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Abstract
Most community detection methods focus on clustering actors with common features in a network.
However, clustering edges offers a more intuitive way to understand the network structure in many
real-life applications. Among the existing methods for network edge clustering, the majority are algorith-
mic, with the exception of the latent space edge clustering (LSEC) model proposed by Sewell (Journal of
Computational and Graphical Statistics, 30(2), 390–405, 2021). LSEC was shown to have good performance
in simulation and real-life data analysis, but fitting this model requires prior knowledge of the number of
clusters and latent dimensions, which are often unknown to researchers. Within a Bayesian framework,
we propose an extension to the LSEC model using a sparse finite mixture prior that supports automated
selection of the number of clusters. We refer to our proposed approach as the automated LSEC or aLSEC.
We develop a variational Bayes generalized expectation-maximization approach and aHamiltonianMonte
Carlo-within Gibbs algorithm for estimation. Our simulation study showed that aLSEC reduced run time
by 10 to over 100 times compared to LSEC. Like LSEC, aLSEC maintains a computational cost that grows
linearly with the number of actors in a network, making it scalable to large sparse networks. We developed
the R package aLSEC which implements the proposed methodology.

Keywords: Clustering; community detection; network analysis; overfitted mixture model; variational Bayes

1. Introduction
A network consists of actors whose relationships are represented as edges connecting them. By
analyzing the connections between actors and the overall structure of the network, researchers
can gain valuable insights into the phenomenon from which the network arises. Examples
of network applications exist in epidemiology (e.g., studying the spread of infectious disease,
Salathé et al., 2010), social science (e.g., exploring the relationship between social media use and
opinion polarization, Lee et al., 2014, biology e.g., identifying functionally coordinated interac-
tions between proteins, Pereira-Leal et al., 2004), and many other fields. A widely studied topic
in network analysis is community detection, which generally involves partitioning actors into
groups such that actors are densely connected within their groups but sparsely connected with
others (Harenberg et al., 2014). Among the vast amount of methods dedicated to clustering net-
work actors in literature, many employed a model-based approach. Compared to algorithmic
approaches, model-based community detection offers researchers advantages such as the capacity
to quantify the uncertainty of estimates, infer missing data, and make predictions. Some notable
model-based approaches for static networks are the latent position cluster model (Handcock
et al., 2007), stochastic block model (SBM) (Nowicki & Snijders, 2001), degree-corrected SBM
(Karrer & Newman, 2011), and mixed-membership SBM (Airoldi et al., 2008). Relevant methods
for dynamic networks include the stochastic block transition model (Xu, 2015), and the latent
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Network Science 89

space approach to community detection built upon distance and projection models (Sewell &
Chen, 2017).

While most community detection methods focus on clustering actors based on their connec-
tions, there are situations where clustering the edges provides a more intuitive way to characterize
the network structure. For example, actors create friendships within a specific context in social
networks, such as a classroom or workplace. An edge-centric approach to community detection
can shed light on the context and facilitate knowledge about systems of flows in a network (Sewell,
2021). Despite the advantages of intuition and interpretation, few methods have been developed
to cluster a network’s edges. Most have been algorithmic in nature, using reasonable yet ad hoc
approaches (Pereira-Leal et al., 2004; Evans & Lambiotte, 2009; Wu et al., 2010; Ahn et al., 2010).
An exception to this, and the approach we focus on in this paper, is the latent space edge clustering
(LSEC) method proposed by Sewell (2021). This model-based approach aims at finding the unob-
served contexts in which edges form. In the LSEC model, the edges represent units of observation
and are determined stochastically based on latent actor-level features and the latent environment
of the edge contexts. This is in contrast to actor-centric methods where dyads are treated as the
units of observations. That is, actor-centric approachesmodel the probability that actors i and j are
connected (the edge is the random binary variable), whereas edge-centric approaches model the
probability that an edge connects actors i and j (the incident actors are the random polychotomous
variables) (Sewell, 2021).

Despite the promising results in simulation studies and real-world data analyses, the method
has limitations. A challenge in fitting LSEC models is the double model selection problem, where
the number of latent dimensions p and the number of clusters K must be specified beforehand.
Sewell (2021) proposed fitting various models assuming different combinations of possible values
of p and K before using the Akaike Information Criterion (AIC) and the Integrated Completed
Likelihood (ICL) criterion, respectively, to select the optimal model. However, this approach
ignores the uncertainty associated with estimating p and K and can be computationally costly to
implement when considering multiple possible values of p and K. Under a Bayesian framework,
we propose an adjustment for the priors in the LSEC model to simultaneously obtain estimates
for both the number of clusters K and cluster-specific parameters. Even though we assume a
known value of p, our simulation study showed that the penalty for incorrectly specifying p in
our algorithm was minimal in most cases and eliminated the need to pick the correct value of p.

Several methods have been proposed in actor-centric community detection literature to tackle
the challenge of selecting the number of clusters. Within a Bayesian framework, it is possible to
select a prior for the number of components in the finite mixture model and then estimate it
using a reversible jumpMarkov chainMonte Carlo (RJMCMC) sampler (Green, 1995). RJMCMC
suffers from low acceptance rates, making it challenging to implement efficiently in practice
(Stephens, 2000; Green & Hastie, 2009). An alternative is to use a Bayesian non-parametric model
such as the Dirichlet ProcessMixtureModel (DPMM). However, Miller &Harrison (2013) offered
some evidence showing that the posterior of the number of clusters in DPMM was not consis-
tent. Other approaches to estimating the number of clusters include modularity maximization
(Newman, 2006), efficient inference algorithms for mixture of finite mixture models with a prior
on the number of components (Miller & Harrison, 2018; Geng et al., 2019), maximization of the
posterior probability of the number of clusters given the network (Newman&Reinert, 2016), eval-
uation of eigenvalues of matrices associated with the network (Le & Levina, 2015), and hypothesis
testing (Lo et al., 2001).

Unlike clustering the actors of a network, to the authors’ knowledge there have been no prior
attempts to automatically determine the number of clusters when clustering the edges of a net-
work. This paper applies a sparse finite mixture approach to the LSEC model to simultaneously
obtain estimates of the number of clusters and other model variables of interest. We derive a com-
putationally efficient variational Bayes generalized EM algorithm and a gradient-based Monte
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90 H. T. D. Pham and D. K. Sewell

Carlo algorithm for estimation. We show in a simulation study that good estimation performance
is obtained so long as the latent space’s dimension is overspecified. By avoiding the need for a
large number of repeated model fitting for various values of p and K as is necessary using the cur-
rent state-of-the-art method, we reduced the computation time by 10–100 times in our analyses.
Our generalized EM algorithm is efficient with a computational cost that grows linearly with the
number of actors and edges in a network. The R package and code for analyzing the UK faculty
network example in Section 4 can be found online.1

The remainder of this paper is as follows. Section 2 describes our method and estimation algo-
rithm. Section 3 shows the results of our simulation study. Section 4 provides two examples of
applying our method to real network data sets. Finally, Section 5 wraps up the paper with a
discussion on the strengths and limitations of our approach.

2. Methods
2.1 Latent space edge clusteringmodel
The latent space edge clustering model is formulated based on the idea that edges connect actors
who share some characteristics with the same environment where the edges are formed (Sewell,
2021). Sewell explained two scenarios where this phenomenon emerges: relationship forming and
opportunities for diffusion. In the former, the edges are formed between actors who engage in a
joint latent group or environment, thus representing the various latent contexts of network con-
nections. In the latter, the edges create systems of flows, where each system consists of edges that
tend to act cohesively in a diffusion process.

Given a network with n actors and M edges, denote each edge em = (em1, em2). We assume
that the network is unweighted and directed, but the model can also be adapted to undirected
networks. Let K be the number of edge classes and p be the number of latent dimensions. Let
ZM×K be a latent class assignment matrix such that Zmk equals one if the mth edge belongs to
class k and zero otherwise. Let WK×p be a matrix such that each row Wk corresponds to the
latent features of edge class k. Let Un×p,Vn×p be matrices where their respective rows U i and V i
denote the latent sending and receiving features of actor i. Lastly, let S= (S1, . . . , Sn) and R=
(R1, . . . , Rn) represent actors’ specific overall propensities to send and receive edges respectively.
The LSEC model proposed by Sewell (2021) is given as

f (E |Z)=
M∏

m=1

K∏
k=1

[
f (em|Zmk = 1)

]Zmk

=
M∏

m=1

K∏
k=1

[f (em1|Zmk = 1)f (em2|em1, Zmk = 1)]Zmk ,

where

f (em1 = i|Zmk = 1)= eSi+U iW′
k

guk
,

f (em2 = j|em1 = i, Zmk = 1)=

⎧⎪⎨
⎪⎩

eRj+VjW′
k

gvk−eRi+ViW′
k
if i �= j

0 otherwise,
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guk =
n∑
i=1

eSi+U iW′
k ,

gvk =
n∑
j=1

eRj+V jW′
k . (1)

The model is always conditioning on (S, R,U ,V ,W), which are omitted here for lack of space.
Conditioning on the latent features of the actors and latent edge classes, the edges are independent.
The conditional distribution of the probability of an edge m connecting actors i and j is a prod-
uct of two multinomial distributions, where guk and gvk are the normalizing constants. The first
multinomial distribution corresponds to the probability of choosing the origin of a directed edge
among the n actors. Conditioning on the choice of the origin, the second distribution corresponds
to the probability of selecting the destination of the directed edge among the remaining n− 1
actors. The formulation of the LSEC model implies that an edge in a specific environment will be
more likely to be incident on certain actors. Those actors not only have high general propensity to
send/receive edges, which is captured via (S, R), but also share some features with the edge’s envi-
ronment. The dot product between the actors’ latent features (U ,V) and the edges’ latent features
(W) reflects the latter phenomenon.

We adopt a Bayesian approach to estimation, using the same priors as suggested in Sewell
(2021) for {U ,V , S, R,W, τU , τV , τS, τR}, which are given by

U i
iid∼ N(0, τ−1

U Ip), τU ∼ �(aU/2, bU/2),

V i
iid∼ N(0, τ−1

V Ip), τV ∼ �(aV/2, bV/2),

Si
iid∼ N(0, τ−1

S ), τS ∼ �(aS/2, bS/2),

Ri
iid∼ N(0, τ−1

R ), τR ∼ �(aR/2, bR/2),

Wk
iid∼ N(0, Ip), (2)

where N(a, B) is a multivariate normal distribution with mean vector a and covariance matrix B,
�(a, b) is a gamma distribution with shape a and rate b, and Ip is a p-dimensional identity matrix.
The identity matrix is used as the covariance of Wk’s to avoid non-identifiability due to the dot
products with U i’s and V i’s in the model likelihood. The relationship between parameters in the
LSEC model is illustrated through a directed acyclic graph in Figure 1, along with the prior on Z
for our proposed approach which will be described in the following section.

Since the number of components K and number of latent dimensions p are unknown, Sewell
recommended fitting a model for each combination of plausible {K, p} and choosing the best
model according to some information criteria. However, obtaining estimation for each candidate
model is challenging and time-consuming, given that the parameter space is high dimensional
(2n+ 2np+Kp+ 4; in addition to the dimension of Z and its prior’s hyperparameters). In what
follows, we propose a different strategy that would fit the model only once in order to drastically
save time and resources.

2.2 Sparse finite mixture models
Finite mixture models provide a flexible and computationally convenient framework to describe
many complex distributions and perform clustering (McLachlan et al., 2019). To overcome the
problem of choosing the appropriate number of components of amixture distribution, researchers
can use an overfitted model where the number of components exceeds what is supported by the
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92 H. T. D. Pham and D. K. Sewell

Figure 1. Relationship between parameters in the LSEC model (circles) and parameters in the proposed extension
(rectangles).

data (Rousseau &Mengersen, 2011). Based on the theoretical results of overfitted mixture models
derived by Rousseau & Mengersen (2011), Malsiner-Walli et al. (2016) formulated the concept of
the sparse finite mixture model (SFMM) under the Bayesian framework of model-based cluster-
ing. SFMMs share many similar properties with other Bayesian non-parametric mixture models
that assume an infinite number of components, including automatic detection of the number of
clusters (Malsiner-Walli et al., 2017). However, SFMMs operate within the framework of finite
mixtures and, therefore, come with a straightforward estimation strategy (Malsiner-Walli et al.,
2016). While SFMMs were initially developed assuming Gaussian mixtures, Frühwirth-Schnatter
& Malsiner-Walli (2019) further demonstrated how the method could be adapted to other appli-
cations of non-Gaussian mixtures, such as Poisson mixtures, latent class analysis, and mixtures of
skew-normal distributions.

Assuming the data is generated from a finite mixture model, observations corresponding to the
same component form a cluster. The key idea behind SFMM is to deliberately overfit the mixture
models so that there are components that do not associate with any observation (Malsiner-Walli
et al., 2016). As a result, the total number of mixture components K is greater than the true num-
ber of clusters in the data Ktrue. While K is fixed, Ktrue is a random variable and can take on values
smaller than K with a high probability granted an appropriate choice of prior (Malsiner-Walli
et al., 2016, 2017; Frühwirth-Schnatter & Malsiner-Walli, 2019). Given a prior on α that puts a
large probability mass on small values near zero, the Dirichlet prior of π will show a strong prefer-
ence for zero weights, resulting in empty clusters among the K components of the mixture models
a priori (Frühwirth-Schnatter & Malsiner-Walli, 2019).

Inspired by the sparse finite mixture model approach, we assume the priors for Z to eval-
uate cluster assignment of the edges (Malsiner-Walli et al., 2016, 2017; Frühwirth-Schnatter &
Malsiner-Walli, 2019) to be

Zm|π iid∼Multinom(1, π)

π ∼Dirichlet(α1K)

α ∼ �(aa, ba), (3)
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where Multinorm(1, a) is a multinomial distribution with 1 trial and event probabilities a,
Dirichlet(a) is a Dirichlet distribution with concentration a, 1K is a K-dimensional vector of 1’s,
andK is set intentionally large as an upper bound on the number of true clusters. In ourmodel, the
multinomial prior on the cluster label Z implies that the marginal likelihood of the edges follows
a mixture distribution with weight π .

f (Ei)=
K∑

k=1

πk
exp{Sem1 + Rem2 + (Uem1 +Vem2 )W ′

k}
fuk(fvk − exp{Rem1 +Vem1W ′

k})
(4)

The SFMM is closely related to the DPMM. When the hyperparameter α is set to α0/K and K
goes to infinity, the SFMM converges to a DPMM with mixing distribution DP(α0,H), where
H is the base measure from which Wk are drawn iid (Malsiner-Walli et al., 2016). While the
a priori expected number of clusters Ktrue is solely determined by the concentration parame-
ter in the DPMM, it is also impacted by the number of mixture components K in the SFMM
(Malsiner-Walli et al., 2017). One may seek to draw a connection between SFMM and other two-
parameter Bayesian non-parametric mixture models, such as the Pitman-Yor Process Mixture
Model (PYPMM) (Pitman & Yor, 1997). Malsiner-Walli et al. (2017) provided a detailed compar-
ison of SFMM against both the DPMM and PYPMM. In SFMM, the prior probability of creating
new clusters decreases with the increasing number of non-empty clusters, whereas it remains con-
stant in the DPMM and increases in PYPMM (Malsiner-Walli et al., 2017). Additionally, as the
sample size increases, the a priori expected number of clusters Ktrue increases in Baysian non-
parametric mixture models including the DPMM and PYPMM, but this value remains constant
in SFMM (Malsiner-Walli et al., 2017).

Researchers have studied the impact of the hyperparameter α values on the number of clus-
ters in overfitted mixtures models. Using a fixed value of α instead of the Gamma hyperprior,
Rousseau & Mengersen (2011) presented some theoretical justification for the upper bounds of α
that is necessary to empty superfluous clusters. In particular, if α < d/2, where d is the dimension
of the component-specific parameter space, then the posterior expectation of the weights of super-
fluous clusters converges to zero as the sample size goes to infinity. Otherwise, there will exist at
least two identical components with non-negligible weights, leading to overestimating the num-
ber of clusters due to these duplicated components (Rousseau & Mengersen, 2011). In practice,
when we have a finite number of observations, it is necessary to select much smaller values for α
than the proposed upper bound d/2 (Malsiner-Walli et al., 2016). We opted for using a Gamma
hyperprior on α instead of fixing α at a small value based on evidence from Frühwirth-Schnatter
& Malsiner-Walli (2019). In our analyses, we used their recommended hyperprior �(1, 200) and
truncation level K = 10 because Frühwirth-Schnatter & Malsiner-Walli showed that these speci-
fications had good quality in emptying superfluous clusters in both the simulation study and real
data analysis.

2.3 Estimation via variational Bayes generalized EM algorithm
We adopt a generalized expectation-maximization (GEM) approach to estimation, where the E
step involves evaluating the conditional expectation of (Z, π)|E and theM step entails performing
conjugate gradient updates to maximize Q with respect to θ := {S, R,U ,V ,W, τS, τR, τU , τV , α}.
In most GEM applications in the finite mixture models, Z is assumed to be the latent variable in
the E step. Other variables, including the mixture weights, are chosen to maximize the expected
log posterior in the M step. With this setup, the E step is tractable. However, in the case of the
overfitted or sparse mixture models, the posterior modes of the mixture weights do not exist due
to the anticipated empty components. An alternative option is to integrate out the weights, yet
this renders the E step intractable. The expectation of Z, as a result, requires approximation via
either MCMC or variational Bayes (VB) method. VB is generally fast, but it can still impose a
hefty computational cost in the absence of analytical solutions, which is, unfortunately, the case
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94 H. T. D. Pham and D. K. Sewell

here. Instead, we consider both Z and π as the latent variables in the E step and use the following
variational approximation of the conditional posterior:

f (Z, π |E , θ̃)≈ q(Z)q(π)=
( M∏
m=1

q(Zm)

)
q(π). (5)

The variational distributions are selected by minimizing the Kullback-Leibler divergence
between q(Z)q(π) and f (Z, π |E , θ̃), which is the same as maximizing the evidence lower bound
(ELBO) of the log marginal likelihood defined as

ELBO := Eq(Z,π)
(
log f (θ , Z, π |E))− Eq(Z,π)

(
log q(Z, π)

)
. (6)

Performing coordinate ascent tomaximize the ELBO yields the following solutions, where Z−m
is the set of Z’s that does not include Zm (Wang & Blei, 2013; Beal, 2003).

q(Zm)∝ eEπ ( log π(Zm,E |π ,Z−mθ̃))

q(π)∝ eEZ( log π(π ,E |Z,θ̃) (7)

We then iterate between conditioning on either Z or π and updating the other until conver-
gence. Given the multinomial-Dirichlet priors, the updates have analytical forms. In particular,
the variational distribution q(Zm) is a multinomial distribution with weights p̃mk and q(π) is a
Dirichlet distribution with concentration parameters α̃k, where p̃mk, α̃k are given by

p̃mk ∝
(
eSem1+Uem1W

′
k

guk

)(
eRem2+Vem1W

′
k

gvk − eRem1+Vem1W
′
k

)
eψ(α̃k)−ψ(

∑
k α̃k)

α̃k = α +
M∑

m=1
p̃mk, (8)

where ψ is the digamma function.
We take a coordinate ascent approach to incrementally increase the Q function given each

E step’s output in the M step. The value of α to maximize Q is obtained using a combination
of golden section search and successive parabolic interpolation (Brent, 2005). The updates of
{S, R,U ,V ,W, τS, τR, τU , τV} are performed in the same manner as in Sewell (2021), with analyt-
ical solutions for the value of {τS, τR, τU , τV} and conjugate gradient updates for {S, R,U ,V ,W}.
Additionally, we use the same trick for computing the gradient in the LSEC paper to achieve a
computational cost that grows linearly with the number of actors in a network. For details, see
Appendix A.

To initialize the VB-GEM algorithm, we randomly generated S and R from a multivariate nor-
mal distribution with mean 0 and variance In. We randomly sampled each row of W from a
multivariate normal distribution with mean 0 and variance Ip. We initialized U and V using
results from performing spectral embedding on the graph adjacency matrix. We initialized α at
the prior mean aα/bα (= 1/200 in our analyses). Convergence in the E step was evaluated bymon-
itoring the changes in the ELBO. Convergence of the whole algorithm was determined based on
the number of edges switching clusters between iterations. If 99.9% of the edges keep the same
cluster assignment after the previous iteration, the algorithm will stop at the current iteration.
To mitigate the fact that the performance of the general EM algorithm depends on the quality of
the initialization, in the simulation study and real data analyses that follow, we ran the algorithm
using 15 random starting points and chose the best model based on ICL (Biernacki et al., 2000).
Additionally, we set the hyperparameters such that aU = bU = aS = bS = aV = bV = aR = bR = 1.
While researchers can set these values depending on the problem at hand, we found that varying
them had minimal impact on the result (see Appendix C).
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2.4 Gradient-based Monte Carlo
While the GEM approach quickly produces point estimates, it lacks uncertainty estimation. In this
section, we introduce aHamiltonianMonte Carlo-within-Gibbs algorithm to obtain estimates and
quantify uncertainty. The full log posterior is given by

l∝
M∑

m=1

K∑
k=1

Zmk
[
Sem1 + Rem2 + (Uem1 +Vem2 )W ′

k − log (fuk)− log (fvk − eRem1+Vem1W
′
k)
]

+ log �(Kα)−K log �(α)+
K∑

k=1

(α+
M∑

m=1
Zmk − 1) log πk + (aa − 1) log α − baα

− τS
2

||S||2 − τR
2

||R||2 − τU
2

||U||2F − τV
2

||V||2F − 1
2
||W||2F

+
(
aS + n

2
− 1

)
log τS − bS

2
τS +

(
aR + n

2
− 1

)
log τR − bR

2
τS

+
(
aU + nD

2
− 1

)
log τU − bU

2
τU +

(
aV + nD

2
− 1

)
log τV − bV

2
τV . (9)

Due to semi-conjugacy, we can derive the full conditionals for Zm, which is a multinomial
distribution with probabilities proportional to

πk
eSem1+Rem2+(Uem1+Vem2 )W

′
k

fuk(fvk − eRem1+Vem1W
′
k)

. (10)

Similarly, we derive the full conditionals of π and the precision parameters as follows.

π |· ∼Dirichlet

(
α +

M∑
m=1

Zm1, . . . , α +
M∑

m=1
ZmK

)

τS|· ∼ �

(
aS + n

2
,
bS + ||S||2

2

)

τR|· ∼ �

(
aR + n

2
,
bR + ||R||2

2

)

τU |· ∼ �

(
aU + np

2
,
bU + ||U||2F

2

)

τV |· ∼ �

(
aV + np

2
,
bV + ||V||2F

2

)
(11)

For the remaining parameters (U ,V , R, S,W, α), we use a Hamiltonian Monte Carlo (HMC)
algorithm to draw from the posterior. Since the posterior samples of π might contain zero val-
ues, which result in an undefined log posterior, we take a collapsed Gibbs sampling approach and
integrate out π from the full conditionals of (U ,V , S, R,W, α) (Van Dyk & Park, 2008). The gradi-
ents with respect to (U ,V , R, S,W) can be computed in the same efficient manner as in the LSEC
paper. Further details on these gradients can be found in Appendix B. Since α is strictly positive,
we apply a log transformation to α before carrying out the HMC algorithm. Let λ := log α, then
the derivative of the reduced log posterior, which is the log posterior after integrating out π , with
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respect to λ is given by

Keλψ(Keλ)−Keλψ(eλ)+ eλ
K∑

k=1

ψ(eλ +
M∑

m=1
Zmk)−Keλψ(Keλ +M)+ aa − baeλ. (12)

The MCMC output suffers from several non-identifiablity issues. The likelihood does not
change if one rescales W by a constant c and then rescales U and V by 1/c. Additionally, the
likelihood is invariant to translations of S, R, and the columns of U and V . Like other latent space
approaches, the latent actor positionsU ,V and edge positionsW are invariant to rotations, reflec-
tions, and translations. Lastly, the sparse finite mixture prior introduces the problem of aliasing of
cluster labels and components.

To circumvent the non-identifiability issues, we post-process the MCMC output in six steps.
Let the (l) superscript denote the lth MCMC sample. First, we rescale W(l) so that the elements
of W(l) have unit variance and then rescale U(l),V(l), τ (l)U , and τ (l)V accordingly. Second, we keep
draws where the number of clusters equals the MAP estimate and discard the rest (Malsiner-
Walli et al., 2016). Third, we remove the rows in W and elements in π corresponding to empty
components in each sample (Malsiner-Walli et al., 2016). Fourth, we run the equivalence classes
representatives algorithm to match cluster assignment in each sample to the MAP estimate and
then reorder rows ofW and elements in π according to permuted cluster label (Papastamoulis &
Iliopoulos, 2010). Fifth, we apply a Procrustes transformation (Borg & Groenen, 2005) to rotate
U(l),V(l) andW(l) using the MAP as the reference matrix. Finally, we recenter S(l) and R(l) and the
columns of U(l) and V(l) in each sample.

3. Simulation
We performed a simulation study to compare the clustering performance of our proposed algo-
rithm to the existing approaches described below. There were twenty different scenarios assuming
a different combination of the number of actors n ∈ {200, 400}, the true K (ranging from 2 to 6),
and p (ranging from 2 to 3). For each scenario, we generated 200 network data sets. Each network
had a density of 0.05, which translated to 1990 edges when n= 200 and 7980 edges when n= 400.

Given that indegree and outdegree are often highly correlated, each pair (Si, Ri) was sampled
from a bivariate normal distribution with mean 0, variances 2 and correlation 0.75. The matrix
representing the edge cluster latent positionsW was generated such that its row vectorsWk’s were
equally spaced on a circle when the true p= 2 and on a sphere when the true p= 3. The directions
of the row vectors U i’s and V i’s were drawn from mixtures of von Mises-Fisher distributions
with the mean directions coinciding with the direction of a Wk chosen with equal probability.
Their magnitudes followed a Gamma distribution with shape 20 and rate 4, which we found from
trial and error to encourage a reasonable level of clustering in the resulting networks. Across the
twenty configurations, we set the concentrations of the mixtures of vonMises-Fisher distributions
to achieve a similar degree of clustering in the network structure. This was measured by obtaining
similar average values of edge assortativity (that is, the assortativity of the line graph using the edge
cluster assignments as attributes), ranging between 0.6 and 0.8 across the ten different scenarios.
Each edge cluster assignment Zm was drawn from a multinomial distribution with equal event
probabilities of 1/K where K was the correct number of clusters. An example of a simulated net-
work when (n= 400,K = 6, p= 2) is shown in Figure 2, where different edge colors correspond
to different clusters.

Clustering results of the proposed approach were compared with other methods, including the
original LSEC (Sewell, 2021), the mixed-membership blockmodeling method proposed by Ball et
al. (2011) (BKN), and spectral clustering on a line graph (LG). Our approach always assumed that
p= 3. We describe later a sensitivity analysis which shows that this appears to be a sound practice.
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Figure 2. Example of simulated network where n= 400, K = 6, p= 2. Edges are colored according to their cluster assign-
ment. The network layout is set to show the six different edge clusters clearly.

The results from LSEC were based on running the double model selection approach in Sewell
(2021), performing estimation over a range of values for K (ranging from 2 to 10) and p (ranging
from 2 to 5) and using both AIC and ICL to select a final model. There were no obvious ways to
choose K and p for BKN and LG, and hence, we fit the oracle model assuming the true K and p
were known. It is important to note that the results from BKN and LG are overestimates due to
both of these methods being provided the true K and p. We refer to our proposed algorithm as
the automated LSEC or aLSEC.

We evaluated clustering performance via normalized mutual information (NMI) (Danon et al.,
2005) and adjusted Rand index (ARI) (Hubert & Arabie, 1985). The results are summarized in
Table 1. Our proposed aLSEC method outperformed BKN and LG in all scenarios except when
K = 2, despite both of these methods being provided knowledge of the true K and p. Compared to
LSEC, aLSEC had similar or improved performance. The primary benefit of aLSEC over LSEC is
the reduced computational cost. We investigated the ratio of running time of LSEC over aLSEC.
We found that implementing aLSEC can reduce the run time by 10 to over 100 times compared to
fitting the original LSEC model (Figure 3). In each simulation scenario, the majority of this ratio
fell between 20 and 70 when n= 200, and between 20 and 40 when n= 400 (Figure 3).

We carried out a sensitivity analysis and found that there was little harm in overestimating the
dimension of the latent space, especially when the actual number of clusters was large (Table 2).
This finding is not overly surprising since setting p to be larger than the actual value has the poten-
tial to perfectly capture the latent space information embedded in a lower-dimensional space. We
fixed the latent dimension to be p= 3 when fitting aLSEC in the simulation study. In practice, we
would wish to visualize the latent space and save resources testing different values of p′s while still
obtaining reasonably good clustering results.

4. Real network data analyses
4.1 Patient transfer network
We explored disease transmission in a patient transfer network between hospitals in California,
which had 372 nodes and 12,853 directed edges (Justice et al., 2022). Each node in the network
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Table 1. Clustering results of comparing aLSEC (assuming p= 3) with the existingmethods. For both NMI and
ARI, the higher the values, the better

True NMI ARI

n K p aLSEC LSEC BKN LG aLSEC LSEC BKN LG

200 2 2 0.87 0.99 0.90 0.85 0.88 0.99 0.95 0.91
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 2 0.97 0.97 0.91 0.88 0.98 0.98 0.94 0.92
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 2 0.90 0.87 0.82 0.81 0.93 0.90 0.85 0.84
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 2 0.81 0.80 0.74 0.80 0.81 0.81 0.74 0.80
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 2 0.70 0.70 0.65 0.62 0.64 0.65 0.58 0.53
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 3 0.84 0.98 0.87 0.84 0.84 0.98 0.93 0.91
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 3 0.88 0.88 0.82 0.78 0.92 0.92 0.87 0.82
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 3 0.81 0.82 0.77 0.78 0.80 0.82 0.75 0.77
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 3 0.78 0.77 0.74 0.73 0.68 0.69 0.68 0.63
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 3 0.77 0.75 0.73 0.74 0.64 0.63 0.64 0.61

400 2 2 0.95 0.99 0.95 0.90 0.95 0.99 0.98 0.95
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 2 0.96 0.97 0.90 0.84 0.97 0.98 0.94 0.90
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 2 0.91 0.89 0.83 0.78 0.94 0.92 0.86 0.80
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 2 0.81 0.81 0.73 0.71 0.82 0.82 0.72 0.67
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 2 0.71 0.72 0.66 0.61 0.66 0.66 0.60 0.52
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 3 0.91 0.98 0.94 0.90 0.91 0.99 0.97 0.95
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 3 0.88 0.89 0.82 0.76 0.92 0.93 0.87 0.78
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 3 0.84 0.82 0.76 0.72 0.87 0.82 0.74 0.66
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 3 0.81 0.79 0.77 0.75 0.78 0.76 0.72 0.64
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 3 0.78 0.76 0.74 0.75 0.68 0.67 0.67 0.62

The highest values of NMI and ARI in each scenario are bolded.

represented a hospital. There was an edge from node i to node j if more than two patients were
transferred from hospital i to hospital j during the seven years of the study. The threshold (e.g., two
patients) was chosen based on a visual examination of the relationship between different cutoffs
and the density of the resulting network graph to remove superfluous patient transfers from the
network. The patient transfer data are available from the Healthcare Cost and Utilization Project
(HCUP) State Inpatient Databases (SID).2 HCUP data are available for a fee to all researchers
following a standard application process and signing of a data use agreement.

Transfer patients have been shown to have significantly contributed to infectious disease out-
breaks (Donker et al., 2012). Therefore, understanding the system of flows in this network will be
helpful for public health officials and healthcare professionals to identify which transfer patients
to screen or isolate in such events. For example, if a transfer patient, which corresponds to an
edge in this network, tests positive for an infectious disease, it would be of great importance for
hospitals within the region to know which other transfer patients to screen and isolate to prevent
further spread.
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Figure 3. The ratios of the run time of the LSECmethod over our aLSECmethod.

Running the GEM algorithm with p= 3 revealed six clusters, shown in Figure 4. The MAP
estimates of the latent position U ’s were shown along with the edge cluster assignments. Since
there was no ground truth in this data set, we carried out epidemic simulations similar to those
done by Sewell (2021) and examined the results. Each simulation started with infecting one hospi-
tal and allowed the transmission to spread via patient transfers between hospitals in the network.
The period an infected hospital remains exposed was generated from a gamma distribution with
a mean of 7 days and a standard deviation of 1 day. After exposure, the infected hospital became
infectious and could transmit disease to other hospitals. The probability of a transfer patient
carrying disease was assumed to be 0.1.

Figure 5(a) shows one archetypal example of the epidemic simulation results, noting that all
other simulations were qualitatively similar. At each time point t, we calculated the cumulative
number of edges in each cluster that had contributed to spreading infection. Once the disease
entered an edge cluster, there was a rapid increase in the number of edges carrying transmission,
followed by a plateau indicating that most of the edges in the group had already acted to transmit
the disease. In contrast, Figure 5(b) shows the same epidemic simulation but with the cluster label
randomly permuted. The increase in the number of edges carrying disease within each edge cluster
was more gradual, implying that the permuted cluster labels failed to capture the systems of flows
in the network.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2023.22
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 00:21:38, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2023.22
https://www.cambridge.org/core


100 H. T. D. Pham and D. K. Sewell

Table 2. Sensitivity analysis assuming different values of p for aLSEC (represented by the different columns).
The NMI values are averaged over 200 simulated networks. The higher the NMI values, the better

True n= 200 n= 400

K p p= 2 p= 3 p= 4 p= 5 p= 2 p= 3 p= 4 p= 5

2 2 1.00 0.87 0.87 0.91 1.00 0.95 0.92 0.93
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 2 0.95 0.97 0.93 0.93 0.93 0.96 0.93 0.92
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 2 0.79 0.90 0.90 0.89 0.80 0.91 0.90 0.89
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 2 0.70 0.81 0.82 0.83 0.70 0.81 0.82 0.82
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 2 0.57 0.70 0.71 0.71 0.57 0.71 0.72 0.72

2 3 0.99 0.84 0.82 0.86 0.99 0.91 0.86 0.85
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 3 0.89 0.88 0.85 0.85 0.90 0.88 0.85 0.83
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 3 0.67 0.81 0.85 0.84 0.78 0.84 0.84 0.82
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 3 0.74 0.78 0.79 0.80 0.77 0.81 0.82 0.82
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 3 0.69 0.77 0.78 0.78 0.75 0.78 0.79 0.79

Figure 4. Results of applying aLSEC to the patient transfer network of California. Each point represents the MAP estimate
latent position U of each actor. Edges are colored according to their cluster assignment.

4.2 UK faculty data
We applied the proposed method to a friendship network of UK university faculty, which consists
of 81 nodes and 817 directed edges (Nepusz et al., 2008). Faculty members came from three dif-
ferent schools within the university. The school affiliation was known for all but two individuals.
The UK Faculty data are publicly available as part of the igraphdata package in R (Csardi, 2015).
The code to perform data analysis can be found online.3

We ran the HMC-within Gibbs algorithm on the UK faculty network, keeping every fifth
iteration and obtaining 30, 000 samples. We then discarded the first 10, 000 samples, which we
considered as a burn-in period. Figure 6 shows the posterior distribution of the number of clusters.
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Network Science 101

Figure 5. Results of running epidemic simulation on the network with edges labeled according to aLSEC results (a) and
randomly (b). Each curve showed the number of edges carrying the transmission of a cluster over time.

Figure 6. Posterior distribution of the number of clusters K after applying HMC-within-Gibbs algorithm to UK Faculty
network.

Unlike the original LSEC approach, our approach allows for estimation of uncertainty associ-
ated with the estimated number of clusters K. There is an overwhelming posterior probability
supporting K = 4.

After applying the post-processing steps, we examined the clustering results where the number
of clusters K = 4. Figure 7 shows the MAP estimate of the latent position U4 of each actor, while
edges are colored according to the MAP edge partition. Each shape of the node corresponds to
each school to which each faculty belongs. The first three edge clusters in Figure 7(a), (b), and
(c) mainly captured the within-school connections, while the last cluster Figure 7(d) represented
the interaction across different schools. The results indicate that aLSEC is uncovering the hidden
contexts in which the friendships are formed.
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102 H. T. D. Pham and D. K. Sewell

Figure 7. The MAP estimate of the latent positions U. Edge colors correspond to the MAP edge partition. The three hollow
shapes represent the three schools. The two solid circles represent the two individuals who did not mention their schools.

Our MCMC algorithm allows us to quantify the uncertainty in any model parameter, includ-
ing the cluster assignment. Let PM×M be a matrix where each entry Pij represents the posterior
probabilities of any two edges i and j sharing the same cluster. Let L denote the total number of
post-processed MCMC samples, we calculated Pij as follows.

Pij = 1
L

L∑
l=1

1[Z(l)
i =Z(l)

j ]

Since we did not know the school affiliations of two individuals, we momentarily excluded
these two actors and their corresponding connections. We then reordered the rows and columns
of P into four blocks, where each of the first three blocks consisted of edges corresponding to
within-school connections and the fourth block consisted of the remaining edges representing
inter-school connections. The sizes of the four blocks were 317, 250, 96, and 152, respectively.
Figure 8 is a heat map showing the posterior probabilities of edges sharing clusters after reorder-
ing, where darker colors indicate higher probabilities. A block structure is clearly shown on the
diagonal, implying that the clustering assignment is similar across different samples.
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Figure 8. Heat map of the PM×M matrix showing the posterior probabilities of any two edges sharing the same cluster.
Darker colors imply higher probabilities. From left to right, edges are ordered into blocks, such as the first three blocks
(size 317, 250, 96) are of edges representing within-school connections and the last block (size 152) is of edges representing
inter-school connections.

5. Discussion
Despite receiving little attention in the community detection literature, edge clustering has the
potential to provide an understanding of the network structure that is intuitive and easy to inter-
pret. As shown in the applications of aLSEC to real data, identifying clusters of edges can reveal
systems of flows in a network and contexts in which edge form. Sewell proposed a latent space edge
clustering approach (LSEC) and showed favorable results when applying LSEC to both artificial
and real networks. Nevertheless, implementing LSEC requires fitting the model multiple times to
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obtain the best result. This paper presents an automatic LSEC approach using an overfitted mix-
ture model prior to simultaneously estimate the number of clusters and cluster-specific variables.
Fitting aLSEC models using a GEM approach drastically reduces the computational cost, averag-
ing between 20 and 70 times as shown in the simulation study, and sometimes the computational
gains can be up to a hundredfold.

To overcome the challenge of implementing aLSEC efficiently, we derive a variational Bayes
GEM algorithm and an HMC-within Gibbs algorithm for estimation, both of which are efficient
and have a computational cost that grows linearly with the number of actors in sparse networks.
Our simulation study showed that aLSEC performed similar to or better than the original LSEC
method but took 10–100 times less time to implement. We examined the sensitivity of the cluster-
ing results to different values of the number of dimensions p and found that there was little to no
penalty in overspecifying this value. We further applied our method to analyzing patient transfer
network and UK faculty network data. In the first application, our method successfully captured
the systems of flows and informed us about how disease spreads in the network. In the second
application, our approach revealed information about the context from which edges are formed.

Despite the promising performance, there are some limitations to our proposed method. We
have yet to directly tackle the issue of specifying the number of latent dimensions p. While the
sensitivity results show good performance when overspecifying p, more research is needed to
understand the impact of using incorrect values of p on clustering performance. Another limi-
tation is the selection of the hyperparameters for the Gamma priors. Here, we demonstrated some
success by using the same prior as Frühwirth-Schnatter & Malsiner-Walli (2019), but the same
setup was not guaranteed to work for every situation. Further knowledge of shrinkage priors in
the sparse finite mixture model will help guide appropriate prior choices for future applications.
Lastly, an important area for future work is to develop a goodness-of-fit measure supported by
rigorous statistical methods, such as Bayesian p-values, in order to evaluate the appropriateness of
LSEC or aLSEC to the data.

Supplementarymaterial. The supplementary material for this article can be found at https://doi.org/10.1017/nws.2023.22.
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Notes
1 https://github.com/hanhtdpham/aLSEC
2 https://www.hcup-us.ahrq.gov/sidoverview.jsp
3 https://github.com/hanhtdpham/aLSEC
4 U and V are highly correlated so plotting either one will produce almost the same plot.
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