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In this work the quantitative and qualitative ability of a kinetic-theory-based two-fluid
model (KT-TFM) is assessed in a state of fully periodic sedimentation (fluidization),
with a focus on statistically steady, unstable (clustered) states. The accuracy of
KT-TFM predictions is evaluated via direct comparison to direct numerical simulation
(DNS) data. The KT-TFM and DNS results span a rather wide parameter space:
mean-flow Reynolds numbers on the order of 1 and 10, mean solid volume fractions
from 0.1 to 0.4, solid-to-fluid density ratios from 10 to 1000 and elastic and
moderately inelastic (restitution coefficient of 0.9) conditions. Data from both KT-TFM
and DNS display a rich variety of statistically steady yet unstable structures (clusters).
Instantaneous snapshots of KT-TFM and DNS demonstrate remarkable qualitative
agreement. This qualitative agreement is quantified by calculating the critical density
ratio at which the structure transitions from a chaotic, dynamic state to a regular,
plug-flow state, with good overall comparisons. Further quantitative assessments of
mean and fluctuating velocities show good agreement at high density ratios but
weaker agreement at intermediate to low density ratios depending on the mean-flow
Reynolds numbers and solid fractions. Deviations of the KT-TFM results from the
DNS data were traced to a breakdown in one of the underlying assumptions of the
kinetic theory derivation: high thermal Stokes number. Surprisingly, however, even
though the low Knudsen number assumption, also associated with the kinetic theory
derivation, is violated throughout most of the parameter space, it does not seem to
affect the good quantitative accuracy of KT-TFM simulations.

Key words: multiphase and particle-laden flows, particle/fluid flow, suspensions

1. Introduction
Two-phase flow processes involving transport of solid particles through gas

are of central importance to pharmaceutical, food product, chemical and energy
industries. A theory that is capable of accurately predicting the complicated behaviour

† Email address for correspondence: hrenya@colorado.edu
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involved in such processes is therefore crucial and of significant practical value.
The dynamics of particulate flows, either granular (negligible interstitial fluid) or
multiphase, is extraordinarily complex as even the simplest gas–solid flows are
known to exhibit instabilities that manifest as persistent, transient and inhomogeneous
solids distributions commonly referred to as clustering (Goldhirsch 2003; Fullmer &
Hrenya 2017b) or bubbling (Jackson 2000; Sundaresan 2003) depending on the solids
concentrations. The distinction, however, is largely cosmetic, as the mechanisms
underlying bubbling and clustering instabilities are the same (Glasser, Sundaresan &
Kevrekidis 1998).

Like turbulence in molecular fluids, clustering in rapid granular and gas–solid
flows is more the rule than the exception. Owing to the pervasiveness of clustering,
numerical methods used to model particulate flows need to accurately describe this
instability owing to its large impact on interfacial coupling. One of the available
methods is the discrete element method (DEM), which tracks the motion of every
particle. DEM (sometimes referred to as molecular dynamics, MD) studies provided
some of the earliest reported evidences for clustering in granular systems (Hopkins
& Louge 1991; Goldhirsch & Zanetti 1993). DEM may also be coupled with
a computational fluid dynamics (CFD) solver for multiphase simulations. If a
volume-averaged approach is used, in which the fluid grid size is typically larger
than the particle size, the coupled method is frequently referred to as CFD-DEM.
CFD-DEM has become a reliable method for the simulation of fluid–particle flows
and has been used to study clustering and bubbling instabilities in, for example,
fully periodic sedimentation (Radl & Sundaresan 2014; Capecelatro, Desjardins &
Fox 2015), wall bounded fluidization (Tsuji, Tanaka & Yonemura 1994; Vreman
et al. 2009; Capecelatro, Pepiot & Desjardins 2014) and bubbling in dense fluidized
beds (Tsuji, Kawaguchi & Tanaka 1993; Ye, van der Hoef & Kuipers 2005; Hou,
Zhou & Yu 2012; LaMarche et al. 2015), among others. If a very fine fluid grid
is considered, approximately an order of magnitude smaller than the particles,
direct numerical simulations (DNS-DEM or simply DNS) may be performed in
which all relevant scales of motion of both phases are explicitly resolved (Tenneti
& Subramaniam 2014). Although less pervasive than CFD-DEM due to its high
computational overhead, DNS has been used to study clustering in a homogeneous
cooling system (HCS) (Wylie & Koch 2000; Yin et al. 2013; Garzó et al. 2016)
and fully periodic sedimentation/fluidization (Kajishima & Takiguchi 2002; Derksen
& Sundaresan 2007; Wang et al. 2010b; Uhlmann & Doychev 2014; Rubinstein,
Derksen & Sundaresan 2016; Liu, Wang & Ge 2017).

Although increased access to supercomputers and their ever-expanding capability
has allowed for DNS and CFD-DEM simulations with impressive particle counts –
several groups have simulated over 10 million particles via CFD-DEM (Capecelatro &
Desjardins 2013; Capecelatro et al. 2015; Morris et al. 2016) – the current capabilities
of discrete particle simulations still fall well short of industrial and engineering needs,
for which systems may contain trillions of particles. Presently, methods that treat
the particles as a continuum are most commonly used for the simulation of large
systems. In the absence of an interstitial fluid, continuum models for granular flows
are typically derived using kinetic theory (KT) approaches (Lun et al. 1984; Garzó
& Dufty 1999; Brilliantov & Pöschel 2004). In the case of two-phase flows, i.e.
solids with an interstitial fluid present, the two-fluid model (TFM) treats the phases
as interpenetrating media. If the particles are ‘moderately massive’, the closure
relations and transport coefficients typically used for granular flows may be directly
amenable to the solids phase of the TFM for gas–particle flows (Sinclair & Jackson
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1989; Gidaspow 1994; Lun & Savage 2003). Recently, more accurate approaches
for multiphase flows have been undertaken which consider fluid-phase effects at
the starting point, i.e. in the Enskog kinetic equation (Koch 1990; Gidaspow 1994;
Koch & Sangani 1999), also see Garzó et al. (2012) and references therein. The
acronym KT-TFM is used here instead of the more common KTGF (kinetic theory
of granular flow) to distinguish the resulting multiphase model from single-phase
(granular) continuum models, e.g. Garzó & Dufty (1999).

Even with empirical (rather than KT-based) closures, the TFM has been known to
predict the clustering instability in gas–solid multiphase flows – at least qualitatively
– since the late 1980s (Gidaspow, Tsuo & Luo 1989; Tsuo & Gidaspow 1990). A
little over a decade later, Agrawal et al. (2001) demonstrated that the properties of
clustering in continuum predictions were highly dependent on the numerical grid and
reported that a resolution on the order of ten particle diameters was necessary for the
slip velocity and granular temperature to become grid insensitive. In intermediate
and dense flows, the grid requirement is even more demanding to resolve the
sharp gradients at the cluster or bubble interface (Wang, van der Hoef & Kuipers
2009; Fullmer & Hrenya 2016). Such a high level of resolution likewise precludes
high-resolution KT-TFM from being used to simulate industrial-scale systems. One of
the most promising approaches used to simulate large systems are filtered TFMs, see,
for example, (Igci et al. 2008; Wang, van der Hoef & Kuipers 2010a; Parmentier,
Simonin & Delsart 2012; Schneiderbauer & Pirker 2014) and follow-on works.
Similar to large eddy simulation (LES) of turbulent single-phase flows, filtered TFMs
aim to only resolve the large scales of motion and model the effect of subgrid-scale
structures. However, the subgrid-scale models in filtered TFMs are considerably more
complicated than for single-phase turbulent flows due to interfacial transfer (Fox 2012)
and high-resolution KT-TFM simulations are frequently used to constitute many of
the subgrid-scale closures (Igci & Sundaresan 2011; Ozel, Fede & Simonin 2013).

While KT-TFMs now seem to be generally accepted as a valid approach for
gas–solid flows (Fox 2014), the quantitative accuracy of such models remain largely
unknown, particularly for systems that display clustering instabilities. In particular,
such instabilities are characterized by a large concentration gradient across the cluster
interface, which likely violates the low Knudsen number assumption inherent in
the derivation, as was previously found for granular flows (Mitrano et al. 2014).
Some attempts have been made to compare high-resolution KT-TFM results directly
to experimental data (Wang 2008; Benyahia 2012; Cloete, Johansen & Amini 2012),
although such comparisons usually require simplifying the geometry or dimensionality
of the system. Furthermore, experimental data may contain effects due to additional
physics not considered by the KT-TFM, e.g. aspherical, polydisperse particles, surface
roughness, relative humidity in a gas, van der Waals forces, electrostatics, etc. While
prediction of physically realistic conditions is the ultimate goal, comparison to
experimental data may not be the most appropriate first step in validating KT-TFMs
because it is non-trivial to determine a posteriori if discrepancies between simulation
and experimental data are associated with assumptions of the experimental system
(e.g. particle and fluid properties) or assumptions inherent to the continuum derivation.
Due to the large number of assumptions required by most KT-TFMs, e.g. see
§§ 2.1.1–2.1.3, a two-pronged approach to validation is desirable, comparing first
to ideal numerical data and then to realistic experimental data. Discrete particle
simulations such as dissipative MD, CFD-DEM, and DNS offer ideal validation data
as all or most of the assumptions of the KT-TFM are upheld except those that are
required in the discrete-to-continuum derivation. KT-based continuum models for
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granular flows have been validated in the HCS for the onset of the velocity vortex
instability (Mitrano et al. 2012) and the clustering instability (Mitrano et al. 2014) by
comparing to MD data. Similarly, for gas–solid flows, the onset of velocity vortices in
the HCS was also recently analysed by comparing predictions from a linear stability
analysis of the KT-TFM to DNS data (Garzó et al. 2016). The agreement between
the continuum and discrete particle data in the gas–solid case was acceptable, but
noticeably deteriorated compared to the granular case. (We note that this deterioration
may trace to differences in the linear stability analysis rather than the KT-TFM theory
itself.) While the HCS serves as a good first test, it has only been used to analyse
the onset of instabilities when the system is only weakly nonlinear. In the HCS, the
onset is determined by the critical length scales at which clustering (or vortices) are
first observed. On the other hand, a driven system must be used to assess the ability
of the KT-TFM to predict statistically steady (evolved) clustering characteristics in a
strongly nonlinear state. In a previous work (Fullmer & Hrenya 2016), the KT-TFM
of Garzó et al. (2012) was compared to the CFD-DEM data of Radl & Sundaresan
(2014) showing good agreement in the mean slip velocity over a range of mean
concentrations, although at only a single density ratio and Archimedes number.

In this work, KT-TFM simulations of fully periodic sedimentation are compared
directly to DNS data. Compared to CFD-DEM, DNS eliminates the need for closures
such as lift, drag, virtual mass and Bassett forces, particle-induced fluctuations,
neighbour effects, etc. as these effects are directly resolved through solution of the
Navier–Stokes equation and the (discrete) particles equations of motion. Additionally,
the phase-space covered in this study is much wider: a broad range of density ratios,
two Archimedes numbers, elastic and inelastic conditions, and a range of mean
concentrations are studied. As a result of the wide parameter space used in this study,
a variety of fluid–solid flow behaviour is featured beyond simply homogeneous or
clustered. The remainder of this work is organized as follows. In § 2 the KT-TFM
model of Garzó et al. (2012) is provided and the relevant assumptions used in the
derivation of the model are reviewed. Overviews of the KT-TFM and DNS simulation
methods are then provided along with a description of the system, significant
non-dimensional quantities and the homogenous solution. In § 3, a distinction between
homogeneous and clustered states is studied via an L∞-norm of the concentration
field and the three primary flow patterns observed in the system are then presented
via instantaneous snapshots. The focus of the analysis shifts to quantitative measures
in § 4. Comparison of mean and fluctuating solids-phase velocities with the DNS data
shows regions of good and marginal agreement which is then analysed in terms of
the underlying closures and assumptions of the KT-TFM. The qualitative agreement
shown in § 3 is further substantiated by calculating a transition criteria for regime
change. The key findings and future outlook are summarized in § 5.

2. Models and methods
2.1. Kinetic-theory-based two-fluid model

This study utilizes a two-fluid model (TFM) to solve gas–solid flow in a state of
fluidization or sedimentation in a fully periodic domain. The solids-phase transport
coefficients and constitutive relations are closed with a KT approach. We use the
KT-TFM of Garzó et al. (2012) (hereafter referred to as GTSH). Unlike previous KT
models for particulate flows, the instantaneous gas–solid interaction force appearing
in the starting Enskog equation is decomposed into three components: (i) a mean
drag force (proportional to β in table 1) that models the interfacial momentum
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Transport equations

∂φ

∂t
+∇ · φUs = 0, (2.1)

∂(1− φ)
∂t

+∇ · (1− φ)Uf = 0, (2.2)

ρsφ

(
∂Us

∂t
+Us · ∇Us

)
=−φ∇pf −∇ps +∇ · σs − β(Us −Uf )+ ρsφg, (2.3)

ρf (1− φ)
(
∂Uf

∂t
+Uf · ∇Uf

)
=−(1− φ)∇pf + (1− φ)∇ · σf + β(Us −Uf )+ ρf (1− φ)g,

(2.4)
3
2
ρsφ

(
∂T
∂t
+Us · ∇T

)
= (σs − psI) : ∇Us −∇ · q+ S1 + S0. (2.5)

Solids pressure

ps = ρsφT[1+ 2φχ(1+ e)]. (2.6)
Phasic stress tensor ( j= s, f )

σj =µj[∇Uj + (∇Uj)
T
] +
(
λj −

2
3µj
)
(∇ ·Uj)I. (2.7)

Granular heat flux

−q= κ∇T + η∇φ. (2.8)
First-order thermal source/sink

S1 =−
3
2ρsφTζ1(∇ ·Us). (2.9)

Zeroth-order thermal source/sink

S0 =
3
2
ρsφ

(
ξ −

2γ
m

T − ζ0T
)
. (2.10)

TABLE 1. Transport equations and constitutive relations of the GTSH KT-TFM. The
solution variables are the solids concentration, φ, the solids and fluid velocity vectors,
Uj = (uj, vj, wj)

T with j = s, f , the fluid pressure, pf , and the granular temperature, T .
Additionally, ρj is the phasic density, g is the gravity vector, e is the restitution coefficient,
dp is the particle diameter and m is the particle mass.

transfer due to a difference in mean relative velocities, (ii) a thermal drag force
(proportional to γ in table 4) that models the dissipation of granular temperature
(a measure of the fluctuating kinetic energy of the solids phase) due to the fluid
phase, and (iii) a neighbour effect (proportional to ξ in table 5), which is a source of
granular temperature due to the fluid and the presence of nearby particles, i.e. it is
necessarily both a multiphase and multi-particle contribution. For the sake of brevity,
only the governing and constitutive equations of the KT-TFM are given in table 1.
The additional relations needed to fully specify the GTSH model are provided in
tables 3–5 in appendix A along with a discussion of the slight differences between
closures used here and those originally proposed by Garzó et al. (2012). In §§ 2.1.1,
2.1.2 and 2.1.3 we provide a review of the relevant assumptions and approximations
that impact the limitations of the GTSH theory.
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2.1.1. Particle and collision properties
It is assumed that particles are perfectly spherical and monodisperse. Normal

dissipation resulting from particle–particle collisions is assumed to be characterized
by a single, constant coefficient of restitution, e. Furthermore, the collisions are
assumed to be instantaneous and binary. The particle surface is assumed to be
perfectly smooth, i.e. tangential dissipation due to particle–particle friction is zero.
These idealized particle and collisional properties are shared by the DNS, thereby
providing a straightforward (apples-to-apples) comparison between DNS and GTSH
theory.

2.1.2. Fluid properties
The fluid phase is assumed to be incompressible, ∂ρf /∂t + Uf · ∇ρf = 0, which

is the reason that (2.1) and (2.2) are independent of density. In this work, the fluid
properties, ρf , µf and λf are further assumed to be constants in a given simulation.
In typical fashion, bulk compressibility is neglected by assuming λf = 2µf /3. Both
fluid-phase assumptions are also matched in the DNS. It should also be mentioned
that in the KT-TFM ‘subgrid’ contributions to the fluid-phase stress tensor, such as
those resulting from ‘microscopic’ particle-induced turbulence, are not considered here.
However, small-scale fluctuations in the fluid velocity cause by individual particles
are inherently captured by the DNS approach and, hence, do not require modelling.
Note that ‘mesoscopic’ or ‘macroscopic’ fluctuations resulting from variations in
mean flow, or clustering-induced turbulence (Capecelatro et al. 2015), are actively
resolved by solving the full transient, three-dimensional (3-D) KT-TFM equations in
the simulations.

2.1.3. Kinetic equation and its solution
Although several options exist for obtaining the necessary constitutive relations

and transport coefficients from a kinetic equation, the Chapman–Enskog expansion
has been the most prevalent systematic method to date (Goldhirsch 2003). The
Chapman–Enskog method assumes that the kinetic equation has a normal solution,
e.g. that the velocity distribution function depends on space and time only through
a dependence on φ, Us, and T (Chapman & Cowling 1970), which is constructed
using a perturbation expansion about a uniformity (small) parameter. The uniformity
parameter used in the Chapman–Enskog method is the Knudsen number, Kn, which
is a measure of the mean free path of the particles relative to the strength (inverse
length scale) of spatial gradients of the hydrodynamic variables. The GTSH model
is expanded to first order in Kn, i.e. Navier–Stokes order. Additionally, the scaled
distribution function is approximated by expanding about the Maxwellian distribution
with Sonine polynomials (van Noije & Ernst 1998). The GTSH theory considers
a first-order Sonine approximation measuring the Maxwellian deviation through the
kurtosis (A 22). Although never explicitly stated, an over-arching assumption of this
approach is that the distribution function should be predominantly determined by
particle collisions (i.e. high thermal Stokes number). It is worth mentioning that DNS
does not rely on any of the assumptions related to the kinetic equation or its solution
since all particle dynamics, including collisions, are directly resolved.

2.2. Numerical solution of the KT-TFM
The GTSH KT-TFM is solved numerically using the open-source MFiX CFD code
developed at the National Energy Technology Laboratory (https://mfix.netl.doe.gov/).
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MFiX solves the discretized transport equations with the finite volume method. The
spatial discretization employs a staggered grid and an upwinded variable extrapolation
scheme with a flux limiter. All simulations in this work were performed with the
MUSCL flux limiter (van Leer 1979; Waterson & Deconinck 2007) on a uniform
grid of Nx = Nz = 12 and Ny = 50. Although the grid is uniform, it is not exactly
cubic and the exact grid spacing ∆i= Li/Ni for i= x, y, z, changes slightly depending
on the Archimedes number, see § 2.4 below. For both Archimedes numbers, the non-
dimensionalized grid size, ∆∗ = (∆x × ∆y × ∆z)

1/3/dp, is approximately 0.7 which
was determined to be necessary after carrying out a systematic grid dependence study
of a test case. Such a fine grid is approximately an order of magnitude smaller than
previously found to be necessary for grid-insensitive solutions (Agrawal et al. 2001;
Wang et al. 2009; Fullmer & Hrenya 2016). It is believed that such a high level of
numerical resolution is needed here due to the small system size; specifically, large
spatial gradients at cluster interfaces account for a larger portion of the total domain
in this study (Li et al. 2017). Time advancement is semi-implicit with a SIMPLE-type
algorithm (Patankar 1980) for pressure–velocity coupling. The temporal discretization
is first-order Euler with adaptive time stepping. A maximum time step of is specified,
however in order to meet the tolerance limits, the code-limited time step is typically
one to two orders of magnitude smaller than the maximum time step.

2.3. DNS method
The SUSP3D code developed by Ladd and co-workers (Ladd & Verberg 2001;
Nguyen & Ladd 2002) is used in this study to simulate the dynamics of fully periodic
sedimentation/fluidization. This code uses a D3Q19 lattice Boltzmann velocity model
and a two-relaxation-time collision operator to solve fluid flow on a uniform, space
filling, cubic lattice. Incompressible flow is recovered with second-order accuracy
with respect to the lattice Mach number, Ma= u/cs, where u is the fluid velocity and
cs= 1/

√
3 is the lattice speed of sound. When a fluid population crosses a fluid–solid

interface, the linked-bounce-back rule is applied to return the fluid population back
to the fluid domain, recovering the no-slip boundary condition. The momentum
exchanged between the fluid and a particle through bounce-back is accumulated over
the surface of the particle to give the fluid–particle force. This force is then used to
update the particles velocity according to Newton’s law of motion.

For close pairs of particles, analytical expressions of lubrication interactions are
imposed onto lattice Boltzmann solutions to ensure that lubrication interactions
between particles are correctly captured (Nguyen & Ladd 2002). As analytical
expressions contain singularities when the gap between particles approaches zero, a
lubrication cutoff, ε is specified. This cutoff sets maximum values on the lubrication
force and torque, and reduces the stiffness of the velocity update. As in the
assumptions used to derive the GTSH KT-TFM, collisions between particles are
treated as hard sphere collisions with a normal restitution coefficient. Tangential
restitution due to friction was not considered in the simulations.

Table 2 lists the properties of the lattice fluid, diameters of particles and lubrication
cutoffs that were employed in the simulations. Note that the diameter dp is the
effective hydrodynamic diameter, which is different from the geometric diameter,
d0

p, used to distinguish fluid and solid nodes on the computational lattice. Generally
dp > d0

p, because the collection of solid nodes mapped by d0
p has a rough interface

that comes from the staircase representation of a sphere. The difference between
dp and d0

p, the hydrodynamic correction ∆H , is typically established through drag
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Ar= 71 Ar= 1432

Equilibrium density, ρf 36 36
Viscosity, µf 0.36 0.03
Particle diameter, dp 5.84 6.35
Lubrication cutoff, ε 0.01 0.01
Hydrodynamic correction, ∆H 0.45 0.95

TABLE 2. Parameters used in the DNS.

calibration (Ladd & Verberg 2001), and is always less than one lattice spacing. As
one increases dp and d0

p, the need for a hydrodynamic correction decreases, as the
sphere is now represented by more lattice units (i.e. higher resolution). The choice of
dp is generally based on the balance between computational cost and accuracy. In this
study, we tested a higher resolution dp = 10 for selected cases, and the results were
identical to those obtained using the lower dp listed in table 2. It was also tested and
confirmed that the DNS results are essentially not affected by the selection of ε.

2.4. System description
The system considered is a uniform suspension in a fully periodic domain undergoing
infinite sedimentation or fluidization. A constant body force, i.e. gravity, acts only
in the negative vertical y-direction. In the KT-TFM simulations, the fluid pressure is
assumed to be decomposed into a fluctuating (local) component superimposed on a
mean linear gradient. The mean fluid pressure gradient opposes the body force and
supports the weight of the suspension,

−
∂Pf

∂y
= (〈φ〉ρs + (1− 〈φ〉)ρf )|g| (2.11)

so that no net force acts on the mixture in the y-direction. The angle brackets in
(2.11) indicate an averaging over the entire domain. The pressure gradient is imposed
on the system numerically by specifying a pressure-drop boundary condition in the
y-direction. In DNS, a body force equivalent to that specified by (2.11) is applied
to the fluid to ensure that the net force on the mixture in the y-direction is zero.
No forces are applied in the transverse x- and z-directions and standard periodic
boundary conditions are used. Since the system is fully periodic, the global (system)
concentration, 〈φ〉, does not change in time.

With the specification of (2.11) one can calculate the base state, i.e. the homogeneous
(stable) steady state, which will be an important metric for comparison with
the numerical solutions of the complete (transient and three-dimensional) GTSH
KT-TFM. The mixture momentum equation, (2.3) + (2.4), reduces to (2.11). The
difference momentum equation, (2.3)–(2.4), can be rearranged to give the mean
velocity difference in the vertical direction:

|v(H)s − v
(H)
f | =

1ρ|g|d2
p

18µf F∗
=

u∞
F∗
, (2.12)

where u∞ is the terminal Stokes velocity of a single particle in an infinite medium and
F∗ is the mean drag law (A 1) and the (H) superscript denotes the homogeneous state.
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In §§ 3 and 4, it will be important to distinguish between values calculated analytically
from the KT-TFM assuming homogeneity and those calculated from the results of
CFD simulations of the KT-TFM which may be far from homogeneous. The transverse
velocities in the homogeneous state are all zero: u(H)s = u(H)f = w(H)

s = w(H)
f = 0. Note

that (2.12) only prescribes the magnitude of the velocity difference, not the phasic
velocity values. The mixture continuity equation, (2.1) + (2.2), states only that the
total volumetric flux should be a constant,

j(H)y = [φvs + (1− φ)vf ]
(H)
= const. (2.13)

In theory, the absolute values of the phasic velocities are arbitrary: hence the lack of
distinction between sedimentation or fluidization in a fully periodic domain. However,
to satisfy the Ma criterion in the DNS, the velocities should be minimized and thus the
choice j(H)y = 0 was selected and also used in the KT-TFM simulations for consistency.
With j(H)y = 0, equation (2.12) yields v(H)s = −(1 − 〈φ〉)u∞/F∗ and v

(H)
f = 〈φ〉u∞/F∗

(note that φ(H) = 〈φ〉). In the homogeneous state, the granular temperature equation
(2.5) reduces to the algebraic relation S0 = 0 or,[

ξ =
2γ
m

T + ζ0T
](H)

, (2.14)

which describes how granular temperature generated by the neighbour effect is
balanced the by the dissipation due to thermal drag and inelasticity (if e< 1).

For both numerical methods, the fluid and particles are initially at rest and
accelerated by body forces to achieve the quasi-steady state of sedimentation. Though
by different means, both methods enforce 〈jy〉= 0 dynamically throughout calculations
to avoid drift caused by round-off error. To provide an initial perturbation in the
KT-TFM simulations consistent with DNS randomly distributed particles are generated
at initialization and filtered into solids concentration on the CFD grid with a simple
Gaussian filter. Furthermore, in the KT-TFM simulations a negligibly small initial
granular temperature is prescribed to avoid singularities in the constitutive equations.
In this manner, the KT-TFM and DNS methods were initialized as similarly as
possible.

Seven non-dimensional parameters characterize the system: the Archimedes number,
Ar = ρf1ρ|g|d3

p/µ
2
f , characterizing the ratio of gravity-to-viscous forces, the density

ratio, ρ∗= ρs/ρf , the mean concentration, 〈φ〉, the coefficient of restitution, e, and the
system size in each direction, L∗i = Li/dp where i= x, y, z. Two Archimedes numbers
considered in this study, Ar = 71 and 1432, lead to approximately one order of
magnitude of variation in mean-flow Reynolds numbers, equation (A 26). (Note that
(2.12) can be easily non-dimensionalized into the form Re(H)m = (1 − 〈φ〉)Ar/18F∗).
The density ratio serves as the control parameter and was varied from 10 to 1000.
Four mean concentrations are studied, 〈φ〉 = 0.10, 0.15, 0.25 and 0.40 and two values
of the restitution coefficient are used, e = 0.9 and 1.0. Here, we primarily focus on
the results obtained in the elastic case (e= 1.0) as inelasticity does not significantly
affect the results as discussed in § 4.6. The system size varies slightly between the
two Archimedes number cases. For the case Ar = 71: L∗x = L∗z = 8.56 and L∗y = 34.2.
For the Ar = 1432 case: L∗x = L∗z = 8.656 and L∗y = 34.624. In both instances, the
domain size is very small – a consequence of the large computational cost associated
with DNS. Capecelatro et al. (2015) recommend that the domain size in the flow
direction be at least L∗y ≈ 0.2ρ∗Ar (assuming ρ∗� 1). In this work, 0.2ρ∗Ar ranges
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from 142 to 286 400 – orders of magnitude larger than L∗y considered here – so that
the periodic boundaries influence the development of the instabilities. Therefore, when
clustering occurs it forms a significantly different structure than observed in larger,
truly unbounded domains, e.g. Capecelatro et al. (2015), Capecelatro, Desjardins &
Fox (2016). However, the variety of structures observed as a result of the small
system provide an equally, if not more, stringent test of the KT-TFM than traditional
clustering alone, as shown in § 3.

2.5. Averaging operations
A few averaging operations that will be used in the following sections are formally
defined here. Consider a general, arbitrary variable fj associated with phase-j which is
a function of space and time. The volume average,

〈 fj〉(t∗)=
1

L∗xL∗yL∗z

∫ L∗z

0

∫ L∗y

0

∫ L∗x

0
fj(x∗, t∗) dx∗ dy∗ dz∗, (2.15)

defines the global or system-averaged quantity. When comparing with the results of
DNS, continuum flow variables, e.g. solids velocity, must be Favre or concentration
weighted,

〈〈fs〉〉(t∗)=
〈φfs〉(t∗)
〈φ〉(t∗)

and 〈〈ff 〉〉(t∗)=
〈(1− φ)ff 〉(t∗)

1− 〈φ〉(t∗)
, (2.16a,b)

denoted here by double brackets. Finally, the system is simulated in a statistical steady
state and it is frequently desired to report time-averaged values,

fj(x∗)=
1

t∗2 − t∗1

∫ t∗2

t∗1

fj(x∗, t∗) dt∗ (2.17)

denoted with an overbar. The non-dimensional time is defined here as t∗ = tνf /d2
p.

Since DNS is extremely computationally expensive, the time averaging windows are
minimized by beginning time averaging as soon as the quasi-steady state is reached
and terminating each simulation when a sufficient amount of statistics have been
collected, typically controlled by the higher-order statistics. Five replicates (otherwise
identical simulations with a different randomization of initial particle distribution)
were run for each condition. The DNS results provided in § 4 represent the average
of the five replicates with error bars signifying the standard deviation between the
replicates. The KT-TFM simulations are carried out to t∗ = 2000 for Ar = 71 and
to t∗ = 500 for Ar = 1432. In both cases, the data are split into ten equal length
segments. The first segment is neglected to avoid any transient data associated with
the transition from the initially static but perturbed state to the statistically steady
state. The remaining nine segments are time averaged and used to calculate the mean
and standard deviation, the latter of which is represented by error bars throughout
this work except in figure 11 where specifically noted otherwise.

3. Results: flow structure
In this section, we present a qualitative comparison on the degree of inhomogeneity

between KT-TFM and DNS. In a previous work on the HCS (Mitrano et al. 2014), an
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FIGURE 1. (Colour online) Maximum normalized concentration difference in the KT-TFM
simulations as a function of density ratio for e= 1 and (a) Ar= 71 and (b) Ar= 1432 at
mean concentrations of 〈φ〉 = 0.1 (black), 0.15 (red), 0.25 (blue) and 0.40 (green).

L∞-norm, termed 1φmax, was used to differentiate the inhomogeneous (clustered) state
from the homogeneous state. The HCS is in a state of constant decay and the 1φmax
was studied as a function of time. For the statistically steady sedimenting system
studied here, a single metric indicating the degree of inhomogeneity at the steady state
is more appropriate. Therefore, the inhomogeneity metric 1φmax is taken here as

1φmax =

(
max φ −min φ

〈φ〉

)
. (3.1)

1φmax expresses the average maximum spread of the concentration field normalized by
the mean concentration and takes a range of values from zero (perfectly homogeneous)
to φmax/〈φ〉, where φmax is the random close-packed concentration limit in the radial
distribution function (A 25).

Figure 1 presents 1φmax for all inelastic KT-TFM simulations at (a) Ar = 71 and
(b) Ar = 1432, respectively. In general, the main trends of the two Ar cases are
opposite. At low Ar and the three lowest concentrations, 〈φ〉 = 0.10, 0.15 and 0.25,
1φmax is near zero (indicating a homogeneous state) at the lowest density ratios
and increases to a clustered state with increasing density ratio. For 〈φ〉 = 0.40, this
system remains essentially homogenous to a density ratio of approximately 100,
at which point the system abruptly transitions to an inhomogeneous state. At high
Ar, the systems begin (i.e. at lower density ratio) in an inhomogeneous state and
1φmax begins to decay at a density ratio of approximately 100. It should be pointed
out that this re-homogenization at Ar = 1432 is considerably smoother than the
onset of clustering at Ar = 71. Although 1φmax can be used as a quick gauge of
whether or not a system is inhomogeneous, it cannot provide information on how
a system is inhomogeneous. Different types of clustered states are illustrated via
instantaneous snapshots of the concentration fields for representative cases in the
remainder of this section. Animations of each system also reveal that the observed
behaviour was significantly more complex than simply homogeneous/inhomogeneous
(stable/clustered), see supplementary movies for example animations available at
https://doi.org/10.1017/jfm.2017.295.
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0.3

0.2

0.1

0

KT-TFM DNS

FIGURE 2. (Colour online) Chaotic regime: instantaneous distribution of KT-TFM solids
concentration and DNS particle locations. Concentration field shown in xy-plane at the
z-centreline. Particles shown in dp-thick slice about the z-centreline and are coloured by
filtered volume fraction. Both contours and particles indicate a concentration range from 0
to 0.35 by light yellow to dark red colours. Consecutive panels are separated by δt∗= 1.5.
Conditions are: Ar= 1432, 〈φ〉 = 0.15, e= 1.0, and ρ∗ = 32 (KT-TFM), 30 (DNS).

Further insight into the types of structures present in these small-scale sedimenting
systems is provided by instantaneous snapshots of the distributions of concentration
(for KT-TFM) and particles (for DNS) for representative cases. For each set of images
in figures 2–4 a corresponding animation is provided in supplementary movies 1–6.
Broadly speaking, approximately four different regimes have been observed in the KT-
TFM: (i) steady and nearly homogeneous, (ii) unsteady and chaotic, (iii) steady 2-D
plug and (iv) steady 1-D plug. Because the transitions from one regime to another
are always gradual, it is not easy to quantitatively demarcate the transitions. Here we
present the typical structures of each regime, except that of the first regime due to
its trivial nature. Analysis of the transition to the plug flow is considered in § 4.4. It
should be noted that on the DNS side, as particle locations and flow fields are always
fluctuating, there is no stable, steady regime (i) as in the KT-TFM simulations.

The unsteady and ‘chaotic’ regime, as illustrated in figure 2, occurs at intermediate
density ratios after the near-homogeneous regime in the lower Ar= 71 case and at the
lowest density ratios studied in the higher Ar=1432 case. In the KT-TFM simulations,
the departure from near-homogeneous to observable flow structures coincides with
the abrupt increase in 1φmax in figure 1 for Ar = 71. The regime is characterized
by a highly dynamic state in which identifiable structures change shape rapidly and
frequently coalesce with other structures or vanish. Quotations are used around chaotic
because we have not attempted to quantify or otherwise verify a chaotic state and
simply mean that the flow appears to have many of the hallmarks often associated
with chaos. We note however that a recent study of clustering in a larger sedimenting
system predicted with the GTSH KT-TFM was shown to possess a positive Lyapunov
exponent (Fullmer & Hrenya 2017a). The highest frequencies of the dynamics occur
at the lower density ratio side of each chaotic regime, although before the onset of
homogeneity. With increasing density ratio the horizontal structures become more
pronounced which can be clearly identified in figure 2. Both KT-TFM and DNS
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0.3

0.2

0.1

0

KT-TFM DNS

FIGURE 3. (Colour online) Two-dimensional plug regime: same as figure 2 except at ρ∗=
100 (both KT-TFM and DNS).

images show two horizontal, plug-like structures in the domain. Although there are
frequently two identifiable plugs, one is typically ‘stronger’ (denser) while other is
in a regenerative state. At the first instance shown (left most panel), the plug near
the top of the domain is the dominant plug. As the simulations continue, the plugs
fall through the domain and are broken by the fluid causing the particles to spill
out and decreasing the strength. By the third panel, the originally stronger plug has
become the weaker one (panels left to right are separated by δt∗ = 1.5 for both
KT-TFM and DNS). Conversely, the lower plugs have passed through the bottom
of the domain (and re-emerged at the top due to the periodic boundary condition)
and have become the dominant plug in the third panel. The cycle of destruction and
rebirth of the horizontal structures continually repeats itself. It should be noted that
while a repetitive pattern is distinguishable through visible inspection, the spatial
configuration is by no mean regular, i.e. the plugs are similar but not identical in
shape, indicating that the system is still in a chaotic state.

As the density ratio continues to increase, the fluid phase no longer has enough
inertia to break up plug structures and at some point in ρ∗ the transverse plug
structures begin to persist throughout simulations. At this point, only a single plug
is present at a given time (regime (iii)). The persistent plug structure is displayed in
figure 3 for ρ∗ = 100 (and the same remaining conditions as in figure 2). It can be
seen that the maximum and minimum concentrations in the domain are approximately
the same in figures 2 and 3 and, hence, the magnitudes or even trends of 1φmax in
figure 1 do not change appreciably from the chaotic to plug regimes. Since the plug
spans the domain in the lateral direction, the fluid must flow though the dense region,
which will have an impact on the global mean-flow properties. Clustering is typically
associated with ‘flow bypass’, which will not occur when the fluid flow is forced
to penetrate plugs spanning the entire width. Originally discussed by Li & Kwauk
(2001), flow bypass is the preferential flow of the fluid phase around dense clusters
which tends reduce the overall drag. For the conditions presented in figure 3, the
plugs are quite stable in a nonlinear sense (if the system were linearly stable, it would
decay to the homogeneous state) and the repeated passing of the plug appears to be a
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FIGURE 4. (Colour online) One-dimensional plug regime: same as figure 2 except at ρ∗=
1000 (both KT-TFM and DNS).

travelling wave limit cycle. The plug in the KT-TFM simulations of figure 3 shows a
clearly identifiable funnel structure emanating from the bottom and wrapping around
the domain to join the top. A similar pattern often appears in the DNS, although it is
more difficult to identify in the instantaneous snapshots than the videos as it is more
irregular in the DNS than in the KT-TFM. Very close to the transition from the chaotic
region, i.e. at ρ∗ when the plugs are just strong enough to resist being fragmented by
the fluid, the KT-TFM simulations also predict that the funnel ‘wiggles’ or oscillates
in the transverse dimensions. Owing to this multi-dimensional nature of the plugs,
this regime is identified as ‘2-D’ plugs. Although the qualitative similarities between
the KT-TFM and DNS results are very good, some minor quantitative differences can
be observed in figure 3. For example, comparing the location of the centre of plugs
in the three panels indicates an over-prediction of the speed of the plug by KT-TFM.

The multi-dimensional structure of the plug decays as the density ratio is further
increased. At a given point in ρ∗, the 2-D shape of the plug is lost entirely and a 1-D
travelling wave limit cycle appears; see figure 4. A 1-D wave was originally predicted
by Anderson & Jackson (1968) to be the most unstable perturbation to a uniform
suspension. As the density ratio continues to increase, the plug grows in thickness
and decreases in amplitude (i.e. maximum concentration of plug). Both features can
be observed in figure 4 for ρ∗ = 1000 (and the same remaining conditions as in
figures 2 and 3). The decreasing amplitude of the plug directly coincides with the
decay of 1φmax seen previously in figure 1 for Ar= 1432 at high density ratios. Some
exploratory studies on a coarser grid indicate that this decay continues asymptotically,
slowly approaching a perfectly homogeneous state as the density ratio approaches
infinity. As in figure 3, the speed of the plug in figure 4 is slightly over-predicted by
KT-TFM which shows the plug has wrapped around within the window δt∗= 3, while
the DNS plug has not quite completely returned to its original position. Nevertheless,
the qualitative agreement between the two is again outstanding as the main features,
e.g. loss of 2-D structure, decrease in (concentration) amplitude, increase in thickness
and increase in speed compared to figure 3, are all captured by the KT-TFM theory.
In § 4.4 the regime transition predicted by KT-TFM is quantified and compared to the
DNS results.
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The three non-trivial regimes shown in figures 2–4 are all taken from the higher Ar
simulations. It should be noted that the trivial (homogeneous) case was not observed
for Ar = 1432 and the 1-D plug regime was not observed for Ar = 71. However,
exploratory simulations on a coarser grid indicate that the 1-D regime is also observed
for Ar= 71 at a density ratio larger then considered in this study (in some instances,
just slightly larger). Therefore, it is believed that the same instability patterns and
transitions occur at both values – and likely a wide range – of Ar offset in density
ratio, although such a phase-space-spanning study has not been performed.

It has been shown in this section that the KT-TFM is able to capture the unstable
regimes observed in the DNS of fully periodic sedimentation. Due to the small size
of the computational domain considered, several distinct structures were identified:
chaotic, width-spanning 2-D plugs and width-spanning 1-D plugs. While only
qualitative in nature, the level of agreement seen here is remarkable – the quasi-steady
states simulated here are considerably more complex than the previous near-linear
clustering/not-clustering states studied in the HCS (Mitrano et al. 2014). In the
following section § 4, we probe deeper by making direct quantitative comparisons
between KT-TFM and DNS results of mean-flow quantities, fluctuating quantities and
regime transition.

4. Results: time-averaged flow properties
4.1. Analysis of the Stokes number and the limit of GTSH theory

In the following §§ 4.2–4.4, the KT-TFM and DNS results are directly compared
quantitatively for two Archimedes numbers, several mean concentrations and a wide
range of solid-to-fluid density ratios. In general, the best agreement is observed at
the highest density ratios and a critical analysis of the assumptions overviewed in
§§ 2.1.1–2.1.3 was carried out to determine why some regions of the phase space
show better comparisons than others. A key benefit of comparing to ideal DNS
numerical data is that the particle-phase properties and most of the fluid-phase
properties are identical between KT-TFM and DNS. Moreover, complex physics
commonly encountered in experiments (e.g. cohesion, humidity, etc.) are entirely
neglected in both KT-TFM and the validation DNS data, providing as much of
an ideal comparison as possible. The only physical condition that differs between
KT-TFM and DNS is related to particle-induced turbulence; the fine grid used in
the KT-TFM simulations actively capture cluster-induced turbulence, but small-scale
fluctuations generated by the flow around individual particles are not specifically
modelled. The impact of this discrepancy is gauged with Sato’s simple mixing
length model for particle-induced turbulence, νPIT = CPITφdp|1U|, (Sato, Sadatomi
& Sekoguchi 1981). Using the suggested value of CPIT = 0.6, an empirical fitting
coefficient originally developed for bubbly flows, and the homogeneous (stable)
solution (2.12), the ratio νPIT/νf ranges from 0.09 to 0.11 for Ar = 71 and from
1.24 to 1.85 for Ar = 1432. Therefore, assumptions in the KT derivation, § 2.1.3,
are the chief suspects for observed discrepancies. We focus here on the assumed
particle distribution function (high thermal Stokes number assumption) and reserve a
discussion of the small Knudsen number assumption for § 4.5.

As discussed in § 2.1.3, the GTSH theory allows for a non-Maxwellian velocity
distribution function, f . However, since f is expressed as an expansion of Sonine
polynomials (to first order), f is expected to be near Maxwellian, its deviation
from which is measured via (A 22) and relaxed predominantly by particle–particle
collisions. In the context of a fluid–particle suspension, this assumption amounts to a
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requirement that the particle–particle (collisional) time scale should be much shorter
than the fluid–particle (viscous relaxation) time scale (Koch 1990) – i.e. a high
thermal Stokes number (as defined below). We take the mean collision time to be the
ratio of the mean free path due to the mean (fluctuating) speed. In a dense gas, the
mean free path is given by ` = dp/6

√
2φχ (Garzó 2005). Ignoring the Maxwellian

deviation given by (A 22), the mean speed is given by 2c/
√

π where c=
√

2T is the
thermal (most probable) speed. Combining, the mean collision time is approximated
by

τcoll =
dp

24φχ

√
π

T
. (4.1)

The viscous relaxation time is defined as the time constant in the exponential velocity
decay of a test particle in a Lagrangian frame of reference (Wallis 1969). In multi-
particle suspension at finite Rem, the viscous relaxation time is

τvisc =
m

3πµf dpF∗
, (4.2)

where m is the particle mass and F∗ is the Stokes deviation of the mean drag law
(A 1). Combining (4.1) and (4.2) the ratio for the viscous-to-collisional time scales
becomes

τvisc

τcoll
=

4
3
√

π

φχ

F∗
ρ∗ReT� 1, (4.3)

where the product of the density ratio and the thermal Reynolds number has been
combined into the thermal Stokes number, StT = ρ

∗ReT/9 (Tenneti & Subramaniam
2014), which is more commonly used to characterize the particle response time.
The validity condition of (4.3) is vague due to the ‘much greater than’ inequality.
For demonstration purposes, we assume that half an order of magnitude (101/2) is
sufficient, as its square represents one order of magnitude change. Also note that (4.3)
is a local instant quantity which should be averaged in some fashion. Accordingly,
it is expected that the assumptions of the GTSH theory (nearly Maxwellian, or
equivalently, high StT) are approximately upheld if the space- and time-averaged
viscous-to-collision time scale ratio, T , is at least 101/2, or

T =
〈

12
√

π

φχ

F∗
StT

〉
> 101/2. (4.4)

Figure 5 summarizes the calculation of T for the elastic conditions studied. The
intersections of the T -curves with 101/2, i.e. the equality of (4.4), demarks a critical
density ratio which is indicated by the vertical red lines in figures 6–9. As discussed
below (§§ 4.2 and 4.3), the results indicate that this high-StT assumption (4.4) of the
continuum theory is needed for accurate predictions.

4.2. Mean solids velocity
In this section we focus on mean solids velocity and make direct quantitative
comparisons between the KT-TFM predictions and the DNS data. For the comparison,
the continuum variable that is the solids velocity is Favre averaged. In the limit
∆∗ → 0, φ becomes a phase indicator function and the Favre average becomes
equivalent to a simple (discrete) particle average, consistent with the DNS results.
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FIGURE 5. (Colour online) Maximum normalized concentration difference in the KT-TFM
simulations as a function of density ratio for e = 1 and (a) Ar = 71 and (b) Ar = 1432
at mean concentrations of 〈φ〉 = 0.1 (black), 0.15 (red), 0.25 (blue) and 0.40 (green). The
thin dashed lines of similar colour show T in the homogeneous state.

Through a combination of volume, Favre and time averaging, equations (2.15)–(2.17),
the space- and time-dependent data for an entire simulation can be reduced to a set
of mean, scalar quantities for a given set of conditions (Ar, ρ∗, 〈φ〉, e). We present
the mean sedimenting Reynolds number,

ReS =
ρf dp

µf
|〈〈vs〉〉|, (4.5)

which measures the mean streamwise (vertical) velocity of the solids. Non-
dimensionalization is required to compare the results of KT-TFM simulations
performed in physical units with DNS simulations performed in lattice units.
Here, ReS is preferred to Rem because the averaging is simpler; however, the two
measurements are roughly similar. In fact, in the homogeneous state it can be shown
that Re(H)S = Re(H)m due to the specification j(H)y = 0.

Figure 6 compares KT-TFM predictions of ReS to the DNS data as a function of
ρ∗ for Ar = 71, e = 1.0 and the four mean concentrations: 〈φ〉 = 0.10, 0.15, 0.25
and 0.40. Each DNS data point represents an average of five replicate simulations
with different initial conditions, although each simulation is run for a shorter time
than the continuum simulations. The standard deviation of the five DNS replicates
are shown as error bars in figure 6. In most cases, the error bars are too tight to
extend above/below the data points representing the mean. The horizontal dashed
lines show Re(H)S calculated from (2.12), which is independent of ρ∗ for the drag
law, equations (A 1)–(A 3), of Beetstra, van der Hoef & Kuipers (2007) used here.
The vertical red lines indicate the critical density ratio needed to uphold the high-StT
(nearly Maxwellian) assumption of (4.4). The KT-TFM theory is expected to be
valid to the right of the red line, i.e. at higher ρ∗. Generally, good agreement is
observed in these regions, which appears to be a conservative estimate in some
instances, especially at lower concentrations. Although the exact shape of the four
KT-TFM ReS-curves in figure 6 are different, a similar trend is observed: ReS is
largest at an intermediate density ratio (ρ∗ ≈ 100) and appears to decay at low and
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FIGURE 6. (Colour online) Comparison of KT-TFM predictions (thick lines) to DNS data
(symbols) of the sedimenting Reynolds number for Ar= 71 and (a) 〈φ〉 = 0.10, (b) 〈φ〉 =
0.15, (c) 〈φ〉 = 0.25 and (d) 〈φ〉 = 0.40. Black dashed lines show homogeneous (stable)
solutions, Re(H)

S . Right-hand side of vertical red lines demarcates high-StT region of (4.4).

high density ratios. At lower density ratios, ReS decreases because the KT-TFM
solution approaches a homogeneous state (1φmax → 0 in figure 1) which is most
evident at higher concentrations as ReS coincides with Re(H)S over a range of ρ∗. The
discrepancy between the DNS results and Re(H)S (determined from a DNS-based drag
law) at low density ratio may be due to the specification of a fixed-bed-type drag
law. Recently, Rubinstein et al. (2016) postulated that a Wen & Yu (1966) type drag
law is more appropriate for such low mean-flow Stokes number flows. Although
the incorporation of such a mean-flow-Stokes-number-dependent drag law may also
improve the KT-TFM predictions in this region, the most significant difference would
be expected to occur outside of the intended range of validity, i.e. to the left of the
red lines.

Conversely at large ρ∗, the suspension remains inhomogeneous (1φmax > 0 in
figure 1) yet ReS decays to the point of Re(H)S and below, in some instances. A
hindered sedimenting velocity, i.e. ReS < Re(H)S , is a consequence of an increase
in mean drag – a counterintuitive result since the clustering instability of gas–solid
particle flow is most often associated with a mean drag reduction occasionally referred
to as flow bypass, e.g. Agrawal et al. (2001), Li & Kwauk (2001), Heynderickx et al.
(2004), Beetstra, van der Hoef & Kuipers (2006), Wang et al. (2011), Shah et al.
(2013), Zhou et al. (2014) among others. Note that ReS < Re(H)S at ρ∗ ≈ 1000 is
observed in the DNS data as well. The observed decay in ReS at high ρ∗ is due
to the change in flow structure discussed previously, namely the transition from the
unsteady chaotic regime to the steady plug regime. For horizontal structure formed in
the chaotic regime, the fluid has enough inertia to penetrate the plug and flow bypass
is possible, although intermittent (see figure 2). In the steady (nonlinearly stable)
plug regime, the plug structure is persistent and the fluid is forced to flow through
the width-spanning, dense cluster (see figure 3). As the density ratio increases, the
plug becomes more one-dimensional which causes more of the solids concentration
to move from the funnel region into the horizontal plug region, further decreasing the
sedimenting velocity. While the clustering structures observed here are a result of the
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FIGURE 7. (Colour online) Comparison of KT-TFM predictions (thick lines) to DNS data
(symbols) of the sedimenting Reynolds number for Ar = 1432 and (a) 〈φ〉 = 0.10, (b)
〈φ〉 = 0.15, (c) 〈φ〉 = 0.25 and (d) 〈φ〉 = 0.40. Black dashed lines show homogeneous
(stable) solutions, Re(H)

S . Right-hand side of vertical red lines demarcates high-StT region
of (4.4).

small domain size, the accurate prediction of the counter-intuitive results displayed
in figure 6 bodes well for the predictive capability of the GTSH KT-TFM, at least
where it is expected to be valid (to the right of the vertical red line).

Figure 7 shows the same comparison as in figure 6 but at the higher Ar = 1432
condition, which results in a wholesale increase of ReS by approximately one order
of magnitude. As in figure 6, the red lines approximate where the high-StT condition
(4.4) is valid, but are shifted to significantly lower density ratios compared to the Ar=
71 case. Again, good agreement except for a slight over-prediction is generally seen
where the theory is expected to be valid, and this agreement deteriorates to the left
of the red line. The over-prediction of the DNS data by KT-TFM – even in the valid
range – occurs at all concentrations, hinting that there may be a discrepancy between
the mean drag law and the current set of DNS data. This discrepancy may be due,
in part, to the increased uncertainty in the mean drag law at this higher Reynolds
number, e.g. see comparisons in Tenneti, Garg & Subramaniam (2011), Tang et al.
(2015). Similar to the Ar = 71 case, figure 7 shows that ReS decays with increasing
ρ∗ and a hindered mean sedimenting velocity, ReS < Re(H)S , is observed in the KT-
TFM predictions, consistent with the DNS data. However, two significant distinctions
relative to the lower Ar results (figure 6) can be seen: (i) the lowest density ratios are
no longer small enough to observe the near-homogeneous state with the KT-TFM and
(ii) the decay of ReS with ρ∗ is not unbounded; at a given density ratio (in the vicinity
of ρ∗ ≈ 200) the trend changes, rather abruptly in some instances, and ReS begins to
increase. The latter is a new feature of higher Ar and one that is captured remarkably
well by the KT-TFM. The local minima in the sedimenting velocity curves of figure 7
coincide with the loss of the 2-D plug structure, i.e. transition in flow structure from
that of figure 3 to that of figure 4. As the density ratio continues to increase, the
peak concentration of the plug is reduced as the magnitude of the 1-D wave relaxes,
leading to a reduction in the maximum drag experienced. Although the dilute regions
are also less dilute, the strong nonlinearity in the concentration dependence of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

29
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.295


452 W. D. Fullmer, G. Liu, X. Yin and C. M. Hrenya

drag law (A 1)–(A 3) causes an overall decrease in drag, causing the increase in ReS
observed in figure 7. A few exploratory studies were carried out on a coarser grid to
investigate the increasing ReS behaviour beyond ρ∗ = 1000. Up to ρ∗ = 100 000, ReS

does not cross the homogeneous solution again but asymptotes to it, i.e. ReS < Re(H)S
as ρ∗→∞.

4.3. Fluctuating solids velocity
In this section we move from mean to fluctuating statistics. Before jumping directly to
a comparison with the DNS data, the KT-TFM variables will be reviewed, specifically
how the continuum variables are defined from the probabilistic KT variables. The three
variables used in the governing equations in table 1, concentration, mean velocity and
granular temperature, are defined by

φ = Vp

∫
f (x, vp, t) dvp, (4.6)

Us =
Vp

φ

∫
vpf (x, vp, t) dvp, (4.7)

and
T =

1
3
Vp

φ

∫
(vp −Us)

2f (x, vp, t) dvp, (4.8)

respectively (Garzó et al. 2012). In (4.6)–(4.8), Vp is the particle volume, vp =

(up, vp, wp)
T is the particle velocity and f is the single-particle velocity distribution

function. Similarly, the total (solids) kinetic energy can be defined by

Es =
1
2
Vp

φ

∫
v2

pf (x, vp, t) dvp. (4.9)

The total kinetic energy is infrequently encountered in the literature because it is
redundant, i.e. it can be equivalently determined by

Es =
1
2(U

2
s + 3T). (4.10)

Although (4.10) could be directly compared with discrete particle data, it is more
informative to introduce an approximation to decompose the kinetic energy into its
directional components in order to study any anisotropy present in the system. By
assuming that the (microscopic) fluctuating velocities are isotropic, i.e. upus ≈ vpvs ≈

wpws ≈ T/3, equation (4.8) can be manipulated to give

Es,x =
1
2(u

2
s + T), Es,y =

1
2(v

2
s + T), and Es,z =

1
2(w

2
s + T). (4.11a−c)

Now, considering again the analogy between a simple discrete particle average
and a volume average with infinite resolution. Previously it was mentioned that
the appropriate quantity to compare to the particle mean velocity (discrete particle,
DNS) is the Favre-averaged velocity (continuum, KT-TFM). Likewise, the appropriate
quantity to compare to the particle velocity variance is the difference between the
Favre-averaged kinetic energy and the Favre-averaged velocity squared, a measure
of the fluctuating kinetic energy. As before, the fluctuating kinetic energy is time
averaged and non-dimensionalized into a Reynolds number:

Reσ ,x =
ρf dp

µf
[〈〈u2

s 〉〉 + 〈〈T〉〉 − 〈〈us〉〉
2
]

1/2
, Reσ ,y =

ρf dp

µf
[〈〈v2

s 〉〉 + 〈〈T〉〉 − 〈〈vs〉〉
2
]

1/2
.

(4.12a,b)
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FIGURE 8. (Colour online) Comparison of KT-TFM predictions (thick lines) to DNS data
(symbols) of the Reynolds number based on the standard deviation of the solids velocity
in the x- (black, squares) and y-directions (red, circles) for Ar = 71 and (a) 〈φ〉 = 0.10,
(b) 〈φ〉 = 0.15, (c) 〈φ〉 = 0.25 and (d) 〈φ〉 = 0.40. Black dashed lines show homogeneous
(stable) solutions, Re(H)

T . Right-hand side of vertical red lines demarcates high-StT region
of (4.4).

The total fluctuating kinetic energy is the sum of two contributions: (i) a modelled
‘microscopic’ component arising from the granular temperature, 〈〈T〉〉, and (ii) a
resolved ‘macroscopic’ component arising from variations in the mean velocity,
〈〈u2

s 〉〉− 〈〈us〉〉
2. Moving forward, it is worthwhile to note that (4.12) is an approximate

comparison due to the directional decomposition, although the assumption of isotropy
only extends to the microscopic contribution.

Comparisons of Reσ between the DNS data and the KT-TFM simulations are
provided in figures 8 and 9 for the elastic cases Ar = 71 and 1432, respectively.
Error bars of the DNS data again show the standard deviation of the five replicates,
which are considerably larger here than in figures 6 and 7 since Reσ is based on
second-order statistics (particle velocity variance). Both the streamwise, Reσ ,y (red
circles), and transverse, Reσ ,x (black squares), directions are shown for comparison. In
all cases, DNS and KT-TFM results are insensitive to the which transverse direction is
considered, i.e. Reσ ,x≈Reσ ,z, and therefore only one is provided in figures 8 and 9 for
clarity. The similarity of the statistics in the x- and z-directions is not surprising, given
that the system is identical in both transverse directions. The homogeneous solution
is also provided for comparison, which, unlike ReS, has a functional dependence on
ρ∗. Since the homogeneous (stable) state is constant and uniform in space and time,
〈〈u2

s 〉〉= 〈〈us〉〉
2 and 〈〈v2

s 〉〉= 〈〈vs〉〉
2 and, hence, (4.12) reduces to the thermal Reynolds

number, i.e. Re(H)σ = Re(H)T . As before, the vertical red lines represent the high-StT

criterion of (4.4). Again, good agreement is generally observed where theory is
expected to be valid and the agreement deteriorates moving to the left of the red line.
Two notable exceptions are the comparisons at Ar= 71 and 〈φ〉= 0.10 and 0.15 where
good agreement is also observed to the left of the red line except at very low ρ∗ where
the KT-TFM becomes homogeneous; such agreement beyond the expected region of
validity in these instances may be fortuitous. All cases show that the streamwise
fluctuations (y-direction) are significantly larger than the transverse fluctuations
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FIGURE 9. (Colour online) Comparison of KT-TFM predictions (thick lines) to DNS data
(symbols) of the Reynolds number based on the standard deviation of the solids velocity
in the x- (black, squares) and y-directions (red, circles) for Ar= 1432 and (a) 〈φ〉 = 0.10,
(b) 〈φ〉 = 0.15, (c) 〈φ〉 = 0.25 and (d) 〈φ〉 = 0.40. Black dashed lines show homogeneous
(stable) solutions, Re(H)

T . Right-hand side of vertical red lines demarcates high-StT region
of (4.4).

(x- and z-directions), which vary only slightly from Re(H)T , at least where good
agreement with the DNS data is observed. The good agreement of the KT-TFM
predictions of Reσ ,y and Reσ ,x with the DNS data supports the assumption of isotropic
microscale fluctuations, i.e. the primary cause for the difference in magnitudes
between Reσ ,y and Reσ ,x is due to fluctuating kinetic energy generated by macroscopic
(resolved) variations in the mean flow rather than microscopic (modelled) granular
temperature. Although these comparisons can only be considered approximate, the
fluctuating kinetic energy is the greatest level of detail compared between DNS and
highly resolved KT-TFM to date and the good agreement observed speaks to the
accuracy of KT-TFM in predicting clustering.

Although attention here has been focused on the high-StT region, where the
KT-TFM predictions are expected to be valid, one consistent trend in the KT-TFM
data in the lower-StT region is worth noting. Except for where the KT-TFM is at or
approaching the homogeneous condition, i.e. ReS→ Re(H)S and Reσ → Re(H)T , there is
a direct correlation between the over-prediction of ReS and Reσ . Although fluctuating
kinetic energy is the sum of mean flow and granular temperature components,
deviations in T from T (H) are predominantly due to viscous heating, σs : ∇Us
in (2.5), which is an inherently inhomogeneous term (if the system is near the
homogeneous condition, Us is uniform and there is no viscous heating). Therefore,
Reσ and in particular its deviation from Re(H)T can serve as an indication of the
degree of inhomogeneity in the system. Consequently, the correlation between the
over-prediction of Reσ and ReS suggests that the KT-TFM is over-predicting the
degree of segregation (inhomogeneity), or ‘over-clustering’, which is producing larger
fluctuating energy levels via larger variations in mean flow and consequently leading
to an increased mean velocity via enhanced flow bypass. The enhanced segregation of
the KT-TFM has been previously observed by Desjardins, Fox & Villedieu (2008) in
the context of preferential concentration in frozen fluid-phase turbulence. Furthermore,
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it has been suggested that over-segregation of KT-TFM predictions is not only
limited to the dilute, low mean-flow Stokes number regions (Passalacqua et al. 2010).
We conclude by noting that while the issue of over-segregation may contribute to
disagreement between the KT-TFM predictions and the DNS data near the validity
criteria (red line), good agreement is generally observed moving away from the
estimated point of critical validity.

4.4. Regime boundary
As evidenced by three specific instances in § 3, the qualitative agreement between the
KT-TFM and DNS is quite remarkable. Here, we attempt to compare the structure of
the suspension in a more quantitative manner by calculating the transition between
the chaotic and (2-D) plug regimes which was observed at both high and low Ar
numbers and all concentrations considered here. The transition will be characterized
by a critical density ratio, ρ∗c , for both KT-TFM and DNS.

As mentioned in § 3, the transition between the chaotic and plug regimes is gradual,
which makes the identification of a single transition value, i.e. ρ∗c , complicated.
Figure 2 shows that plug-like structures form even in the chaotic region, at least
temporarily. However, the two regimes may be distinguished by whether or not the
fluid has enough inertia to break up the plugs. Therefore, ρ∗c may be equivalently
identified as the density ratio at which plugs persist (rather than simply exist).

In DNS, persistent plugs are identified using the structure factor. The structure factor
is the Fourier transform of the particle pair distribution and can be calculated using

S(κ)=
1
N

∑
i

∑
j

e−κ·rij
√
−1. (4.13)

Here, rij is the vector from the centre of particle i to particle j, and κ is the wave
vector. Excess or deficit of S(κ) from its equilibrium value of unity is an indication
that the spatial distribution of particles has a Fourier component in the direction of
κ with wavelength 2π|κ |−1. In a periodic domain, the number of structures must be
a positive integer. The first, second, and third structure factors along the direction of
sedimentation are therefore given by

S{k}y =
1
N

∑
i

∑
j

e−(2kπ/L∗y )(y
∗
i −y∗j )

√
−1, (4.14)

where k=1, 2 and 3, respectively. Persistent plugs are identified by the first, second or
third structure factors attaining a value greater than 25 for 50 % of the simulation time.
Figure 10 shows the evolution of S{k}y , obtained from a system with Ar=1432, ρ∗=25,
〈φ〉 = 0.25 and e= 1.0. At time A, the highest structure factor was approximately 8,
and the system only showed a slight heterogeneity that cannot be clearly distinguished
from statistical fluctuations. At time B, the second structure factor reached 17, and
heterogeneity started to become noticeable. After time B, the heterogeneity continues
to increase and at time C two horizontal clusters can be clearly identified when the
second structure factor has a value of 36. As this simulation has strong clusters for
more than 50 % of the time, it is identified as one with persistent plugs.

The structure factor is calculated based on particle locations and is therefore not
directly applicable to continuum (KT-TFM) results. A successful regime indicator
was found by examining the temporal signatures, which provide a measure of the
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FIGURE 10. (Colour online) The graph on the far right shows the evolution of the
first three structure factors in the y-direction for a simulation with Ar = 1432, ρ∗ = 25,
〈φ〉 = 0.25 and e = 1.0. In this case, the second structure factor (dotted line) increases
significantly as the simulation progresses. Visualization of distributions of particle centres
(left three graphs) at three different times (A, B and C) shows heterogeneities that grow
with time, and specifically the two-cluster structure at time C.

dynamics of the system rather than the spatial structure of the system. Namely,
the 2-D and 1-D plug regimes manifest as travelling wave limit cycles which are
cyclical and regular, while the chaotic regime is dynamic and irregular. The two
types of system dynamics are differentiated with a type of auto-correlation. First, the
near-homogeneous cases are removed by excluding cases with 1φmax < 0.5. With
the remaining inhomogeneous cases, the solids concentration field is decomposed
into Nxyz = Nx × Ny × Nz time signals denoted φijk(t∗)= φ(x∗ = x∗i , y∗ = y∗j , z∗ = z∗k, t∗),
where x∗i , y∗j and z∗k are the Nxyz discrete grid locations. Only the time in the averaging
window, [t∗1, t∗2], is considered. In the middle of each φijk(t∗) string, a time unit sample
of length δt∗= 200 and 50 for Ar= 71 and 1432, respectively, is selected. The sample
is cross-correlated with the entire φijk(t∗) signal and by moving the sample in time by
±n∆∗t , where n is a positive integer, The procedure is terminated when the sample
reaches the beginning and end of the full signal. The Nxyz temporal cross-correlations
are then averaged over all spatial locations. When the sample is compared with itself,
i.e. the auto-correlation at n= 0, the averaged cross-correlation is unity. As the sample
moved to the left or right (forward or backward in time) the averaged cross-correlation
decays. If the signal is perfectly cyclic – indicative of an exact travelling wave limit
cycle – the cross-correlation will increase to unity again at secondary peaks indicating
an exact correlation in the signals. The averaged cross-correlation will remain near
zero if the two signals show no correlation (similarity) whatsoever. A simulation
is considered to be in a plug-flow regime if a secondary peak (i.e. outside of the
auto-correlation window) of the averaged cross-correlation attains a value of 2/3.
Conversely, a simulation is considered to be in the chaotic regime if no secondary
peak attains a value of 1/3 (i.e. all secondary peaks <1/3). This treatment will
yield a range of ρ∗c rather than a single value, which is representative of the smooth
transition between the chaotic and plug regimes that ρ∗c is meant to represent. The
two criteria signifying the transition region between chaotic and plug regimes are
represented as upper and lower error bars centred about their geometric mean.

A comparison of the chaotic-to-plug transition criteria determined from the DNS
and KT-TFM simulations is provided in figure 11. Except at the highest concentration,
〈φ〉 = 0.40, the comparisons are very favourable. It should be pointed out that the
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FIGURE 11. (Colour online) Comparison of continuum predictions (thick lines with small,
open symbols) to DNS data (filled symbols) of the critical density ratio for the transition
of dynamic to plug-flow patterns at Ar= 71 (black squares) and Ar= 1432 (blue circles).
The KT-TFM points show the geometric mean of the criteria for chaotic and plug regimes
which are indicated by the lower and upper error bars, respectively. Dashed red and green
lines indicate high-StT criteria of (4.4) for Ar= 71 and 1432, respectively.

seemingly good agreement for 〈φ〉 = 0.40 at Ar = 71 is apparently fortuitous as the
error bar separates a single pair of simulations which, unlike all other cases, transition
directly from homogeneous to plug, skipping the chaotic regime entirely. It should
also be mentioned that most cases fall just below the required thermal Stokes number
criterion which may be responsible for the discrepancy. However, the good agreement
in figure 11 is further evidence that the qualitative similarities between KT-TFM and
DNS extend beyond the three select cases observed previously in § 3.

4.5. Knudsen number analysis
Although it has been demonstrated that the breakdown of the high-StT condition
can explain the poor agreement between KT-TFM predictions and the DNS data
at low density ratios, it is worthwhile to analyse another assumption used in the
derivation of the KT-TFM: the low Knudsen number assumption. Recall that this
assumption stems from the Chapman–Enskog expansion about a small parameter,
namely the Knudsen number defined as Kn ≡ `/L, where ` is the mean free path
defined previously in § 4.1 and L is a macroscopic length scale characterizing the
local gradient, i.e. L is small for large gradients and vice versa. Accordingly, the
low-Kn assumption is also referred to as the ‘small gradient’ assumption. A priori,
this assumption appears at odds with the presence of clustering instabilities, since a
relatively large concentration gradient is present normal to the cluster interface. This
question motivates the subsequent analysis.

Following a previous work (Mitrano et al. 2014), we take L to be the length at
which a variable of interest changes by 20 %, or Lf =0.2|f |/|∇f |, where f is a variable
of interest. Here, we consider the solids concentration, the vertical component of solids
velocity and the granular temperature, i.e. f = φ, vs and T . Special care is taken with
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FIGURE 12. (Colour online) Instantaneous Knudsen numbers in a KT-TFM simulation at
Ar= 71, 〈φ〉 = 0.15, and ρ∗= 100 and e= 1.0. A slice in the xy-plane shows contours of
(a) Knφ , (b) Knv and (c) KnT . The cumulative distribution function of each is provided
in (d) considering the entire domain.

the solids velocity. In the current system, the vs is only defined relative to the frame
of reference. Hence, Knv should be normalized with the thermal speed, c, in order to
eliminate the possibility of calculating a large value Kn simply due to vs becoming
(locally) null (Garzó & Santos 2003). The three Knudsen numbers of interest are then:

Knφ =
5

6
√

2

|∇
∗φ|

φ2χ
, Knv =

5
12
|∇
∗vs|

φχ
√

T
, and KnT =

5

6
√

2

|∇
∗T|

φχT
, (4.15a−c)

where ∇∗ is the gradient operator non-dimensionalized by particle diameter.
A typical example of the three Knudsen numbers defined by (4.15) is shown in

figure 12 at a particular instant in a fully developed, statistically steady state. The
contour plots and the cumulative distribution functions (CDF) all use a logarithmic
scale. It is observed that all three Knudsen numbers span several orders of magnitude
from approximately O(10−2) to O(102). Hence, calculating a simple Kn mean value
would be misleading, tending to skew the results to very large Kn values. To avoid
such bias, the ‘reverse’ analysis is performed: rather than seeing if the mean values
exceed a given criterion, we seek to find what percentage of the domain exceeds the
specified criterion. Similar to (4.4), Kn is assumed to be sufficiently small if it is
less than a negative half order of magnitude, i.e. Kn < 10−1/2. For example, at the
time shown in figure 12 approximately 80 % of the domain is violating the small-Knφ
assumption, almost 90 % of the domain is violating the small-KnT assumption, and
nearly the entire domain is violating the small-Knv assumption.

The percentage of the domain that violates the small-Kn assumption, i.e. fractional
region where Kn > 10−1/2, is time averaged and presented in figures 13 and 14 for
the elastic cases Ar = 71 and 1432, respectively. Two trends are readily apparent:
(i) large portions of the domain are violating the low-Kn assumption for all three
variables of interest at both Ar conditions and all mean concentrations considered and
(ii) the velocity Knudsen number is almost always the largest of the three. The latter
appears to be a result of the concentration field being out of phase with the solids
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FIGURE 13. (Colour online) Time-averaged values of the percentage of the KT-TFM
simulation domain with Kn> 10−1/2 for Ar= 71 and 〈φ〉= (a) 0.10, (b) 0.15, (c) 0.25 and
(d) 0.40. Knφ , Knv and KnT are indicated by black, red and blue lines with open square,
circle and diamond symbols, respectively.
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FIGURE 14. (Colour online) Time-averaged values of the percentage of the KT-TFM
simulation domain with Kn> 10−1/2 for Ar= 1432 and 〈φ〉 = (a) 0.10, (b) 0.15, (c) 0.25
and (d) 0.40. Knφ , Knv and KnT are indicated by black, red and blue lines with square,
circle and diamond symbols, respectively.

velocity gradient, unlike the concentration and temperature gradients. In other words,
where the concentration field exhibits a local minima, the gradients of concentration
and temperature are also small and the two effects tend to counteract each other. The
velocity gradients, on the other, are not typically small near concentration minima
producing larger Knv relative to Knφ and KnT . At low ρ∗ for Ar = 71, where some
of the largest discrepancy between the KT-TFM and DNS results was observed due
to violation of the high-StT assumption, all three Knudsen numbers are very small
due to the near-homogeneous condition of the KT-TFM simulations. Conversely, in
some regions where good agreement with DNS data was noted (high-StT regions),
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wholesale violations of the small-Kn assumption are observed. The results of this
analysis indicate that the small-Kn assumption is not the culprit for the breakdown in
the agreement with the DNS data, unlike the high-StT assumption. It is worthwhile
to note that a similar observation (significant violation of Kn assumption despite
good agreement) was also reported in a previous work for the onset of clustering
in the granular HCS (Mitrano et al. 2014) where clustering was caused by particle
inelasticity alone. The ability of the KT-TFM to perform well outside of its intended
Kn-range of validity is reminiscent of molecular gases, i.e. Navier–Stokes, and is very
fortunate as higher-order theories such as linear-Burnett, Burnett, super-Burnett,
etc. are unwieldy, particularly for engineering applications of particulate flows.
Alternatively, moments of the starting kinetic equation can be solved directly, though
unlike the Chapman Enskog method, such numerical solutions do not result in
analytical expressions for the constitutive relations; see, for example, Desjardins et al.
(2008).

4.6. Effect of inelasticity
All of the results presented thus far have been elastic, i.e. e= 1. Inelastic simulations,
both DNS and KT-TFM, were also carried out for all cases with e = 0.9. For the
sake of brevity, the results are not presented here since inelasticity did not have a
significant impact on the systems examined. While e has a widespread effect on the
KT-TFM governing equations, its impact on the dissipation of granular temperature
through the zeroth-order cooling rate, ζ0, see (A 21), may be the most important due
to the role of granular temperature dissipation as a clustering mechanism (Fullmer
& Hrenya 2017b). The contribution of inelasticity to the total dissipation (inelastic
collisions + thermal drag) is quantified in figure 15 for the homogeneous state. It is
seen that inelasticity plays a relatively minor role in the total dissipation for the lower
Ar=71 case throughout the ρ∗ range. Only at Ar=1432 and the highest density ratios
does inelasticity contribute at a similar level to the total dissipation as the thermal
drag – which is also the only region where noticeable differences with the elastic
simulations were observed.

Figure 15 also shows the effect of inelasticity on the sedimenting Reynolds number
for the case most sensitive to e, i.e. Ar = 1432 and ρ∗ = 1000. The DNS data show
a decrease in ReS for all concentrations – a trend that is matched in the KT-TFM
predictions. Quantitatively, the inelastic KT-TFM predictions agree with the DNS
data slightly more favourably than the elastic results. The decrease of ReS has come
about by a change in structure that can be best understood when viewed in terms
of the most important consequence of particle inelasticity: a source of clustering.
In general, clustering in gas–solid flows is induced by either a difference in mean
relative motion and/or the dissipation of granular temperature (Fullmer & Hrenya
2017b). Due to thermal drag (which leads to a dissipation of granular temperature),
both sources of clustering are present in the elastic cases, so the inclusion of particle
inelasticity does not change the stability pattern of the system appreciably. However,
the inelastic cases always have more dissipation and are therefore more unstable than
the elastic cases which has the effect of moving the flow pattern regime boundaries
to lower density ratios. One can imagine that the ReS curves of figure 7 have been
shifted to the left (but a non-uniform shift due to the diminishing impact of ζ0 with
decreasing ρ∗ shown in figure 15a). Therefore, while the flow structure for all cases
presented in figure 15(b) are in the 1-D plug regime, the amplitude of the plug is still
larger in the inelastic cases. In closing, it is worth noting that the minor impact of
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FIGURE 15. (Colour online) (a) Ratio of thermal drag to total granular temperature
dissipation (inelastic collisions + thermal drag) for 〈φ〉 = 0.10 (black), 0.15 (red), 0.25
(blue) and 0.40 (green) and Ar = 71 (lower, solid lines) and Ar = 1432 (upper, dashed
lines). (b) Sedimenting Reynolds number at Ar = 1432, ρ∗ = 1000 and e = 1.0 (black)
or e= 0.9 (red) from DNS (symbols) and KT-TFM (thick lines) simulations. Dashed line
show homogeneous (stable) solution, Re(H)

S .

inelasticity observed here should not be extrapolated to highly inelastic conditions or,
perhaps more importantly, to higher mean-flow Stokes number conditions (i.e. higher
Ar and/or ρ∗).

5. Concluding remarks
In this work, a fully periodic suspension of solid particles in a state of sedimentation

(or fluidization) is studied with direct numerical simulation and a two-fluid (continuum)
model derived from the kinetic theory approach (KT-TFM). The study considered
two Archimedes numbers (which determines the system mean-flow Reynolds number),
Ar= 71 and 1432; four mean concentrations, 〈φ〉 = 0.10, 0.15, 0.25 and 0.40; a wide
range of density ratios, ρ∗ = 10–1000; and two restitution coefficients e = 1.0 and
0.9, although the focus was primarily on the elastic results. The novelty of such a
study is not simply the KT-TFM results themselves, but a detailed comparison to
data generated via DNS throughout an extensive phase space of conditions, producing
a variety of instability patterns. KT-TFMs are widely used to simulate gas–solid
flows and are especially relevant to the construction of, and in many cases the
closure of, filtered TFMs that are applied to engineering and industrial applications.
Though a large number of studies exist with KT-TFMs, previous assessments on their
quantitative accuracy in the presence of clusters has been scarce.

Since the computational expense associated with DNS is considerable, the system
size considered here is very small, no more than 35 particle diameters in the longest
(vertical) dimension. Therefore, when clustering occurs it forms a significantly
different structure than observed in large domains, e.g. (see Capecelatro et al. 2015;
Fullmer & Hrenya 2016). A direct investigation of the flow patterns with instantaneous
snapshots revealed three regimes of inhomogeneous (clustered) sedimentation: chaotic,
2-D plugs and 1-D plugs. All three regimes are also observed in the DNS data.
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The qualitative agreement of the flow structure between the KT-TFM and DNS is
remarkable, particularly given the amount of behaviours observed and the violation
of the small Kn assumption.

Quantitative comparisons of the mean and fluctuating solids velocities show mixed
results. The largest discrepancies generally appear at low density ratios while good
agreement is observed at intermediate and high density ratios. By evaluating the key
assumptions of the KT-TFM derivation, the significant discrepancy observed in the
KT-TFM results was traced to the ratio of viscous-to-collisional time scales, equation
(4.3), or equivalently the thermal Stokes number. In particular, an assumption of the
KT-TFM that the single-particle velocity distribution function is nearly Maxwellian
as a result of particle–particle collisions breaks down if the viscous relaxation
time of the fluid approaches the mean time between successive collisions of the
particles (i.e. low thermal Stokes numbers). A criterion was established (4.4) to
approximate where the collision dominated assumption is upheld. By and large, it
is shown that the poor and good agreement between the KT-TFM results and DNS
data is observed in regions where this condition is violated or upheld, respectively.
Moreover, a quantitative assessment of the observed flow regimes was undertaken by
calculating a critical density ratio, ρ∗c , demarcating the transition from chaotic to
plug regimes. Comparisons of ρ∗c are quite favourable, especially at the three lower
mean concentrations.

Another important non-dimensional number associated with the underlying
assumptions of the KT derivation, the Knudsen number, Kn, was also studied.
In the context of the Chapman–Enskog expansion, Kn characterizes strength of
spatial gradients relative to the microscopic length scale (particle mean free path).
Unlike the time scale ratio, violation of the small-Kn assumption did not show a
strong correlation with the breakdown in the agreement of the KT-TFM predictions
with the DNS data. In fact, large values of Kn over a significant portion of the
domain is observed where the KT-TFM predictions were quite good. Along with
the previous work of Mitrano et al. (2014), which studied granular flow in the
HCS (i.e. only onset of clustering), this work adds to a growing body of work
indicating that, like molecular fluids, Navier–Stokes-order theories may be applied
outside of their intended range of Knudsen number validity. It is very fortunate for
continuum modelling that the small-Kn assumption may be relaxed, as extending
the Navier–Stokes order theory considered here to higher order, e.g. Burnett order,
quickly becomes intractable. The analysis of the non-dimensional numbers shows
that some assumptions of the KT derivation may be relaxed, while others are rather
strict. Furthermore, the insensitivity of the small-Kn assumption suggests that perhaps
even simpler models may be applied with minimal loss of accuracy. Future studies
aimed at determining essential elements of the full Navier–Stokes-order theory for
high-StT fluidization would be a welcome practical result for the further development
of coarse-grained models (e.g. filtered or RANS KT-TFMs).

Unlike previous works which focused largely on qualitative comparisons, the present
study quantitatively compares KT-TFM predictions directly to new DNS data of fully
periodic gas–solid flows. In general, the assessment shows that a highly resolved KT-
TFM is able to predict a domain-constrained clustering instability reasonably well at
high Stokes numbers a welcome result for those using filtered TFMs derived from
KT-TFMs which may have assumed this implicitly. Any realistic application, however,
cannot be considered fully periodic. It is well known that in industrial and engineering
applications, clustering is not spatially uniform, see e.g. Chew et al. (2012). Future
studies assessing the predictive accuracy of KT-TFMs in wall-bounded fluidization
should be performed.
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Appendix A
This appendix provides the remaining relations needed to fully specify the GTSH

KT-TFM. For convenience, the additional closure relations have been split into
solids-phase momentum terms in table 3, granular temperature terms in table 4 and
other supporting definitions in table 5. Additionally, we highlight here a few minor
differences between the model outlined in tables 1 and 3–5 and the original theory
(Garzó et al. 2012). The DNS-based mean drag model of Beetstra et al. (2007) is
selected, equation (A 1) for the simulations herein as it is applicable to both low
and intermediate mean-flow Reynolds numbers, equation (A 26), and was obtained
from the same lattice Boltzmann code (SUSP3D) used in this study. It should be
noted that β represents only the steady drag component of the generalized interfacial
momentum transfer force (Ishii & Hibiki 2006). Contributions from virtual (added)

Mean drag

β =
18µfφ(1− φ)

d2
p

F∗, F∗ = F∗0 + RemF∗1 , (A 1)

F∗0 =
10φ

(1− φ)2
+ (1− φ)2(1+ 1.5

√
φ), (A 2)

F∗1 =
0.413

24(1− φ)2

[
(1− φ)−1

+ 3φ(1− φ)+ 8.4Re−0.343
m

1+ 103φRe−(1+4φ)/2
m

]
. (A 3)

Solids shear and bulk viscosity

µs =µk
[
1+ 4

5χφ(1+ e)
]
+

3
5λs, (A 4)

µk = ρsφT
[

1−
2
5
φχ(1+ e)(1− 3e)

]/[
νµ −

1
2

(
ζ0 −

ξ

T
−

2γ
m

)]
, (A 5)

λs =
128
5π

φ2χ(1+ e)
(

1−
a2

16

)
µ0, µ0 =

5
16

m
d2

p

√
T
π
, (A 6)

νµ =
ν0

4
χ(1+ e)(3− e)

(
1+

7a2

16

)
, ν0 =

ρsφT
µ0

. (A 7)

TABLE 3. Momentum closure of the GTSH KT-TFM.
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Granular thermal conductivity

κ = κk

[
1+

6
5
φχ(1+ e)

]
+ κ0

[
256
25π

φ2χ(1+ e)
(

1+
7a2

16

)]
, (A 8)

κk =
2κ0ν0

3

(
1+ 2a2 +

3
5
φχ(1+ e)2 [2e− 1+ a2(1+ e)]

)/(
νk +

ξ

2T
− 2ζ0 −

2T
m
∂γ

∂T
+
∂ξ

∂T

)
,

(A 9)

νk =
ν0

3
χ(1+ e)

[
1+

33
16
(1− e)+

a2

256
(947− 579e)

]
, κ0 =

15
4
µ0. (A 10)

Dufour coefficient

η= ηk
[
1+ 6

5φχ(1+ e)
]
. (A 11)

ηk =
κ0ν0mT
φ

{
κk

κ0ν0

[
2φ
m
∂γ

∂φ
+
φ

T
∂ξ

∂φ
+ ζ0

(
1+

φ

χ

∂χ

∂φ

)]
+

2a2

3
+

4
5
φχ(1+ e)

×

(
1+

1
2
φ

χ

∂χ

∂φ

)(
e(e− 1)+

a2

6
(16− 3e+ 3e2)

)}/[
νk −

3
2

(
ζ0 −

ξ

T

)]
. (A 12)

First-order cooling rate

ζ1 =

[
25

1024

(
1+

3a2

128

)
χc∗ζ − 2

]
φχ(1− e2), (A 13)

c∗ζ =
[
λ∗ζ

10
−
ν0

6
(1+ e) (1− 3e) a2

]/[
ν∗ζ +

γ

m
+

3ξ
2T
−

3ζ0

2

]
, (A 14)

λ∗ζ = ν0(1+ e)
[
(1− e2)(5e− 1)−

a2

6
(15e3

− 3e2
+ 81e− 61)

]
, (A 15)

ν∗ζ =
1+ e
192

χν0(241− 177e+ 30e2
− 30e3). (A 16)

Thermal drag

γ = 3πµf dpR∗, R∗ = R∗0 + ReTR∗1, (A 17)

R∗0 = 1+ 3

√
φ

2
+

135
64
φ ln φ + 11.26φ(1− 5.1φ + 16.57φ2

− 21.77φ3)− φχ ln ε, (A 18)

R∗1 =
√

0.3φ
(1− φ)3.6

. (A 19)

Neighbour effect

ξ =
d
3

(
3πµf dp

m

)2 ∣∣Us −Uf

∣∣2
√

T
S∗, S∗ =

1
2
√

π

(
F∗0
)2

χ
(
1+ 3.5

√
φ + 5.9φ

) . (A 20)

Zeroth-order cooling rate

ζ0 =
8
dp
φχ(1− e2)

(
1+

3a2

16

)√
T
π
. (A 21)

TABLE 4. Thermal closure of the GTSH KT-TFM.
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Velocity distribution kurtosis

a2 =
5α(0)2 − α

(0)
4

α
(1)
4 − 5

(
19
16α

(0)
2 −

5
2ξ
∗

) , (A 22)

α
(0)
2 =
√

2πχ(1− e2), α
(0)
4 =

(
9
2 + e2

)
α
(0)
2 , (A 23)

α
(1)
4 =

3
32

(
69+ 10e2

)
α
(0)
2 + 2

√
2πχ(1− e), ξ ∗ =

πdpξ

φT
√

72T
. (A 24)

Radial distribution function at contact

χ =
1+ 2.5φ + 4.5094φ2

+ 4.515439φ3

(1− (φ/φmax)
3)

0.678021 , φmax = 0.64356. (A 25)

Mean-flow Reynolds number

Rem =
ρf dp(1− φ)|1U|

µf
. (A 26)

Thermal Reynolds number

ReT =
ρf dp

√
T

µf
. (A 27)

TABLE 5. Ancillary definitions of the GTSH KT-TFM.

mass, lift, rotational, Basset, Faxèn, turbulent dispersion and wall forces, among
others (Drew & Passman 1999), have been neglected. Although the reduction of the
generalized interfacial momentum transfer force to the steady drag force is common
practice for gas–solid flows (Jackson 2000), this work does consider a wide range of
conditions where this approximation may be questioned, particularly at low density
ratios. Furthermore, even the definitions of the non-dimensional Stokes numbers would
be affected by the inclusion of the virtual mass force, specifically by the inclusion
of a fluid mass in the viscous relaxation time, equation (4.2). However, as such an
inclusion results in at most a 3 % difference in the KT-TFM validity criteria used
throughout this work, in which there is some degree of ambiguity to begin with see
discussion around (4.3)–(4.4); accordingly, we feel that this assumption has minimal
impact on the results reported herein. Further, we note that in general (2.3) should
include a term related to the gas-phase stress tensor which has been neglected here.
For flows with low density ratios this term may become more important. However,
for the conditions considered herein, the homogeneous solids viscosity is strictly
larger than the gas viscosity.

In the granular energy equation, (2.5), the thermal drag model of Wylie, Koch &
Ladd (2003) is used, equation (A 17), which represents a first order in ReT extension
to the model of Koch & Sangani (1999), where ReT is the is the thermal Reynolds
number defined by (A 27). The expression of (A 19) was re-fit to the original DNS
data and enforced to have the proper limiting form R∗1(φ→ 0)→ 0. This adjustment
was found to be necessary to prevent the thermal conductivity, equation (A 8), from
becoming negative in very dilute regions.

Two practical adjustments to the theory have been made to avoid ‘over-packing’,
i.e. predicting solids concentrations above a physically realistic limit. First, the radial
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distribution function of Carnahan & Starling (1969) is replaced here with that of Ma
& Ahmadi (1988), equation (A 25). The two radial distribution functions are very
similar at low to intermediate concentrations, though only the latter is applicable in
the dense regime near the random close-packed limit, φmax. Secondly, while the radial
distribution function (at contact) of Ma & Ahmadi (1988) correctly accounts for
the singular behaviour in the maximum packing limit, equation (A 25) is insufficient
on its own to strictly prevent φ > φmax. Theoretically, the solids pressure, equation
(2.6), should prevent concentrations larger than the close-packed limit since it is
proportional to the radial distribution function. In (numerical) practice though, it is
possible that φ > φmax may occur during iteration (i.e. before convergence) causing
(A 25) to become complex valued, leading to immediate code failure. Additionally, the
governing equations become increasingly stiff as φ→ φmax. To avoid such numerical
artefacts, two minor adjustments are employed: (i) the concentration used in the radial
distribution function is limited at a value of φ̂max= 1− δ(1−φmax) with δ= 1.001 and
(ii) an artificial solids pressure, normally associated with frictional stress, is included,

p̂s =
φρfν

2
f

d2
p

× 3.726(φ − φ̂max)
10, (A 28)

to provide a ‘soft’ limit when the concentration exceeds φ̂max. Hyperbolic smoothing
over a (concentration) width of approximately 0.04 is applied between the kinetic
theory and artificial pressure regions (Xie, Battaglia & Pannala 2008). It is worth
highlighting that no frictional viscosity is applied and (A 28) is used solely to limit
the value of solids concentration near the close-packed limit.
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