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We define a quantum model for multiparty communication complexity and prove a

simulation theorem between the classical and quantum models. As a result, we show that if

the quantum k-party communication complexity of a function f is Ω(n/2k), its classical

k-party communication is Ω(n/2k/2). Finding such an f would allow us to prove strong

classical lower bounds for k � log n players and make progress towards solving a major

open question about symmetric circuits.

1. Introduction

Communication complexity is a central model of computation with numerous applications.

It has been used for proving lower bounds in many areas including Boolean circuits, time–

space tradeoffs, data structures, automata and formula size. Examples of these applications

can be found in the textbook Kushilevitz and Nisan (1997).

The ‘Number on the Forehead’ (NoF) model of multiparty communication complexity

was introduced by Chandra, Furst and Lipton (Chandra et al. 1983). In this model,

there are k parties that wish to compute a function f : X1 × · · · × Xk → {0, 1} on

the input (x1, . . . , xk) ∈ (X1 × · · · × Xk). We can assume without loss of generality that

X1 = . . . = Xk = {0, 1}n. Each player sees only (k − 1) of the inputs (the other is on

his forehead). The players communicate by writing messages on a common blackboard.

In the general model, in every round, the players take turns writing one bit on the

blackboard that might depend on the previous messages. In the Simultaneous Messages

variant (SMNoF), all players simultaneously write a single message on the blackboard.

At the end of the protocol, the blackboard must contain enough information to compute

the value of f(x1, . . . , xk). The communication cost of the protocol is the number of

bits written on the blackboard. The deterministic k-party communication complexity of

f, C(f), is the communication cost of the optimal deterministic protocol for f. In the

randomised setting, we allow the players to be probabilistic and to share public coins, and

for the output of the protocol to be correct with probability at least 1/2 + δ. We define
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Cδ(f) to be the probabilistic k-party communication complexity of f with correctness

1/2 + δ.

The number of players in the above definition is equal to the number of arguments of

f. However, we can easily generalise the model for the case of � � k players. The model of

communication remains the same and each of the � players still receives (k−1) arguments

of f. We use C�
δ (f) to denote the �-party communication complexity of f(X1, . . . , Xk).

Note also that we are dealing with functions that are total and boolean.

Multiparty communication complexity has been studied extensively and has proved

relevant to important questions in circuit lower bounds. For example, one of the major

open problems in circuit complexity is to prove that an explicit function f is not in the

circuit complexity class ACC0, which is defined in the next subsection (see Kushilevitz

and Nisan (1997, Open problem 6.21)). By the results of Hastad and Goldmann (1991)

and Yao (1990), this question reduces to proving a superlogarithmic communication

lower bound for the k-party communication complexity of some explicit function f,

where the number of players is superlogarithmic. However, all known techniques for

proving multiparty communication lower bounds fail when the number of players becomes

k = log n.

In this paper we propose a new technique for proving multiparty communication

complexity lower bounds and hence, circuit lower bounds. We define a quantum model

for multiparty communication complexity in which both the players’ inputs and messages

are quantum, and prove a simulation theorem between the classical and quantum models.

In outline, our quantum model can be described as follows. The players receive as input

a mixed quantum state, which is a classical distribution over the legal inputs to all the

classical players. In other words, the quantum forehead is equivalent to a probability

distribution over classical foreheads. Moreover, the purification of this input, that is, a

register that contains the identity of each classical input, is considered to be part of the

quantum blackboard and is used when the final measurement is made. We will provide a

formal definition of our model in Section 2.

Using this model, we show how to simulate k classical players with only k/2 quantum

ones (Section 3). Note that if the success probability of the classical protocol was

1/2 + δ, the success probability of the quantum protocol is 1/2 + δ/2C , where C is

the communication of the original protocol. Since the common lower bounds depend

only logarithmically on the bias δ (see, for example, Babai et al. (1992) and Raz (2000)),

this simulation is sufficient for our purposes. This enables us to reduce questions about

classical communication to potentially easier questions about quantum communication

complexity and shows that quantum information theory could be a powerful tool for

proving classical circuit lower bounds (Section 4).

Similar connections between classical and quantum computation have been proved to

be very fruitful in recent years. Important results in classical complexity theory have

been proved using quantum techniques or inspired by them, including, for example, lower

bounds for Locally Decodable Codes (Kerenidis and de Wolf 2003) or local search

(Aaronson 2004), inclusions of lattice problems in complexity classes (Aharonov and

Regev 2003; Aharonov and Regev 2004) and simple proofs of properties of the class PP

(Aaronson 2005) and of lower bounds for matrix rigidity (de Wolf 2005).
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In addition, we examine the power of our model for quantum multiparty communication

by looking at the generalised inner product (GIP ) function (Section 5). We provide a

quantum protocol with log n-party communication complexity of O(log n), while the best-

known classical protocol requires communication O(
√
n). Proving a tight classical lower

bound for this function will provide an example of an exponential separation between

classical and quantum communication that holds for a total boolean function. All other

known exponential separations in the two-party setting (that is, in the model of two-way

communication (Raz 1999), one-way communication (Bar-Yossef et al. 2004; Gavinsky

et al. 2007) and simultaneous messages (Bar-Yossef et al. 2004)) are for promise problems

or relations.

1.1. Multiparty communication complexity and circuit lower bounds

Multiparty communication complexity was introduced as a tool for the study of boolean

circuits, however, the known techniques for proving lower bounds are very limited. Babai

et al. (1992) proved a lower bound of Ω(n/22k + log δ) for the k-party communication

complexity of the generalised inner product function and an Ω(n/2k + log δ) bound

for the quadratic character (Legendre symbol) of the (mod p) sum of k variables. Raz

(Raz 2000) simplified their proof technique and showed a similar lower bound for another

function, namely matrix multiplication, which seems to be hard even for log n players.

Unfortunately, the above techniques are limited and cannot prove lower bounds better

than Ω(n/2k + log δ) for any function. Despite the importance of the question and its

serious consequences on circuit lower bounds, it has not been possible to find any new

lower bound techniques. For the generalised inner product function, Grolmusz (1994)

showed an upper bound of O(k(n/2k)).

The Number on the Forehead model is related to the circuit complexity class ACC0.

ACC0 consists of languages recognised by a family of constant-depth polynomial size,

unbounded fan-in circuits with NOT,AND,OR and MODm gates, where m is fixed for

the family. Finding an explicit function outside the class ACC0 is a major open question.

Yao (Yao 1990) and Beigel and Tarui (Beigel and Tarui 1994) have shown that ACC0

circuits can be simulated by symmetric circuits. The circuit class SYM(d, s) is the class

of circuits of depth 2 whose top gate is a symmetric gate of fan-in s and each of the

bottom level gates is an AND gate of fan-in at most d. Specifically, they showed that

ACC0 ⊆ SYM(polylog n, 2polylog n).

The connection with multiparty communication was made by Hastad and Goldmann

(Hastad and Goldmann 1991), who noticed that when a function f belongs to SYM(d, s),

there exists a (d+1)-party simultaneous protocol with complexity O(d log s). The protocol

is as follows. Since each AND gate has fan-in at most d, at least one of the d+ 1 players

must have all the information to compute it. Hence, all the AND gates can be assigned

to players. Then, since the top gate of the circuit is a symmetric gate, each player only

needs to output the total number of his AND gates that evaluate to 1 (which takes at

most log s bits for each player). Therefore, if we want to show that a function f is outside

SYM(d, s), we need to prove a (d+ 1)-party communication lower bound of ω(d log s) in

the simultaneous model. However, as we said earlier, no techniques are known to give

https://doi.org/10.1017/S0960129508007263 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007263


I. Kerenidis 122

communication lower bounds for k = log n players or more. In the following sections we

describe a technique that can potentially give strong lower bounds for k � log n players

and hopefully help towards proving that a function is outside ACC0.

1.2. Quantum background

Let H denote a 2-dimensional Hilbert space and {|0〉 , |1〉} be an orthonormal basis for

this space. A qubit is a unit length vector in this space, and thus can be expressed as a

linear combination of the basis states: α0 |0〉 + α1 |1〉. Here α0, α1 are complex amplitudes

and |α0|2 + |α1|2 = 1. An m-qubit system is a unit vector in the m-fold tensor space

H ⊗ · · · ⊗ H and can be expressed as |φ〉 =
∑

i∈{0,1}m αi |i〉 . A mixed state {pi, |φi〉} is a

classical distribution over pure quantum states, where the system is in state |φi〉 with

probability pi.

A quantum state can evolve by a unitary operation or by a measurement. A unitary

transformation is a linear mapping that preserves the �2 norm. If we apply a unitary

U to a state |φ〉, it evolves to U |φ〉. A mixed state ρ evolves to UρU∗. The most

general measurement (POVM) allowed by quantum mechanics is specified by a family

of positive semidefinite operators Ei = M∗
i Mi, 1 � i � k, subject to the condition that∑

i Ei = I . Given a mixed state ρ, the probability of observing the ith outcome under this

measurement is given by the trace pi = Tr(Eiρ) = Tr(MiρM
∗
i ). If the measurement yields

outcome i, the resulting quantum state is MiρM
∗
i /Tr(MiρM

∗
i ). A general POVM can be

thought of as a series of unitary operations and projective measurements.

2. Quantum multiparty communication complexity

We assume basic familiarity with the formalism of quantum computing – see Nielsen and

Chuang (2000) for further details. One natural way of defining the quantum analog of

simultaneous multiparty communication would be as follows. There are k parties that wish

to compute a function f : X1 × · · · ×Xk → {0, 1} on the input (x1, . . . , xk) ∈ X1 × · · · ×Xk .

We can assume without loss of generality that X1 = . . . = Xk = {0, 1}n. Each player sees

only (k− 1) of the inputs (the other one is on his forehead). The players communicate by

simultaneously writing a quantum message each on a common blackboard that they can

all see. After that, the value of f can be computed with high probability by performing

some measurement on these quantum messages. The quantum communication cost is the

sum of the number of qubits of each message. In this model, we have kept the inputs

to the players classical but made the communication quantum. Unfortunately, not very

much is known about the power of this model of quantum multiparty communication.

It is an open question to see if this model can be exponentially more powerful than the

classical one, and also how it is related to our model.

Here we define a different variant of quantum multiparty communication where, in

addition, we allow the inputs to the quantum players to be quantum. Our primary

goal is to define a natural model that has consequences for the study of circuit lower

bounds. In order to make the definition of the quantum model more intuitive, we will
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Figure 1. Classical Number on the Forehead

first describe the classical model of the Number on the Forehead in an appropriate

way.

In outline, a simultaneous multiparty protocol consists of three rounds (see Figure 1):

1 The players receive their inputs.

2 They each output some answer that depends on their input.

3 The value of f is computed as a function of the players’ answers.

For convenience, and without loss of generality, we assume that the players’ outputs have

the same length. More formally, we have the following definition.

Classical Simultaneous Number on the Forehead (SNoF)

— For j = 1, . . . , � the input to Player Pj is of the form Ij = (x1, . . . , xj−1, xj+1, . . . , xk).

— Each Player Pj performs a probabilistic procedure that on input Ij (and some

randomness r) outputs an answer Aj .

— The value of the function f is computed by evaluating a function g with (A1, . . . , A�)

as input, that is, the guess for f(x1, . . . , xk) is equal to g(A1, . . . , A�). The function g is

fixed in advance and is independent of the input (x1, . . . , xk).

The correctness of the protocol guarantees that for every input (x1, . . . , xk) ∈ {0, 1}kn,
we have

Pr[g(A1, . . . , A�) = f(x1, . . . , xk)] � 1/2 + δ ,

where the probability is over the random coins of the players Pj . The ‘communication cost’

of the protocol is the sum of the lengths of the outputs of the players or, equivalently,

the sum of the lengths of the inputs to the final subcircuit G, that is,
∑�

i=1 |Ai|. The

communication complexity of f is the cost of the optimal protocol. It is easy to see that

the formulation described above is equivalent to the usual simultaneous Number on the

Forehead model.
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Figure 2. Quantum Simultaneous Number on the Forehead

Intuitively, we define the quantum analog as follows (see Figure 2):

1 The players receive quantum inputs.

2 They perform a quantum procedure in order to compute their outputs.

3 The value of f is computed by performing a measurement on the quantum outputs.

However, we have to be careful with the constraints we need to impose on these operations

and with the definition of the ‘cost’ of the protocol. More formally, the quantum model

is defined as follows.

Quantum Simultaneous Number on the Forehead

— For i = 1, . . . , �, each quantum player Pi receives as input the quantum mixed state

(ρi = {pij , (j, Ij)}) with j = 1, . . . , k, that is, a probability distribution over all the

legal classical inputs. We also assume that a purification of this state is available in

some other register W that is unavailable to the players but will be part of the final

measurement in the third round. In other words, we assume that for every i = 1, . . . , �,

the input state is

|φi〉 =

k∑
j=1

√
pij |j〉 |j, Ij〉 .

The second register of this state is the input for player Pi and the first register contains

the purification of this mixed state. The distribution is fixed by the protocol and is

independent of the input (x1, . . . , xk).

— In the second round each of the � players performs the quantum mapping

|j, Ij〉 |0〉 
→ |j, Ij〉
∣∣Aij〉 ,

where Aij is the quantum answer of player Pi to input j, Ij .
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— The third round takes as input the quantum states

|ψi〉 =

k∑
j=1

√
pij |j〉 |j, Ij〉

∣∣Aij〉 .
In order to ensure that the measurement does not take advantage of the fact that the

second registers contain the input of the function, we first erase it by performing the

mapping

E : |j〉 |j, Ij〉 
→ |j〉 |0〉 ,
resulting in the states

|ψi〉 =

k∑
j=1

√
pij |j〉

∣∣Aij〉 .
Then a general measurement M is performed on these states whose outcome is the

guess for f(x1, . . . , xk). The measurement M is fixed by the protocol and is independent

of the input x.

The correctness of the protocol implies that for all (x1, . . . , xk) ∈ {0, 1}kn,

Pr[outcome of M = f(x1, . . . , xk)] � 1/2 + δ .

The communication cost of the protocol is the sum of the lengths of the inputs to the

final measurement M, that is,
∑�

i=1 |Ai|, where |Ai| is the size of the answer register of

player i†. The communication complexity of f is the cost of the optimal protocol.

Let us make a few remarks about our definition. First, the inputs {pij , (j, Ij)} ensure

that each player gains information for (k − 1) of the inputs xi, exactly like the classical

players. In the special case where the distributions {pi} are delta functions, the inputs

become equal to the classical inputs.

Second, the quantum ‘erasure’ of the inputs in the third round of the protocol is

necessary in order to ensure that the final measurement only depends on the players’

answers, exactly like in the classical case. Moreover, we do not use the simpler way of

erasing the quantum inputs by just tracing out the input registers (instead of performing

the unitary map E), since that would be equivalent to a model with classical inputs.

3. Simulating classical players

In this section we prove that we can simulate a k-party classical protocol by a k/2-party

quantum protocol with the same communication, albeit with larger error probability.

The main idea of our simulation is as follows. In any protocol, the value of the function

f is computed as a boolean function g : {−1, 1}C → {−1, 1} of the output of the players.

However, any such boolean function g has correlation at least 2−C/2 with a parity function,

† More precisely, the communication should be defined as
∑�

i=1(|Wi|+ |Ai|), where Wi is the Hilbert space that

contains the purification of the input of player i. However, the communication according to this definition is

in the worst case an additive factor of � log k greater than our definition, which will not be of any significance.
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that is, a parity of a subset of the input bits. Hence, we can substitute the initial protocol

with another one in which the value of f is computed as a parity function of the output

of the players (note that the success bias of the protocol reduces by a factor of 2−C/2).

Now, instead of looking at the output of the k players as one long string, consider it as a

concatenation of k/2 pairs of individual outputs; the parity function on the entire output

can be thought of as a parity of k/2 parities, each one on a pair of individual outputs.

The second part of our simulation describes a quantum procedure in which each of the

k/2 quantum players provides enough information to compute one of these k/2 parities

and hence compute the value of f.

We formally prove the following theorem.

Theorem 1. Let P be a SNoF protocol for the function f : X1, . . . , Xk → {0, 1} with k

players, communication C and correctness 1/2 + δ. Then, there exists a quantum SNoF

protocol Q for the same function f with k/2 quantum players, communication C/2 and

correctness 1/2 + δ/2C on an average input.

Proof. First we prove a lemma similar to Lemma 2 in Kerenidis and de Wolf (2003),

which shows that we can assume the players compute the parity of a subset of the answer

bits as their guess for f. We switch from the {0, 1}-notation to the {−1, 1}-notation for f,

we view the answers of the players Ai as (C/k)-bit strings and Ai[j] the j-th bit of the

string Ai. Let Si ⊆ [C/k] be some subset of bits of Ai and ASi =
∏

j∈Si Ai[j] be the parity

of the subset Si of the bits of Ai.

Lemma 1. Let P be a classical protocol with communication C and correctness probability

1/2 + δ and assume that the players compute a function g(A1, . . . , Ak) as their guess

for f(x), where Ai is the answer of player i. Then there exists a classical protocol P ′

with communication C that works on average input with correctness 1/2 + δ/2C/2 and

where the players compute a parity of a subset of bits of the answers Ai, that is,

g(A1, . . . , Ak) = ⊕k
i=1ASi .

Proof. Let f(x) = b. From the correctness of the protocol P we know that

Ex[g(A1, . . . , Ak) · b] � 2δ .

We can represent g by its Fourier representation as

g(A1, . . . , Ak) =
∑
S1 ,...,Sk

ĝS1 ,...,SkAS1
· · ·ASk

and have

2δ � Ex[g(A1, . . . , Ak) · b] =
∑
S1 ,...,Sk

ĝS1 ,...,SkEx[AS1
· · ·ASk · b] .

By the fact that
∑

S1 ,...,Sk
(ĝS1 ,...,Sk )

2 = 1, we have
∑

S1 ,...,Sk
ĝS1 ,...,Sk � 2C/2, and hence there

exist some subsets S1, . . . , Sk for which

Ex[AS1
· · ·ASk · b] � 2δ/2C/2 .

This means that the protocol P ′ that would output the XOR of these subsets is correct

on an average input with probability � 1/2 + δ/2C/2.
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Thus, in the classical protocol P ′, in the first round each player j receives input Ij , in

the second round they output the answers Aj , and in the third round the guess for f is

computed by considering all the players’ outputs together as one string and taking the

XOR of a subset of these bits. We will now describe the quantum protocol with only k/2

players that simulates the classical k-party one. We denote the k/2 quantum players with

i = 1, 3, . . . , k − 1.

— For every i = 1, 3, . . . , k − 1, we consider the following states:

|φi〉 = |i〉 |i, Ii〉 + |i+ 1〉 |i+ 1, Ii+1〉 ,

where the second register is the input of quantum player i and the first is the

purification of the state in the workspace W . Note that the reduced density matrix of

quantum player i is the same as if he was classical player i with probability 1/2 and

classical player i+ 1 with probability 1/2, so this is a legal input.

— In the second round, each quantum player Pi performs the mapping

T : |j, Ij〉 |0〉 
→ |j, Ij〉 |Aj〉 ,

that is, on input |j, Ij〉 computes the same function Aj as the classical player j in P ′.

Note that the answer of the classical player j can depend on his private randomness,

and we assume that the quantum player uses for each input (j, Ij) the same randomness

used by the classical player j. The total communication is

k

2

C

k
=
C

2

qubits.

— In the third round, the states are

|φi〉 = |i〉 |i, Ii〉 |Ai〉 + |i+ 1〉 |i+ 1, Ii+1〉 |Ai+1〉 .

First, the ‘erasure’ circuit erases the input registers resulting in the states

|ψi〉 = |i〉 |Ai〉 + |i+ 1〉 |Ai+1〉 .

Finally, a measurement on the states is performed (described by Lemma 2) that

computes f with high probability.

We need to show that there exists a quantum procedure M on the states |ψi〉 that is able

to compute the function ⊕k
i=1Si. A key observation is that we can rewrite the function as

⊕k
i=1Si = ⊕i=1,3,...,k−1(Si ⊕ Si+1) .

It is a simple calculation to show that if we can independently predict each Si ⊕ Si+1 with

probability 1/2 + ε, we can predict the entire ⊕iSi with probability 1/2 + 2k/2−1εk/2. The

following lemma from Wehner and de Wolf (2005) describes a quantum procedure M to

compute Si ⊕ Si+1 with the optimal ε.

Lemma 2 (Wehner and de Wolf 2005, Theorem 2). Suppose f : {0, 1}2t → {0, 1} is a

boolean function. There exists a quantum procedure M to compute f(a0, a1) with success

probability 1/2 + 1/2t+1 using only one copy of |0〉 |a0〉 + |1〉 |a1〉, with a0, a1 ∈ {0, 1}t.
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We use this lemma with t = C/k and get ε = 1/2C/k+1. We also note that the success

probability is independent of the a0, a1. Hence, there exists a quantum procedure that will

output the correct ⊕iSi with probability

Pr[M outputs ⊕i Si] =
1

2
+ 2k/2−1 · 1

2(C+k)/2
=

1

2
+

1

2C/2+1
.

Finally, the quantum protocol is correct with probability

p = Pr[M outputs ⊕ Si] · Pr[⊕Si = b] +

Pr[M does not output ⊕ Si] · Pr[⊕Si = b]

=

(
1

2
+

1

2C/2+1

)(
1

2
+

δ

2C/2

)
+

(
1

2
− 1

2C/2+1

)(
1

2
− δ

2C/2

)
=

1

2
+

δ

2C
.

Note that the success probability of the quantum protocol is not guaranteed for every

input but only on average input. In fact, it is easy to see that it works for any distribution

on inputs since Lemma 1 does not depend on the distribution of the input. Though proving

lower bounds for such protocols can be potentially harder than proving lower bounds for

worst-case protocols, most known lower bounds work equally well for both cases.

4. A quantum reduction for circuit lower bounds

The theorem in the previous section shows how to simulate a classical protocol with k

players using a quantum protocol with k/2 players, albeit with a smaller bias. We are

going to use this theorem to get a reduction from a classical circuit lower bound question

to one about quantum communication complexity.

Theorem 2. Suppose f : X1 × · · · × Xk → {0, 1} is a function for which the (k/2)-party

quantum average communication complexity is

QC
k/2
δ′ = γ

(
k
n

2k/2
+ log δ′

)

for a positive constant γ. Then, this function does not belong to the class SYM(k −
1, 2o(n/2

k/2)).

Proof. In order to show a contradiction, let us assume that the function does indeed

belong to SYM(k − 1, 2o(n/2
k/2)). Then, by Hastad and Goldmann (1991), the function f

will have classical k-party communication complexity at most

Cδ �
γ

1 + γ

(
k
n

2k/2
+ log δ

)

for any constant γ and success probability 1/2+δ. By Theorem 1, there exists a (k/2)-party

quantum protocol with correctness 1/2 + δ/2Cδ and quantum communication

QC
k/2

δ/2Cδ
= Cδ/2 .

Hence,
QC

k/2

δ/2Cδ
=

Cδ

2

=
1 + γ

2
Cδ − γ

2
Cδ �

γ

2

(
k
n

2k/2
+ log δ

)
− γ

2
Cδ
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=
γ

2

(
k
n

2k/2
+ log

δ

2Cδ

)
,

which contradicts the assumption of the theorem for δ′ = δ/2Cδ .

Taking k = log n + 1, the function f is not in SYM(log n, 2o(
√
n)). In other words, we

have reduced the question of finding a function outside the class SYM(log n, 2ω(polylogn))

to that of finding an explicit function f : X1 × · · · ×Xk → {0, 1} with (k/2)-party quantum

complexity equal to Ω(n/2k/2 + log δ). Note that we do know explicit functions for which

the classical communication is exactly of this form, for example, the matrix multiplication

function (Raz 2000) and the quadratic character function (Babai et al. 1992). In fact, the

proofs given in these papers only consider k-party communication, but as we will see in

Section 5, they can easily be modified for the case of � � k parties.

5. The quantum communication complexity of GIP

In this section we study the power of our quantum communication model further by look-

ing at the function of generalised inner product (GIP). We will look at general multiparty

protocols, where the players’ answers can depend on each other. It should be clear how

one can define the quantum model for general multiparty computation, where now each

player Pj takes as input Ij together with all previous answers A1, . . . , Aj−1, and performs

a controlled unitary operation. We refrain from giving a formal definition for the general

model, since for the circuit lower bounds we need only look at the simultaneous version

and, moreover, for our separation we only use a very simple non-simultaneous protocol.

The Generalised Inner Product Function GIP (X1, . . . , Xk)

Let Xi ∈ {0, 1}n. We can think of the k inputs as the rows of a k × n matrix. Then

GIP (X1, . . . , Xk) is equal to the number (mod 2) of the columns of the matrix that have

all elements equal to 1. More formally, using Xj
i to denote the (i, j) element of this matrix

(which is equal to the j-th bit of Xi), we have

GIP (X1, . . . , Xk) =

n∑
j=1

k∏
i=1

X
j
i (mod 2) .

The function GIP has been studied extensively in the multiparty communication model.

Babai et al. (Babai et al. 1992) showed an Ω(n/22k) lower bound in the general multiparty

model, where the answers of the players may depend on previous answers. Chung (Chung

1990) claimed to improve this to Ω(n/2k), but the proof is flawed.

It is easy to see that the �-party randomised communication complexity of the

function GIP (X1, . . . , Xk) is at least the �-party randomised communication complexity

of GIP (X1, . . . , X�). If there exists an �-party communication protocol P for the function

GIP (X1, . . . , Xk), we can construct an �-party protocol for GIP (X1, . . . , X�) by fixing

X�+1, . . . , Xk to be the 1 vectors.

On the other hand, Grolmusz (Grolmusz 1994) described a k-party communication

protocol for GIP (X1, . . . , Xk) with communication (2k−1)
⌈
n/(2k−1 − 1)

⌉
. This is a slightly
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non-simultaneous protocol, since player 1 first outputs a message and then, depending on

that message, the other players output their answers simultaneously.

Using our simulation from Theorem 1, we can show that there exists a quantum

�(k − 1)/2� + 1-party communication protocol for GIP with the same communication

and the same correctness probability (we can assume without loss of generality that k is

odd). For k = log(n+1)+1, the quantum communication is only O(log n). The best-known

classical protocol for k = log(n + 1) + 1 has communication O(
√
n). Showing that this

bound is optimal, or in other words improving the lower bound for GIP to Ω(n/2k)

would establish an exponential separation between randomised and quantum multiparty

communication complexity.

Theorem 3. Let k = log(n+1)+1 and � = �(k − 1)2�+1, and let δ be a constant. Then the

�-party quantum communication complexity of GIP (X1, . . . , Xk) is QC�
δ (GIP ) = O(log n).

Proof. Grolmusz (Grolmusz 1994) showed a k-party protocol for GIP (X1, . . . , Xk) with

communication

(2k − 1)
⌈ n

2k−1 − 1

⌉
.

Taking k = log(n + 1) + 1, the communication cost is (2k − 1) bits. In fact, the first

player communicates a (k − 1)-bit string and a single bit and the other (k − 1) players

simultaneously communicate a single bit each. The final answer is the parity of the single

bits. The single bits of the (k−1) players depend on the message of the first player, so this

is not a simultaneous messages protocol. We are going to simulate exactly the protocol

of Grolmusz by using only �(k − 1)2� + 1 quantum players.

Quantum protocol

Let I1, . . . , Ik be the inputs to the k players in Grolmusz’s protocol and A1, . . . , Ak the

messages they output. As we said earlier, A1 ∈ {0, 1}k−1 × {0, 1}, and for i = 2, . . . , k, we

have Ai is a bit that depends on (Ii, A1). The idea is to use the first quantum player to

simulate exactly the first classical player, and for the other players we use our simulation

technique from Section 3. Our protocol is non-simultaneous since the answers of the

quantum players 2, . . . , k depend on the classical answer of player 1. More specifically:

— In the first round, we create the states

|φ1〉 = |1, I1〉 , |φi〉 = |i〉 |i, Ii〉 + |i+ 1〉 |i+ 1, Ii+1〉 , i = 2, 4, . . . , k − 1 .

— In the second round, quantum player 1 first outputs the classical string A1. The other

players read the classical string A1 and proceed to perform the mapping

T : |j, Ij〉 |0〉 
→ |j, Ij〉 (−1)Aj |0〉 .

— In the third round, we have the classical string A1 and the states

|χi〉 = |i〉 |i, Ii〉 (−1)Ai |0〉 + |i+ 1〉 |i+ 1, Ii+1〉 (−1)Ai+1 |0〉 , i = 2, . . . , k − 1 .

The protocol quantumly ‘erases’ the inputs resulting in the states

|ψi〉 = (−1)Ai |i〉 + (−1)Ai+1 |i+ 1〉 .
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By measuring in the basis {|i〉 ± |i+ 1〉}, we can compute Ai ⊕ Ai+1 exactly and hence

compute the parity of all the bits as in the classical protocol.

The correctness of the protocol is 1/2 + δ, which is the same as in the classical case.

6. Conclusions

We have defined a model for quantum multiparty communication with quantum inputs

and proved a simulation theorem between the quantum and classical models. This enabled

us to reduce the question of showing that a function is outside the circuit complexity

class SYM(log n, 2ω(polylogn)) to the question of finding an explicit function f for which the

�-party average case quantum communication complexity is Ω(n/2�+log δ). Note that we

know functions for which the classical communication is of that form (for example,

the matrix multiplication function (Raz 2000) and the quadratic character function

(Babai et al. 1992)); in other words, we are looking for a function for which quantum

communication does not help.
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