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Abstract

We study the distributions of component and system lifetimes under the time-
homogeneous load-sharing model, where the multivariate conditional hazard rates of
working components depend only on the set of failed components, and not on their
failure moments or the time elapsed from the start of system operation. Then we ana-
lyze its time-heterogeneous extension, in which the distributions of consecutive failure
times, single component lifetimes, and system lifetimes coincide with mixtures of dis-
tributions of generalized order statistics. Finally we focus on some specific forms of the
time-nonhomogeneous load-sharing model.
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1. Introduction

We consider a coherent system composed of n components with a structure function
ϕ : {0, 1}n �→ {0, 1}. Here 0 and 1 represent failure and operation, respectively, of a compo-
nent or of the system. The components are labeled by the numbers from 1 to n, and the value
of the kth coordinate of the structure function ϕ represents the working status of the kth com-
ponent. The value of ϕ at a given sequence of zeros and ones shows whether the system is
working when the elements of a fixed subset of components are working and the others are
not. We say that the system is coherent if its structure function is nondecreasing and it does
not contain redundant components. The first condition means that the failure of a component
cannot improve the system state. The second implies that every component affects the oper-
ation of the system; i.e., the failure of each component implies the failure of the system for
some working states of the other components. This in particular implies ϕ(0, . . . , 0) = 0 and
ϕ(1, . . . , 1) = 1.
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It is convenient to represent the system structure function as a function of the subsets of the
set {1, . . . , n}, which is further denoted by [n] for brevity. This is written as

ϕ(A) = ϕ(1A(1), . . . , 1A(n)), A ⊂ [n], (1)

where 1A(k) denotes the indicator function of the set A, and equals 1 when k belongs to A and
0 when k does not belong to A. In particular, ϕ(∅) = 0 and ϕ([n]) = 1. Although the function
(1) formally differs from the original function, because it is defined on a different domain, we
do not introduce a different notation for it.

The component lifetimes T1, . . . , Tn are nonnegative random variables all defined on the
same probability space (�,F , P). We assume here that they are jointly absolutely continu-
ous. The lifetime of every component depends both on its individual durability and on the
states of the other components cooperating in the system, because the failure of some compo-
nents increases the load acting on the still working components. The most intuitive notion for
describing the tendency of the components in the system to fail is the multivariate conditional
hazard rate, defined as

λj(t|A, t1, . . . , tk) = lim
�t↘0

1

�t
P(Tj ≤ t+�t|Ti = ti, i ∈ A, Ti > t, i ∈ Ac), (2)

where A is a subset of [n] of cardinality |A| for some 1 ≤ k < n such that j ∈ Ac = [n] \ A, and
0 < t1, . . . , tk < t. To be precise, this is the failure rate of the jth component at time t under
the condition that the components from the set I have failed before t, at some prescribed time
moments t1, . . . , tk, and the remaining components are still working at t. By analogy, we can
define the multivariate conditional hazard rates of the components under the condition that no
components have failed by the given time t:

λj(t|∅) = lim
�t↘0

1

� t
P(Tj ≤ t+� t|Ti > t, i ∈ [n]). (3)

If we adopt the convention that ∅ ⊂ [n], the formula (3) becomes a special case of (2). It
can be shown that the family of multivariate conditional hazard rates λj(t|A, t1, . . . , tk), j 
∈
A ⊂ [n], 0 ≤ |A| = k ≤ n − 1, 0 < t1, . . . , tk < t, uniquely characterizes the joint distribution of
T1, . . . , Tn. For more details on the concept of the multivariate conditional hazard rate see,
e.g., [33], [34], [35], [40], and references cited therein.

Here we consider some special cases of models described by means of multivariate con-
ditional hazard rates. We say that the component lifetimes are distributed according to the
load-sharing model if

λj(t|A, t1, . . . , tk) = λj(t|A);

i.e., the aging properties of a given component depend merely on its age and on the set A of
failed components at given t, but do not depend on the time distances from the failure times of
the damaged components. A special case of the load-sharing model gives rise to the following
linear breakdown rule, for which the multivariate conditional hazard rates have the forms

λj(t|A) = λj(A)L(t). (4)

In this case the failure rates have two multiplicative factors, one depending on the running
time, and the other representing the load acting on a living component owing to the failures of
the components from the set A. The most natural example of (4) is

λj(t|A) = L(t)

n − |A| .
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Load-sharing reliability models 109

This condition reflects the situation that there is an overall load L(t) acting on the whole system,
possibly varying in time, and this load is uniformly distributed among the still living com-
ponents. We further say that the load-sharing model is time-homogeneous if the conditional
hazard rates are independent of time, and depend only on the failed components

λj(t|A) = λj(A), j 
∈ A� [n].

Obviously, the time-homogeneous load-sharing model automatically results in a special case
of the linear breakdown rule. We show below that it can be seen as a natural generalization of
the conditions of independent and exponentially distributed inter-failure times. Furthermore,
we prove that a simple transformation of the time-homogeneous load-sharing model fully
characterizes the linear breakdown rule model with multivariate conditional hazard rate (4).

In different contexts, and possibly under a variety of terminologies, the interest in general
load-sharing-type models dates back a long way; see in particular [13], [15], [16], [19], and
[29]. Moreover, the term ‘load-sharing’ has been used with somewhat different meanings in the
field of reliability; see, e.g., [14], [41], and [43]. The linear breakdown rule has been studied
in [36]. The definition of multivariate conditional hazard rate functions, in the form recalled
here, makes sense when the joint distribution of lifetimes is absolutely continuous. Thus load-
sharing models that are defined in terms of the behavior of such functions are necessarily of
absolutely continuous type. However, within the theory of point processes (cf., e.g., [7]), more
general definitions of dynamic description of dependence can naturally be given, and corre-
sponding models of load-sharing can be defined; see in particular [2], [3], and [26]. Recently,
probabilistic models somehow related to the idea of load-sharing have been studied in [11].
The term ‘load-sharing’ emerges furthermore in many papers in engineering or physics, not
strictly related to systems reliability; see [20], [27], [32], and [42], among others.

The study of reliability properties of coherent systems also has a very long tradition in the
field of applied probability. However, in the recent past some new methods and ideas have been
developed using the concept of the signature, introduced by Samaniego in [30] (see also [28]).
The signature is especially useful under the assumption of exchangeability. Its application to
cases of non-exchangeability is less direct. Further related references are listed in Section 4.
Essentially, the concept of the signature paves the way to constructing, for an arbitrary coher-
ent system, convenient decompositions of the reliability function as a convex combination of
survival functions of order statistics.

Such an idea can be, in some way, extended to cases of non-exchangeability at the cost
of considering more detailed decompositions. In [40], it is argued that such an approach can
be conveniently employed under the assumption of time-homogeneous load-sharing for the
component lifetimes, and some aspects concerning the computation of system reliability are
presented therein.

In the present paper, we aim to detail some more probabilistic aspects of the time-
homogeneous case and to extend results to nonhomogeneous cases. We also specifically
analyze some relevant special cases for the function L(t) and the parameters λj(I). This treat-
ment also offers the opportunity to establish connections with the theory of generalized order
statistics.

More precisely, the plan of the paper is as follows. In Section 2 we investigate more
thoroughly the time-homogeneous load-sharing model. In Section 3 we extend the study to
nonhomogeneous cases. Section 4 is devoted to analysis of special cases of assumptions on
the model parameters. One implies exchangeability of the component lifetimes, and the two
other describe some generalizations of exchangeability. Finally, in Section 5 we specify the
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results for some parent risk distributions commonly used in reliability analysis, and we present
a numerical example showing the benefits of properly allocating components in a system
working under the load-sharing model.

2. Time-homogeneous load-sharing model

In order to distinguish this special case, we denote the component lifetimes by S1, . . . , Sn.
The respective order statistics S1:n, . . . , Sn:n coincide with the consecutive failure times of the
system components. The joint distribution of S1, . . . , Sn is described by the family of positive
parameters

L= {λj(A) : A� [n], j ∈ Ac} (5)

of cardinality n2n−1. Indeed,

|L| =
n−1∑
k=0

(
n
k

)
(n − k) = n

n−1∑
k=0

(
n − 1

k

)
= n2n−1.

Each λj(A) represents the constant multivariate conditional failure rate,

λj(t|A, t1, . . . , tk) = λj(A),

of the jth component under the condition that all the components from the set A� [n] have
failed previously, while those from Ac (which contains j) are still operating. The notation

�(A) =
∑
j∈Ac

λj(A)

will be frequently used below.
Let I0, . . . , In denote the set-valued variables such that Ik is the label set of the first k

failed components. Certainly I0 = ∅, In = [n], |Ik| = k, and |Ik \ Ik−1| = 1. Our first claim is
the following.

Theorem 1. The sequence (Sk:n, Ik), k = 1, . . . , n, forms a two-dimensional finite Markov
chain with the initial probability rule

P(S1:n > s, I1 = { j1}) = exp (−s�(∅))
λj1 (∅)

�(∅)
, s > 0, j1 ∈ [n], (6)

and the transition laws

P(Sk:n > s, Ik = Ak−1 ∪ { jk}|Sk−1:n = sk−1, Ik−1 = Ak−1)

= exp (−(s − sk−1)�(Ak−1))
λjk (Ak−1)

�(Ak−1)
, s > sk−1, jk ∈ Ac

k−1,

|Ak−1| = k − 1, k = 2, . . . , n.

Proof. When all the system components are working, the component lifetimes S1, . . . , Sn

have constant failure rates λ1(∅), . . . , λn(∅), respectively. None of the λk(∅) depends in any
way on the failure rates of the other components. This means that S1, . . . , Sn are independent
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exponential, with possibly different distributions determined by the respective failure rates. It
is well known that S1:n = min{S1, . . . , Sn} is exponential with the failure rate

�(∅) =
n∑

i=1

λi(∅),

while

P(Si = S1:n) = λi(∅)

�(∅)
, i = 1, . . . , n,

and this holds independently of the value of S1:n. This proves the formula (6). We may also
refer to a more general result of De Santis et al. [12, Proposition 2], which asserts that for
lifetime random variables X1, . . . , Xn with general multivariate conditional hazard rates (2)
and (3) there exist independent random variables Z1, . . . , Zn with failure rates rj(t) = λj(t|∅),
j = 1, . . . , n, such that the joint distributions of (X1:n, 1{X1:n=Xj}) and (Z1:n, 1{Z1:n=Zj}), j =
1, . . . , n, are identical.

Assume now that the (k − 1)th consecutive failure happened at time sk−1, and compo-
nents j1, . . . , jk−1 ∈ Ak−1 had failed by then. From this moment on, each of the n + 1 − k
working components from the set Ac

k−1 get constant failure rates λi(Ak−1), i ∈ Ac
k−1. This

means that, independently of the particular value of Sk−1:n = sk−1 > 0, the random variables
Si − sk−1, i ∈ Ac

k−1, are independent exponential with corresponding failure rates λi(Ak−1),
i ∈ Ac

k−1. It follows that their minimum Sk:n − Sk−1:n is exponential with failure parame-
ter �(Ak−1) =∑

i∈Ac
k−1

λi(Ak−1), and it is independent of the value of Sk−1:n = sk−1. The

minimum is achieved by jk ∈ Ac
k−1 with probability

P(Ik \ Ik−1 = Ak \ Ak−1 = { jk}|Sk−1:n = sk−1, Ik−1 = Ak−1)

= λjk (Ak−1)

�(Ak−1)
, jk ∈ Ac

k−1. �

Remark 1. Conditionally on (Sk−1:n, Ik−1), the variables Sk:n − Sk−1:n and Ik are independent,
with distributions

P(Sk:n > s|Sk−1:n = sk−1,Ik−1 = Ak−1) = exp(−(s − sk−1)�(Ak−1)), s > sk−1,

P(Ik = Ak−1∪{ jk}|Sk−1:n = sk−1,Ik−1 = Ak−1) = λjk (Ak−1)

�(Ak−1)
.

Corollary 1. The joint density function of (S1:n, . . . , Sk:n, I1, . . . , Ik), k = 1, . . . , n, with
respect to the product of k-dimensional Lebesgue measure and k-dimensional counting
measure is

fL;S1:n,...,Sk:n,I1,...,Ik (s1, s2, . . . , sk, { j1}, { j1, j2}, . . . , { j1, . . . , jk})

=
k∏

i=1

λji({ j1, . . . , ji−1}) exp

(
−

k∑
i=1

(si − si−1)�({ j1, . . . , ji−1})
)

,

s0 = 0 < s1 < . . . < sk, { j1, . . . , jk} ⊂ [n].

Corollary 2. The sequence Ik, k = 1, . . . , n, is a Markov chain with initial probability

P(I1 = { j1}) = λj1 (∅)

�(∅)
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and transition probabilities

P(Ik = Ik−1 ∪ { jk}|Ik−1 = Ak−1) = λjk (Ak−1)

�(Ak−1)
, k = 2, . . . , n.

Consequently,

P(I1 = { j1}, . . . , Ik = { j1, j2, . . . , jk}) =
k∏

i=1

λji({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1}) ,

and

P(Ik = Ak) =
∑
σ (Ak)

k∏
i=1

λσi(Ak)({σ1(Ak), σ2(Ak), . . . , σi−1(Ak)})
�({σ1(Ak), σ2(Ak), . . . , σi−1(Ak)}) ,

where σ (Ak) denotes a permutation of the elements of set Ak, and σi(Ak) stands for its ith
coordinate.

Remark 2. Without the imposition of restrictive assumptions on the set of parameters (5), the
sequence Sk:n, k = 1, . . . , n, itself is not a Markov chain (see Section 4 below, where specific
restrictions on the parameters guarantee Markovianity of consecutive component failures as
well as exchangeability of component lifetimes).

It is sometimes convenient to replace a sequence of set-valued random variables I1, . . . , In by
an equivalent sequence of integer-valued variables J1, . . . , Jn defined as Ji = ji if and only if
ji ∈ Ii \ Ii−1, with the obvious convention I0 = ∅.

Corollary 3. Let V1, . . . , Vk for some 1 ≤ k ≤ n denote independent standard exponential
random variables with the common mean 1. Then

(S1:n, S2:n, . . . , Sk:n|I1 = { j1}, I2 = { j1, j2} . . . , Ik−1 = { j1, j2, . . . , jk−1})
d= (S1:n, S2:n, . . . , Sk:n|J1 = j1, J2 = j2 . . . , Jk−1 = jk−1)

d=
(

V1

�(∅)
,

V1

�(∅)
+ V2

�({ j1}) , . . . ,
V1

�(∅)
+ V2

�({ j1}) + . . . + Vk

�({ j1, . . . , jk−1})
)

, (7)

and, in particular,

(Sk:n|I1 = { j1}, I2 = { j1, j2} . . . , Ik−1 = { j1, j2, . . . , jk−1})
d= (Sk:n|J1 = j1, J2 = j2 . . . , Jk−1 = jk−1)

d= V1

�(∅)
+ V2

�({ j1}) + . . . + Vk

�({ j1, . . . , jk−1}) . (8)

In other words, the conditional distribution of Sk:n is identical with the convolution of inde-
pendent exponential random variables with intensity parameters �(∅), �(I1), . . . , �(Ik). The
respective density functions can be easily calculated for fixed parameters �(∅), �({ j1}), . . . ,

�({ j1, . . . , jk−1}), but their particular forms essentially depend on the multiplicities of the
parameters, and so we do not present them here. For brevity of notation we denote them by
fL;Sk:n(s|j1, . . . , jk−1). Similarly, we use the notation

fL;S1:n,...,Sk:n(s1, . . . , sk|j1, . . . , jk−1)
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for the joint conditional density of the first k component failure times S1:n, S2:n, . . . , Sk:n. The
conditional dependence between Si:n and Sj:n, expressed by means of (7), lies in the fact that
both of them depend on the same Vm for 1 ≤ m ≤ min{i, j}. The formula (7) can be used for
calculating the joint marginal density function of several arbitrarily selected order statistics.

Proposition 1. The joint unconditional density function of S1:n, S2:n, . . . , Sk:n has the form

fL;S1:n,...,Sk:n(s1, . . . , sk) =
∑

(j1,...,jk−1)∈�([n])

fL;S1:n,...,Sk:n(s1, . . . , sk|j1, . . . , jk−1)

×
k−1∏
i=1

λji({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1}) .

Similarly, the unconditional density of a single Sk:n is

fL;Sk:n(s) =
∑

(j1,...,jk−1)∈�([n])

fL;Sk:n(s|j1, . . . , jk−1)
k−1∏
i=1

λji({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1}) . (9)

Accordingly,

ESk:n =
∑

(j1,...,jk−1)∈�([n])

(
k∑

i=1

1

�({ j1, . . . , ji−1})

)
k−1∏
i=1

λji({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1}) . (10)

The notation (j1, . . . , jk−1) ∈ �([n]) means that the summations in the above formulae run over
all (k − 1)-permutations of the set [n], i.e., the vectors of length k − 1 built from the different
elements in [n]. We adhere to this notation further on. In this notation we do not specify the
length of the vectors in �([n]), because it always follows from the context. In other words, the
distribution of the kth component failure of the system working in the time-homogeneous load-
sharing model is the mixture of k-fold convolutions of independent exponential distributions.
As shown in the next proposition, the same holds for the distributions of the system and all its
components.

Proposition 2. The density function of the ith component lifetime Si is the following convex
combination of the convolutions of exponential random variables:

fL;Si(s) =
n∑

k=1

∑
(j1,...,jk−1)∈�([n]\{i})

fL;Sk:n(s|j1, . . . , jk−1)
k−1∏
i=1

λji({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1})

× λi({ j1, j2, . . . , jk−1})
�({ j1, j2, . . . , jk−1}) . (11)

Moreover,

ESi =
n∑

k=1

∑
(j1,...,jk−1)∈�([n]\{i})

(
k∑

i=1

1

�({ j1, . . . , ji−1})

)
k−1∏
i=1

λji({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1})

× λi({ j1, j2, . . . , jk−1})
�({ j1, j2, . . . , jk−1}) . (12)
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The difference between the expressions (9)–(10) and (11)–(12) lies in that the latter contain
one summation more; the second summations in (11)–(12) are performed over the sequences
of length k − 1 of elements of [n] other than i, and each mixing coefficient in (11) and (12) has
one more factor

λi({ j1, j2, . . . , jk−1})
�({ j1, j2, . . . , jk−1})

than the corresponding terms in the first sums of (9)–(10). To justify (11) we note that the den-
sity function of the ith component lifetime is identical with that of the kth consecutive failure
under the condition that (j1, . . . , jk−1, i) is the sequence of consecutively failed components for
arbitrary (j1, . . . , jk−1) ∈ �([n] \ {i}) and for some k = 1, . . . , n. The probability of the above
sequence of failures is

k−1∏
i=1

λji({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1})

λi({ j1, j2, . . . , jk−1})
�({ j1, j2, . . . , jk−1}) .

Hence the representation (11) follows from the law of total probability, and (12) is its
consequence.

A similar construction can be accomplished for the system lifetime. For this purpose we
first introduce the function

χ(j1, . . . , jn) =
n∑

k=1

k [ϕ({ j1, . . . , jk}) − ϕ({ j1, . . . , jk−1})]

acting on all the permutations of the set [n]. If (j1, . . . , jn) represents the sequence of sub-
sequently failing components, then χ(j1, . . . , jn) is just the number of consecutively failed
components that causes the failure of the system.

Proposition 3. The lifetime S of the system with structure ϕ and component lifetimes satisfying
the assumptions of the time-homogeneous load-sharing model with parameters (5) has the
density function

fL;S(s) =
n∑

k=1

∑
(j1,...,jn)∈χ−1(k)

fL;Sk:n(s|j1, . . . , jk−1)
n−1∏
i=1

λji ({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1}) (13)

and expectation

ES =
n∑

k=1

∑
(j1,...,jn)∈χ−1(k)

(
k∑

i=1

1

�({ j1, . . . , ji−1})

)
n−1∏
i=1

λji({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1}) . (14)

The system lifetime density function coincides with that of the kth consecutive failure in the
sequence of all consecutively failed components (j1, . . . , jn) if and only if χ(j1, . . . , jn) = k,
i.e., for this sequence of component failures the system fails at the kth consecutive failure. The
probability of the particular failure sequence (j1, . . . , jn) is represented by the product in (13),
and (13) itself results from the total probability rule.

Corollary 4. The density functions of k-out-of-n systems are given by (9), and their expecta-
tions are given by (10).
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Remark 3. In many cases it is natural in practice to assume that

λj({ j1, . . . , jk−1}) ≤ λj({ j1, . . . , jk−1, jk}), j ∈ { j1, . . . , jk−1, jk}c, k = 1, . . . , n − 1, (15)

which means that a failure of any component jk ∈ { j1, . . . , jk−1}c implies that the condi-
tional failure rates of all living components j ∈ { j1, . . . , jk−1, jk}c increase (or at least do
not decrease) with the failure of any component jk ∈ { j1, . . . , jk−1}c, jk 
= j. Moreover, it is
practically justified to have similar relations for the cumulative hazard rates

�(∅) ≤ �({ j1}) ≤ . . . ≤ �({ j1, . . . , jn−1}). (16)

We get the classic load-sharing model if �(∅) = . . . = �({ j1, . . . , jn−1}), which means that
there is a constant load acting on the system, and this is shared by its components. Then the
conditional distribution of each Sk:n is the Erlang (gamma) distribution with shape parameter k.
However, it is more realistic to assume that the aggregate hazard rate does not depend linearly
on the burden that the system undergoes, but rather increases as the number of failed com-
ponents increases. The conditions �(∅) < . . . < �({ j1, . . . , jn−1}) imply that the conditional
distribution of each Sk:n described in (8) is a linear combination of k exponential distributions
with different scales and some possibly negative coefficients summing to 1. In the most gen-
eral case this is a linear combination of Erlang distributions with possibly different shapes (see,
e.g., Smaili et al. [37, Theorem 1]).

3. Time-heterogeneous load-sharing model

The model presented above has a number of convincing motivations. On one hand, it realis-
tically depicts the situation that the system components have different strengths, and these also
depend on the circumstances under which they are working: the failures of some components
may not necessarily imply the failure of the system, yet may make the still living compo-
nents work harder, because of the increased burden on the whole system. On the other hand,
it is assumed that the still working components have stable aging tendencies, expressed by
constant failure rates. Clearly, the latter assumption is sometimes violated in practice. Below
we present a generalization of the model given in Section 2 which admits variations of the
inter-failure hazard rates in time, but still inherits some natural and useful properties of the
time-homogeneous load-sharing model.

Let F be an absolutely continuous lifetime distribution function strictly increasing on its
support interval [a, b] ⊂ [0, +∞), with density function f . We say that the component life-
times T1, . . . , Tn satisfy the assumptions of the time-heterogeneous load-sharing model, with
baseline distribution function F and parameters (5), if the respective order statistics satisfy

(Tk:n|(J1, . . . , Jk−1) = (j1, . . . , jk−1))

d=(F−1(1 − exp (− Sk:n))|(J1, . . . , Jk−1) = (j1, . . . , jk−1)), k = 1, . . . , n, (17)

with Sk:n, k = 1, . . . , n, being the order statistics coming from the time-homogeneous load-
sharing model with parameters (5), while

P(Ti = Tk:n|(J1, . . . , Jk−1) = (j1, . . . , jk−1)) = λi({ j1, . . . , jk−1})
�({ j1, . . . , jk−1}) , i ∈ { j1, . . . , jk−1}c. (18)
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Actually, we could replace Tk:n and Sk:n in (17) by Ti and Si, respectively, but the formulae
with order statistics are more convenient for our further calculations.

Proposition 4. The sequence (Tk:n, Ik), k = 1, . . . , n, is a Markov chain with initial and
transition probabilities

P(T1:n > t, I1 = { j1}) = [1 − F(t)]�(∅) λj1 (∅)

�(∅)
, a < t < b, j1 ∈ [n], (19)

and

P(Tk:n > t, Ik = Ak−1 ∪ { jk}|Tk−1:n = tk−1, Ik−1 = Ak−1)

=
[

1 − F(t)

1 − F(tk−1)

]�(Ak−1) λjk (Ak−1)

�(Ak−1)
, tk−1 < t < b, jk ∈ Ac

k−1,

|Ak−1| = k − 1, k = 2, . . . , n, (20)

respectively.

Proof. Since t �→ F−1(1 − exp(− t)) is a one-to-one continuous strictly increasing transfor-
mation of Sk:n > Sk−1:n onto Tk:n ∈ (Tk−1:n, b), in view of the conditional independence of Sk:n
and Ik, it suffices to calculate

P(T1:n > t) = P(F−1(1 − exp(− S1:n) > t) = P(S1:n > − ln [1 − F(t)])

= exp (ln [1 − F(t)] �(∅)) = [1 − F(t)]�(∅)

and

P(Tk:n > t|Tk−1:n = tk−1, Ik−1 = Ak−1)

= P(Sk:n > − ln [1 − F(t)]|Sk−1:n = − ln [1 − F(tk−1)], Ik−1 = Ak−1)

= exp (−{− ln [1 − F(t)] + ln [1 − F(tk−1)]} �(Ak−1)) =
[

1 − F(t)

1 − F(tk−1)

]�(Ak−1)

. �

Corollary 5. The joint density function of (T1:n, . . . , Tk:n, I1, . . . , Ik), k = 1, . . . , n, with
respect to the product of k-dimensional Lebesgue measure on (a, b)k and k-dimensional
counting measure on [n]k has the form

fLF;T1:n,...,Tk:n,I1,...,Ik (t1, t2, . . . , tk, { j1}, { j1, j2}, . . . , { j1, . . . , jk})

=
k∏

i=1

λji({ j1, . . . , ji−1}) f (ti)
k−1∏
i=1

[1 − F(ti)]�({ j1,...,ji−1})−�({ j1,...,ji})−1

× [1 − F(tk)]�({ j1,...,jk−1})−1 (21)

for a < t1 < . . . < tk < b and { j1, . . . , jk} ⊂ [n].

Proposition 5. Let V1, . . . , Vk for some 1 ≤ k ≤ n denote independent standard exponential
random variables with the common mean 1. Let U1, . . . , Uk stand for independent standard
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uniform random variables supported on (0,1). Then the conditional distribution of Tk:n with
respect to I1, . . . , Ik−1 has the representations

(Tk:n|I1 = { j1}, I2 = { j1, j2} . . . , Ik−1 = { j1, j2, . . . , jk−1})
d= (Tk:n|J1 = j1, J2 = j2, . . . , Jk−1 = jk−1)

d= F−1

(
1 − exp

(
−

k∑
i=1

Vi

�({ j1, . . . , ji−1})

))

d= F−1

(
1 −

k∏
i=1

U
1

�({ j1,...,ji−1})
i

)
. (22)

Similarly, the joint conditional distribution of (Ti:n)k
i=1 can be written as

((Ti:n)k
i=1|I1 = { j1}, I2 = { j1, j2} . . . , Ik−1 = { j1, j2, . . . , jk−1})

d= ((Ti:n)k
i=1|J1 = j1, J2 = j2, . . . , Jk−1 = jk−1)

d=
(

F−1

(
1 − exp

(
−

i∑
m=1

Vm

�({ j1, . . . , jm−1})

)))k

i=1

d=
(

F−1

(
1 −

i∏
m=1

U
1

�({ j1,...,jm−1})
m

))k

i=1

.

Proof. The first representation in (22) immediately follows from the definition and Corollary
2 (see (8)). In order to get the last one, we first rewrite the exponential function in (22) as

exp

(
−

k∑
i=1

Vi

�({ j1, . . . , ji−1})

)
=

k∏
i=1

[exp(−Vi)]
1

�({ j1,...,jk−1}) .

Note that random variables

Ũi = 1 − exp(− Vi), i = 1, . . . , k,

are independent uniformly distributed on (0,1), and so are Ui = 1 − Ũi, i = 1, . . . , k. Therefore
the two representations in (22) are equivalent. Similarly one obtains the representation of the
joint conditional distribution of the first k components failures. �

The relations between (Tk:n|J1, . . . , Jk−1) and (Tk−1:n|J1, . . . , Jk−2) are nicely illustrated
by the formulae

(Tk:n|J1, . . . , Jk−1)

d=
(

F−1
(

1 − [1 − F(Tk−1:n)] exp

( −Vk

�({J1, . . . , Jk−1})
))∣∣∣∣ J1, . . . , Jk−2

)

d=
(

F−1

(
1 − [1 − F(Tk−1:n)] U

1
�({J1,...,Jk−1})
k

)∣∣∣∣∣ J1, . . . , Jk−2

)
,

easily deduced from (22).
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Proposition 5 shows that the joint distribution of T1:n, . . . , Tn:n under the con-
dition that J1 = j1, J2 = j2, . . . , Jn−1 = jn−1 is just the distribution of generalized
order statistics with parent distribution function F and parameters (γ1, γ2, . . . , γn) =
(�(∅), �({ j1}), . . . , �({ j1, j2, . . . , jn−1}). The generalized order statistic is a distributional
concept introduced by Kamps [18] and applied for a unified description of distributions of var-
ious ordered random variables. It is defined using a single distribution function F and a set of
positive parameters γi. The joint density function of the first r generalized order statistics, with
distribution function F and density f , and parameters γ1, . . . , γr, has the form

f ∗
γ1,...,γr,F(x1, . . . , xr) =

⎛
⎝ r∏

j=1

γj

⎞
⎠
⎛
⎝r−1∏

j=1

[1 − F(xj)]γj−γj+1−1f (xj)

⎞
⎠[1 − F(xr)]γr−1f (xr)

for F−1(0 + ) < x1 < . . . < xr < F−1(1 −). For various choices of parameters, this describes
the joint density function of, e.g., order statistics from independent and identically distributed
(i.i.d.) samples with parent F, upper records in i.i.d. sequences with marginal F, their general-
izations to kth records (which are new kth maxima in the sequences), Type-II censored samples,
and progressively Type-II censored samples, where after consecutive failures fixed numbers of
randomly selected living items are removed from the experiment for ethical or economic rea-
sons. Since the publication of the book [18], the theory and applications of generalized order
statistics have been developed in hundreds of papers. In particular, there have been attempts to
employ the notion in reliability theory (see, e.g., [8], [9], and [17]).

It follows that the time-heterogeneous load-sharing model generalizes the model of gener-
alized order statistics. Its weak point, however, is that it cannot be sequentially extended to an
arbitrary dimension as the standard generalized order statistics can. In order to get marginal
density functions of a single or several order statistics in the model, it suffices to integrate prop-
erly the joint density (21). However, we cannot expect closed and nice formulae in general.
Cramer and Kamps [10] proved that in the case of the standard uniform distribution function
U, the kth generalized order statistic with parameters (γ1, γ2, . . . , γk) has the density function

g∗
k;γ1,...,γk,U

(t) =
(

k∏
i=1

γi

)
l∑

j=1

dj−1∑
m=0

Kjm

m! (1 − t)δj−1 [− ln (1 − t)]dj−m−1

(dj − m − 1)! , 0 < t < 1,

where δ1 < . . . < δl represent the different values in the sequence (γ1, . . . , γk), and d1, . . . , dj

are their respective multiplicities, while

Kj0 =
l∏

q=1
q 
=j

1

(δq − δj)dq
,

Kjm =
m−1∑
p=0

(− 1)p+1 (m − 1)!
(m − 1 − p)!Kj,m−1−p

l∑
q=1
q 
=j

dq

(δq − δj)p+1
, j ≥ 1.

This density function does not depend on n and γi with i > k. If the generalized order statistics
have the baseline distribution F, then the marginal density function of the kth generalized order
statistic Tk:n takes the form

g∗
k;γ1,...,γk,F

(t) = f (t) g∗
k;γ1,...,γk,U

(F(t)), a < t < b.
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The kth order statistic in the time-heterogeneous load-sharing model with parent distribution
function F and parameter set (5) has the conditional density function

fL,F;Tk:n(t|j1, . . . , jk−1) = g∗
k;�(∅),�({ j1}),...,�({ j1,j2,...,jk−1}),F(t), a < t < b,

with respect to the random event (J1, J2, . . . , Jk−1) = (j1, j2, . . . , jk−1). The unconditional dis-
tribution of the kth subsequent component failure in our model is a convex combination of

n!
(n−k)! distributions of kth generalized order statistics with common F and various parameters.

Corollary 6. The unconditional density of Tk:n is given by

fL,F;Tk:n(t) =
∑

(j1,...,jk−1)∈�([n])

g∗
k;�(∅),�({ j1}),...,�({ j1,j2,...,jk−1}),F(t)

k−1∏
i=1

λji ({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1}) .

Similarly, the density functions of every component and of the system are also convex
combinations of the density functions of generalized order statistics.

Corollary 7. The density function of the ith component lifetime Ti has the form

fL,F;Ti(t) =
n∑

k=1

∑
(j1,...,jk−1)∈�([n]\{i})

g∗
k;�(∅),�({ j1}),...,�({ j1,j2,...,jk−1}),F(t)

×
k−1∏
i=1

λji({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1})

λi({ j1, j2, . . . , jk−1})
�({ j1, j2, . . . , jk−1}) .

Corollary 8. The lifetime T of the system with structure ϕ and component lifetimes T1, . . . , Tn

satisfying the assumptions of the time-heterogeneous load-sharing model with parent distribu-
tion function F and parameters (5) has the density function

fL,F;T(t) =
n∑

k=1

∑
(j1,...,jn)∈χ−1(k)

g∗
k;�(∅),�({ j1}),...,�({ j1,j2,...,jk−1}),F(t)

n−1∏
i=1

λji({ j1, j2, . . . , ji−1})
�({ j1, j2, . . . , ji−1}) .

Proposition 6. In the time-heterogeneous load-sharing model based on the distribution func-
tion F and parameters L, the multivariate conditional hazard rates of component lifetimes do
not depend on the particular failure times of the components that have failed previously, and
can be written as

λj(t|Ak−1, t1, . . . , tk−1) = λj(Ak−1)
f (t)

1 − F(t)
, j ∈ Ac

k−1, |Ak−1| = k − 1, a < t < b. (23)

Formally, the formula (23) holds for a < t1 < . . . < tk−1 < t, but t1, . . . , tk−1 could be located
arbitrarily close to a, and so (23) has to be defined for all t > a.

Proof. We first determine the multivariate conditional failure rates at subsequent failure
times. By (19) and (20), the conditional survival function of the kth order statistic

P(Tk:n > t|Tk−1:n = tk−1, Ik−1 = Ak−1) =
[

1 − F(t)

1 − F(tk−1)

]�(Ak−1)

, k = 1, . . . , n,
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depends only on the labels of the already failed components Ak−1 and the last preceding fail-
ure time tk−1. It is independent of the moments of other earlier failures and of the order of
consecutively failing components. The corresponding conditional density is

fL,F;Tk:n(t|Tk−1:n = tk−1, Ik−1 = Ak−1) = �(Ak−1)[1 − F(t)]�(Ak−1)−1f (t)

[1 − F(tk−1)]�(Ak−1) .

Writing the respective hazard rate

λL,F;Tk:n(t|Tk−1:n = tk−1, Ik−1 = Ak−1) = �(Ak−1)
f (t)

1 − F(t)
= λL,F;Tk:n(t|Ik−1 = Ak−1),

we also eliminate the dependence on tk−1 and get a linear transformation of the failure rate
λF(t) = f (t)

1−F(t) of the model distribution function F. For the component lifetime, we have

λL,F;Tj(t|Ik−1 = Ak−1) = lim� t↘0

1

� t
P(Tj ≤ t + � t|Ik−1 = Ak−1, Tk:n > t)

= lim� t↘0

1

� t
P(Tj = Tk:n, Tk:n ≤ t + � t|Ik−1 = Ak−1, Tk:n > t).

In view of (18), under the condition Ik−1 = Ak−1, the probability that Tj = Tk:n is independent
of the distribution of Tk:n. Therefore

λL,F;Tj(t|Ik−1 = Ak−1) = P(Tj = Tk:n|Ik−1 = Ak−1)

× lim� t↘0

1

� t
P(Tk:n ≤ t + � t|Ik−1 = Ak−1, Tk:n > t)

= λj(Ak−1)

�(Ak−1)
�(Ak−1)

f (t)

1 − F(t)
= λj(Ak−1)λF(t),

as desired. �
Proposition 6 shows that our time-heterogeneous load-sharing model based on some fixed

distribution function F and parameters (5) follows the linear breakdown rule (4). The form of
the multivariate conditional hazard rates (23) refers to some intuitive arguments. We assume
that the components have some immanent durability properties, expressed by means of the
failure rate λF of the parent model distribution, which has fixed shape and monotonicity prop-
erties. After the system begins operation, and then after the working status of other components
changes, the level of aging intensity of each component changes abruptly without violating its
further variability. The degree of change depends on the location of the component in the
system and the working status of the remaining system components.

We claim that the only joint distributions of the component lifetimes that follow the linear
breakdown rule are those satisfying the assumptions of the time-heterogeneous load-sharing
model with some baseline distribution function F and parameters λj(A), j 
∈ A� [n].

Theorem 2. Let T1, . . . , Tn be the component lifetimes with the multivariate conditional haz-
ard rate function of a form as in (4) for all t in some (a, b) ⊂ (0, +∞). Then there exists
an absolutely continuous distribution function F supported on (a, b) with the failure rate
λF(t) = L(t), a < t < b, such that the joint distribution of T1, . . . , Tn is identical with that of
the component lifetimes in the time-heterogeneous load-sharing model with parent distribution
function F and parameters (5).

In the proof we apply the following auxiliary result.
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Proposition 7. Suppose that T1, . . . , Tn have a joint distribution determined by the multi-
variate conditional hazard rates (2) and (3). Then for every k = 0, . . . , n − 1, j1, . . . , jk ∈ [n]
and 0 < t1 < . . . < tk, the random variables Ti − tk, i ∈ { j1, . . . , jk}c, and independent positive
random variables Zi, i ∈ { j1, . . . , jk}c, with respective failure rates

ri(t) = λi(t + tk|j1, . . . , jk, t1, . . . , tk), t > 0,

satisfy

P(Ti − tk = min{Tj − tk : j ∈ { j1, . . . , jk}c} ∈ B|Tj1 = t1, . . . , Tjk = tk < Tk+1:n)

= P(Zi = min{Zj : j ∈ { j1, . . . , jk}c} ∈ B)

for every i ∈ { j1, . . . , jk}c and B an arbitrary Borel subset of R+.

This result immediately follows from De Santis et al. [12, Proposition 1]. The special case with
k = 0 was formulated in Proposition 2 of [12]. In our more general version, we consider condi-
tional distributions of the residual lifetimes Ti − tk, i ∈ { j1, . . . , jk}c, given {Tj1 = t1, . . . , Tjk =
tk, Ti > tk, i ∈ { j1, . . . , jk}c}. The assumption of absolute continuity of T1, . . . , Tn ensures the
possibility of constructing the multivariate conditional hazard rates λ·(· | ·) on one hand, and
the existence of the joint conditional density function of the aforementioned conditional dis-
tribution on the other. The latter implies that there exist multivariate conditional hazard rates
λ̃·(· | ·) of the conditional distribution. In view of the definitions, we immediately notice that
the relations

λ̃j(t|∅) = λj(t + tk|j1, . . . , jk, t1, . . . , tk),

with j ∈ { j1, . . . , jk}c and t > 0, and

λ̃j(t|i1, . . . , i�, s1, . . . , s�) = λj(t + tk|j1, . . . , jk, i1, . . . , i�, t1, . . . , tk, tk + s1, . . . , tk + s�),

with � = 0, . . . , n − k − 1, {i1, . . . , i�, j} ⊂ { j1, . . . , jk}c, and 0 < s1 < . . . s� < t, hold.

Proof of Theorem 2. We first show that the function L(t) is the failure rate of a lifetime
distribution function with a positive density on (a, b). The function is certainly positive on
(a, b), because so is λj(A) for every j and A. Consequently, it suffices to show that

∫ b
a L(t)dt =

+∞.
The multivariate conditional failure rates of the jth component lifetime have the forms

λj(t|J1 = j1, . . . , Jk = jk, Tj1 = t1 < . . . < Tjk = tk < t < min
i∈{ j1,...,jk}c

Ti)

= λj({ j1, . . . , jk})L(t), a < t < b, j ∈ { j1, . . . , jk}c. (24)

In view of the fact that such conditional failure rates do not depend on the particular times of
the previous failures, we use the total probability law to calculate the unconditional version of
the failure rate,

λj(t) =
n−1∑
k=0

∑
(j1,...,jk)∈�([n]\{ j})

λj({ j1, . . . , jk})P(Tj1 < . . . < Tjk < t < min
i∈{ j1,...,jk}c

Ti)L(t),

which satisfies

+∞ =
∫ b

a
λj(t) dt =

n−1∑
k=0

∑
(j1,...,jk)∈�([n]\{ j})

λj({ j1, . . . , jk})

×
∫ b

a
P(Tj1 < . . . < Tjk < t < min

i∈{ j1,...,jk}c
Ti) L(t) dt

if and only if
∫ b

a L(t)dt = +∞.
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Now we prove the relations (18). We fix 0 ≤ k ≤ n − 1, j1, . . . , jk ∈ [n], and 0 < t1 <

. . . < tk. Under the notation of Proposition 7, the independent random variables Zi, i ∈
{ j1, . . . , jk}c, have failure rates

ri(t) = λi({ j1, . . . , jk})L(t + tk), 0 < t < b − tk.

Their survival and density functions are

Ḡi(t) = exp

(
−λi({ j1, . . . , jk})

∫ t

0
L(u + tk) du

)
,

gi(t) = λi({ j1, . . . , jk})L(t + tk) exp

(
−λi({ j1, . . . , jk})

∫ t

0
L(u + tk) du

)
,

respectively. Then

P(Zi = min{Zj : j ∈ { j1, . . . , jk}c}) = P(Zi ≤ min{Zj : j ∈ { j1, . . . , jk, j}c})

=
∫ b−tk

0

⎡
⎣ ∏

j∈{ j1,...,jk,j}c

Ḡj(t)

⎤
⎦ gi(t) dt =

∫ b−tk

0
λi({ j1, . . . , jk})L(t + tk)

× exp

⎛
⎝−

∑
j∈{ j1,...,jk}c

λj({ j1, . . . , jk})
∫ t

0
L(u + tk) du

⎞
⎠ dt

= λi({ j1, . . . , jk})∑
j∈{ j1,...,jk}c λj({ j1, . . . , jk}) .

By Proposition 7, independently of the particular values of Tj1 = t1 < . . . < Tjk = tk < Tk+1:n,
we obtain

P(Ti = Tk+1:n|J1 = j1 . . . , Jk = jk) = λi({ j1, . . . , jk})∑
j∈{ j1,...,jk}c λj({ j1, . . . , jk}) .

Summing up, under the condition (4) the function L(t), a < t < b, is the failure rate of a
unique distribution function F, say, supported on (a, b). The representation (4) implies (18) as
well. It follows that the assumptions of the time-heterogeneous load-sharing model with base-
line distribution function F and parameters (5) are satisfied. Since the family of multivariate
conditional hazard rate functions uniquely determines the joint distribution of (T1, . . . , Tn), the
assumption (4) describes a time-heterogeneous load-sharing model as defined at the beginning
of this section. �

The time-heterogeneous load-sharing model distribution uniquely determines the respective
set of parametersL and F up to the transformationsLθ = {θλj(A) : A� [n], j ∈ Ac} and Fθ (t) =
1 − [1 − F(t)]1/θ for θ > 0. Note that the multivariate conditional hazard rate functions have
the same form (4) for all θ > 0.

Remark 4. Schechner [36] assumed that the parameters of the linear breakdown model (4) sat-
isfy conditions analogous to (15), and additionally that

∑
j∈Ac λj(A) = 1, A� [n]. Our approach

allows us to remove the latter condition. What is more, this assumption seems to be rather ide-
alistic in view of our investigations. It implies that the conditional hazard rates of consecutive
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failure times T1:n, . . . , Tn:n are just equal to L(t), and do not depend on the number and types
of the failures before t. A realistic assumption, however, is that after each failure the sum of
the particular conditional failure rates of the still operating components increases (see (16)).
This means that when the components fail in the order j1, j2, . . . , jn, the conditional hazard
rate of the (k + 1)th subsequent failure jumps up abruptly from �({ j1, . . . , jk−1})L(Tk+1:n −)
to �({ j1, . . . , jk})L(Tk+1:n) at the (k + 1)th failure moment t = Tk+1:n (when L is continuous,
we simply have L(Tk+1:n −) = L(Tk+1:n)). Here the function L(t) may be treated as the failure
rate of a component which does not undergo sudden jumps of the load level while working in
the system. The working regime in the system changes the levels of the component lifetime
hazard rates, but it preserves its time variability properties in the inter-failure times.

4. Special cases of the model parameters

In this section we analyze the time-heterogeneous load-sharing model in the cases when
the set of model parameters (5) takes on simplified forms. The first one is equivalent to the
exchangeability of component lifetimes, and the other two provide some generalizations of the
exchangeable case.

Exchangeable components. Here we assume that the behavior of any system component is
indistinguishable from that of the others; i.e. the joint density fT1,...,Tn(t1, . . . , tn) of the com-
ponent lifetimes is invariant under permutations of its arguments t1, . . . , tn. In terms of the
multivariate conditional hazard rates, this assumption can be equivalently expressed by the
condition that for any pair (j, A) with A� [n] and j ∈ Ac, the load-sharing parameter λj(A) is
independent of j, and depends on A only through its cardinality |A|. In other words, we assume
existence of positive numbers α(i), i = 1, . . . , n − 1, such that

λj(A) = α(|A|), A� [n], j ∈ Ac. (25)

This implies that �(A) = (n − |A|)α(|A|), A� [n]. Note that in the exchangeable submodel, the
number of parameters is reduced from n2n−1 to n. The equivalence between exchangeability
and (25) can be proven by resorting to the formulae which express the multivariate conditional
hazard rate functions in terms of the joint density and vice versa. See also, e.g., the arguments
in [38], and [40]. By the exchangeability assumption and Corollary 2, the random sequence of
consecutive subsets of failed components I1, . . . , In (Ik ⊂ Ik+1, |Ik| = k) forms a Markov chain
with initial probability P(I1 = { j1}) = 1

n and transition probability law

P(Ik+1 = Ak ∪ { jk+1}|Ik = Ak) = 1

n + 1 − k
, k = 1, . . . , n,

for Ak denoting a value of the random variable Ik, i.e., the set of the first k failed components.
This implies that

P(I1 = A1, . . . , Ik = Ak) = (n − k)!
n!

and

P(Ik = Ak) = 1(
n
k

)
for k = 1, . . . , n. In particular, all the sequences of labels of consecutively failed components
have the same probability P(I1 = A1, . . . , In = An) = 1

n! .
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By Proposition 4, the sequence of pairs (Tk:n, Ik), k = 1, . . . , n, is a two-dimensional
Markov chain with probability measure determined by

P(T1:n > t, I1 = { j1}) = [1 − F(t)]nα(0) 1

n
, t > 0,

and

P(Tk:n > t, Ik = Ak−1 ∪ { jk}|Tk−1:n = tk−1, Ik−1 = Ak−1)

=
[

1 − F(t)

1 − F(tk−1)

](n+1−k)α(k−1) 1

n + 1 − k
, t > tk−1, k = 2, . . . , n.

It follows that the sequence of order statistics Tk:n, k = 1, . . . , n, itself is a Markov chain with
initial and transition probability laws

P(T1:n > t) = [1 − F(t)]nα(0), t > 0,

P(Tk:n > t|Tk−1:n = tk−1) =
[

1 − F(t)

1 − F(tk−1)

](n+1−k)α(k−1)

, t > tk−1, k = 2, . . . , n,

respectively. This implies that the distribution of consecutive failures T1:n, . . . , Tn:n is iden-
tical with the distribution of n generalized order statistics with baseline distribution function
F and parameters γk = (n + 1 − k)α(k − 1), k = 1, . . . , n. Therefore the unconditional density
function of the kth system component failure can be written as

fL,F,Tk:n(t) = g∗
k;nα(0),...,(n+1−k)α(k−1),F(t).

By Corollary 7, we also have

fL,F,Ti(t) =
n∑

k=1

(n − 1)!
(n − k)! g∗

k;nα(0),...,(n+1−k)α(k−1),F(t)
(n − k)!

n!

= 1

n

n∑
k=1

g∗
k;nα(0),...,(n+1−k)α(k−1),F(t) = 1

n

n∑
k=1

fL,F,Tk:n(t).

This illustrates the classic property of exchangeable random variables that the marginal distri-
bution of any single variable is the uniform mixture of the distributions of order statistics. By
Corollary 8, we get

fL,F,T(t) =
n∑

k=1

|χ−1(k)|
n! g∗

k;nα(0),...,(n+1−k)α(k−1),F(t) =
n∑

k=1

|χ−1(k)|
n! fL,F,Tk:n(t), (26)

which is the mixture of density functions of order statistics with the coefficient vector

s = (s1, . . . , sn) =
( |χ−1(1)|

n! , . . . ,
|χ−1(n)|

n!
)

,

dependent merely on the structure function of the system. The vector s is called the structural
Samaniego signature of the system. The representation (26) was proven in Samaniego [30] in
the case of i.i.d. component lifetimes, and it was extended to the exchangeable case by Navarro
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et al. [24] (see also [23]). Note that the Samaniego signature has also the probabilistic meaning
sk = pk = P(T = Tk:n), k = 1, . . . , n. Hence (26) can be rewritten as

fL,F,T (t) =
n∑

k=1

P(T = Tk:n)fL,F,Tk:n(t),

which means that under the assumption of exchangeability of T1, . . . , Tn the component failure
times are independent of the system structure. The vector p = (p1, . . . , pn) is called the prob-
abilistic signature of the system; under violation of the exchangeability assumption it usually
differs from the structural one. The time-heterogeneous load-sharing model with exchange-
able components is also called the failure-dependent proportional hazard model, because the
multivariate conditional hazard rates here,

λj(t|Ak−1, t1, . . . , tk−1) = α(k − 1)
f (t)

1 − F(t)
, k = 1, . . . , n, t > 0

(cf. (23)), are proportional to the baseline hazard rate f (t)/(1 − F(t)), and change only at the
failure times of the components. The model was studied by Hollander and Pẽna [17], Aki and
Hirano [1], Burkschat [8], and Burkschat and Rychlik [9], among others.

Components with uniform supporting ability. Assume now that the model parameters λj(A),
j 
∈ A� [n], depend on the number of failed components, but do not depend on their particular
labels. The submodel is thus characterized by n2 parameters

βj(k) = λj(A) iff |A| = k, j = 1, . . . , n, k = 0, . . . , n − 1.

It is natural, but not necessary, to assume that for fixed j all the sequences βj(k) are
nondecreasing.

The quantity

ςi,j(A) = λj(A ∪ {i}) − λj(A), i 
= j ∈ Ac, A� [n],

which can be regarded as a measure of the ability of component i to reduce the stress suffered
by component j when all the components in A have failed, does not depend on the label of the
supporting component, but only on the label of the supported one. This can be interpreted as
the uniformity of the ability of operating components to reduce the stress on other operating
components.

In contrast to the exchangeable case, it appears here that despite a significant reduction of
the number of parameters, the distributional properties of component and system lifetimes and
respective formulae do not simplify much compared to those in the general model. We have

fL,F,Tk:n(t) =
∑

(j1,...,jk−1)∈�([n])

g∗
k;B(∅),...,B({ j1,...,jk−1}),F(t)

k∏
i=1

βji(i − 1)

B({ j1, . . . , ji−1}) ,

k = 1, . . . , n,

fL,F,Ti(t) =
n∑

k=1

βi(k − 1)
∑

(j1,...,jk−1)∈�([n]\{i})

g∗
k;B(∅),...,B({ j1,...,jk−1}),F(t)

∏k−1
i=1 βji(i − 1)∏k

i=1B({ j1, . . . , ji−1})
,

i = 1, . . . , n,

fL,F,T(t) =
n∑

k=1

∑
(j1,...,jn)∈χ−1(k)

g∗
k;B(∅),...,B({ j1,...,jn}),F(t)

n∏
i=1

βji(i − 1)

B({ j1, . . . , ji−1})
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for B(A) = �(A) =∑
j∈Ac βj(|A|), A� [n], denoting the cumulative hazard rate of living

components when those of A have failed.
As in the general model, (Tk:n, Ik) and (Ik), k = 1, . . . , n, are Markov chains, but (Tk:n),

k = 1, . . . , n, is not. We finally observe that

pk = P(T = Tk:n) =
∑

(j1,...,jn)∈χ−1(k)

n∏
i=1

βji(i − 1)

B({ j1, . . . , ji−1}) , k = 1, . . . , n,

are different from the structural signature coefficients, and the conditional density functions

fL,F,T|T=Tk:n(t) =
∑

(j1,...,jn)∈χ−1(k) g∗
k;B(∅),...,B({ j1,...,jn}),F(t)

∏n−1
i=1

βji (i−1)
B({ j1,...,ji−1})∑

(j1,...,jn)∈χ−1(k)
∏n−1

i=1
βji (i−1)

B({ j1,...,ji−1})
,

k = 1, . . . , n, strongly depend on the structure of the system, unlike in the exchangeable case.

Components with uniform frailty. In this subsection, we consider the case when the load-
sharing parameters λj(A) are independent of j for any A� [n] such that j ∈ Ac. That is, we
assume the existence of 2n − 1 positive numbers δ(A) satisfying

λj(A) = δ(A), j ∈ Ac, A� [n] .

The quantities δ(A) do not depend on the specific identity j of each still surviving component,
but they may depend on the set A of already failed components. Unlike in the exchangeable
setup we do not assume here the relation |A′| = |A′′| ⇒ δ(A′) = δ(A′′). The special form of the
assumptions can be interpreted as uniform frailty or uniform sensitivity of all still operating
components to the load acting on the system.

We first notice that

�(A) =
∑
j∈Ac

λj(A) = (n − |A|) δ(A),

λj(A)

� (A)
= 1

n − |A| , A� [n].

This implies that the distributions of the sequences (I1, . . . , Ik), k = 1, . . . , n, are

P(I1 = { j1}, . . . , Ik = { j1, . . . , jk}) = (n − k)!
n! ,

as in the exchangeable case. Applying Corollary 6, we conclude that

fL,F,Tk:n(t) = (n + 1 − k)!
n!

∑
(j1,...,jk−1)∈�([n])

g∗
k;nδ(∅),...,(n+1−k)δ({ j1,...,jk−1}),F(t),

which means that the distribution of the kth consecutive component failure is the uniform
mixture of kth generalized order statistics with parent distribution function F and parameters
γi = (n + 1 − i)δ({ j1, . . . , ji−1}), i = 1, . . . , k, over all subsequences of different elements of
[n] of length k − 1. Furthermore, we have

fL,F,Ti(t) = 1

n

n∑
k=1

(n − k)!
(n − 1)!

∑
(j1,...,jk−1)∈�([n]\{i})

g∗
k;nδ(∅),...,(n+1−k)δ({ j1,...,jk−1}),F(t),

fL,F,T(t) = 1

n!
n∑

k=1

∑
(j1,...,jn)∈χ−1(k)

g∗
k;nδ(∅),...,(n+1−k)δ({ j1,...,jk−1}),F(t).
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The first is the mean over all k = 1, . . . , n of uniform mixtures of kth generalized order statis-
tic densities with parameters nδ(∅), . . . , (n + 1 − k)δ({ j1, . . . , jk−1}) and baseline F, with
(j1, . . . , jk−1) being the sequences of different elements of [n] other than i. The latter is the
average of all conditional density functions of system failure under all possible orders of con-
secutively failing components. Note that although the uniform frailty model has many more
parameters than the uniform supporting-ability model, the distributions of component and sys-
tem lifetimes have much simpler forms. Moreover, under the uniform frailty assumption, the
structural and probabilistic signatures coincide. On the other hand, the conditional density
functions

fL,F,T|T=Tk:n(t) = 1

|χ−1(k)|
∑

(j1,...,jn)∈χ−1(k)

g∗
k;nδ(∅),...,(n+1−k)δ({ j1,...,jk−1}),F(t)

evidently depend on the system structure, in contrast to their independence in the exchangeable
model. Also, the sequence of consecutive failures does not form a Markov chain.

5. Expectations of system lifetimes for special baseline distributions

For some parent distribution functions F, one can establish analytic formulae for the expec-
tations of component lifetimes, their order statistics, and system lifetimes. The most natural
choice is the standard exponential distribution function F(t) = 1 − exp(− t), t > 0, with the
quantile function F−1(u) = − ln (1 − u), 0 < u < 1. Plugging this into the model of Section 3
(see (17)), we obtain exactly the time-homogeneous load-sharing model with parameters L. In
consequence, for the standard exponential model distribution function F we can simply recall
all the establishments of Section 2. Location-scale transformations of the parent distribution
result in analogous transformations of the random variables in the model.

Another example with frequent applications in the lifetime analysis is the Lomax distribu-
tion function Fα(t) = 1 − (1 + t)−α , t > 0, α > 0. It has the inverse F−1

α (u) = (1 − u)−1/α − 1.
By Proposition 5, we have the representation

(Tk:n|J1 = j1, J2 = j2 . . . , Jk−1 = jk−1)
d=

k∏
i=1

U
−1

α�({ j1,...,ji−1})
i − 1

with the conditional expectation

E(Tk:n|J1 = j1, J2 = j2 . . . , Jk−1 = jk−1) =
k∏

i=1

α�({ j1, . . . , ji−1})
α�({ j1, . . . , ji−1}) − 1

− 1,

which is finite under the assumption that all �({ j1, . . . , ji−1}, i = 1, . . . , k, are greater than 1
α

.
In consequence, we have

ETk:n =
∑

(j1,...,jk−1)∈�([n])

αk�({ j1, . . . , jk−1})∏k−1
i=1 λji({ j1, . . . , ji−1})∏k

i=1 [α�({ j1, . . . , ji−1}) − 1]
− 1,

ETi =
n∑

k=1

∑
(j1,...,jk−1)∈�([n]\{i})

αkλi({ j1, . . . , jk−1})∏k−1
i=1 λji({ j1, . . . , ji−1})∏k

i=1 [α�({ j1, . . . , ji−1}) − 1]
− 1,

ET =
n∑

k=1

∑
(j1,...,jn)∈χ−1(k)

k∏
i=1

αλji ({ j1, . . . , ji−1})
α�({ j1, . . . , ji−1}) − 1

n∏
i=k+1

λji({ j1, . . . , ji−1})
�({ j1, . . . , ji−1}) − 1, (27)

under the condition that all the denominators are positive.
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The last example of this type is provided by the reflected power distribution function Fα(t) =
1 − (1 − t)α , 0 < t < 1, α > 0, with the quantile function F−1

α (u) = 1 − (1 − u)1/α, 0 < u < 1.
By (22), this yields

(Tk:n|J1 = j1, J2 = j2 . . . , Jk−1 = jk−1)
d= 1 −

k∏
i=1

U
1

α�({ j1,...,ji−1})
i .

Since the respective expectation is

E(Tk:n|J1 = j1, J2 = j2 . . . , Jk−1 = jk−1) = 1 −
k∏

i=1

α�({ j1, . . . , ji−1})
α�({ j1, . . . , ji−1}) + 1

,

we conclude the following:

ETk:n = 1 −
∑

(j1,...,jk−1)∈�([n])

αk�({ j1, . . . , jk−1})∏k−1
i=1 λji({ j1, . . . , ji−1})∏k

i=1 [α�({ j1, . . . , ji−1}) + 1]
,

ETi = 1 −
n∑

k=1

∑
(j1,...,jk−1)∈�([n]\{i})

αkλi({ j1, . . . , jk−1})∏k−1
i=1 λji({ j1, . . . , ji−1})∏k

i=1 [α�({ j1, . . . , ji−1}) + 1]
,

ET = 1 −
n∑

k=1

∑
(j1,...,jn)∈χ−1(k)

k∏
i=1

αλji ({ j1, . . . , ji−1})
α�({ j1, . . . , ji−1})+1

n∏
i=k+1

λji ({ j1, . . . , ji−1})
�({ j1, . . . , ji−1}) . (28)

In the special case α = 1 we obtain the formulae for F being the standard uniform distribution
function. The Lomax, exponential, and reflected power distributions together form the family
of generalized Pareto distributions, which have multiple applications in the theory and practice
of lifetime data analysis.

We complete the paper by presenting a numerical example.

Example 1. Consider the 5-component bridge system with the structure presented in Figure 1.

It has minimal path sets {1, 2}, {4, 5}, {1, 3, 5}, {2, 3, 4}, and minimal cut sets {1, 4}, {2, 5},
{1, 3, 5}, {2, 3, 4} (for the definitions of these notions, we refer the reader to, e.g., [5, p. 9]). Its
Samaniego signature is

(
0, 1

5 , 3
5 , 1

5 , 0
)
, which means in particular that the system cannot fail

because of one component failure, and cannot survive four component failures. This is also
easily verified by a cursory look at the figure.

Another immediate conclusion of the system diagram analysis is the fact that the compo-
nents in positions 1, 2, 4, and 5 are equally important to the functioning of the system, while the
component in position 3 affects it less. We may support this claim more formally using com-
ponent importance measures. For example, the Barlow–Proschan importance measure IBP(i)
of the ith component, in the case of identical exchangeable components, is the proportion of
the number of sequences of labels of consecutively failing components such that the failure of
component i implies the failure of the system to the total number of sequences (see [4]). For
the bridge system we have IBP(3) = 1

15 and IBP(j) = 7
30 , j 
= 3.

If we have four equally strong components and one weaker one, we certainly locate
the weakest component at the least important position 3. Assume that this is reflected
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FIGURE 1: Bridge system.

by the following assumption on the parameters of the load-sharing model: for different
j1, j2, j3, j4 ∈ {1, 2, 4, 5}, we set

λj1 (∅) = 1 < λ3(∅) = 4

3
< λj1 ({3}) = 5

3
< λj1 ({ j2}) = 2 < λ3({ j1}) = 7

3

< λj1 ({3, j2}) = 8

3
< λj1 ({ j2, j3}) = 3 < λ3({ j1, j2}) = 10

3
< λj1 ({3, j2, j3}) = 17

3

< λj1 ({ j2, j3, j4}) = 6 < λ3({ j1, j2, j3}) = 19

3
.

Since for system lifetime analysis we do not need to consider the last failure, we do not deter-
mine λj1 ({3, j2, j3, j4}) nor λ3({ j1, j2, j3, j4}). The above definition can be concisely written as

λj(A) =

⎧⎪⎨
⎪⎩

|A| + 2� |A|
3 � + 1, j ∈ Ac 
� 3,

|A| + 2� |A|
3 � + 4

3 , j = 3 ∈ Ac,

|A| + 2� |A|
3 � + 2

3 , j 
= 3 ∈ Ac.

In particular, the natural condition λi(A) < λj(B) holds for |A| < |B| and i 
∈ A, j 
∈ B. Moreover,
for the sets with identical cardinalities we have

λj1 (A ∪ {3}) < λj1 (A ∪ { j2}) < λ3(A ∪ { j2}), { j1, j2, 3} ∩ A = ∅.

The latter inequality means that in any system state, component 3 is more liable to fail than
any other component. The former asserts that a component has a possibility of living longer
when the still operating components are different from component 3. Note that, in view of the
system structure and the homogeneity of four of the components, the number of parameters is
reduced from 80 to 11.

Using the definition, we calculate the cumulative hazard rates:

�(∅) = 16

3
< �({3}) = 20

3
< �({ j1}) = 23

3
< �({3, j1}) = 8

< �({ j1, j2}) = 28

3
< �({3, j1, j2}) = 34

3
< �({ j1, j2, j3}) = 37

3
.

It follows that � increases with the increase of cardinality of its argument, and moreover
�(A ∪ {3}) < �(A ∪ { j}), 3 
= j ∈ Ac. We determine the following probabilities for labels of
consecutively failing components:
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P(J1 = j1, J2 = j2) = λj1 (∅)

�(∅)

λj2 ({ j1})
�({ j1}) = 9

184
,

P(J1 = 3, J2 = j2, J3 = j3) = λ3(∅)

�(∅)

λj2 ({3})
�({3})

λj3 ({3, j2})
�({3, j2}) = 1

48
,

P(J1 = j1, J2 = 3, J3 = j3) = λj1 (∅)

�(∅)

λ3({ j1})
�({ j1})

λj3 ({ j1, 3})
�({ j1, 3}) = 7

320
,

P(J1 = j1, J2 = j2, J3 = 3) = λj1 (∅)

�(∅)

λj2 ({ j1})
�({ j1})

λ3({ j1, j2})
�({ j1, j2}) = 45

2576
,

P(J1 = j1, J2 = j2, J3 = j3) = λj1 (∅)

�(∅)

λj2 ({ j1})
�({ j1})

λj3 ({ j1, j2})
�({ j1, j2}) = 81

6808
.

These can further be used to evaluate the system lifetime. For simplicity of calculation, we
assume that the baseline model distribution is standard exponential, and apply (14). Analogous
results can be established for the Lomax and reflected power distributions using (27) and (28),
respectively. In the exponential case, we determine that

ET = 4

(
1

�(∅)
+ 1

�({ j1})
)
P(J1 = j1, J2 = j2)

+ 8

(
1

�(∅)
+ 1

�({3}) + 1

�({3, j2})
)
P(J1 = 3, J2 = j2, J3 = j3)

+ 8

(
1

�(∅)
+ 1

�({ j1}) + 1

�({ j1, 3})
)
P(J1 = j1, J2 = 3, J3 = j3)

+ 4

(
1

�(∅)
+ 1

�({ j1}) + 1

�({ j1, j2})
)
P(J1 = j1, J2 = j2, J3 = 3)

+ 16

(
1

�(∅)
+ 1

�({ j1}) + 1

�({ j1, j2})
)
P(J1 = j1, J2 = j2, J3 = j3)

+ 4

(
1

�(∅)
+ 1

�({3}) + 1

�({3, j2}) + 1

�({3, j2, j3})
)
P(J1 = 3, J2 = j2, J3 = j3)

+ 4

(
1

�(∅)
+ 1

�({ j1}) + 1

�({ j1, 3}) + 1

�({ j1, 3, j3})
)
P(J1 = j1, J2 = 3, J3 = j3)

+ 4

(
1

�(∅)
+ 1

�({ j1}) + 1

�({ j1, j2}) + 1

�({ j1, j2, 3})
)
P(J1 = j1, J2 = j2, J3 = 3).

The first term represents system failure caused by two component failures, which happens in
the four cases when I2 is equal to either {1, 4} or {2, 5}, and the failure order is arbitrary. The
last three expressions correspond to the case T = T4:5 if I3 = {1, 2, 3} or I3 = {3, 4, 5}, and
component 3 is respectively the first, second, or third component to fail. The remaining sum-
mands are connected with T coinciding with the third failure. The consecutive terms express
the contribution of ET in the cases that component 3 fails respectively first, second, third, or
later. Performing numerical calculations yields ET ≈ 0.45588.

In order to check whether the proper location of components yields any benefit, we compare
these results with the performance of identical system components with an exchangeable joint
distribution. To make the comparison fair, we assume that the inter-failure cumulative hazard
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rates �i, i = 0, 1, 2, 3, in the exchangeable case are identical with their expected counterparts
in the non-exchangeable case; i.e., �0 = �(∅), and

�i = �(Ai−1 ∪ {3})P(Ii = Ai−1 ∪ {3}) + �(Ai−1 ∪ { j})[1 − P(Ii = Ai−1 ∪ {3})]
for j 
= 3, |Ai−1| = i − 1, |Ii| = i, and i = 1, 2, 3. By elementary calculations we obtain �0 =
5 1

3 , �1 = 7 5
12 , �2 = 9 4

23 , and �3 = 12 14073
51520. By the Samaniego formula, the corresponding

expectation of the system lifetime,

ET̃ = 1

�0
+ 1

�1
+ 4

5�2
+ 1

5�3
≈ 0.42581,

is 6.528% lower than ET.
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