
Math. Struct. in Comp. Science (2017), vol. 27, pp. 1437–1465. c© Cambridge University Press 2016

doi:10.1017/S096012951600013X First published online 28 July 2016

On the computational complexity of the

Dirichlet Problem for Poisson’s Equation

AKITOSHI KAWAMURA†, FLORIAN STEINBERG†,‡ and

MARTIN ZIEGLER‡

†Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
‡Department of Mathematics, TU Darmstadt, Darmstadt, Germany

Received 31 March 2014; revised 10 April 2015

The last years have seen an increasing interest in classifying (existence claims in) classical

mathematical theorems according to their strength. We pursue this goal from the refined

perspective of computational complexity. Specifically, we establish that rigorously solving

the Dirichlet Problem for Poisson’s Equation is in a precise sense ‘complete’ for the

complexity class #P and thus as hard or easy as parametric Riemann integration (Friedman

1984; Ko 1991. Complexity Theory of Real Functions).

1. Introduction

Friedman (1984), Ko and Friedman (1982) and Ko (1982) have proven that, for a

polynomial-time computable (and even for a smooth, i.e., infinitely often differentiable)

function h : [0; 1] → R the parametric maximum [0; 1] � x �→ max{h(t) | 0 � t � x} can

have complexity exhausting NP . Put differently, any algorithm for computing maxima of

(smooth) real functions up to guaranteed absolute error 2−n within time exponential in n

is essentially optimal! This result has set off a series of further characterizations of discrete

complexity classes in terms of numerical problems (Braverman 2005; Kawamura 2010;

Ko 1991, 1990, 1992, 1998; Ko and Yu 2008; Rösnick 2013). In particular, computing the

Riemann integral has been shown (Friedman 1984, Theorem 5.33) to correspond to the

even larger complexity class #P in the following precise sense:

Fact 1.1. The following are equivalent:

i. FP = #P .
ii. For every polynomial-time computable h : [0; 1] → R the function∫

h : [0; 1] → R, x �→
∫ x

0

h(t) dt

is again polynomial-time computable.

iii. For every smooth polytime h : [0; 1] → R with support supp(f) ⊆ [1/4; 3/4],
∫
h is

again polytime.

Recall that FP is the class of mappings ϕ : {0, 1}∗ → N = {0, 1, 2, . . .} computable by a

deterministic Turing machine within time polynomial in the binary length of the input; NP
is the class of decision problems accepted by a non-deterministic Turing machine within
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polynomial time; and #P is the class of mappings ϕ counting the number of accepting

computations of a non-deterministic polynomial-time Turing machine (cf. Parberry and

Schnitger (1988)). We also report that definite integrals like
∫ 1

0
h(t) dt correspond to the

complexity class #P1 (Ko 1991, Theorem 5.32) and are thus likely easier than indefinite

ones.

Recall that the Dirichlet Problem for Poisson’s Equation on a domain Ω ⊆ Rd is to

find, given functions f : Ω → R and g : ∂Ω → R, a function u : Ω → R satisfying

Δu = f in Ω, u|∂Ω = g. (1)

The main result of the present work extends Fact 1.1 with a new numerical characterization

of the discrete complexity class #P . To this end, fix a dimension d � 1 and let Bd :=

{ × ∈ Rd | ‖x‖ < 1 } denote the open Euclidean unit ball.

Theorem 1.2. Any of the items in Fact 1.1 above is furthermore equivalent to:

iv. For every choice of polynomial-time computable functions f : Bd → R and g : ∂Bd →
R, the solution u : B

d → R to the Dirichlet Problem for Poisson’s Equation (1) on Bd

is again computable in polynomial time.

v. For every choice of smooth polynomial-time computable functions f : Bd → R and

g : ∂Bd → R, the solution u : B
d → R to the Dirichlet Problem for Poisson’s

Equation (1) on Bd is again computable in polynomial time.

The easy one-dimensional case of this theorem is treated separately in Section 1.1.

Our presentation supposes familiarity with discrete computability and classical analysis.

In Section 2, we recall basic notions and facts from Computable Analysis and Real

Complexity Theory. Section 3 reports on some known analytic properties of partial

differential equations; and establishes in Lemma 3.8 that, for polynomial-time computable

f, the solution u is indeed classical (i.e. twice continuously differentiable) rather than just

a weak one. A variation of Fact 1.1 which we later build upon is proven in Section 4.

Section 5 presents a rigorous algorithm for solving the Dirichlet problem for Poisson’s

Equation on the unit ball within #P: exploiting linearity, separately for the case f = 0 and

for the case g = 0. Specifically, Section 5.1 describes, analyses and proves correctness of our

algorithm for the general Dirichlet problem for Laplace’s Equation; and Section 5.2 treats

the homogeneous Dirichlet problem for Poisson’s Equation. Section 6 finally establishes the

optimality of said algorithm by showing that a polynomial-time solution to Equation (1)

on the unit ball implies #P = FP .

1.1. One-dimensional case

Concerning d = 1 as a motivation and guide towards the following considerations,

Equation (1) boils down to

ü = f, u(−1) = g−, u(1) = g+
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where we used the notation ü for the second derivative with respect to the only variable.

The solution can be specified as

u(x) =

∫ x

−1

(x− t) · f(t) dt+ Cx+ C ′ =

∫ x

−1

∫ t

−1

f(s) ds dt+ Cx+ C ′,

where C := (g+ − g− − E)/2, C ′ := (g+ + g− − E)/2,

and E :=

∫ 1

−1

(1 − t) · f(t) dt =

∫ 1

−1

∫ t

−1

f(s) ds dt.

(2)

So for polynomial-time f and g−, g+, the condition of Fact 1.1 (ii) yields polynomial-time

computability of u. Conversely, assume that the solution u is polynomial-time computable

whenever f and g+ and g− are. Then Fact 1.1 (iii) will hold: For let h : [0; 1] → R be

a smooth function with supp(h) ⊆ [1/4; 3/4]. Extend h to an odd, smooth polynomial-

time computable function on [−1; 1]. It is easy to see that the derivative f := ḣ of any

polynomial-time computable h ∈ C2[−1; 1] is again polynomial-time computable (cf. the

slightly more general Proposition 2.3c). In Equation (2), we have E =
∫ 1

−1
h(t) dt = 0 due

to symmetry. If we choose g+ = g− = 0 it also follows that C = C ′ = 0 and therefore

u(x) =
∫ x

−1
h(t) dt. So the polynomial-time computability of

∫ x
0
h(t) dt = u(x) − u(0) follows

from the polynomial-time computability of u.

1.2. Notations

We close the introduction with some basic notational conventions used throughout the

rest of the paper.

1.2.1. Notions from computability theory: For n ∈ N set

Dn :=

{
k

2n

∣∣∣∣ k ∈ Z

}
and D :=

⋃
n∈N

Dn .

We call the elements of D dyadics . Real numbers that can be written in this form are

called dyadic numbers . (Note that, as opposed to dyadic numbers, dyadics have a fixed

denominator and thus disallow cancelling: a minor restriction that will later simplify their

coding and complexity estimates.) An interval is dyadic if its end points are dyadic; a

point in Rd is dyadic if its components are dyadic, and a square if its vertices are dyadic.

Call an element of Ω ⊆ Rd a dyadic point of Ω if it lies within the interior and is

a dyadic point of Rd. An element of ∂B is a spherically dyadic point if it has dyadic

spherical coordinates. (These notions will be justified in Fact 2.7 below.)

Given n ∈ N , write �n� ∈ {0, 1}∗ for its unique binary encoding without leading zeros;

and 1n ∈ {1}∗ for its unary encoding . We denote the binary length of some element

a ∈ {0, 1}∗ by l (a). l (n) is an abbreviation of l
(�n�).

Let 〈·, ·〉 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ denote some polynomial-time computable pairing

function with polynomial-time computable inverse, such that l
(
〈a, b〉

)
� P (l (a)+ l (b)) for

some polynomial P . (The reader might imagine interleaving both arguments with trailing

makers, although the specifics do not matter here. . . ) We use this map to define a binary

encoding of tuples of integers, rational numbers, dyadics and other Cartesian products.
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For example, dyadics from Dn are encoded by�
k

2n

�
:= 〈�k� , �2n�〉.

(Note that elements of Dn will always have the binary encoding of 2n in their second

component. We explicitly disallow cancelling in this case). Computability and complexity

of continuous objects will then build on this encoding and its length. Writing φ :⊆ X → Y

indicates that the function φ is partial, that is, is defined only on some possibly proper

subset of X.

1.2.2. Notions from analysis: For a subset A of a topological space, denote its closure by

A, its interior by Å and its boundary by ∂A = A \ Å. C(A) means the set of continuous

functions from A to R, equipped with the supremum norm ‖ · ‖∞.

If A ⊆ Rd is open, we write Cm(A) for the m times continuously differentiable functions

on A, and set C∞(A) :=
⋂
m∈N C

m(A). Call elements of C∞(A) the smooth functions on

A. A claim that f : A → R lies in one of those spaces means that the derivatives of the

restriction of f to A exist and extend continuously to A. The usual notations for partial

derivatives: Dif is for ∂f
∂xi

, Dijf is for Di(Djf) and

Df :=

⎛
⎜⎝
D1f

...

Ddf

⎞
⎟⎠ .

We will mostly consider the Euclidean norm on Rd, written as ‖ · ‖. For x ∈ Rd and

r > 0, let Bdr (x) := {y ∈ Rd | ‖y − x‖ < r} denote the d-dimensional open ball of radius

r around x, and abbreviate Bd1(0) by Bd. If the dimension is clear from the context it will

sometimes be omitted. In particular, ∂Bd is the (d − 1)-dimensional unit sphere, and B
d

the closed unit ball.

The Lebesgue measure on Rd is denoted by λ, and the spherical measure on ∂B by

σ. In particular, λ(B) = πd/2

Γ(d/2+1)
is the volume of the unit ball and σ(∂B) = d · λ(B) the

surface area of the unit sphere. While we write dσ(y) for integration with respect to σ,

Lebesgue integration may be shortened to dy.

Many functions have their standard names: sin, cos, ex, etc. We use lb for the binary

logarithm and ln for the natural logarithm . For a continuous function h on the unit

interval, the function

x �→
∫ x

0

h(t) dt

is its antiderivative.

2. Recap on computability and complexity in analysis

Computability theory for real numbers has been devised together with its discrete, now so-

called classical, counterpart (Turing 1936). It was then extended to functions (Grzegorczyk
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1957), closed/open Euclidean subsets (Lacombe 1958), operators (Pour-El and Richards

1989) and other universes of continuum cardinality (Weihrauch 2000).

Numerical solutions to partial differential equations are a big topic, both in engineering

and mathematics. However, rigorous algorithmic solutions, and even establishing cases

of provable incomputability, lies within the core expertise of Recursive Analysis (Brattka

and Yoshikawa 2006; Sun et al. 2015; Weihrauch and Zhong 2002, 2005, 2006, 2007).

Concerning the refined view of computational complexity, investigations have recently

moved to ordinary differential equations (Bournez et al. 2013; Kawamura 2010).

This section recalls some of the basic notions. Our presentation here is tailored

and limited to those aspects employed towards the main result. For a more thorough

introduction into this field, and for the proofs of the cited facts, the reader is invited

to refer to a standard textbook like Ko (1991) or Weihrauch (2000, Section 7). Out of

several common, equivalent ways of defining polynomial-time computability for single

real numbers or vectors, we proceed from the following:

Definition 2.1.

a. A real vector x ∈ Rd is computable if there exists a computable sequence (qn)n∈N of

vectors of dyadics qn ∈ Dd
n, which converges towards x with ‘binary’ speed, i.e., such

that ‖qn − x‖ � 2−n.

b. It is said to be polynomial-time computable if such a sequence exists computable within

time polynomial in the value of n.

We refrain from formally defining computability and polynomial-time computability for

real functions as the sequel will conveniently build on an equivalent characterization

reported in Fact 2.7. For an intuitive conception, fix a reasonable encoding of dyadic

sequences (qn)n∈N as infinite binary strings. Then, according to the type-two theory of

effectivity (TTE), computability of f : Ω ⊆ Rd → R is defined by means of a machine that,

whenever started with the input tape holding such an infinite binary sequence encoding

some real vector x ∈ Ω, will write an encoding of f(x) onto a dedicated one-way output

tape. (The machine’s behaviour on input sequences not encoding any x ∈ Ω may be

arbitrary. . . ) Quantitative time complexity arises from the requirement that the machine

prints the nth binary output digit within a number of steps bounded by some function

t(n), preferably a polynomial in n. Note that this running time bound may thus depend

only on the output precision but not on the real argument: rendering for instance the

reciprocal function (0; 1] � x �→ 1/x computable, but not within bounded time.

Example 2.2. For any dyadic sequence (am)m∈N computable within time polynomial in

m (in the discrete sense of receiving m as input in unary and producing numerator and

denominator of am in binary) with radius of convergence R = 1/ lim supm
m
√

|am| > 0 and

for any fixed r ∈ (0;R), the associated power series function [−r; r] � x �→
∑

m amx
m is

polynomial-time computable.

In particular, the usual entire functions sin, cos and ex are polynomial-time computable

when restricted to any bounded real interval.
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More details about polynomial-time computability of analytic functions can for example

be found in Müller (1995).

We will routinely use the following closure properties of the class of polynomial-time

computable functions:

Proposition 2.3.

a. The sum and pointwise product of polynomial-time computable functions is again

computable in polynomial time.

b. The composition of polynomial-time computable functions is again computable in

polynomial time.

c. If Ω ⊆ Rd is open and f ∈ C2(Ω) is polynomial-time computable, then the partial

derivatives Dif of f are polynomial-time computable again.

For a more thorough discussion of Item c refer to Ko (1991, Section 6). Also note that

there exists a polynomial-time computable function f ∈ C1[0; 1] whose derivative is not

computable at all (Zhong 1998).

It is true, and not hard to prove, that computable functions are necessarily continuous:

an observation sometimes called the ‘Main Theorem’ of Computable Analysis. In fact,

for functions over well-behaved domains, both computability and complexity split into a

discrete and a topological condition – based on the following quantitative refinement of

uniform continuity.

Definition 2.4. For Ω ⊆ Rd, consider a function f : Ω → R. A mapping μ : N → N is

called a modulus of continuity for f if for all x, y ∈ Ω

‖x − y‖ � 2−μ(n) ⇒ |f(x) − f(y)| � 2−n.

A modulus of continuity thus specifies sufficient conditions on the arguments’ proximity

(in binary) in order for the values to be close. Obviously, any function that admits

a modulus of continuity must be uniformly continuous. Conversely, every continuous

function on a compact space will have a modulus of continuity.

Example 2.5. For Ω ⊆ Rd, consider f : Ω → R, and suppose the image of f is bounded.

(This is for example the case whenever Ω is compact and f is continuous.) Then Lipschitz

continuity means having a modulus of continuity of the form μ(n) = n + b; and Hölder

continuity corresponds to linear moduli of continuity μ(n) = an+ b.

More precisely, if f satisfies

|f(x) − f(y)| � C‖x − y‖α, (3)

then μ(n) := n+lb(C)
α

will be a modulus of continuity. Conversely, for μ(n) = an + b a

modulus of continuity of f and M a bound on the diameter of the image of f, considering

the cases 2μ(n+1) � ‖x − y‖ < 2−μ(n) for some n and 2−μ(0) � ‖x − y‖ shows that

α :=
1

a
and C := max{2αbM, 2αb+1}

satisfy Equation (3).
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For bounded-time computations, the aforementioned ‘Main Theorem’ refines from a

qualitative to a quantitative topological requirement: Computing f : Ω → R in time t(n)

implies that μ(n) := t(n+ 1) + 1 is a modulus of continuity for f. The argument, referring

to the informal notion introduced below Definition 2.1, roughly proceeds as follows: A

machine computing f within t(n) steps can, before producing an approximation to f(x)

up to error 2−n, have read at most m � t(n) approximations up to error 2−m to the input

x and therefore cannot distinguish from any x′ ∈ Ω with ‖x − x′‖ � 2−m−1. Moreover

output approximations up to error 2−0 produced within t(0) steps can have binary length

at most t(0), yielding 2t(0) + 1 as upper bound on f.

The Poisson problem involves continuous functions f on the open, not the closed, unit

ball. However, by the above considerations, a polynomial-time computable function is

bounded and uniformly continuous. It thus automatically extends continuously to the

closure of the domain – also in time t(n):

Proposition 2.6. Fix Ω ⊆ Rd and suppose f : Ω → R is computable within bounded time

t(n). Then f admits a (unique) continuous extension to Ω computable within the same

time t(n).

This can be proved by arguing that the same (TTE) machine computes a function on

the closure of the domain.

This in mind, the next characterization of polynomial-time computability should not

come as a surprise and will be used as definition of computability and complexity for real

functions in the rest of the paper:

Fact 2.7. Let f : Ω → R be a function, where Ω ∈
{
B
d
, ∂Bd, [0; 1]d

}
. The following are

true:

1. f is computable if and only if the following conditions are fulfilled:

− There is a partial computable function φ :⊆ {0, 1}∗ → D such that whenever q is

a (spherical, in the case Ω = ∂Bd) dyadic point of Ω and n ∈ N we have

|f(q) − φ(〈�q� , 1n〉)| � 2−n.

− f has a computable modulus of continuity.

2. f is polynomial-time computable if and only if the following conditions are fulfilled:

− There is a polynomial-time computable function φ as above.

− f has a polynomial modulus of continuity.

A proof for the case Ω = [0; 1]d can be found in Ko (1991, Section 2). Concerning Item 2,

the partial function φ can in this case be made total by having it abort after exceeding

the polynomial running time bound. Similarly, every polynomial modulus of continuity is

polynomial-time computable as a unary function from {1}∗ to {1}∗, and vice versa.

Fact 2.7 justifies the notions of dyadic and spherical dyadic points we introduced.

Indeed, in this case the different domains should be considered as manifolds (but a formal

generalization to compact manifolds with bi-computable, respectively bi-polynomial-time

computable charts is beyond our purpose).
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Example 2.8.

a. The function

f(x) =

{
0 if x = 0

1
1−lb(x) if x �= 0

.

1

1

0

admits an exponential but no polynomial modulus of continuity. Therefore, it is not

computable in polynomial time.

b. The function

f(x) =

{
0 if x = 0
−xlb(x) if x �= 0

.

1

lb(e)
e

0

is polynomial-time computable: Since f is Hölder continuous, it has a polynomial

modulus of continuity (cf. Example 2.5). Moreover, it is not hard to compute the

binary logarithm of some non-zero dyadic number within time quadratic in the binary

length of that number. Since multiplication is also possible in quadratic time, we get

an algorithm for evaluating f on non-zero dyadic arguments.

Note that we required the dyadic points of a set to lie within the interior of that set,

thus the algorithm needs not be defined if the input is 0 or 1. On the other hand, it is

not difficult to make it also return valid approximations on these inputs as it can use

the modulus of continuity and evaluation on an interior point close to the boundary

point.

3. Partial differential equations

The classical theorems of Peano and Picard–Lindelöf assert local existence and uniqueness

of solutions to systems of ordinary differential equations u̇(t) = f
(
u(t), t

)
. They proceed

from modest and natural hypotheses (Lipschitz-/continuity) on the right-hand side f

under the reasonable notion of solution u ∈ C1. Concerning partial differential equations,

however, the questions of existence and uniqueness become much more involved, already

in the linear case. Specifically, for Poisson’s Equation (1) to make sense, one needs

u ∈ C2(Ω) ∩ C(Ω). However, for the two-dimensional unit ball Ω = B2, Henrik Petrini

specified a continuous right-hand side f provably admitting no C2 (i.e., classical) solution

u (Wienholtz et al. 2009, Satz 4.3.1). Indeed, the theory of partial differential equations
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knows a rich variety of generalized notions of a solution: strong, weak, mild, in Hilbert,

Lp, and (possibly weighted and fractional) Sobolev spaces, to name a few of them.

The present section recollects some basic background about Laplace’s and Poisson’s

Equation. We adapt and improve known results on the regularity of their solutions that

conveniently rule out Petrini’s counter-example for polynomial-time computable f. In

particular, the present work gets by only briefly touching weak solutions at the beginning

of Section 3.2.

In the sequel fix a dimension d > 1 and leave away the usual superscript. Thus, B will

denote the d-dimensional unit ball etc.

Recall that the Laplace operator Δ on an open set Ω ⊆ Rd is given by

Δ : C2(Ω) → C(Ω), u �→
d∑
i=1

Diiu =

d∑
i=1

∂2u

∂x2
i

.

The Dirichlet Problem for Poisson’s Equation on a domain Ω ⊆ Rd is to find, given

functions f : Ω → R and g : ∂Ω → R, a function u : Ω → R satisfying

Δu = f in Ω, u|∂Ω = g. (4)

By linearity of the Laplacian, solving the Dirichlet Problem for Poisson’s Equation

can be divided into two parts: the case of Laplace’s Equation, that is, setting f = 0 in

Equation (4); and the homogeneous case of Poisson’s Equation, that is, setting g = 0 in

Equation (4). We will now investigate these problems separately in more detail for the

case Ω = B .

3.1. Laplace’s equation

Consider the Dirichlet problem for Laplace’s equation on the unit ball:

Δu = 0 in B, u|∂B = g (L)

where g : ∂B → R is some function on the boundary.

It is known that such a solution u exists and is unique whenever g is continuous. This

renders the operator g �→ u well defined on C(∂B). In fact an ‘explicit’ solution is given

by the Poisson integral :

w : B → R, x �→
∫
∂B

K(x, y) · g(y) dσ(y), (PI)

where

K(x, y) =
1 − ‖x‖2

d · λ(B) · ‖x − y‖d (K)

is the Poisson Kernel (see Figure 1). Indeed, we have:

Fact 3.1. Whenever g ∈ C(∂B ), the function w continuously extends to a solution u ∈
C2(B) ∪ C(B ) of Equation (L).

A standard proof can for example be found in Gilbarg and Trudinger (2001, Theorem

2.6). A refined analysis of this proof will lead to Lemma 3.4. Functions fulfilling Δu = 0
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Fig. 1. The Poisson kernel in dependence on x for d = 2 and y = (−1, 0) ∈ ∂B2.

Fig. 2. The function u(x, y) = Re
(
(1 − x− iy) · ln(1 − x− iy)

)
is a solution of a two-dimensional

Dirichlet problem for Laplace’s Equation to polynomial-time computable boundary data and

illustrates that such a function need not be C1(B ).

on an open set are also known as harmonic functions and well investigated. In particular,

it is known that these functions are real analytic on their domain.

In view of Fact 2.7.2, we want to polynomially bound the modulus of continuity of u.

According to Example 2.5, this follows immediately if u ∈ C1(B ). However, the latter is

in general not the case:

Example 3.2. For d = 2, it is easy to see that the real part of any holomorphic function

satisfies Laplace’s Equation. Therefore, shifting the function from Example 2.8b, extending

it to a holomorphic function on the unit disc and then taking the real part yields a solution

u to polynomial-time computable boundary data, whose derivative does not continuously

extend to the boundary of the unit disc (cf. Figure 2).

Instead, we will employ the following well-known gradient estimate towards the

boundary:
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Fact 3.3. For any solution u of Equation (L), we have

‖Du(x)‖ �
d · ‖g‖∞

dist(x, ∂B )
.

Here Du denotes the gradient, that is the vector containing the partial derivatives Diu and

dist(x, ∂B ) := inf{‖x − y‖ | y ∈ ∂B} is the usual distance function. A proof can be found

in Gilbarg and Trudinger (2001, Theorem 2.10). We now conclude that u allows for a

polynomial modulus of continuity whenever g does:

Lemma 3.4. Let C be an integer such that C � lb
(

2‖g‖2
∞

λ(B)

)
+ d + 2. If μ is a modulus of

continuity of g ∈ C(∂B), then the function

ν(n) := dμ(n+ 2) + 2n+ C

is a modulus of continuity of the unique solution u of Equation (L).

Our proof quantitatively refines the standard one underlying Fact 3.1.

Proof. We verify that ν is a modulus of continuity of u. So take arbitrary x, y ∈ Rd such

that ‖x − y‖ � 2−ν(n). Distinguish the cases that both points are close to the boundary

and that both points lie well within B. For this set

t(n) := dμ(n+ 2) + n+ lb

(
2‖g‖∞
d · λ(B)

)
+ d+ 1

� ν(n) − lb(d‖g‖∞) − n− 1 (8)

� ν(n) − 1. (9)

Note that Equation (9) and ‖x−y‖ � 2−ν(n) together imply that either ‖x‖, ‖y‖ � 1−2−t(n)

or ‖x‖, ‖y‖ � 1 − 2−t(n)+1 or both.

Case ‖x‖, ‖y‖ � 1 − 2−t(n): In this case, we can apply Fact 3.3 and use Equation (8) to

obtain

|u(x) − u(y)| � sup {‖(Du)(x)‖ | x ∈ B1−2−t(n) (0)} · ‖x − y‖

�
d · ‖g‖∞
2−t(n) ‖x − y‖ � d · ‖g‖∞2−ν(n)+t(n) � 2−n.

Case ‖x‖, ‖y‖ � 1 − 2−t(n)+1: Consider the element z := x+y
‖x+y‖ ∈ ∂B and observe that

‖x − z‖ =

∥∥∥∥x − x + y

‖x + y‖

∥∥∥∥ =

∥∥∥∥x − y

2
+

x + y

2
− x + y

‖x + y‖

∥∥∥∥
� 2−ν(n)−1 +

2 − ‖x + y‖
2

� 2−ν(n)−1 + 2−t(n)+1 + 2−ν(n)−1

� 2−t(n)+2 � 2−μ(n+2)−1,

and therefore for any t ∈ ∂B with ‖t − z‖ � 2−μ(n+2)

‖x − t‖ = ‖x − z − (t − z)‖ � |‖t − z‖ − ‖x − z‖| � 2−μ(n+2)−1. (10)
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Since the unique solution of Equation (L) with constant boundary condition u|∂B ≡ 1

is given by the constant function u ≡ 1, it must hold∫
∂B

K(x, t) dσ(t) = 1 (11)

for any x ∈ B. Therefore, and since u|∂B = g and thus u(z) = g(z), we have

|u(x) − u(z)| =

∣∣∣∣
∫
∂B

K(x, t) ·
(
g(t) − g(z)

)
dσ(t)

∣∣∣∣
�

∫
∂B

K(x, t)|g(t) − g(z)| dσ(t)

=

∫
∂B∩B

2−μ(n+2) (z)

K(x, t)|g(t) − g(z)| dσ(t)

+

∫
∂B∩B

2−μ(n+2) (z)c
K(x, t)|g(t) − g(z)| dσ(t).

The first of these integrals can be estimated by using that μ is a modulus of continuity

for g and Equation (11). Plugging the definition of the Poisson Kernel K into the

second term, using Equation (10) and estimating the remaining integral leads to

|u(x) − u(z)| � 2−n−2 +
2‖g‖∞
d · λ(B)

1 − ‖x‖2

2−dμ(n+2)−d

� 2−n−2 +
2‖g‖∞
d · λ(B)

2−t(n)+1+dμ(n+2)+d � 2−n−1.

Since the same reasoning works with x replaced by y, one finally gets

|u(x) − u(y)| � |u(x) − u(z)| + |u(y) − u(z)| � 2−n.

Lemma 3.4 is effective in the sense that it allows to construct a polynomial-time oracle

machine computing a modulus of continuity of the solution u when given oracle access

to a modulus of continuity of g (and an upper bound to the supremum norm of g). We

will expand on such aspects of uniform computation in the conclusion in Section 7.

3.2. Poisson’s equation

We now turn to the homogeneous Dirichlet problem for Poisson’s equation on the unit

ball:

Δu = f in B, u|∂B = 0. (P)

Note that for this equation to make sense, f needs to be defined only on the open unit

ball. However, in case f is polynomial-time computable, Fact 2.7 implies that f extends

continuously to the closed unit ball. The following considerations will thus frequently

suppose f ∈ C
(
B
)
.

Again, we want to investigate the solution operator f �→ u. As mentioned before,

Petrini’s example shows that f ∈ C
(
B
)

may lead to so-called weak solutions u /∈ C2(B).
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Fig. 3. The Green’s function for d = 2 in dependence of x and with y =
(

1
2
, 0
)

∈ B2.

However we shall show that, for f admitting a polynomial modulus of continuity, the

weak solution will actually be a (classical) solution; and the reader not familiar with

this concept may simply understand ‘weak solution corresponding to f’ to mean the

function w according to the following solution formula (compare for instance (Gilbarg

and Trudinger 2001)):

w(x) =

∫
B

G(y, x) · f(y) dy (W)

with

G(y, x) = Γ̃(‖x − y‖) − Γ̃

(
‖x‖
∥∥∥∥y − x

‖x‖2

∥∥∥∥
)
, (G)

and

Γ̃(r) =

{
− 1

2π
ln(r) if d = 2,

1
d·(d−2)·λ(B)·rd−2 if d > 2

(cf. Gilbarg and Trudinger (2001, Sections 2.4 and 2.5)). In Figure 3, the function G is

depicted for the case d = 2, and in dependence of x for a fixed y.

These integrals, taken from potential theory, make sense for any integrable and bounded

function f. A reader familiar with potential theory may recognize the radially symmetric

extension Γ(x) := Γ̃(‖x‖) of Γ̃ as the fundamental solution of the d-dimensional Laplacian,

and G as the Green’s function obtainable from the fundamental solution by the method of

image charges. Again, the reader not familiar with the underlying concepts may for our

purpose simply consider them as names. We shall exploit only that (W) provides a concrete

solution formula. Note however that, while w ∈ C1(B) (cf. the proof of Theorem 3.8), its

second derivatives need not exist.

Fact 3.5. Whenever f is bounded and integrable and the corresponding weak solution is

twice continuously differentiable, it is a solution of the homogeneous Dirichlet problem

for Poisson’s Equation (P).
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A proof can for example be found in Gilbarg and Trudinger (2001).

It will often make sense to divide the weak solution w into the two summands appearing

in Equation (G):

w(x) =

∫
B

Γ(x − y) · f(y) dy︸ ︷︷ ︸
=:v(x)

−
∫
B

Γ̃

(
‖x‖ ·

∥∥∥∥y − x

‖x‖2

∥∥∥∥
)

· f(y) dy︸ ︷︷ ︸
=:w0(x)

,

where v is also called the Newtonian potential . One can show that whenever f is integrable

the Newtonian potential will be continuously differentiable on the whole space (Gilbarg

and Trudinger 2001, Lemma 4.1). In particular, v ∈ C1
(
B
)

and both v and its restriction

to ∂B have a linear modulus of continuity. It is not hard to see that w0 is actually the

solution of Laplace’s problem with boundary condition v|∂B , and Lemma 3.4 implies that

w0 also has a linear modulus of continuity. Thus w has a linear modulus of continuity,

too. We will need this to show polynomial-time computability of the solution and list it

as a lemma for reference.

Lemma 3.6. Whenever f is integrable and bounded, the corresponding weak solution has

a linear modulus of continuity.

In Section 6, it will be convenient to know more about the weak solutions corresponding

to a more restricted class of functions. There are well-known results of this kind. For

example, it is known that w will be twice continuously differentiable whenever f is Hölder

continuous. As we have seen in Example 2.5, this corresponds to functions with linear

modulus of continuity. Our next goal is to show more generally that w is still twice

continuously differentiable if f has a polynomial modulus of continuity. For this, we will

need the following simple lemma:

Lemma 3.7. The series
∞∑
m=1

P (m) · 2−m

converges absolutely for any polynomial P .

Proof. Using l’Hôspital’s rule it is easy to see that the function h : [0; ∞) → R, x �→
P (x)2− x

2 is bounded. Thus, we have∑∞

m=n
|P (m) · 2−m| =

∑∞

m=n
|P (m) · 2− m

2 | · 2− m
2 � ‖h‖∞ ·

∑∞

m=0
(1/

√
2)m < ∞.

Lemma 3.8. If f has a polynomial modulus of continuity, the weak solution w is twice

continuously differentiable in B.

Together with Fact 3.5, this shows that the weak solution is the wanted solution of the

homogeneous Dirichlet Problem for Poisson’s Equation in the case we are interested in.

Proof of the differentiability. As mentioned before, w0 is the solution of a Dirichlet

problem for Laplace’s Equation and as such analytic on B.
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Fig. 4. The sets An for d = 2 and x =
(

1
2
, 1

2

)
.

Thus, it suffices to show that the Newtonian potential

v : B → R, x �→
∫
B

Γ (x − y) · f(y) dy

is twice continuously differentiable. It is well known that this function will be once

continuously differentiable (Gilbarg and Trudinger 2001, Lemma 4.1).

By an observation by Morera which originates from Morera (1887), the Newtonian

potential will be twice differentiable, whenever the integral∫
B

|f(x) − f(y)|
‖x − y‖d dy

converges for any x ∈ B. This can easily be seen to be true by re-evaluating the standard

proof that the Newtonian potential of locally Hölder continuous functions is twice

differentiable (see for example Gilbarg and Trudinger (2001, Lemma 4.2)).

To see that the integral is finite if there is a polynomial modulus of continuity, we

divide the unit ball into spheres of finite thickness around x

B =

∞⋃
n=−1

(B ∩
(
B2−μ(n) (x) \ B2−μ(n+1) (x)

)︸ ︷︷ ︸
=:An

),

where the convention μ(−1) = −1 is made (cf. Figure 4), and estimate it by an infinite

sum: ∫
B

|f(x) − f(y)|
‖x − y‖d dy �

∞∑
n=0

2−n ·
∫
An

1

‖x − y‖d dy

= ln(2)d · λ(B) ·
∑∞

n=0

(
μ(n+ 1) − μ(n)

)
· 2−n.

This sum is finite by Lemma 3.7.

4. The complexity of integration

Computational Complexity Theory is famous, among others, for its Millennium Prize P
versus NP problem and several similar questions concerning inclusions of complexity

classes generally believed to be strict but notoriously hard to prove so. Similarly to
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P PSPACENP NPC P#P EXP

Fig. 5. The inclusion relation between the complexity classes.

Number Theory with the Riemann Hypothesis, results are therefore usually conditional:

If P �= NP , then the Boolean satisfiability problem cannot be solved within polynomial

time – and vice versa. More precisely, SAT belongs to the class NPC of ‘hardest’ problems

in NP . Put differently, although no-one really knows the complexity of SAT, we do know

that it coincides with the complexity of many, many other natural decision problems

(Garey and Johnson 1979).

In particular, the famous result by Friedman and Ko, classifying the complexity of

integration, is of this form. Recall that #P can be phrased as the class of functions

ϕ : {0, 1}∗ → N such that there exists a polynomial-time decidable set V ⊆ {0, 1}∗, called

the verifier set , and a polynomial P such that

ϕ(a) = #
{
b ∈ {0, 1}P (l(a))

∣∣∣ 〈a, b〉 ∈ V
}
. (14)

So, each NP problem asking for the existence of a witness verifiable within polynomial

time, leads to a #P function computing the number of witnesses. For the NPC problem

SAT, for example, this function computes the number of satisfying assignments of a

boolean formula. Following this line of thought it is easy to see that FP ⊆ #P and that

FP = #P implies P = NP . Moreover, Toda’s Theorem (Toda 1991) implies that the

entire polynomial-time hierarchy lies beneath P#P : the class of decision problems solvable

in polynomial time using some ϕ ∈ #P as oracle. Together with EXP and PSPACE ,

the classes of decision problems solvable in exponential time resp. polynomial space, one

arrives at the usual complexity picture (cf. Figure 5).

We will now state and prove a variant of Fact 1.1 from the Introduction. This involves

a notion of polynomial-time computability for sequences of real functions.

Definition 4.1. A sequence (fm)m∈N of functions fm : Ω ⊆ Rd → R with common domain

Ω ∈
{
B
d
, [0; 1]d

}
is called polynomial-time computable if both of the following conditions

are fulfilled:

− There is a polynomial-time computable function φ : {0, 1}∗ → D such that whenever

q is a dyadic point of Ω and n, m ∈ N we have

|fm(q) − φ(〈1m, �q� , 1n〉)| � 2−n.

− The sequence (fm)m∈N admits a polynomial modulus of continuity, that is, a polynomial

μ such that for every m the mapping n �→ μ(n+m) constitutes a modulus of continuity

of fm.

The latter condition relaxes equicontinuity by permitting a polynomial dependence of

the modulus of continuity on the function index. Note also that the algorithm computing
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φ is granted time polynomial in the value, that is, the unary length, of the index m (cf.

Labhalla et al. (2001, Definition 2.2.9)).

The following finding will be one of the key tools in order to establish the main result

of this paper. It is listed as a scholium as it follows by slightly adjusting the standard

proof of Fact 1.1. A fully uniform generalization appeared in Kawamura (2011, Section

4.3.2), building on second-order complexity theory; see Section 7.

Scholium 4.2. For any fixed natural numbers d, d′ � 1 the following are equivalent:

i. FP = #P .

ii. For every polynomial-time computable sequence (fm)m∈N of functions fm : [0; 1]d ×
[0; 1]d

′ → R, the following sequence (gm)m∈N again is polynomial-time computable:

gm : [0; 1]d → R, x �→
∫

[0;1]d
′
fm(x, y) dy.

iii. For every polynomial-time computable smooth function f : [0; 1] × [0; 1] → R, the

parameter integral [0; 1] � x �→
∫
f(x, y) dy is again polynomial-time computable.

We will mainly be concerned with the proof that from (i) follows (ii), as this is the

statement that will be employed in the proofs in Section 5.

Proof of (i)⇒ (ii). First note that any modulus of continuity μ of (fm)m∈N is also one of

(gm)m∈N: If we assume ‖x − x′‖ � 2−μ(n+m), then also
∥∥( x

y

)
−
(

x′
y

)∥∥ = ‖x − x′‖ � 2−μ(n+m)

and therefore

|gm(x) − gm(x′)| �

∫
[0;1]d

′
|fm(x, y) − fm(x′, y)| dy �

∫
[0;1]d

′
2−n dy = 2−n.

Let φ be the function computing the values of (fm)m∈N on dyadic arguments in

polynomial time; that is, for a vector of dyadics (q, s) ∈ [0; 1]d × [0; 1]d
′

|fm(q, s) − φ(〈1m, � q
s � , 1n〉)| � 2−n.

We want to approximate the sequence (gm)m∈N . For this, we define a #P function ψ

that will take natural numbers n, m and a vector q of dyadics as input and then count

how many squares of size related to n fit beneath the approximations of the function

x �→ fm(q, x). Towards this consider the polynomial-time decidable set

V :=

{
〈〈�s� , �t�〉, 〈1m, �q� , 1n〉〉 s ∈ Dd′

μ(n) ∩(0; 1)d
′
, q ∈ Dd

μ(n) ∩(0; 1)d,

t ∈ Dn, 0 < t � φ(〈1m, �( q
s )� , 1n〉)

}
(compare Figure 6). The corresponding #P function

ψ(〈1m, �q� , 1n〉) := #
{

〈�s� , �t�〉 ∈ {0, 1}P (n)
∣∣∣ 〈〈�s� , �t�〉, 〈1m, �q� , 1n〉〉 ∈ V

}
,

where P is a polynomial such that P (n) � |〈〈1dμ(n), 1dμ(n)〉, 〈1μ(n), 1n〉〉|, is as needed. Since

we assume FP = #P , this function will be computable in polynomial time. Now the

function

φ̃(〈1m, �q� , 1n〉) :=
ψ(〈1m, �q� , 1n〉)

2n+μ(n)

computes approximations the sequence (gm)m∈N in polynomial time.
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Fig. 6. Membership of the set V : The witnesses for some Element 〈1m, �q� , 1n〉 are those pairs

〈�s� , �t�〉 such that the corresponding square lies beneath the graph of the function section f(q, ·)
(that is up to finite approximation of the function values with precision n).

Fig. 7. The function hP ,V .

Section 5 will apply this to show that the solution operator of the Dirichlet problem

for Poisson’s equation carries polynomial-time computable functions to polynomial-time

computable functions if FP = #P . In Section 6, we will show that also the converse

is true: If the solution operator preserves polynomial-time computability, then so does

Riemann integration. The implication (ii)⇒(i) of Fact 1.1 fills the remaining gap of

showing that this property of the integration operator implies FP = #P . For sake of

completeness, we give a very brief sketch of the proof for this given in Ko (1991):

Sketch of the proof of Fact 1.1 (ii)⇒(i). Consider some #P function ψ. Then there is

a polynomial P and a polynomial-time decidable set V , such that

ψ(a) = #
{

b ∈ {0, 1}P (|a|)
∣∣∣ 〈b, a〉 ∈ V

}
.

Now consider a ‘bump function’ hP ,V : [0; 1] → R as depicted in Figure 7. If we choose

the function Q encoding the height of the bumps to be a polynomial and the degree high

enough, this function will be Lipschitz continuous. Therefore, it has a linear modulus of
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continuity. The functions values on dyadic numbers can effectively be computed, since it

can be verified whether or not some b is a witness. Thus hP ,V will be polynomial-time

computable. Furthermore, ψ(a) can be read from the binary expansion of the integral over

the interval corresponding to a. This integral can be computed from the antiderivative.

The ideas for the equivalence of Fact 1.1 (iii) are as follows: The implication (ii)⇒(iii)

is obvious, and to establish the converse replace the triangle bump function in the above

proof by smooth bump function. This is in particular worth mentioning as it constitutes a

recurring theme in Real Complexity Theory: ‘smoothness does not help’ – only analyticity

does (Müller 1987; Kawamura et al. 2014).

Also note that just like it was possible to adjust the proof of implication (i)⇒(ii) of

Fact 1.1 to prove one direction of Scholium 4.2, the reverse direction can be modified

to complete the proof: By compensating the absence of the ability to integrate over a

specified interval with availability of at least one extra dimension, one can easily construct

a function (that is a constant sequence) analogous to the one from the proof before.

5. Rigorous algorithmic solutions within #P

In this section, we will state and prove that the assumption FP = #P , necessary

for antiderivatives of polynomial-time computable functions to be polynomial-time

computable, also allows to compute the solutions of the Dirichlet problem for Poisson’s

Equation in polynomial time whenever the data are polynomial-time computable. The

notation in this section will be in accordance with Section 3.

As announced in the introduction, we treat two separate problems: Laplace’s Equation

and the homogeneous case for Poisson’s Equation. The general approach will be very

similar for both: showing polynomial-time computability using Fact 1.1. Half of that

goal – polynomial bounds on the solutions’ moduli of continuity – has already been

achieved in Lemmata 3.4 and 3.6. To compute the solutions on dyadic points, we will use

the explicit solution formulas from Section 3 to construct a polynomial-time computable

sequence of approximations by truncating the unbounded integrands closer and closer to

the singularity and then apply Scholium 4.2. The algorithms producing these sequences

can then be used to compute the needed approximations by noting that the distance of a

dyadic point of the unit ball from the boundary does not shrink too fast as the size of

the encoding increases.

5.1. Laplace’s equation

First, let us state the first third of the main result of this paper:

Theorem 5.1. If FP = #P , then the unique solution of the general Dirichlet problem for

Laplace’s Equation (L) will be polynomial-time computable whenever g is.

Recall the solution formula from Section 3.1:

w : B → R, x �→
∫
∂B

K(x, y)g(y) dσ(y), (PI)
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4

Fig. 8. Cross-section of Poisson kernel for d = 2: with singularity at y = (1, 1)/
√

2 ∈ ∂B2 and

truncated to a total continuous function.

where

K(x, y) =
1 − ‖x‖2

d · λ(B)‖x − y‖d . (K)

If we want to apply Scholium 4.2, two difficulties arise: First, the integrand was

always assumed to be polynomial-time computable; the Poisson Kernel K however, is not

bounded and therefore not polynomial-time computable. Secondly, Scholium 4.2 refers to

integrals of function sequences over squares while the domain we now want to integrate

over the unit sphere.

As workaround we shall approximate the unbounded Poisson Kernel by truncating

it close to the singularity and bound the integral error after transforming to spherical

coordinates. Consider the sequence of functions

Km : [−1; 1]d × [−1; 1]d → R, (x, y) �→

⎧⎨
⎩min

{
1−‖x‖2

‖x−y‖d ,
1−‖x‖2

2−dm

}
if x �= y

1−‖x‖2

2−dm if x = y

(cf. Figure 8) and set

wm(x) :=

∫
∂B

Km(x, y) · g(y) dσ(y).

Next, we list two lemmas which are the crucial ingredients for the proof of Theorem 5.1:

The first one shows that wm approximates w on a set big enough:

Lemma 5.2. Whenever x ∈ B1−2−m (0), we have

wm(x) = w(x).

Proof. The requirement x ∈ B1−2−m (0) implies that for any y ∈ ∂B

‖x − y‖d � (1 − ‖x‖)d � 2−dm

and therefore from x ∈ B1−2−m (0) it follows that Km(x, y) = K(x, y) and for such x also

wm(x) =

∫
∂B

Km(x, y)g(y) dσ(y) =

∫
∂B

K(x, y) · g(y) dσ(y) = w(x),

which is what we wanted.
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The second tool asserts that the sequence of approximations is polynomial-time

computable if the assumption of Theorem 5.1 is met.

Lemma 5.3. If FP = #P , then the sequence (wm)m∈N will be polynomial-time computable.

Proof. We aim to apply Scholium 4.2. For this, we transform into spherical coordinates,

this will turn the integration over ∂B into an integration over a d− 1 dimensional square.

To show that the integrand sequence of the transformed integral is polynomial-time

computable, we will first show that the sequence Km is polynomial-time computable.

To see this, note that the function

hm : [−1; 1]d × [−1; 1]d → R, (x, y) �→

⎧⎨
⎩min

{
1

‖x−y‖d ,
1

2−dm

}
if x �= y

1
2−dm if x = y

can easily be seen to be Lipschitz continuous with Lipschitz constant Lm = d · 2(d+1)m.

This means that μ(n) := (d + 1)n + C is a modulus of continuity (compare the second

item of Definition 4.1) for (hm)m∈N whenever C > lb(d). It is not hard to see that

hm can be efficiently approximated on dyadic inputs. Therefore, (hm)m∈N and due to

Km = (1 − ‖x‖2)hm also (Km)m∈N forms a polynomial-time computable sequence.

Recall that the transformation to spherical coordinates in d dimensions is given by

Φ(r, θ1, . . . , θd−1)i =

⎧⎪⎪⎨
⎪⎪⎩
r · cos(θi) ·

∏i−1
j=1 sin(θj) if i < d− 1

r · sin(θd−1)
∏i−2

j=1 sin(θj) if i = d− 1

r · cos(θd−1)
∏i−2

j=1 sin(θj) if i = d

(cf. for instance Blumenson (1960)) with Jacobian determinant

|DΦ|(r, θ1, . . . , θd−1) = rd−1 ·
∏d−2

j=1
sind−1−j(θj).

Note that all these functions are polynomial-time computable and that polynomial-time

computability of the function

g̃ : θ := (θ1, . . . , θd−1) �→ g
(
Φ
(
1, θ1, . . . , θd−1

))
follows from closure under composition. Therefore, the function sequence

Im : (x, θ) �→ Km

(
x,Φ(1, θ)

)
· g̃(θ) · |DΦ|(1, θ)

is polynomial-time computable. Application of Scholium 4.2 to the transformed integral

wm(x) =

∫
∂B

Km(x, y) · g(y) dσ(y) =

∫
[0;2π]×[0;π]d−2

Im(x, θ) dθ

finally shows that the sequence (wm)m∈N is polynomial-time computable.

Putting the above together, we can give a proof of the main result of this section.

Proof of Theorem 5.1. Let us assume that FP = #P and that we are given a polynomial-

time computable function g : ∂B → R. By Fact 3.1 the unique solution u of Equation (L)

is given by the continuous extension of w from Equation (PI). By Fact 2.7, we have
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to specify a polynomial modulus of continuity of u and a polynomial-time function φ

approximating the function values.

It follows from Lemma 3.4 that u has a polynomial modulus of continuity if g has one.

It remains to show that the values of w on dyadic points from the interior of the unit

ball can be efficiently approximated. This can be done by putting the Lemmata 5.2 and 5.3

together. Since we assume FP = #P , Lemma 5.3 guarantees that there is a polynomial

computable function ψ computing approximations to the sequence (wm)m∈N on dyadic

points.

Let q ∈ B be a vector of dyadics and let k be the least integer such that all of the

components of q have a representation from Dk . Then ‖q‖2 ∈ D2k ∩[0; 1) and therefore

‖q‖ =
√

1 + ‖q‖2 − 1 � 1 +
‖q‖2 − 1

2
∈ D2k+1 ∩[0; 1).

This implies that q ∈ B1−2−2(k+1) (0). According to Lemma 5.2 this means that u and w2k+2

coincide on q. Furthermore, the function k(�q�) := 12k+2 can be computed in polynomial

time.

Thus the function

φ(〈�q� , 1n〉) := ψ(〈12k+2, �q� , 1n〉)
will compute the values of u on dyadic arguments in polynomial time.

5.2. Poisson’s equation

We state the second third of our main result:

Theorem 5.4. If FP = #P , then the unique solution u of the homogeneous Dirichlet

problem for Poisson’s Equation (P) will be polynomial-time computable whenever f is.

The procedure to show this will be exactly the same as in the preceding subsection.

Thus, recall the explicit solution formula from Section 3.2:

w(x) =

∫
B

G(y, x) · f(y) dy (W)

where G is defined in Equation (G).

We have already obtained a modulus of continuity for the solution w in Lemma 3.6.

Upon trying to compute the solution on dyadic points, we meet the exact same complica-

tions we already encountered in the previous section: The integrand in (W) is unbounded

(indeed has a singularity at y = x) and therefore not polynomial-time computable;

furthermore integration is carried out over a ball instead of a cube. These difficulties

will be dealt with in the exact same manner as before, but will cause more technical

complications.

To avoid the singularities of the Green’s function, we truncate the fundamental solution.

Set

Γ̃m : [0; d+ 2] → R, r �→
{

min{Γ̃(2−m), Γ̃(r)} if r �= 0,

Γ̃(2−m) if r = 0.
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Fig. 9. Left: Cross-section of the Green’s function G for d = 3 with singularity at y = (1, 1, 1)/2

and truncated at three levels; Right: We actually truncate the fundamental solution Γ whose

difference then yields G.

We will need:

Lemma 5.5. The function sequence
(
Γ̃m
)
m∈N is computable in polynomial time.

Proof. It is easy to see that Γ̃m are Lipschitz continuous with Lipschitz constants

Lm = 2(d−1)m−lb(d·λ(B)).

Since the dimension d is fixed, we can choose an integer upper bound C of −lb
(
d · λ(B)

)
and the function μ(n) := (d− 1)n+ C will be a modulus of continuity for (Γ̃m)m∈N .

It is straight forward to give algorithms computing the functions on dyadic arguments

(for the case d = 2 compare Example 2.8b).

In the spirit of Equation (G), we proceed to define a sequence Gm : [−1; 1]×[−1; 1] → R
by

Gm(x, y) :=

⎧⎨
⎩Γ̃m(‖x − y‖) − Γ̃m

(
‖y‖
∥∥∥x − y

‖y‖2

∥∥∥) if y �= 0

Γ̃m(‖x‖) − Γ̃m(1) if y = 0

(cf. Figure 9). Note that ‖x − y‖ � ‖x‖ + ‖y‖ � 2
√
d � d + 2 and ‖‖y‖(x − y

‖y‖2 )‖ �

‖y‖‖x‖ + 1 � d+ 2 and therefore Gm is well defined from the function sequence (Γ̃m)m∈N
above.

Lemma 5.6. The sequence (Gm)m∈N is polynomial-time computable.

Proof. It is easy to see that the functions

(x, y) �→ ‖x − y‖ and (x, y) �→

⎧⎨
⎩
∥∥∥(‖y‖x − y

‖y‖

)∥∥∥ if y �= 0

1 if y = 0
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are polynomial-time computable. We briefly discuss how this can be seen for the second

function: Since the function is Lipschitz continuous with Lipschitz constant 2, it has a

linear modulus of continuity. Since all involved (component) functions are computable on

B \ B2−N (0) in time polynomial in the output precision and N we can proceed as follows:

Given some argument q and a precision requirement n check whether ‖q‖2 � 2−2n+2. If it

is, then compute approximations with the desired precision. If it is not, then return 1. Since

we have the modulus of continuity, one can check that this leads to valid approximations

in any case.

The modulus of continuity and the algorithm to compute the functions on dyadic

arguments can now be easily obtained from those of these functions and Γ̃m.

Towards approximating the solution u consider the function sequence

wm : B → R, x �→
∫
B

Gm(y, x) · f(y) dy.

The following two lemmas are analogous to the Lemmas 5.2 and 5.3, and will be the key

ingredients for the proof of Theorem 5.4.

Lemma 5.7. For x ∈ B1−2−m (0), we have

|wm(x) − w(x)| � ‖f‖∞ · 2−m.

Proof. Inserting the definitions of wm and Gm leads to

|wm(x) − w(x)| =

∣∣∣∣
∫
B

(Gm(y, x) − G(y, x)) · f(y) dy
∣∣∣∣

�

∣∣∣∣
∫
B

(
Γ̃m(‖x− y‖) − Γ̃(‖x− y‖)

)
· f(y) dy

∣∣∣∣
+

∣∣∣∣
∫
B

(
Γ̃m − Γ̃

)(
‖y‖
∥∥∥∥x− y

‖y‖2

∥∥∥∥
)

· f(y) dy
∣∣∣∣ .

Note that Γ̃ and Γ̃m do only differ on (0; 2−m). We assumed ‖x‖ � 1−2−m and this implies

‖y‖ ·
∥∥∥∥x − y

‖y‖2

∥∥∥∥ � | ‖y‖ · ‖x‖︸ ︷︷ ︸
�1

−1| � 2−m,

thus the second integral is equal to zero. The first integral on the other hand can be

estimated by transforming to spherical coordinates around x:

|wm(x) − w(x)| � ‖f‖∞ · d · λ(B) ·
∫ 2−m

0

Γ̃(r) · rd−1 dr.

The integration of rd−1Γ̃ can be carried out explicitly by distinction of the cases d = 2

and d > 2 and leads to:∫ 2−m

0

rd−1 · Γ̃(r) dr =

{
2−2m(m+1)
d·λ(B)

if d = 2
2−2m−1

d·(d−2)·λ(B)
if d > 2

.
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Since 2−m(m+ 1) � 1 we have∫ 2−m

0

rd−1 · Γ̃(r) dr �
2−m

d · λ(B)

in both cases. Inserting this into the above inequality results in the desired inequality:

|wm(x) − w(x)| � ‖f‖∞ · 2−m.

Lemma 5.8. If FP = #P , then the sequence (wm)m∈N will be polynomial-time computable.

Proof. The proof of this lemma is very similar to the proof of Lemma 5.3 and we keep

it brief. From Lemma 5.6, we know that the sequence in the integrand is polynomial-time

computable. We want to apply Scholium 4.2. To be able to do this we transform into

spherical coordinates around the origin. To clarify that the integrand remains polynomial-

time computable in this process, just note that the coordinate transformations and the

functional determinant are polynomial-time computable.

This enables us to prove the main result of this subsection:

Proof of Theorem 5.4. Assume that FP = #P and that f is polynomial-time comput-

able. Since the Laplacian is linear and f is bounded, we can assume that ‖f‖∞ � 1.

By Theorem 3.8 the desired solution is given by the weak solution w from Equation (W)

and twice continuously differentiable. We already argued that w has a polynomial modulus

of continuity in Lemma 3.6. Note that w being twice continuously differentiable does not

imply this, as it is only true on the interior of the ball.

To compute the values of w on dyadic arguments let q ∈ B be a vector of dyadics.

Let k be the smallest number such that all of the components of q have a representation

within Dk . Analogously to the last proof from the preceding subsection, we find that

‖q‖ � 1 − 2−2k−1. And see that the function

k(〈�q� , 1n〉) := 1max{2k+2,n+1}

is polynomial-time computable.

Apply Lemma 5.8 to find a polynomial-time computable function ψ approximating

values of the sequence (wm)m∈N . By Lemma 5.7 the function

φ(〈�q� , 1n〉) := ψ
(
〈 �q� , 1n+1, k(〈�q� , 1n〉)〉)

approximates the function w on dyadic arguments in polynomial time.

6. Optimality: #P-hardness of solving Poisson’s Equation

The results from the previous section can be assembled to show that from Fact 1.1 (i),

and therefore from any of the equivalent propositions, the statement of Theorem 1.2 (iv)

follows. We now proceed to show the converse and third and final part of our main result:

Assuming Theorem 1.2 (iv) we want to infer Fact 1.1 (ii), that is, that the antiderivative of a

polynomial-time computable function on the unit interval is polynomial-time computable.
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h g

Fig. 10. The functions g and f for a sample function h in the case d = 2.

Proof of Theorem 1.2 (iv). Assume that the unique solution of Poisson’s Equation is

polynomial-time computable for any polynomial-time computable function f. We want

to show that we can compute the antiderivative of an arbitrarily given polynomial-time

computable function h : [0; 1] → R in polynomial time.

For this define a function g : [0; 1] → R by

g(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x � 1
4
,

4h(0) · (x− 1
4
) if 1

4
< x � 1

2
,

h
(
4(x− 1

2
)
)

if 1
2
< x � 3

4
,

4h(1) · (1 − x) else

and f : B → R by

f(y) :=

{
g(‖y‖)
‖y‖d−1 if y �= 0,

0 if y = 0

(cf. Figure 10). It is not hard to see that g and f are polynomial-time computable.

The function f is radially symmetric. Since the corresponding solution u is unique, it will

also have to be radially symmetric. Rewriting Poisson’s equation in spherical coordinates

leads to

∂
(
rd−1 ∂u

∂r

)
∂r

(y) = g(‖y‖).

Let ũ be the function such that u(y) = ũ(‖y‖). We will then have ∂u
∂r

(y) = ˙̃u(‖y‖) and

integrating both sides of the above equation from 0 to r results in∫ r

0

g(t) dt = rd−1 · ˙̃u(r).

Taking the definition of g into consideration, we see that∫ x

0

h(t) dt =

∫ 1
2 + x

4

0

g(t) dt− h(0)

2
=

(
1

2
+
x

4

)d−1

· ˙̃u

(
1

2
+
x

4

)
− h(0)

2
.

Now since f is polynomial-time computable, u is twice continuously differentiable by

Theorem 3.8 and polynomial-time computable by assumption. Thus, Proposition c shows

that the partial derivatives of u restricted to B0.75(0) and therefore also ˙̃u restricted to
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[0.5; 0.75] are polynomial-time computable. The above formula now shows that also the

antiderivative of h is polynomial-time computable.

Finally, we argue why we can even restrict to smooth functions f.

Proof of Theorem 1.2v. Note that the proof of Fact 1.1, (ii)⇒ (i) as sketched at the end

of Section 4 not only proved the implication but explicitly constructed a polynomial-time

computable function h such that its antiderivative being polynomial-time computable

implies FP = #P . If such a function is fed to the procedure above, we end up with a

polynomial-time computable function f such that the solution u of the corresponding

homogeneous Dirichlet problem for Poisson’s equation being polynomial-time computable

will imply FP = #P . The proof of Fact 1.1, (iii)⇒ (i) was simply noting that the function

h can also be chosen to be smooth. Furthermore, the support of this function can be

chosen to be smaller than the whole interval. This will lead to a smooth function f.

7. Conclusion and perspective

We have established matching upper and lower bounds on the computational complexity

of solving the Dirichlet Problem for Poisson’s Equation (1) on the Euclidean unit ball:

For every polynomial-time computable right-hand side f and boundary condition g, the

unique solution u is classical (i.e. C2) and computable within #P; while, conversely, there

exist polynomial-time f such that u is not polynomial-time computable unless FP = #P .

This contributes to a research program started by Harvey Friedman and Ker-I Ko of

characterizing discrete complexity classes via numerical problems; and constitutes a first

step towards a rigorous complexity theory of solving partial differential equations, thus

refining recent results about their computability.

The upper bound follows from analyses of the Poisson Kernel and Green’s Function

and their singularities, permitting reductions to ordinary Riemann integration – and back,

for the case of Poisson’s Equation. In fact, we do not know whether solving the general

Dirichlet problem for Laplace’s Equation is also #P-hard. It is, however, #P1-hard,

starting from dimension two: Equation (PI) implies

u(0) =
1

d · λ(B)

∫
∂B

g(y) dσ(y).

Now recall from the introduction that definite integration corresponds to #P1.

We emphasize the non-uniformity of our upper complexity bounds: Under the hypo-

thesis FP = #P , to every choice of polynomial-time algorithms A and A′ computing

f and g respectively, there exists an algorithm B computing the solution u within time

polynomial in n, the output precision. Numerical practitioners are of course interested in

the dependence of B and it’s running time on A,A′ and their running time. In order to

formally treat such important questions of uniformity also for (solution) operators, one

of us and his PhD advisor have recently devised a promising framework (Kawamura and

Cook 2012).
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Future work will also explore domains more general than Euclidean balls such as

squares, polyhedra and compact convex sets polynomial-time computable in the sense of

Rösnick (2013).

This work is supported in part by JSPS Kakenhi projects 23700009 and 24106002, by

DFG IRTG 1529, by 7th EU IRSES project 294962 and by DFG project Zi 1009/4-1.

References

Blumenson, L.E. (1960). Classroom notes: A derivation of n-Dimensional spherical coordinates. The

American Mathematical Monthly 67(1) 63–66.

Bournez, O., Graça, D.S., Pouly, A. and Zhong, N. (2013). Computability and computational

complexity of the evolution of nonlinear dynamical systems. In: Proc. 9th Conference on

Computability in Europe (CiE 2013), Springer LNCS vol. 7921, doi 10.1007/978-3-642-39053-

1 2.

Brattka, V. and Yoshikawa, A. (2006). Towards computability of elliptic boundary value problems

in variational formulation. Journal of Complexity, 22 858–880.

Braverman, M. (2005). On the complexity of real functions. In: Proc. 6th Annual IEEE Symposium

on Foundations of Computer Science, doi 10.1109/SFCS.2005.58.

Friedman, H. (1984). The computational complexity of maximization and integration. Advances in

Mathematics 53(1) 80–98.

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory of

NP-Completeness, Freeman, New York.

Gilbarg, D. and Trudinger, N.S. (2001). Elliptic Partial Differential Equations of Second Order,

Classics in Mathematics. Springer-Verlag, Berlin. Reprint of the 1998 edition.

Grzegorczyk, A. (1957). On the definitions of computable real continuous functions. Fundamenta

Mathematicae 44 61–71.

Kawamura, A. (2010). Lipschitz continuous ordinary differential equations are polynomial-space

complete. Computational Complexity 19(2) 305–332.

Kawamura, A. (2011). Computational Complexity in Analysis and Geometry. PhD thesis, University

of Toronto.

Kawamura, A. and Cook, S. (2012). Complexity theory for operators in analysis. ACM Transactions

in Computation Theory 4(2) Article 5.
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