals with a multiple species Lotka–Volterra model with infinite
distributed delays and feedback controls, for which we assume a weak form of
diagonal dominance of the instantaneous negative intra-specific terms over the
infinite delay effect in both the population variables and controls. General sufficient
conditions for the existence and attractivity of a saturated equilibrium are
established. When the saturated equilibrium is on the boundary of R

n
+, sharper

criteria for the extinction of all or part of the populations are given. While the
literature usually treats the case of competitive systems only, here no restrictions on
the signs of the intra- and inter-specific delayed terms are imposed. Moreover, our
technique does not require the construction of Lyapunov functionals.

1. Introduction

After several decades of intensive study and use of functional differential equations
(FDEs) in population dynamics, it is now very well understood that the introduction
of delays in differential equations leads, in general, to more realistic population
models, and much more complex and rich dynamics. Nevertheless, delays are not
harmless and often create instability and oscillations unless they are either small
or neutralized by instantaneous terms. When the delays are infinite it is not clear
how to surpass the effect of the infinite past of the system so, in order to obtain
stability results, some form of instantaneous dominance is expected. On the other
hand, the consideration of FDEs with infinite delay is relevant in accounting for
systems with ‘infinite memory’, and goes back to the works of Volterra. In fact,
for Lotka–Volterra systems or other general population models, whether the global
stability may persist under large or even infinite delays without strictly dominating
instantaneous negative feedbacks is a question that has attracted the interest of
many researchers, and had partial positive answers (see, for example, Kuang [16],
Xu et al . [27], Faria [5] and references therein).
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Recently, the study of population models with delays and controls, in particular
Lotka–Volterra models, has received some attention (see, for example, [3, 9, 17, 21,
22,25,28] and references therein). In this paper, we consider the following n-species
Lotka–Volterra system with feedback controls and infinite delays:

x′
i(t) = xi(t)

(
bi − μixi(t)

−
n∑

j=1

aij

∫ ∞

0
Kij(s)xj(t − s) ds

− ci

∫ ∞

0
Gi(s)ui(t − s) ds

)
,

u′
i(t) = −eiui(t) + dixi(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i = 1, 2, . . . , n, (1.1)

where μi, ci, di, ei are positive constants, bi, aij ∈ R and the kernels

Kij , Gi : [0,∞) → [0,∞)

are L1-functions, normalized so that
∫ ∞

0
Kij(s) ds = 1,

∫ ∞

0
Gi(s) ds = 1

for i, j = 1, 2, . . . , n. Without loss of generality, we assume that, for all i, the
linear operators defined by Lii(ϕ) =

∫ ∞
0 Kii(s)ϕ(−s) ds, for bounded continuous

functions ϕ : (−∞, 0] → R, are non-atomic at 0, which amounts to having Kii(0) =
Kii(0+).

In biological terms, xi(t) denotes the density of the population i with Malthusian
growth rate bi and instantaneous self-limitation coefficient μi > 0, and aii and aij

(i �= j) are, respectively, the intra- and inter-specific delayed acting coefficients;
ui(t) denotes a feedback control variable, i, j = 1, 2, . . . , n. Due to the biological
interpretation of (1.1), we are only interested in positive (or non-negative) solutions.
We therefore consider solutions of (1.1) with admissible initial conditions, i.e.

xi(θ) = ϕi(θ) � 0, ui(θ) = ψi(θ) � 0, θ ∈ (−∞, 0),
ϕi(0) > 0, ψi(0) > 0,

}
(1.2)

with ϕi, ψi bounded continuous functions on (−∞, 0], i = 1, 2, . . . , n.
In order to have an effective feedback control, it is natural to impose that each

Gi (1 � i � n) satisfies ∫ ∞

0
Gi(s)ϕ(−s) ds > 0 (1.3)

for any positive bounded continuous function ϕ defined on (−∞, 0] with ϕ(0) > 0.
In particular, (1.3) holds if Gi is continuous at 0 with Gi(0) > 0, or if Gi has a
jump discontinuity at 0 with Gi(0) − Gi(0+) > 0.
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For simplicity of exposition, we consider (1.1), but our study applies to more
general systems of the form

x′
i(t) = xi(t)

(
bi − μixi(t)

−
n∑

j=1

aij

∫ ∞

0
xj(t − s) dηij(s)

− ci

∫ ∞

0
ui(t − s) dνi(s)

)
,

u′
i(t) = −eiui(t) + dixi(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i = 1, 2, . . . , n, (1.4)

where all the coefficients are as in (1.1), ηij , νi : [0,∞) → R are bounded variation
functions that are supposed to be normalized such that their total variation is 1
and the νi are non-decreasing on [0,∞). Note that, in (1.1), we supposed that
Kij(t) � 0 on [0,∞), but the above scenario does not impose this restriction.
Some of our general results, however, require that the kernels Kij in (1.1) are non-
negative, or that the functions ηij in (1.4) are non-decreasing, although they can
easily be adapted to deal with systems without such constraints.

Our study was strongly motivated by some previous work of the authors. The
uncontrolled Lotka–Volterra system with infinite distributed delays was studied
by Faria [5], and questions of partial survival and extinction of species in non-
autonomous delayed Lotka–Volterra systems were addressed by Muroya in [20] (see
also [19]). The works of Gopalsamy and Weng [9], and Li et al . [17], where special
cases of two-dimensional competitive Lotka–Volterra systems with controls and no
diagonal delays were studied, were an important source of inspiration for the present
paper. Here, the investigation refers to controlled Lotka–Volterra models of any
dimension n. While the literature usually only deals with the case of competitive
systems (i.e. systems with aij � 0 for j �= i) with bi > 0, here no restrictions on
the signs of aij and bi will be imposed. Moreover, infinite delays are incorporated
in the control terms (see also [22] for a competitive model). Another novelty is that
our method does not require the construction of a specific Lyapunov functional.

Clearly, the introduction of controls in a delayed Lotka–Volterra system might
change the existence, position and stability of equilibria. The main goal of the
present paper is to address the global asymptotic dynamics of solutions to the sys-
tem (1.1), (1.2), in what is concerned with the establishment of sufficient conditions
for the existence and attractivity of a (not necessarily positive) saturated equilibrium
(see [15, 16] and § 3 for a definition). As in previous works [5, 9, 17, 22], we assume
that (1.1) satisfies some form of diagonal dominance of the instantaneous negative
terms μixi(t) over the infinite delay terms (these involving both the population
variables and the controls) so that the usual instability caused by the introduction
of the delays is cancelled. For some of our stability results, another prerequisite
is that the uncontrolled Lotka–Volterra system ((1.1) with ci = 0 (1 � i � n))
already possesses a globally attractive saturated equilibrium. These assumptions,
although they seem restrictive, are quite natural; moreover, here the main goal is to
use the controls to change the position of the saturated equilibrium while keeping
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its stability, as emphasized by some examples. For a biological interpretation of the
use of controls, see, for example, [9, 25,28] and references therein.

We now briefly describe the contents of the paper. From a theoretical perspective,
dealing with FDEs with infinite delays requires a careful choice of a suitable Banach
phase space (usually called an admissible space), in order to recover classical results
of well-posedness of the initial-value problem, existence and uniqueness of solutions,
continuation of solutions, etc. For this reason, in § 2 we set some basic notation for
FDEs with infinite delay, and insert (1.1) into such a framework. In § 3, after study-
ing the existence of a unique saturated equilibrium (x∗, u∗) and the boundedness
of positive solutions to (1.1), theorem 3.8 provides a general criterion for the global
attractivity of (x∗, u∗). Also, a sufficient condition for the dissipativeness of (1.1) is
given. In § 4, sharper criteria are established for the global attractivity of a saturated
equilibrium (x∗, u∗) that is not strictly positive. In this situation, this means the
extinction of all or part of the populations. Our results turn out to be particularly
powerful for predator–prey models. We also emphasize that, for the uncontrolled
system, we derive better results for partial (or total) extinction than the ones in [5].
Our techniques also allow us to obtain a perturbation result for non-autonomous
Lotka–Volterra systems with a limiting model of the form (1.1) or (1.4) as t → ∞.
The particular case of a two-dimensional Lotka–Volterra system is covered in § 5.
In §§ 4 and 5, some examples illustrate our results.

2. An abstract formulation

Since (1.1) has unbounded delays, we must carefully formulate the problem by
defining an appropriate Banach phase space where the problem is well posed.

Let g be a function satisfying the following properties.

(g1) g : (−∞, 0] → [1,∞) is a non-increasing continuous function and g(0) = 1.

(g2)

lim
u→0−

g(s + u)
g(s)

= 1 uniformly on (−∞, 0].

(g3) g(s) → ∞ as s → −∞.

For n ∈ N, define the Banach space UCg = UCg(Rn), where ‘UC’ stands for
‘uniformly continuous’,

UCg :=
{

φ ∈ C((−∞, 0]; Rn) : sup
s�0

|φ(s)|
g(s)

< ∞,

φ(s)
g(s)

is uniformly continuous on (−∞, 0]
}

,

with the norm

‖φ‖g = sup
s�0

|φ(s)|
g(s)

,

where | · | is a chosen norm in R
n. Consider also the space BC = BC(Rn) of

bounded continuous (BC) functions φ : (−∞, 0] → R
n. It is clear that BC ⊂ UCg,
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with ‖φ‖g � ‖φ‖∞ for φ ∈ BC and ‖ · ‖∞ the supremum norm in BC. Here, BC
will be considered as a subspace of UCg, so BC is endowed with the norm of UCg.

The space UCg is an admissible phase space for n-dimensional FDEs with infinite
delay (see [13,14]) written in the abstract form

ẋ(t) = f(t, xt), (2.1)

where f : D ⊂ R × UCg → R
n is continuous and, as usual, segments of solutions in

the phase space UCg are denoted by xt, xt(s) = x(t+s), s � 0, with components xt,i.
The standard results, therefore, on existence and uniqueness of solutions for the
Cauchy problem ẋ(t) = f(t, xt), x0 = ϕ hold when f is regular enough and ϕ ∈ UCg.
Moreover, for initial conditions ϕ ∈ BC, bounded positive orbits are precompact in
UCg [10].

We now set an appropriate formulation for problem (1.1), (1.2). From [11] and [7,
lemma 4.1], for any δ > 0 there is a continuous function g satisfying (g1)–(g3) and
such that∫ ∞

0
g(−s)Kij(s) ds < 1 + δ,

∫ ∞

0
g(−s)Gi(s) ds < 1 + δ, i, j = 1, . . . , n. (2.2)

When dealing with (1.4), where the more general linearities are given by bounded
variation functions ηij(s), νi(s) with total variation 1 and νi(s) non-decreasing, (2.2)
should be replaced by∫ ∞

0
g(−s) d|ηij(s)| < 1 + δ,

∫ ∞

0
g(−s) dνi(s) < 1 + δ, i, j = 1, . . . , n. (2.3)

Whenever an abstract setting is required, in what follows we shall always assume
that (1.1) takes the abstract form (2.1) in the phase space UCg = UCg(R2n) for
some fixed δ > 0 and function g satisfying (g1)–(g3) and (2.2), and consider solu-
tions with initial conditions

x0 = ϕ, u(0) = ψ, (2.4)

where (ϕ, ψ) ∈ BC(R2n). The system (1.1) has a unique solution (x(t), u(t)) =
(x(t; ϕ, ψ), u(t; ϕ, ψ)) satisfying (2.4). Moreover, since only positive or non-negative
solutions of (1.1) are biologically meaningful, we restrict our framework to positive
or non-negative initial conditions. A vector x ∈ R

n is said to be positive, or non-
negative, if all its components are positive, or non-negative, respectively, and we
write x > 0, x � 0, respectively. We define and denote in a similar way positive and
non-negative functions in BC, and positive and non-negative matrices as well. As
usual, we use the notation R

n
+ = {x ∈ R

n : x � 0}. In the space UCg, a vector c is
identified with the constant function ψ(s) = c for s � 0.

Consider the positive cone BC+ = BC+(R2n) = {(ϕ, ψ) ∈ BC: ϕ(s), ψ(s) � 0
for all s � 0}. As a set of admissible initial conditions for (1.1), we take the subset
BC+

0 of BC+, BC+
0 = {(ϕ, ψ) ∈ BC+ : ϕ(0) > 0, ψ(0) > 0}. It is easy to see that

all the coordinates of solutions with initial conditions in BC+ (respectively, BC+
0 )

remain non-negative (respectively, positive) for all t � 0, whenever they are defined.
In the following, we shall consider norms | · |d in R

N (N = n or N = 2n) given by
|(x1, . . . , xN )|d = max1�i�N di|xi|, for some d = (d1, . . . , dN ) > 0. For such norms
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in R
N , in order to be more explicit, we denote the norm in UCg by ‖ · ‖g,d,

‖ψ‖g,d = sup
s�0

|ψ(s)|d
g(s)

.

3. Existence and global attractivity of a saturated equilibrium

In the absence of controls, the Lotka–Volterra system reads as

x′
i(t) = xi(t)

(
bi − μixi(t) −

n∑
j=1

aij

∫ ∞

0
Kij(s)xj(t − s) ds

)
, (3.1)

for which

M0 = N + A, where N = diag(μ1, . . . , μn), A = [aij ], (3.2)

is designated as the interaction community matrix. As for ordinary differential equa-
tions (ODEs), the algebraic properties of M0 determine many features of the asymp-
totic behaviour of solutions to (3.1) (see, for example, [5,6,15]). Clearly, the intro-
duction of controls might change the dynamics of (3.1). Here, the main aim is to
use the controls to change the position of a globally attractive equilibrium and give
general criteria for its attractivity.

For (1.1), we define the controlled community matrix as

M = N + A + C, where C = diag
(

c1d1

e1
, . . . ,

cndn

en

)
. (3.3)

We also consider the matrices

M̂0 = N − |A|, M̂ = N − |A| − C, where |A| = [|aij |]. (3.4)

Note that (x∗, u∗) = (x∗
1, . . . , x

∗
n, u∗

1, . . . , u
∗
n) ∈ R

n ×R
n is an equilibrium of (1.1)

if and only if

x∗
i = 0 or (Mx∗)i = bi, and u∗

i =
di

ei
x∗

i , i = 1, . . . , n,

where xi is the ith coordinate of the vector x.
Throughout the paper, we shall use the definition of a saturated equilibrium.

Definition 3.1. Let (x∗, u∗) = (x∗
1, . . . , x

∗
n, u∗

1, . . . , u
∗
n) be an equilibrium of (1.1).

We say that (x∗, u∗) is a saturated equilibrium if (x∗, u∗) is non-negative and

(Mx∗)i � bi whenever x∗
i = 0, i = 1, . . . , n.

Remark 3.2. We observe that if (x∗, u∗) � 0 is an equilibrium of (1.1) on the
border of the positive cone R

n
+ ×R

n
+, i.e. x∗

i = u∗
i = 0 for some i, and (x∗, u∗) is not

saturated, then (x∗, u∗) is unstable. In fact, (1.1) and the ODE system in R
n
+ ×R

n
+,

x′
i(t) = xi(t)

(
bi − μixi(t) −

n∑
j=1

aijxj(t) − ciui(t)
)

,

u′
i(t) = −eiui(t) + dixi(t),

⎫⎪⎪⎬
⎪⎪⎭ i = 1, 2, . . . , n, (3.5)
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share the same equilibria. Since R
n
+×R

n
+ is forward invariant for (3.5), if (x∗, u∗) � 0

is an equilibrium of (3.5) and (x∗, u∗) is not saturated, then (x∗, u∗) is unstable,
since the characteristic equation for the linearized equation about (x∗, u∗) has an
eigenvalue with positive real part (see, for example, [15]).

When analysing (1.1), our concepts of attractivity and stability always refer to
the set of admissible solutions, i.e. to solutions (x(t), u(t)) = (x(t; ϕ, ψ), u(t; ϕ, ψ))
with (ϕ, ψ) in the set of admissible initial conditions. In particular, an equilibrium
(x∗, u∗) of (1.1) is globally attractive if all solutions (x(t), u(t)) of (1.1), with initial
conditions (x0, u0) = (ϕ, ψ) ∈ BC+

0 , satisfy limt→∞ x(t) = x∗, limt→∞ u(t) = u∗. It
is globally asymptotically stable (GAS) if it is stable and globally attractive.

We recall some concepts from matrix theory, which will be used in the next
sections.

Definition 3.3. Let B = [bij ] be an n × n matrix. We say that B is an M-matrix
(respectively, non-singular M-matrix ) if bij � 0 for i �= j and all its eigenvalues
have non-negative (respectively positive) real parts. The matrix B is said to be a
P-matrix if all its principal minors are positive.

Remark 3.4. It is well known that there are several equivalent ways of defining
M-matrices, non-singular M-matrices and P-matrices; in [8], these matrices are also
designated by matrices of classes K0, K and P , respectively (see [1,8,15] for further
properties of these matrices). In particular, we recall that a square matrix with non-
positive off-diagonal entries is an M-matrix (respectively, a non-singular M-matrix)
if and only if all of its principal minors are non-negative (respectively, positive);
so any non-singular M-matrix is a P-matrix. A related concept is the notion of a
Volterra–Lyapunov stable (VL-stable) matrix, i.e. an n×n matrix B = [bij ] for which
there exists a positive vector d = (d1, . . . , dn) such that

∑n
i,j=1xidibijxj < 0 for all

x = (x1, . . . , xn) �= 0. If −B is VL-stable, then B is also a P-matrix; the converse
is true for the particular case of a 2 × 2 matrix, but not for higher dimensions.
For Lotka–Volterra ODE systems of the form x′

i = xi[bi −
∑n

j=1aijxj ], 1 � i � n,
it is known that if −[aij ] is VL-stable, then there is one globally stable saturated
equilibrium [15, p. 199].

Consider both the original and the controlled community matrices M0, M , as
well as the matrices M̂0, M̂ (see (3.2)–(3.4)). For the uncontrolled system (3.1), it
was shown [5, corollary 4.1] that if M̂0 is a non-singular M-matrix, then there is a
unique saturated equilibrium of (3.1) that is a global attractor of all solutions with
initial conditions x0 = ϕ ∈ BC+

0 (Rn). The idea now is to prove a similar result
for (1.1). We start by studying the existence of a saturated equilibrium and the
boundedness of solutions to (1.1).

Theorem 3.5. Assume that M is a P-matrix, where M is the controlled community
matrix in (3.3). There is then a unique saturated equilibrium (x∗, u∗) of (1.1).

Proof. If M is a P-matrix, then for each vector b = (b1, . . . , bn) ∈ R
n there is a

unique non-negative vector x∗ such that Mx∗ � b and (Mx∗)i = bi if x∗
i > 0 [1,

p. 274]. With u∗ = (u∗
1, . . . , u

∗
n), where u∗

i = (di/ei)x∗
i , this means that (x∗, u∗) is

the unique saturated equilibrium of (1.1).
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If all coefficients in (1.1) are positive, then clearly all positive solutions are
bounded, since the inequalities x′

i(t) � xi(t)(bi − μixi(t)) hold, and positive solu-
tions of the logistic ODEs y′(t) = y(t)(bi − μiy(t)) are bounded. This is not the
case, however, if we allow some of the coefficients aij to be negative, unless further
constraints on M0 are imposed.

Lemma 3.6. Assume that the matrix M̂0 in (3.4) is a non-singular M-matrix.
Then, all solutions of (1.1) with initial conditions (1.2) are defined and bounded
on [0,∞).

Proof. Solutions of (1.1) with initial conditions (1.2) are positive whenever they
are defined. For (1.1) written in the abstract form X ′(t) = F (Xt), the function F
transforms bounded sets of UCg(R2n) into bounded sets of R

2n, and hence solutions
are defined on compact intervals [0, α] for all α > 0, and therefore on [0,∞).

Since M̂0 is a non-singular M-matrix, there is a positive vector η = (η1, . . . , ηn)
such that M̂0η > 0 [8], i.e.

μiηi >

n∑
j=1

|aij |ηj , i = 1, . . . , n.

Choose an arbitrarily small δ > 0 such that

μi − (1 + δ)
n∑

j=1

|aij |
ηj

ηi
> 0, i = 1, . . . , n, (3.6)

and a function g for which (g1)–(g3) and (2.2) hold.
For η̄ = (η−1

1 , . . . , η−1
n , e1(d1η1)−1, . . . , en(dnηn)−1), we furthermore consider R

2n

equipped with the norm | · |η̄ given by

|(x1, . . . , xn, u1, . . . , un)|η̄ = max
{

max
i

(
1
ηi

|xi|
)

, max
i

(
ei

ηidi
|ui|

)}
.

Let (x(t), u(t)) = (x1(t), . . . , xn(t), u1(t), . . . , un(t)) be a positive solution of (1.1).
We claim that

sup
t�0

|(x(t), u(t))|η̄ < ∞. (3.7)

For the sake of contradiction, assume that (3.7) fails. Then, for any K > 0, there
exists T > 0 such that

|(x(T ), u(T ))|η̄ � |(K, . . . , K)|η̄,

|(x(T ), u(T ))|η̄ � |(x(t), u(t))|η̄,

}
0 � t � T. (3.8)

Consider (3.8) with K such that

|(K, . . . , K)|η̄ > ‖(x0, u0)‖g,η̄ = sup
s�0

|(x(s), u(s))|η̄
g(s)

,

and sufficiently large, to be specified later.
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If |(x(T ), u(T ))|η̄ = (ei/ηidi)ui(T ) > (1/ηi)xi(T ) for some i ∈ {1, . . . , n}, then
from (1.1) we obtain

u′
i(T ) < −eiui(T ) + di

ei

di
ui(T ) � 0,

which is not possible since the definition of T implies that u′
i(T ) � 0. Thus,

|(x(T ), u(T ))|η̄ = (1/ηi)xi(T ) for some i ∈ {1, . . . , n}. Clearly, x′
i(T ) � 0.

Let 0 � t � T and let s � 0. Note that

1
ηj

xj(t − s)
g(−s)

� 1
ηj

xj(t − s)
g(t − s)

<
1
ηj

K � 1
ηi

xi(T ) if t − s � 0,

and
1
ηj

xj(t − s)
g(−s)

� 1
ηi

xi(T ) if 0 � t − s � T.

Hence,

η−1
j

∣∣∣∣aij

∫ ∞

0
Kij(s)xj(t − s) ds

∣∣∣∣ � η−1
j |aij |

∫ ∞

0
g(−s)Kij(s)

xj(t − s)
g(−s)

ds

< (1 + δ)η−1
i |aij |xi(T ), j = 1, . . . , n. (3.9)

From (1.1) and (3.9), we obtain

0 � x′
i(T ) � xi(T )

[
bi −

(
μi − (1 + δ)

n∑
j=1

|aij |
ηj

ηi

)
xi(T )

]
.

By (3.6), this is a contradiction if K is chosen such that

K > bi

(
μi − (1 + δ)

n∑
j=1

|aij |
ηj

ηi

)−1

.

In fact, a better criterion for the uniform boundedness of all positive solutions
of (1.1) will be given later (see theorem 3.10).

Note that M̂0 = M̂ + C, where C is a positive diagonal matrix. By [8, theorem
5.1.1], it follows that if M̂ is an M-matrix, then M̂0 is a non-singular M-matrix. Now,
if M̂0 is a non-singular M-matrix, then there is a positive vector η = (η1, . . . , ηn)
such that M̂0η > 0, i.e. μiηi >

∑n
j=1 |aij |ηj for 1 � i � n (see [8]); in particular, this

implies a ‘diagonal dominance’ of M0 in the sense that (μi + aii)ηi >
∑

j �=i |aij |ηj

for 1 � i � n. From [15, p. 201], it follows that if M̂0 is a non-singular M-matrix,
then −M0 (and hence −M as well) is VL-stable, and therefore a P-matrix.

Lemma 3.7. Assume that the matrix M̂ in (3.4) is a non-singular M-matrix and
that the unique saturated equilibrium (x∗, u∗) of (1.1) is positive. Then (x∗, u∗) is
locally asymptotically stable.

Proof. As observed, if M̂ is an M-matrix, then M is a P-matrix and there is a
unique saturated equilibrium (x∗, u∗). The linearization of (1.1) about (x∗, u∗) is
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given by [
y′(t)
v′(t)

]
= −

(
B

[
y(t)
v(t)

]
+ L

[
yt

vt

] )
, (3.10)

with y(t), v(t) ∈ R
n, and the linear operator L : BCg(R2n) ⊂ UCg(R2n) → R

2n and
the (2n) × (2n) matrix B defined as

L = (L1, . . . ,L2n), B = diag(α1, . . . , αn, e1, . . . , en),

where

αi =

⎧⎪⎪⎨
⎪⎪⎩

μix
∗
i if x∗

i > 0,

n∑
j=1

aijx
∗
j − bi if x∗

i = 0,

and

Li(ϕ, ψ) = x∗
i

n∑
j=1

aij

∫ ∞

0
Kij(s)ϕj(−s) ds

+ x∗
i ci

∫ ∞

0
Gi(s)ψi(−s) ds,

Ln+i(ϕ, ψ) = −diϕi(0),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

i = 1, . . . , n,

for (ϕ, ψ) = (ϕ1, . . . , ϕn, ψ1, . . . , ψn). Note that αi � 0 for 1 � i � n.
For (e1, . . . ,e2n), the canonical basis of R

2n, define L : = B + [Li(ej)]i,j and
L̂ := B − [|Li(ej)|]i,j (1 � i, j � 2n). We have

[Li(ej)]2n
i,j=1 =

[
A(x∗) C(x∗)
−D 0

]
,

with A(x∗) = [x∗
i aij ]i,j (1 � i, j � n), C(x∗) = diag(x∗

1c1, . . . , x
∗
ncn) and D =

diag(d1, . . . , dn). Now, suppose that x∗ > 0. It is easy to see that the matrices L
and L̂ are equivalent to, respectively,[

M(x∗) C(x∗)
0 E

]
,

[
M̂(x∗) −C(x∗)

0 E

]
,

where

E = diag(e1, . . . , en),
N(x∗) = diag(μ1x

∗
1, . . . , μnx∗

n),

C̃(x∗) = diag
(

x∗
1
c1d1

e1
, . . . , x∗

n

cndn

en

)
,

M(x∗) = N(x∗) + A(x∗) + C̃(x∗),

M̂(x∗) = N(x∗) − A(x∗) − C̃(x∗).

Note that M(x∗) and M̂(x∗) are obtained from M and M̂ , respectively, by multi-
plying each line i by x∗

i . Hence, it follows that detL �= 0 and that L̂ is a non-singular
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M-matrix as well. From [5], we derive that the linear system (3.10) is asymptotically
stable.

We remark that if x∗
i = 0, then the ith line of the above matrix [Li(ej)] is 0.

Hence, a saturated equilibrium (x∗, u∗) of (1.1) on the boundary of the positive cone
is not necessarily asymptotically stable. Thus, although its linearization (3.10) is
stable, one cannot deduce that (x∗, u∗) is stable as a solution of (1.1).

Our main general result on the global attractivity of the saturated equilibrium
is given below.

Theorem 3.8. Assume that the matrix M̂ in (3.4) is an M-matrix. There is then a
unique saturated equilibrium (x∗, u∗) of (1.1) that is a global attractor of all solutions
with initial conditions (1.2). Moreover, if in addition x∗ > 0 and M̂ is non-singular,
then (x∗, u∗) is GAS.

Proof. Since M̂ is an M-matrix, from theorem 3.5 and lemma 3.6 we conclude
that there is a unique saturated equilibrium (x∗, u∗) of (1.1) and that all positive
solutions are defined and bounded on [0,∞). Lemma 3.7 shows that (x∗, u∗) is
stable if it is a positive equilibrium. We now need to show that (x∗, u∗) is a global
attractor of all positive solutions of (1.1).

Denote by In the n×n identity matrix. If M̂ is an M-matrix, then for any δ0 > 0
the matrix δ0In + M̂ is a non-singular M-matrix. Fix any δ0 > 0 and a positive
vector η = (η1, . . . , ηn) such that (δ0In + M̂)η > 0, i.e.

(
δ0 + μi − ci

di

ei

)
ηi >

n∑
j=1

|aij |ηj , i = 1, . . . , n.

Choose δ > 0 such that

(
δ0 + μi − ci

di

ei

)
ηi − (1 + δ)

n∑
j=1

|aij |ηj > 0, 1 � i � n, (3.11)

and a function g for which conditions (g1)–(g3) and (2.2) are fulfilled. We abuse
the notation, and denote norms in both R

2n and in R
n by | · |η̄, where

|(x1, . . . , xn, u1, . . . , un)|η̄ := max
1�i�n

{
max

(
1
ηi

|xi|,
ei

ηidi
|ui|

)}
in R

2n,

|x|η̄ := max
1�i�n

1
ηi

|xi| in R
n,

and consider UCg(R2n) and UCg(Rn) equipped with the norms ‖ · ‖g,η̄.
Let (x(t), u(t)) be a positive solution of (1.1). With the change of variables

yi(t) = xi(t) − x∗
i ,

vi(t) = ui(t) − u∗
i ,

}
i = 1, . . . , n,
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the system (1.1), together with definition 3.1, lead to

y′
i(t) = −(yi(t) + x∗

i )
(

μiyi(t) +
n∑

j=1

aij

∫ ∞

0
Kij(s)yj(t − s) ds

+ ci

∫ ∞

0
Gi(s)vi(t − s) ds

)
if x∗

i > 0, (3.12)

y′
i(t) � −yi(t)

(
μiyi(t) +

n∑
j=1

aij

∫ ∞

0
Kij(s)yj(t − s) ds

+ ci

∫ ∞

0
Gi(s)vi(t − s) ds

)
if x∗

i = 0, (3.13)

v′
i(t) = −eivi(t) + diyi(t), (3.14)

i = 1, 2, . . . , n. Define

lim inf
t→∞

yi(t) = −li, lim sup
t→∞

yi(t) = Li, i = 1, . . . , n, (3.15)

and set
l = max

1�i�n

li
ηi

, L = max
1�i�n

Li

ηi
, U = max(l, L).

Integrating (3.14), we get

vi(t) = vi(0)e−eit + die−eit

∫ t

0
eeisyi(s) ds, t � 0, (3.16)

and therefore

−x∗
i � −li � ei

di
lim inf
t→∞

vi(t) � ei

di
lim sup

t→∞
vi(t) � Li < ∞. (3.17)

Since U � 0, it is enough to prove that U = 0. In order to get a contradiction,
assume that U > 0.

Define I = {1, . . . , n}, I1 = {i ∈ I : η−1
i Li = U} and I2 = {i ∈ I : η−1

i li = U}.
The assumption U > 0 implies that x∗

i > 0 if i ∈ I2; otherwise, with x∗
i = 0, we get

lim inft→∞ xi(t) = lim inft→∞ yi(t) = −li = −ηiU � 0, and thus U = 0.
The coordinates yj(t), vj(t) are uniformly bounded for t � 0, and thus, as

remarked in § 2, the positive orbit {(yt, vt) : t � 0} is precompact in UCg(R2n).
Take any sequence (tk) with tk → ∞. Thus, there is a subsequence of (ytk

, vtk
),

still denoted by (ytk
, vtk

), converging to some (φ, ψ) in UCg(R2n). Let φj , ψj (1 �
j � n) be the components of φ, ψ, respectively. Take any ε > 0 and let t∗ > 0 be
such that η−1

j |yj(t)| � U + ε for t � t∗, 1 � j � n. For any s � 0, if k is large so
that tk − s � t∗, then

η−1
j

|ytk,j(−s)|
g(−s)

= η−1
j

|yj(tk − s)|
g(−s)

� η−1
j |yj(tk − s)| � U + ε,

and therefore we get η−1
j ‖φj‖g � U + ε. In a similar way, we obtain

η−1
j

(
ei

di

)
‖ψj‖g � U + ε.
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Hence, we conclude that ‖(φ, ψ)‖g,η̄ � U . Moreover, if i ∈ I1 ∪ I2 and (tk) is
chosen in such a way that η−1

i |yi(tk)| → U , we furthermore deduce that ‖φ‖g,η̄ =
η−1

i |φi(0)| = U and that ytk,j , vtk,j converge uniformly to φj , ψj , respectively, on
each compact set of [0,∞).

Fix i ∈ I1 ∪ I2. By the fluctuation lemma, take a sequence (tk) with tk → ∞,
y′

i(tk) → 0 and

η−1
i yi(tk) →

{
U if i ∈ I1,

−U if i ∈ I2.

As above, we may assume that (ytk
, vtk

) → (φ, ψ) ∈ UCg(R2n) for the norm ‖ ·‖g,η̄.
First, we consider the case i ∈ I1, and thus η−1

i yi(tk) → U .
Since the linear operator ψ 	→

∫ ∞
0 Gi(s)ψ(−s) ds, defined for ψ ∈ BC(R) ⊂

UCg(R), is bounded, there exists

ν := lim
k→∞

∫ ∞

0
Gi(s)vi(tk − s) ds =

∫ ∞

0
Gi(s)ψi(−s) ds.

From (3.17), we have

|ψi(−s)| � ηi

(
di

ei

)
U for any s � 0,

and thus ν � −ηi(di/ei)U . From (1.3), the equality ν = −ηi(di/ei)U implies that
ψi(0) = −ηi(di/ei)U . But, from (3.16), we have

vi(tk) = vi(0)e−eitk + di

∫ tk

0
e−eiuytk,i(−u) du,

and from Lebesgue’s dominated convergence theorem it follows that

lim
k→∞

vi(tk) = ψi(0) = di

∫ ∞

0
e−eiuφi(−u) du.

Since φi is a continuous function with η−1
i |φi(−s)| � U for s > 0 and η−1

i φi(0) = U ,
then η−1

i

∫ ∞
0 e−eisφi(−s) ds > −U/ei. We conclude, therefore, that

η−1
i ν > −di

ei
U. (3.18)

Moreover, despite the use of a specific vector η = η(δ0) and norm ‖·‖g,η̄ in UCg(Rn),
obviously the limit ν does not depend on the chosen norm | · |η̄ in R

n.
Next, define

Hi(t) = μiyi(t) +
n∑

j=1

aij

∫ ∞

0
Kij(s)yj(t − s) ds + ci

∫ ∞

0
Gi(s)vi(t − s) ds. (3.19)

From (3.12) and (3.13), we obtain

y′
i(tk) � −(yi(tk) + x∗

i )Hi(tk).
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From (2.2), we have (see (3.9))∣∣∣∣aij

∫ ∞

0
Kij(s)yj(tk − s) ds

∣∣∣∣ � |aij |
∫ ∞

0
g(−s)Kij(s)

|yj(tk − s)|
g(−s)

ds

� (1 + δ)|aij |‖ytk,j‖g, (3.20)

and this leads to

Hi(tk) � μiyi(tk) − (1 + δ)
n∑

j=1

|aij |‖ytk,j‖g,η̄ + ci

∫ ∞

0
Gi(s)vi(tk − s) ds

� μiyi(tk) − (1 + δ)
n∑

j=1

|aij |ηj‖ytk
‖g,η̄ + ci

∫ ∞

0
Gi(s)vi(tk − s) ds. (3.21)

By letting k → ∞, from (3.11) and (3.21) we have

0 �
(

μiηi − (1 + δ)
n∑

j=1

|aij |ηj

)
U + ciν �

(
ci

di

ei
− δ0

)
ηiU + ciν. (3.22)

Since δ0 > 0 is arbitrarily small, this yields ν � −(di/ei)ηiU , which is not possible
in view of (3.18).

Now, consider the case i ∈ I2. Then, η−1
i yi(tk) → −U and (3.12) holds.

If yi(t) is eventually monotone, then yi(t) → −ηiU and vi(t) → −(di/ei)ηiU .
Using arguments similar to the ones above, we obtain

Hi(tk) � μiyi(tk) + (1 + δ)
n∑

j=1

|aij |ηj‖ytk
‖g,η̄ + ci

∫ ∞

0
Gi(s)vi(tk − s) ds

→
[

−
(

μi + ci
di

ei

)
ηi + (1 + δ)

n∑
j=1

|aij |ηj

]
U < 0. (3.23)

Since y′
i(tk) = −(yi(tk) + x∗

i )Hi(tk), using the above estimate we obtain

0 � (−ηiU + x∗
i )

[(
μi + ci

di

ei

)
ηi − (1 + δ)

n∑
j=1

|aij |ηj

]
U,

and thus yi(t) → −x∗
i = −ηiU as t → ∞. Since yi(t) > −x∗

i for t > 0, this is only
possible if y′

i(t) � 0 for t large, so that η−1
i yi(t) ↘ −U . But in this case, from (3.12),

it follows that Hi(t) � 0 for t large, which contradicts (3.23).
If yi(t) is not eventually monotone, then we can assume that yi(tk) is a sequence

of minima, so that Hi(tk) = 0, and this case is treated as the case i ∈ I1. These
arguments show that U = 0, and the proof is complete.

Remark 3.9. As referred to in the introduction, clearly the above proof applies to
systems (1.4). In fact, with the terms

aij

∫ ∞

0
Kij(s)xj(t − s) ds and ci

∫ ∞

0
Gi(s)ui(t − s) ds
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replaced, respectively, by the more general linearities

aij

∫ ∞

0
xj(t − s) dηij(s) and ci

∫ ∞

0
ui(t − s) dνi(s),

where ηij , νi are normalized bounded variation functions and νi are non-decreasing,
we use (2.3) instead of (2.2), the estimates (3.20) are replaced by∣∣∣∣aij

∫ ∞

0
yj(tk − s) dηij(s)

∣∣∣∣ � |aij |
∫ ∞

0
g(−s)

|yj(tk − s)|
g(−s)

d|ηij(s)|

� (1 + δ)|aij |‖ytk,j‖g, i, j = 1, . . . , n,

the limit ν is now given by ν =
∫ ∞
0 ψi(−s) dνi(s), and all the other arguments are

valid.

With the usual notation of

aij = a+
ij − a−

ij , where a+
ij = max{aij , 0} and a−

ij = max{−aij , 0},

we define
M−

0 = diag(μ1, . . . , μn) − A−, where A− = [a−
ij ]. (3.24)

Note that M−
0 � M̂0, and hence, in general, imposing that M−

0 is a non-singular
M-matrix is weaker than requiring that M̂0 is a non-singular M-matrix. We now
give sufficient conditions for the dissipativeness of (1.1), improving lemma 3.6

Theorem 3.10. If M−
0 is a non-singular M-matrix, then (1.1) is dissipative, that

is, there exists K > 0 such that lim supt→∞ xi(t) � K, lim supt→∞ ui(t) � K,
1 � i � n, for all solutions (x(t), u(t)) of (1.1) with initial conditions (1.2).

Proof. A solution (x(t), u(t)) of (1.1) with initial condition (x0, u0) = (ϕ, ψ) ∈ BC+
0

satisfies

x′
i(t) � xi(t)

(
bi − μixi(t) +

n∑
j=1

a−
ij

∫ ∞

0
Kij(s)xj(t − s) ds

)
,

u′
i(t) = −eiui(t) + dixi(t),

⎫⎪⎪⎬
⎪⎪⎭ i = 1, 2, . . . , n.

Let (X(t), U(t)) be the solution of the system

X ′
i(t) = Xi(t)

(
bi − μiXi(t)

+
n∑

j=1

a−
ij

∫ ∞

0
Kij(s)Xj(t − s) ds

)
,

U ′
i(t) = −eiUi(t) + diXi(t),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

i = 1, 2, . . . , n, (3.25)

with the initial conditions X0 = ϕ and U(0) = ψ(0). Since (3.25) is cooperative
or, in other words, it satisfies the quasi-monotonicity condition in [23, ch. 5], by
comparison results, it follows that x(t) � X(t), u(t) � U(t). From [5, corollary 4.1],
(X(t), U(t)) → (X∗, U∗) as t → ∞, where (X∗, U∗) is the saturated equilibrium
of (3.25). Thus, the solutions (x(t), u(t)) of the initial-value problems (1.1), (1.2)
satisfy lim supt→∞ xi(t) � X∗

i , lim supt→∞ ui(t) � U∗
i , 1 � i � n.
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Our setting contemplates all the possibilities for the signs of the coefficients bi,
aij in (3.1). In biological terms, the most interesting cases are, however, (i) aij � 0
for i �= j (competitive systems), (ii) aij � 0 for i �= j (cooperative systems), (iii)
aij > 0, aji < 0 (predator–prey systems) if species i is a prey for the predator
species j, i �= j. On the other hand, the existence of a positive equilibrium depends
heavily on the coefficients bi and can be studied in more detail by using Cramer’s
rule. Nevertheless, a criterion for cooperative systems is given here.

Theorem 3.11. Consider (1.1) with bi > 0 and aij � 0 for all i �= j. If M is a
non-singular M-matrix, then there exists a unique positive equilibrium of (1.1).

Proof. Define b = (b1, . . . , bn). Since M is a non-singular M-matrix, M−1 � 0 [1].
This implies that (M−1b)i = 0 if and only if the ith line of M−1 is 0, which is
not possible. Therefore, x∗ := M−1b is a positive vector and (x∗, u∗), with u∗

i =
(di/ei)x∗

i , 1 � i � n, is a positive equilibrium of (1.1).

4. Extinction and stability

For the results in this section, it is important to consider (1.1) with Kij non-
negative, or the more general system (1.4) with ηij non-decreasing, i, j = 1, . . . , n.
Straightforward generalizations for the situation of Kij in (1.1) changing signs or ηij

non-monotone on [0,∞) can, however, be derived (see [5] for the case of uncontrolled
Lotka–Volterra models).

We now seek better sufficient conditions for extinction for either all or part of
the populations. Together with the controlled Lotka–Volterra system (1.1), consider
the ODE (3.5), and write (3.5) in the form

X ′(t) = F (X(t))

for X(t) = (x1(t), . . . , xn(t), u1(t), . . . , un(t)).
Define λi = μi + (cidi/ei). If X∗ = (x∗, u∗) = (x∗

1, . . . , x
∗
n, u∗

1, . . . , u
∗
n) is an

equilibrium of (3.5), then

DF (X∗) =
[
Df(x∗) −C(x∗)

D −E

]
,

where C(x∗) = diag(c1x
∗
1, . . . , cnx∗

n), D = diag(d1, . . . , dn), E = diag(e1, . . . , en),
and

∂fi

∂xi
(x∗) = bi − λix

∗
i −

n∑
j=1

aijx
∗
j − (μi + aii)x∗

i ,

∂fi

∂xj
(x∗) = −aijx

∗
i if i �= j.

Note that (∂fi/∂xi)(x∗) = −(μi + aii)x∗
i if x∗

i > 0, otherwise (∂fi/∂xi)(x∗) =
bi −

∑
j �=i aijx

∗
j � 0 for a saturated equilibrium X∗ with x∗

i = 0.
For the trivial equilibrium, we have C(0) = 0, and hence, the spectrum of DF (0)

is σ(DF (0)) = {b1, . . . , bn,−e1, . . . ,−en}. We conclude, therefore, that 0 is a stable
equilibrium for the linearization of (3.5) at 0 (which is also the linearization of (1.1))
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if and only if bi � 0, 1 � i � n, and the introduction of the controls does not change
its stability.

Let M be a P-matrix. If bi � 0, 1 � i � n, then 0 is the saturated equilibrium.
Conversely, if bi > 0 for some i, then DF (0) is unstable and 0 is not the saturated
equilibrium. In the latter case, we have seen that (1.1) is dissipative if M−

0 is a non-
singular M-matrix; there then exists a compact global attractor [12, theorem 3.4.8],
which, however, need not be the saturated equilibrium. When 0 is saturated, rather
than using theorem 3.8, the next result provides a better criterion for extinction of
all populations.

Theorem 4.1. Assume that M is a P-matrix. The equilibrium 0 is the saturated
equilibrium of (1.1) if and only if bi � 0 for 1 � i � n. In this case, if M−

0 is
an M-matrix, where M−

0 is defined as in (3.24), then the equilibrium 0 of (1.1) is
globally attractive.

Proof. Since M−
0 is an M-matrix, for any arbitrarily small δ0 > 0 consider a positive

vector η = (η1, . . . , ηn) such that (M−
0 +δ0In)η > 0 [8]. Let (x(t), u(t)) be a solution

of (1.1). After a scaling xi 	→ x̄i = η−1
i xi, ui 	→ ūi = η−1

i ui, 1 � i � n, and dropping
the bars for the sake of simplicity, we may suppose that (x(t), u(t)) is a solution
of (1.1) and that (M−

0 + δ0In)η > 0 with η = (1, . . . , 1). Next, choose δ > 0 small
and g satisfying (g1)–(g3) and (2.2), with

δ0 + μi − (1 + δ)
n∑

j=1

a−
ij > 0, 1 � i � n. (4.1)

Define Li = lim supt→∞ xi(t) and U = max1�i�n Li. For the sake of contradiction,
assume that U > 0 and choose i ∈ {1, . . . , n} such that Li = U . Consider a
sequence (tk) with tk → ∞, x′

i(tk) → 0, xi(tk) → U as k → ∞. We now argue as
in the proof of theorem 3.8, omitting some of the details. For some subsequence of
(xtk

, utk
), still denoted by (xtk

, utk
), there is (φ, ψ) ∈ BC+(R2n) ⊂ UCg(R2n) such

that xtk
→ φ, utk

→ ψ and ‖φ‖g = U = φi(0). Next, from (1.3) and the fact that
ψi(0) = di

∫ ∞
0 e−eiuφi(−u) du > 0, we obtain

ν := lim
k→∞

∫ ∞

0
Gi(s)ui(tk − s) ds =

∫ ∞

0
Gi(s)ψi(−s) ds > 0.

Choose δ0 > 0 small and k large so that ci

∫ ∞
0 Gi(s)ui(tk − s) ds > δ0U . Since

bi � 0, for k large estimates as in (3.9) yield

x′
i(tk) � xi(tk)

(
bi − μixi(tk) +

n∑
j=1

a−
ij

∫ ∞

0
Kij(s)xj(tk − s) ds

− ci

∫ ∞

0
Gi(s)ui(tk − s) ds

)

� −xi(tk)
(

μixi(tk) −
n∑

j=1

a−
ij‖xtk,j‖g

∫ ∞

0
g(−s)Kij(s) ds + δ0U

)

� −xi(tk)
(

μixi(tk) − (1 + δ)
n∑

j=1

a−
ij‖xtk,j‖g + δ0U

)
.
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By letting k → ∞ we obtain

0 �
[
δ0 + μi − (1 + δ)

n∑
j=1

a−
ij

]
U,

which contradicts (4.1). Hence U = 0, and the proof is complete.

Consider now the case of a saturated equilibrium (x∗, u∗) �= 0 of (1.1) with
x∗ ∈ ∂(Rn

+). By reordering the variables, write x∗ = (x∗
1, . . . , x

∗
p, 0, . . . , 0) with

x∗
i > 0 for 1 � i � p, where 1 < p < n. Here, the attractivity of (x∗, u∗) means the

extinction of the populations xi(t), p+1 � j � n, while the first p populations xi(t)
stabilize with time at the ‘saturated’ value x∗

i . For this situation, the next result
improves theorem 3.8. Its statement includes theorems 3.8 and 4.1 as particular
cases.

Theorem 4.2. Assume that M is a P-matrix, let (x∗, u∗) be the saturated equi-
librium of (1.1) and suppose that x∗ = (x∗

1, . . . , x
∗
p, 0, . . . , 0) (0 � p � n). Write

n1 = p, n2 = n − p and the matrices A = [aij ], |A| = [|aij |] and A− = [a−
ij ] in the

form

A =
[
A11 A12

A21 A22

]
, |A| =

[
|A11| |A12|
|A21| |A22|

]
, A− =

[
A−

11 A−
12

A−
21 A−

22

]
,

where Akl, |Akl|, A−
kl are nk × nl matrices for k, l = 1, 2. Define also

M̂11 = diag
(

μ1 − c1
d1

e1
, . . . , μp − cp

dp

ep

)
− |A11|,

M−
22 = diag(μp+1, . . . , μn) − A−

22.

If the matrix

M̂ :=
[

M̂11 −|A12|
−|A21| M−

22

]
(4.2)

is an M-matrix, then (x∗, u∗) is a global attractor for the solutions (x(t), u(t))
of (1.1), (1.2).

Proof. The cases p = n and p = 0 were treated in theorems 3.8 and 4.1, respectively.
Now, consider 0 < p < n. Again, the proof follows along the lines of the proof of
theorem 3.8, so some details are omitted.

Assume that M̂ is an M-matrix. Choose an arbitrarily small δ0 > 0. Since
δ0In + M̂ is a non-singular M-matrix, there is a positive vector η such that (δ0In +
M̂)η > 0. After a scaling xi 	→ x̄i = η−1

i xi, ui 	→ ūi = η−1
i ui, 1 � i � n, and

dropping the bars for the sake of simplicity, we may suppose that η = (1, . . . , 1).
Choose δ > 0 small and g satisfying (g1)–(g3) and (2.2), with

δ0 + μi − ci
di

ei
> (1 + δ)

n∑
j=1

|aij |, 1 � i � n1, (4.3)

δ0 + μi > (1 + δ)
( n1∑

j=1

|aij | +
n∑

j=n1+1

a−
ij

)
, n1 + 1 � i � n. (4.4)
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For i > n1, let αi � 0 be such that bi + αi =
∑n1

j=1 aijx
∗
j and define αi = 0 for

1 � i � n1. We now effect the changes yi(t) = xi(t) − x∗
i , vi(t) = ui(t) − u∗

i for
1 � i � n, so we keep yi(t) = xi(t), vi(t) = ui(t) for n1 + 1 � i � n. Together
with (3.14), we obtain

y′
i(t) = −(yi(t) + x∗

i )Hi(t), 1 � i � n,

where now

Hi(t) = αi + μiyi(t) +
n∑

j=1

aij

∫ ∞

0
Kij(s)yj(t − s) ds

+ ci

∫ ∞

0
Gi(s)vi(t − s) ds, 1 � i � n. (4.5)

Define li and Li as in (3.15) and recall that 0 � −li � Li for i > n1. Set
l = max1�i�n1 li, L = max1�i�n Li. We need to prove that U := max(l, L) = 0.

For any ε > 0 small, if t > 0 is sufficiently large, we have∣∣∣∣aij

∫ ∞

0
Kij(s)yj(t − s) ds

∣∣∣∣ � |aij |(max(lj , Lj) + ε), 1 � i, j � n,∫ ∞

0
Kij(s)yj(t − s) ds � −a−

ij(Lj + ε), n1 + 1 � j � n.

Suppose that U > 0. If U = Li or U = li for some i ∈ {1, . . . , n1}, we choose
a sequence tk → ∞ with y′

i(tk) → 0, yi(tk) → Li, respectively yi(tk) → −li, and
(ytk

, vtk
) → (φ, ψ) ∈ BC ⊂ UCg as k → ∞. If U = li > 0 for some i ∈ {1, . . . , n1}

and yi(t) is eventually monotone, we proceed as in the proof of theorem 3.8 and
easily get a contradiction. Otherwise, (tk) may be chosen such that Hi(tk) = 0.
We argue as in the proof of theorem 3.8 and obtain the estimates (3.21), respec-
tively (3.23) (where now we suppose that ηj = 1 for all j). As in (3.18), we obtain
ν := limk→∞

∫ ∞
0 Gi(s)vi(tk − s) ds > −diLi/ei if yi(tk) → Li, and ν < dili/ei if

yi(tk) → −li, so we may suppose that δ0 > 0 in (4.3) and (4.4) was chosen such
that ciν/Li > −cidi/ei + δ0, respectively ciν/li < cidi/ei − δ0. By taking limits
k → ∞, ε0 → 0+, we derive

0 �
(

μi − (1 + δ)
n∑

j=1

|aij |
)

U + ciν,

in contradiction to (4.3).
If U = Li for some i ∈ {n1 + 1, . . . , n}, we choose a sequence tk → ∞ with

yi(tk) → Li, y′
i(tk) → 0, proceed as above and obtain

0 �
(

αi + μi − (1 + δ)
n1∑

j=1

|aij | − (1 + δ)
n∑

j=n1+1

a−
ij

)
U + ciν, (4.6)

where now 0 � φi(−s) � U , φi(0) = U > 0, and thus di

∫ ∞
0 e−eisφi(−s) ds > 0,

which implies that ν := limk→∞
∫ ∞
0 Gi(s)vi(tk − s) ds > 0. The above estimate,

therefore, contradicts (4.4).

https://doi.org/10.1017/S0308210513001194 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001194


320 T. Faria and Y. Muroya

For equilibria on the boundary of R
n
+, and depending on the sizes and signs of

coefficients bi, one might be able to slightly improve the conditions in theorem 4.2.

Theorem 4.3. Assume that M is a P-matrix, let (x∗, u∗) be the saturated equilib-
rium of (1.1), and suppose that x∗ = (x∗

1, . . . , x
∗
p, 0, . . . , 0) (1 � p < n). As well as

the notation in the statement of theorem 4.2, we further define A21 = [ãij ], where

ãij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a−
ij if bi +

p∑
j=1

a−
ijx

∗
j � 0,

|aij | if bi +
p∑

j=1

a−
ijx

∗
j > 0,

i = p + 1, . . . , n, j = 1, . . . , p. (4.7)

If

M̂ :=
[

M̂11 −|A12|
−A21 M−

22

]
(4.8)

is an M-matrix, then (x∗, u∗) is a global attractor for the solutions (x(t), u(t))
of (1.1), (1.2). In particular, if A21 � 0, bi � 0 for p < i � n, and M̂11 and
M−

22 are M-matrices, then (x∗, u∗) is globally attractive.

Proof. Set p = n1, n − p = n2, yi(t) = xi(t) − x∗
i , vi(t) = ui(t) − u∗

i for 1 � i � n.
For each i > n1, the function Hi(t) in (4.5) is given by

Hi(t) = αi + μiyi(t) +
n1∑

j=1

aij

∫ ∞

0
Kij(s)yj(t − s) ds

+
n∑

j=n1+1

aij

∫ ∞

0
Kij(s)yj(t − s) ds + ci

∫ ∞

0
Gi(s)vi(t − s) ds

� αi −
n1∑
i=1

a+
ijx

∗
j + μiyi(t) −

n∑
j=1

a−
ij

∫ ∞

0
Kij(s)yj(t − s) ds

+ ci

∫ ∞

0
Gi(s)vi(t − s) ds

= −
(

bi +
n1∑

j=1

a−
ijx

∗
j

)
+ μiyi(t) −

n∑
j=1

a−
ij

∫ ∞

0
Kij(s)yj(t − s) ds

+ ci

∫ ∞

0
Gi(s)vi(t − s) ds. (4.9)

For each i > n1, we can use the arguments in the above proof with the right-hand
side of (4.5) replaced by the above estimate if (bi +

∑n1
j=1 a−

ijx
∗
j ) � 0.

Now, if A21 � 0 and bi � 0 for p < i � n, the matrix in (4.8) becomes

M̂ =
[
M̂11 −|A12|

0 M−
22

]
,

which is an M-matrix if and only if M̂11 and M−
22 are M-matrices.

In applications, the following corollary is also useful.
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Corollary 4.4. Assume that M is a P-matrix, let (x∗, u∗) be the unique saturated
equilibrium of (1.1), and let hi : [0,∞) → R be continuous functions with hi(t) → 0
as t → ∞ (1 � i � n). Under the assumptions of theorems 3.8, 4.2 or 4.3, all
solutions (x(t), u(t)) of

x′
i(t) = xi(t)

(
bi − μixi(t)

−
n∑

j=1

aij

∫ ∞

0
Kij(s)xj(t − s) ds

− ci

∫ ∞

0
Gi(s)ui(t − s) ds − hi(t)

)
,

u′
i(t) = −eiui(t) + dixi(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i = 1, 2, . . . , n (4.10)

with initial conditions (1.2) satisfy (x(t), u(t)) → (x∗, u∗) as t → ∞.

Proof. The result follows by repeating the above proofs with Hi(t) in (3.19), (4.5)
or (4.9) replaced by Hi(t) := Hi(t) + hi(t), i = 1, . . . , n.

Example 4.5. We introduce a delayed control in the single population model pro-
posed by Volterra and studied by Miller [18]:

x′(t) = x(t)
(

a − bx(t) −
∫ t

c

f(t − s)x(s) ds −
∫ t

c

g(t − s)u(s) ds

)
,

u′(t) = −eu(t) + dx(t),

⎫⎪⎬
⎪⎭ (4.11)

where c = 0 or c = −∞, a, b, d, e > 0, the memory functions f : [0,∞) → R,
g : [0,∞) → [0,∞) are continuous and in L1[0,∞) and g(0) > 0. For c = −∞,
(4.11) is the autonomous system

x′(t) = x(t)
(

a − bx(t) −
∫ ∞

0
f(s)x(t − s) ds −

∫ ∞

0
g(s)u(t − s) ds

)
,

u′(t) = −eu(t) + dx(t),

whereas for c = 0 (4.11) takes the form

x′(t) = x(t)
(

a − bx(t) −
∫ t

0
f(s)x(t − s) ds −

∫ t

0
g(s)u(t − s) ds

)
,

u′(t) = −eu(t) + dx(t).

From theorem 3.8 (see also remark 3.9) and corollary 4.4, if b � (d/e)
∫ ∞
0 g(s) ds +∫ ∞

0 |f(s)| ds, then, for any positive solution (x(t), u(t)) of (4.11) with either c = 0
or c = −∞, we have x(t) → x∗ = a[b + (d/e)

∫ ∞
0 g(s) ds +

∫ ∞
0 f(s) ds]−1 as t → ∞.

When a predator–prey system of the form (1.1) is considered, the next result
provides less restrictive sufficient conditions for the extinction of all the predator
populations.

Theorem 4.6. Assume that M is a P-matrix, let (x∗, u∗) be the saturated equi-
librium of (1.1), and suppose that x∗ = (x∗

1, . . . , x
∗
p, 0, . . . , 0) (1 � p < n). With
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the notation of theorem 4.2, assume that A12 � 0, A21 � 0. If M̂11, M−
22 are

M-matrices, then (x∗, u∗) is a global attractor for the solutions (x(t), u(t)) of sys-
tem (1.1), (1.2).

Proof. Write n1 = p, n2 = n − p. Let (x(t), u(t)) be a positive solution of (1.1),
and set yi(t) = xi(t) − x∗

i , vi(t) = ui(t) − u∗
i for 1 � i � n1, and yi(t) = xi(t),

vi(t) = ui(t) for n1 + 1 � i � n.

Claim 4.7. lim supt→∞ xi(t) � x∗
i for i = 1, . . . , n1.

With A12 � 0, together with (3.14), we get

y′
i(t) � −(yi(t) + x∗

i )
(

μiyi(t) −
n1∑

j=1

|aij |
∫ ∞

0
Kij(s)yj(t − s) ds

+ ci

∫ ∞

0
Gi(s)vi(t − s) ds

)

for i = 1, 2, . . . , n1. Fix any δ0 > 0 small. With M̂11 an M-matrix, and after a
scaling of the variables, we may suppose that (δ0In1 + M̂11)η > 0 for the positive
vector η = (1, . . . , 1) ∈ R

n1 . Define Li = lim supt→∞ yi(t), U = max1�i�n1 Li. We
need to prove that U � 0.

Suppose that U > 0. As for the estimate (3.20), for any ε > 0 the definition of
U implies that

∫ ∞
0 Kij(s)yj(t − s) ds � (U + ε) for t > 0 large and j = 1, . . . , n1.

Applying the proof of theorem 3.8, it is clear that we shall get a contradiction, as
in (3.22).

Claim 4.8. lim supt→∞
∫ ∞
0 Kij(s)yj(t − s) ds � 0 for j = 1, . . . , n1, i = 1, . . . , n.

Fix j ∈ {1, . . . , n1}, i ∈ {1, . . . , n} and δ > 0. Since yj(t) is uniformly bounded
in R, there is T1 > 0 such that

∫ ∞
T1

Kij(s)|yj(t − s)| ds � δ/2. From claim 4.7,
lim supt→∞ yj(t) � 0, and hence there is T2 � T1 such that yj(t) < δ/2 for each
t � T2. Thus, for t � 2T2, we have

∫ ∞

0
Kij(s)yj(t − s) ds �

∫ T2

0
Kij(s)yj(t − s) ds + δ/2 < δ.

This proves claim 4.8

Claim 4.9. limt→∞ xi(t) = 0 for i = n1 + 1, . . . , n.

For each i ∈ {n1 + 1, . . . , n}, we only need to prove that lim supt→∞ xi(t) � 0.
Together with the equations u′

i(t) = −eixi(t) + diui(t), we now obtain

x′
i(t) = xi(t)

(
bi − μixi(t) −

n∑
j=1

aij

∫ ∞

0
Kij(s)xj(t − s) ds

− ci

∫ ∞

0
Gi(s)ui(t − s) ds

)

https://doi.org/10.1017/S0308210513001194 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001194


Lotka–Volterra systems with infinite delay and control 323

� xi(t)
(

βi − μixi(t) −
n∑

j=n1+1

aij

∫ ∞

0
Kij(s)xj(t − s) ds

− ci

∫ ∞

0
Gi(s)ui(t − s) ds − hi(t)

)
,

where βi := bi −
∑n1

j=1 aijx
∗
j � 0 (by the definition of a saturated equilibrium) and

hi(t) =
n1∑

j=1

aij

∫ ∞

0
Kij(s)yj(t − s) ds, i = n1 + 1, . . . , n.

From claim 4.8, and since A21 � 0, we have lim supt→∞(−hi(t)) � 0 for i =
n1 +1, . . . , n. From corollary 4.4 (see also the proof of theorem 4.2), the hypothesis
that M−

22 is an M-matrix implies claim 4.9.

Claim 4.10. limt→∞ xi(t) = x∗
i , limt→∞ ui(t) = u∗

i for i = 1, . . . , n1.

We write

y′
i(t) = −(yi(t) + x∗

i )
(

μiyi(t) +
n1∑

j=1

aij

∫ ∞

0
Kij(s)yj(t − s) ds

+ ci

∫ ∞

0
Gi(s)vi(t − s) ds + hi(t)

)
,

v′
i(t) = −eivi(t) + diyi(t),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

i = 1, 2, . . . , n1,

where now

hi(t) =
n∑

j=n1+1

aij

∫ ∞

0
Kij(s)xj(t − s) ds, i = 1, . . . , n1.

Applying the same arguments as those used in the proof of claim 4.8, where now we
use claim 4.9 instead of claim 4.7, we get limt→∞ hi(t) = 0, 1 � i � n1. Claim 4.10
again follows from corollary 4.4.

It is straightforward to apply the above results to uncontrolled systems (3.1),
which, in the case of saturated equilibria on ∂(Rn

+), lead to better criteria than the
ones in [5], as stated below.

Corollary 4.11. Assume that M0 is a P-matrix, let x∗ be the saturated equilib-
rium of (3.1), and suppose that x∗ = (x∗

1, . . . , x
∗
p, 0, . . . , 0) (1 � p < n). With the

same notation as that used in the statement of theorem 4.2, define also

M̂0 :=
[
M̂0,11 −|A12|
−A21 M−

0,22

]
,

where

M̂0,11 = diag(μ1, . . . , μp) − |A11|, M−
0,22 = diag(μp+1, . . . , μn) − A−

22

and A21 = [ãij ] is given by (4.7). If M̂0 is a non-singular M-matrix, then x∗ is a
global attractor for all positive solutions x(t) of (3.1). Moreover, if either (i) A21 �
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0, bi � 0 for p < i � n, or (ii) A12 � 0, A21 � 0, and M̂0,11 and M−
0,22 are

non-singular M-matrices, then x∗ is a global attractor for the positive solutions
of (3.1).

5. The two-species Lotka–Volterra system

As an application of the results in the previous sections, we now analyse with some
attention the dynamics for a planar controlled Lotka–Volterra system with delays,
without any special constraints on the signs of the Malthusian coefficients bi and
intra- and inter-specific coefficients aij . For the sake of simplicity, we consider a
planar system (1.1) with discrete delays, but the analysis below can be performed
for infinite distributed delays as well.

Consider the system

x′
1(t) = x1(t)(b1 − μ1x1(t) − a11x1(t − τ11) − a12x2(t − τ12) − c0

1u1(t)

− c1
1u1(t − σ1)),

u′
1(t) = −e1u1(t) + d1x1(t),

x′
2(t) = x2(t)(b2 − μ2x2(t) − a21x1(t − τ21) − a22x2(t − τ22) − c0

2u2(t)

− c1
2u2(t − σ2)),

u′
2(t) = −e2u2(t) + d2x2(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

where μi, c0
i , di, ei are positive constants, c1

i � 0, bi, aij ∈ R, τij , σi � 0, i, j = 1, 2.
Define ci = c0

i + c1
i , i = 1, 2. With the above notation, the community matrix is

M =
[
λ1 + a11 a12

a21 λ2 + a22

]
, where λi = μi +

cidi

ei
, i = 1, 2.

In what follows, we suppose, in addition, that M is a P-matrix, i.e.

det M > 0 and λi + aii > 0, i = 1, 2. (5.2)

There are three possible equilibria on the boundary of R
4
+: the trivial equilibrium

E0 = (0, 0, 0, 0), E1 = (b1/(λ1 + a11), b1d1/((λ1 + a11)e1), 0, 0) if b1 > 0, and E2 =
(0, 0, b2/(λ2 + a22), b2d2/((λ2 + a22)e2)) if b2 > 0. There is a positive equilibrium
E∗ = (x∗

1, u
∗
1, x

∗
2, u

∗
2), where

x∗
1 =

b1(λ2 + a22) − a12b2

det M
, x∗

2 =
b2(λ1 + a11) − a21b1

det M
,

u∗
i =

di

e1
x∗

i , i = 1, 2,

if and only if
b1(λ2 + a22) > a12b2, b2(λ1 + a11) > a21b1. (5.3)

As already observed, the trivial equilibrium is saturated if and only if b1, b2 � 0.
In this case, 0 is globally attractive if μi−a−

ii � 0 (i = 1, 2) and (μ1−a−
11)(μ2−a−

22) �
a−
12a

−
21. If bi > 0, then Ei is an equilibrium on the boundary of the positive cone,

i = 1, 2.
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Next we give a detailed analysis of the absolute stability, and lack of it, for the
case of b1, b2 positive. The case b2 � 0 < b1 will be studied afterwards.

Let b1, b2 > 0, so that the equilibria E0, E1, E2 always exist, with E0 unstable.
At least one of the conditions in (5.3) is satisfied; otherwise, we get a12b2 � b1(λ2 +
a22) > 0, a21b1 � b2(λ1 + a11) > 0 and [(λ1 + a11)(λ2 + a22) − a12a21]b1b2 =
b1b2 det M � 0, which is not possible.

We now study the stability of E1. Clearly, a similar analysis can be performed
for E2. The characteristic equation for the linearized equation about the equilibrium
E1 = (X1, (d1/e1)X1, 0, 0) is given by

det Δ(λ) = 0 for Δ(λ) = λI4 +
[
N(λ) E(λ)

0 C

]
(5.4)

(In is the n × n identity matrix), where X1 = b1/(λ1 + a11) and

N(λ) =
[
X1(μ1 + a11e−λτ11) X1(c0

1 + c1
1e

−λσ1)
−d1 e1

]
, E(λ) =

[
X1a12e−λτ12 0

0 0

]
,

C =
[
−(b2 − a21X1) 0

−d2 e2

]
.

If b2(λ1 + a11) > a21b1, then b2 − a21X1 > 0 and E1 is unstable. If b2(λ1 + a11) �
a21b1, the matrix −C is stable, and therefore E1 is the unique saturated equilibrium.
In fact, in this situation, there is no positive equilibrium, but, as already observed,
the condition b1(λ2 + a22) > a12b2 must hold, and from a dual analysis we would
conclude that E2 is unstable.

When E1 is the unique saturated equilibrium, conditions (5.2) are not, however,
sufficient to conclude that E1 is a global attractor of all positive solutions for all
sizes of the delays τ11, σ1. In fact, the characteristic roots of (5.4) are λ = −e2 < 0,
λ = b2 − a21X1 � 0 and the solutions of h(λ) = 0, where

h(λ) = P (λ) + e−λτ11Q(λ) + X1d1c
1
1e

−λσ1 (5.5)

with P (λ) = λ2 + λ(e1 + X1μ1) + X1(μ1e1 + d1c
0
1), Q(λ) = a11X1(λ + e1). The

equation h(λ) = 0 is the characteristic equation for the system

x′(t) = − X1[μ1x(t) + a11x(t − τ11) + c0
1u(t) + c1

1u(t − σ1)],
u′(t) = − [e1u(t) − d1x(t)].

}
(5.6)

With τ11, σ1 = 0, the solutions λ of h(λ) are the eigenvalues of the matrix

−N(0) = −
[
X1(μ1 + a11) X1c1

−d1 e1

]
,

which has det(−N(0)) = X1(λ1+a11)e1 > 0 (from (5.2)) and trace T0 := −X1(μ1+
a11) − e1. If T0 � 0, then E1 is stable as an equilibrium of (5.6) with τ11, σ1 = 0,
otherwise, E1 is unstable. It is particularly difficult to study a second-order charac-
teristic equation with two delays such as (5.5) (see, for example, [2,26] and references
therein). For instance, fixing σ1 = 0, the following situations are possible: either
(5.6) is stable for all τ � 0, or its stability changes once or at most a finite number
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of times as τ11 increases and it eventually becomes unstable [4]. In the latter case,
there is τ∗ > 0 such that, for τ11 > τ∗, although E1 is saturated, it also becomes
unstable as a solution to (5.1). Now, assume that μ1 − |a11| − c1(d1/e1) � 0. The
trace T0 of −N(0), then, is always negative, and hence E1 is asymptotically stable
for (5.6) with τ11, σ1 = 0. Moreover, the matrix

N̂(0) =
[
X1(μ1 − |a11|) −X1c1

−d1 e1

]

has det N̂(0) = X1e1(μ1 − |a11| − c1(d1/e1)) � 0 and has trace T̂ 0 = X1(μ1 −
|a11|) + e1 > 0, and hence N̂(0) is an M-matrix [8]. By [6], it follows that (5.6)
is exponentially stable for all delays τ11, σ1 > 0. By theorem 4.2, E1 is the global
attractor of all positive solutions of (5.1) if

M̂ =

⎡
⎣μ1 − |a11| − c1

d1

e1
−|a12|

−a21 μ2 − a−
22

⎤
⎦

is an M-matrix, or, in other words,

μ1 − |a11| − c1
d1

e1
� 0, μ2 − a−

22 � 0,(
μ1 − |a11| − c1

d1

e1

)
(μ2 − a−

22) � |a12|a21.

⎫⎪⎪⎬
⎪⎪⎭ (5.7)

Assume now that (5.3) holds, so that the positive equilibrium E∗ exists. For the
linearized equation about E∗, written as

X ′(t) = −[DX(t) + L(Xt)],

where D = diag(x∗
1μ1, e1, x

∗
2μ2, e2), the characteristic equation is given by

det Δ(λ) := λI4 + D + L(eλ·I4) = 0,

and similar computations to the ones above lead to

D + L(eλ·I4) =
[
N1(λ) E1(λ)
E2(λ) N2(λ)

]
, (5.8)

where

Ni(λ) =
[

x∗
i (μi + aiie−λτii) x∗

i (c
0
i + c1

i e
−λσi)

−di ei

]
,

Ei(λ) =
[

x∗
i aije−λτij 0

0 0

]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

i, j = 1, 2, j �= i.

One can easily check that det Δ(0) = det(D + L(I4)) = x∗
1x

∗
2e1e2 det M , and thus

det Δ(0) > 0 since M is a P-matrix. As for the study of the stability of E1, even
if E∗ is asymptotically stable for the corresponding ODE system obtained by taking
all the delays equal to 0 in (5.1), the positive equilibrium E∗ of (5.1) might become
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unstable as the delays increase. In fact, by letting c1, c2 → 0+, from (5.8) we obtain
det Δ(λ) → (λ + e1)(λ + e2)h(λ), where now

h(λ) =

∣∣∣∣∣λ + x∗
1(μ1 + a11e−λτ11) x∗

1a12e−λτ12

x∗
2a21e−λτ21 λ + x∗

2(μ2 + a22e−λτ22)

∣∣∣∣∣ .

Choosing, for example, τii = 0 (i = 1, 2) and a12 = 1, a21 = −1, one can see that
it is possible to choose the other coefficients in such a way that (μ1 + a11)x∗

1 =
(μ2 + a22)x∗

2 =: b and x∗
1x

∗
2 =: c > b2. Then, h(λ) = (λ + b)2 + ce−λ(τ12+τ21), which

has roots ±i
√

c − b2 if τ := τ12 + τ21 = τn, where

τn ∈ (0, π) + 2nπ, tan(τn

√
c − b2) =

2b
√

c − b2

c − 2b2 , n = 0, 1, 2, . . . .

In particular, for τ > τ0 and close to τ0, there is a pair of characteristic roots with
positive real parts, and thus the equilibrium becomes unstable. Moreover, (5.1) has
a sequence of Hopf bifurcations at τ = τn, n = 0, 1, 2, . . . [24]. However, if

M̂ =

⎡
⎢⎣μ1 − |a11| − c1

d1

e1
−|a12|

−|a21| μ2 − |a22| − c2
d2

e2

⎤
⎥⎦

is an M-matrix, we have the conditions(
μ1 − |a11| − c1

d1

e1

)(
μ2 − |a22| − c2

d2

e2

)
� |a12a21|,

μi − |aii| − cidiei � 0, i = 1, 2,

⎫⎪⎬
⎪⎭ (5.9)

and from theorem 3.8 we conclude that the positive equilibrium E∗ is globally
attractive for all sizes of delays τij , σi.

As an application of the use of the controls, in the example below we change the
position of the globally attractive equilibrium from the boundary to the interior
of R

2
+, recovering one of the species otherwise condemned to extinction.

Example 5.1. Consider the following uncontrolled system with n = 2 and, for
example, b1 = 1, b2 = 1

3 , μ1 = μ2 = 1, a11 = a22 = a21 = 1
2 , a12 = 1

8 :

x′
1(t) = x1(t)(1 − x1(t) − 1

2x1(t − τ11) − 1
8x2(t − τ12)),

x′
2(t) = x2(t)( 1

3 − x2(t) − 1
2x1(t − τ21) − 1

2x2(t − τ22)).

With the above notation, we have

M0 =

[
3
2

1
8

1
2

3
2

]
, M̂0 =

[
1
2 − 1

8

− 1
2

1
2

]
.

The saturated equilibrium is (X1, 0) = ( 2
3 , 0). Furthermore, detM0 > 0 and M̂0 is

a non-singular M-matrix, hence, from [5], we derive that (X1, 0) is GAS. We now
introduce the controls in order to recover the x2(t) population that otherwise would
become extinct with time. Clearly, for any choice of positive coefficients ci, di, ei,
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i = 1, 2, conditions (5.3) hold, and therefore the controlled system (5.1) with the
above coefficients has a positive equilibrium E∗. Now, if we choose, for example,
αi := ci(di/ei) � 1

4 , i = 1, 2, we have that

M̂ =

[
1
2 − α1 − 1

8

− 1
2

1
2 − α2

]

is an M-matrix. Invoking theorem 3.8, we get that E∗ is a global attractor of all
positive solutions.

Now, suppose that b2 � 0 < b1 and a21 � 0. Clearly, (5.3) fails to be true, E1
is the saturated equilibrium, and, by theorem 4.3, E1 is a global attractor of all
positive solutions of (5.1) if

μ1 − |a11| − c1
d1

e1
� 0, μ2 − a−

22 � 0. (5.10)

Next, consider a typical predator–prey system such as (5.1), where b2 < 0 < b1
and a12 > 0, a21 < 0. In the absence of the positive equilibrium, which amounts
to having b2(λ1 + a11) � a21b1, E1 is the saturated equilibrium. Now, using theo-
rem 4.6, if (5.10) is satisfied, then again E1 is a global attractor. In this framework,
we again illustrate how the controls can be used to change the position of a globally
attractive saturated equilibrium.

Example 5.2. For the particular case of b1 = 1, b2 = − 5
4 , μ1 = μ2 = 1, a11 =

a22 = 1
2 , a12 = 1

8 , a21 = −2, we obtain the predator–prey system without controls

x′
1(t) = x1(t)(1 − x1(t) − 1

2x1(t − τ11) − 1
8x2(t − τ12)),

x′
2(t) = x2(t)(− 5

4 − x2(t) + 2x1(t − τ21) − 1
2x2(t − τ22)),

with community matrix

M0 =
[ 3

2
1
8

−2 3
2

]
.

For this system, (x∗
1, x

∗
2) = ( 53

80 , 1
20 ) is the positive equilibrium. Moreover, since

det M0 > 0 and

M̂0 =
[ 1

2 − 1
8

−2 1
2

]

is an M-matrix, from [5] it follows that (x∗
1, x

∗
2) is globally attractive. We now

introduce the controls, in order to drive the predators to extinction. For the above
chosen coefficients, b2(μ1 + a11 + c1(d1/e1)) � a21b1 if and only if c1(d1/e1) �
1
10 , in which case E1 = (1/( 3

2 + c1(d1/e1)), d1e1/( 3
2e1 + c1d1), 0, 0) is the satu-

rated equilibrium. If we now choose 1
10 � c1(d1/e1) � 1

2 , theorem 4.6 yields that
μ1 − |a11| − c1(d1/e1) � 0, and thus E1 is a global attractor of all positive solutions.

We summarize the above global asymptotic behaviour results as follows.

Proposition 5.3. Consider the system (5.1) and assume that (5.2) holds.

(i) If b1, b2 � 0, then 0 is the saturated equilibrium; in this case, 0 is globally
attractive if μi − a−

ii � 0 (i = 1, 2) and (μ1 − a−
11)(μ2 − a−

22) � a−
12a

−
21.
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(ii) If (5.3) holds, there exists a positive equilibrium that is GAS under the addi-
tional conditions (5.9).

(iii) If b1, b2 > 0 and b2(λ1 +a11) � a21b1, then E1 is the saturated equilibrium; in
this case, E1 is a global attractor of all positive solutions if conditions (5.7)
are satisfied.

(iv) If b2 � 0 < b1 and either (a) a21 � 0 or (b) a12 > 0, a21 < 0, b2(λ1 + a11) �
a21b1, then E1 is the saturated equilibrium; in this case, E1 is a global attractor
of all positive solutions if conditions (5.10) are satisfied.
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