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Abstract

By a random process with immigration at random times we mean a shot noise process
with a random response function (response process) in which shots occur at arbitrary
random times. Such random processes generalize random processes with immigration
at the epochs of a renewal process which were introduced in Iksanov et al. (2017) and
bear a strong resemblance to a random characteristic in general branching processes and
the counting process in a fixed generation of a branching random walk generated by a
general point process. We provide sufficient conditions which ensure weak convergence
of finite-dimensional distributions of these processes to certain Gaussian processes. Our
main result is specialised to several particular instances of random times and response
processes.
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1. Introduction

1.1. Definition of random processes with immigration at random times

Let D := D[0, ∞) be the Skorokhod space of right-continuous real-valued functions which
are defined on [0, ∞) and have finite limits from the left at each positive point. Denoting,
as usual, by N0 :=N∪ {0} the set of nonnegative integers, let (Tk)k∈N0 be a collection of
nonnegative, not necessarily ordered points such that

N(t) := #{k ∈N0 : Tk ≤ t} < ∞ almost surely for each t ≥ 0. (1)

Although in most applications the number of nonzero Tk is almost surely (a.s.) infinite (then
limk→∞ Tk = ∞ a.s. is a sufficient condition for (1)), the case of a.s. finitely many points is
also allowed. Further, let (Xj)j∈N be independent copies of a random process X with paths in
D which vanishes on the negative half-line. Finally, we assume that, for each k ∈N0, Xk+1 is
independent of (T0, . . . , Tk). In particular, the case of complete independence of (Xj)j∈N and
(Tk)k∈N0 is not excluded.
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Put

Y(t) :=
∑
k≥0

Xk+1(t − Tk), t ∈R

(note that Y(t) = 0 for t < 0). We shall call Y := (Y(t))t∈R a random process with immigration
at random times. The interpretation is that associated with the kth immigrant which arrives at
time Tk−1 is the random process Xk which describes some model-dependent ‘characteristics’ of
the kth immigrant; for instance, Xk(t − Tk−1) may be the number of offspring of the immigrant
at time t or the fitness of the immigrant at time t. The value of Y(t) is then given by the sum of
‘characteristics’ of all immigrants that arrived up to and including time t.

1.2. Earlier literature and relation to other models

When (Tk)k∈N0 is a zero-delayed standard random walk with nonnegative jumps, that is,
T0 = 0 and (Tk − Tk−1)k∈N are independent, identically distributed, nonnegative random vari-
ables, the random process Y was called in [10] a random process with immigration at the
epochs of a renewal process. Thus, the set of the latter processes constitutes a proper subset
of the set of random processes with immigration at random times. We refer to [6] and [10]
for detailed surveys concerning earlier works on random processes with immigration at the
epochs of a Poisson or renewal process. A non-exhaustive list of more recent contributions,
not covered in the cited sources, includes [7], [8], [9], [12], and [13].

Articles which focus on the random processes with immigration at random times other than
renewal times are relatively rare. A selection of these can be traced via the references given in
the recent article [14]. The authors of [14] investigate random processes of the form

Y(t) =
∑
k≥1

Xk(t − Tk)1{Tk≤t}, t ≥ 0,

where Xk(t) = H(t, ηk) for k ∈N, H : [0, ∞) ×R
n →R is a deterministic measurable function,

and ηk is an R
n-valued random vector. Since η1, η2, . . . are assumed to be conditionally inde-

pendent given (Tj)j∈N (rather than just independent), and ηk is allowed to depend on Tk, the
model in [14] is slightly different from ours.

In [11], another quite recent paper, functional limit theorems are proved for random pro-
cesses with immigration at random times. There, the standing assumption is that X is an
eventually nondecreasing deterministic function which is regularly varying at ∞ of non-
negative index. We stress that the techniques used in the present work and in [11] are very
different.

Random processes with immigration at random times can be thought of as natural succes-
sors of two well-known branching processes: the general branching process (GBP) counted
with random characteristic (see [1, pp. 362–363]) and the counting process in a branching
random walk (BRW). To define the GBP, imagine a population initiated by a single ancestor at
time 0. Denote by

• T a point process on [0, ∞) describing the instants of time at which a generic individual
produces offspring;

• � a random characteristic which is a random process on R which vanishes on the
negative half-line (the processes T and � are allowed to be arbitrarily dependent);

• J the collection of every born individual of the population.
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Associated with each individual n ∈ J is its birth time σn and a random pair (Tn, �n), a copy
of (T , �). Furthermore, for different individuals these copies are independent. The GBP is
given by

Z(t) :=
∑
n∈J

�n(t − σn), t ≥ 0.

If �(t) = 1 for all t ≥ 0, then Z(t) is the total number of births up to and including time t.
If �(t) = 1{τ>t} for a positive random variable τ interpreted as the lifetime of a generic
individual, then Z(t) is the number of individuals alive at time t. More examples of this flavor
can be found in [1, p. 363].

Consider now a BRW with positions of the jth-generation individuals given by (T(v))v∈Vj

for j ∈N, where Vj is the set of words of length j over N and for the individual v ∈Vj its
position on the real line is denoted by T(v). Set Nj(t) := #{v ∈Vj : T(v) ≤ t} for t ∈R, so that
Nj(t) is the number of individuals in the jth generation of the BRW with positions ≤ t. With the
help of a branching property, we obtain the basic decomposition

Nj(t) :=
∑

v∈Vj−1

N(v)
1 (t − T(v)), t ∈R, (2)

where (N(v)
1 (t))t≥0 for v ∈Vj−1 are independent copies of (N1(t))t≥0 which are also independent

of the T(v), v ∈Vj−1. Motivated by an application to certain nested infinite occupancy schemes
in a random environment, the authors of the recent article [4] proved functional limit theo-

rems in DN for
(

Nj(t·)−aj(t·)
bj(t)

)
j∈N with appropriate centering and normalizing functions aj and bj.

The standing assumption of [4] is that the positions (T(v))v∈V1 are given by (− log Pk)k∈N,
where P1, P2, . . . are positive random variables with an arbitrary joint distribution satisfying∑

k≥1 Pk = 1 a.s.

2. Main result

Throughout the remainder of the paper we assume that E(X(t)) = 0 for all t ≥ 0, and that the
covariance

f (u, w) := Cov(X(u), X(w)) = E(X(u)X(w))

is finite for all u, w ≥ 0. The variance of X will be denoted by v, that is, v(t) := f (t, t) = Var X(t).
Following [10], we recall several notions related to regular variation in R

2+ := (0, ∞) ×
(0, ∞). We refer to [3] for an encyclopaedic treatment of regular variation on the positive
half-line.

Definition 2.1. A function r : [0, ∞) × [0, ∞) →R is regularly varying in R
2+ if there exists

a function C : R2+ → (0, ∞) such that

lim
t→∞

r(ut, wt)

r(t, t)
= C(u, w), u, w > 0.

The function C is called a limit function. The definition implies that r(t, t) is regularly varying
at ∞, i.e. r(t, t) ∼ tβ�(t) as t → ∞ for some � slowly varying at ∞ and some β ∈R called the
index of regular variation. In particular, C(a, a) = aβ for all a > 0 and, further,

C(au, aw) = C(a, a)C(u, w) = aβC(u, w)

for all a, u, w > 0.
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Definition 2.2. A function r : [0, ∞) × [0, ∞) →R will be called fictitious regularly varying
of index β in R

2+ if

lim
t→∞

r(ut, wt)

r(t, t)
= C(u, w), u, w > 0,

where C(u, u) := uβ for u > 0 and C(u, w) := 0 for u, w > 0, u 
= w. A function r will be called
wide-sense regularly varying of index β in R

2+ if it is either regularly varying or fictitious
regularly varying of index β in R

2+.
The function C corresponding to a fictitious regularly varying function will also be called

a limit function.
The processes introduced in Definition 2.3 arise as weak limits in Theorem 2.1, which is

our main result. We shall show that these are well defined at the beginning of Section 4.

Definition 2.3. Let ρ > 0 and C be the limit function for a wide-sense regularly varying
function (see Definition 2.2) in R

2+ of index β for some β ∈ (−1, ∞). We shall denote by
Vβ,ρ := (Vβ,ρ(u))u>0 a centered Gaussian process with the covariance

E(Vβ,ρ(u)Vβ,ρ(w)) =
∫ u∧w

0
C(u − y, w − y) dyρ = ρ

∫ u∧w

0
C(u − y, w − y)yρ−1 dy, u, w > 0,

when C(s, t) 
= 0 for some s, t > 0, s 
= t, and a centered Gaussian process with indepen-
dent values and variance E(V2

β,ρ(u) = ρB(β + 1, ρ)uβ+ρ) otherwise. Here and hereafter, B(·, ·)
denotes the beta function.

Theorem 2.1 given below is an extension of Proposition 2.1 in [10], which treats the case
where (Tk)k∈N0 is a zero-delayed ordinary random walk with positive increments. The exten-
sion is nontrivial in the sense that our proof of Theorem 2.1 is not a mere adaptation of the
proof of [10, Proposition 2.1]. Actually, in places, radically new, more advanced arguments are
required. The reason for this complication is clear. Renewal processes exhibit a wide spectrum
of nice properties which are not shared by general counting processes. We only mention two
supporting facts; the list could have been extended.

(1) When (N(t))t≥0 is a renewal process, the limit relation (5) holds a.s. rather than in
probability. This property significantly simplifies analysis.

(2) When (N(t))t≥0 is a renewal process, the function t �→ E(N(t)) is subadditive and satis-
fies the Blackwell theorem, which states that the limit limt→∞ E(N(t + h) − N(t)) exists
and is finite for (some) h > 0. Of course, one cannot hope for such properties in the case
of general counting processes.

Numerous examples given in Section 3 demonstrate that the range of applicability of
Theorem 2.1 is much wider that that of [10, Proposition 2.1]. Another confirmation of this
fact is that the limit processes Vβ,ρ in Theorem 2.1 constitute a family parameterized by β > 0,
whereas there is a single limit V1,ρ in [10, Proposition 2.1].

We shall write Zt(u)
f.d.⇒ Z(u), t → ∞ to denote weak convergence of finite-dimensional

distributions; that is, for any n ∈N and any 0 < u1 < u2 < · · · < un < ∞, (Zt(u1), . . . , Zt(un))

converges in distribution to (Z(u1), . . . , Z(un)) as t → ∞. Also, as usual,
P→ denotes conver-

gence in probability.
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Theorem 2.1. Let finite c, ρ > 0 and β > −(ρ ∧ 1) be given. Assume that

• v is a locally bounded function; f (u, w) = Cov(X(u), X(w)) is a wide-sense regularly
varying function of index β in R

2+ with limit function C;

lim
t→∞ sup

a≤u≤b

∣∣∣∣ f (ut, (u + w)t)

v(t)
− C(u, u + w)

∣∣∣∣ = 0 (3)

for every w > 0 and all 0 < a < b < ∞; when f(u,w) is regularly varying, the function
u �→ C(u, u + w) is almost everywhere (a.e.) continuous on (0, ∞) for every w > 0;

• for all y > 0,

vy(t) := E
(

X2(t)1{|X(t)|>y
√

tρv(t)}
)

= o(v(t)), t → ∞; (4)

•
sup

y∈[0, T]

∣∣∣N(ty)

tρ
− cyρ

∣∣∣ P→ 0, t → ∞, (5)

for all T > 0;

• if β ∈ (−(ρ ∧ 1), 0], then E(N(t)) < ∞ for all t ≥ 0 and

E(N(t) − N(t − 1)) = O(tρ−1), t → ∞. (6)

Then
Y(ut)√
ctρv(t)

f.d.⇒ Vβ,ρ(u), t → ∞, (7)

where Vβ,ρ is a centered Gaussian process as introduced in Definition 2.3.

Remark 2.1. The condition β > −ρ is obviously needed to guarantee that the normalization√
ctρv(t) diverges to ∞ as t → ∞. Since EV2

β, ρ(u) = ρB(β + 1, ρ)uβ+ρ , the limit process
Vβ, ρ is not well defined unless β > −1.

Remark 2.2. Condition (5) entails that the number of positive Tk is a.s. infinite. A simple
sufficient condition for (5) is

lim
t→∞ t−ρN(t) = c a.s. (8)

Indeed, the latter entails limt→∞ t−ρN(ty) = cyρ a.s. for each fixed y ≥ 0. Furthermore, the
convergence is locally uniform in y a.s., that is, (5) holds a.s. (hence, in probability) as the
convergence of monotone functions to a continuous limit.

If T0 < T1 < · · · a.s., then a standard inversion procedure ensures that (8) is equivalent
to limk→∞ k−1/ρTk = c−1/ρ a.s. If the collection (Tk)k∈N0 is not ordered or ordered in the
nondecreasing (rather than increasing) order, the aforementioned equivalence may fail to hold.

3. Applications

In this section we discuss how Theorem 2.1 reads for some particular (Tk)k∈N0 and X.

3.1. Particular (Tk)

3.1.1. Perturbed random walks. Let (ξk, ηk)k∈N be independent copies of a random vector
(ξ, η) with positive arbitrarily dependent components. Denote by (Sk)k∈N0 the zero-delayed
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ordinary random walk with increments ξk; that is, S0 := 0 and Sk := ξ1 + · · · + ξk for k ∈N.
Consider a perturbed random walk

Tk := Sk−1 + ηk, k ∈N.

It is convenient to define the corresponding counting process on R rather than on [0, ∞); that
is, N(t) = #{k ∈N : Tk ≤ t} for t ∈R. Then, of course, N(t) = 0 a.s. for t < 0.

Condition (5) holds for this particular N(t) in view of Lemma 3.1 in combination with
Remark 2.2.

Lemma 3.1. If μ := E(ξ ) < ∞, then limt→∞ t−1N(t) = μ−1 a.s.

Proof. Set ν(t) := ∑
k≥0 1{Sk≤t} for t ≥ 0. For t > 0 and y ∈ (0, t), the following inequalities

hold with probability one:

ν(t − y) −
ν(t)∑
k=1

1{ηk>y} =
ν(t)∑
k=1

1{Sk−1≤t−y} −
ν(t)∑
k=1

1{ηk>y}

≤
ν(t)∑
k=1

1{Sk−1+ηk≤t} = N(t) ≤ ν(t). (9)

By the strong law of large numbers for ordinary random walks,

lim
n→∞ n−1

n∑
k=1

1{ηk>y} = E(1{η>y}) = P{η > y} a.s.

Since limt→∞ ν(t) = ∞ a.s., it follows that limt→∞
∑ν(t)

k=1 1{ηk>y}/ν(t) = P{η > y} a.s. Recall
that limt→∞ t−1ν(t) = μ−1 a.s. by the strong law of large numbers for renewal processes,
whence ∑ν(t)

k=1 1{ηk>y}
t

=
∑ν(t)

k=1 1{ηk>y}
ν(t)

ν(t)

t
→ P{η > y}

μ
a.s.

as t → ∞. Hence, using (9) we infer that

μ−1 − μ−1P{η > y} ≤ lim inf
t→∞ t−1N(t) ≤ lim sup

t→∞
t−1N(t) ≤ μ−1 a.s.

Letting y → ∞ gives limt→∞ t−1N(t) = μ−1 a.s. �
To take care of the case when β ∈ (−1, 0) in Theorem 2.1 we note that

E(N(t)) = E(U(t − η)) =
∫

[0, t]
U(t − y) dG(y), t ∈R, (10)

where, for t ∈R, U(t) := ∑
k≥0 P{Sk ≤ t} is the renewal function and G(t) := P{η ≤ t}. In partic-

ular, by monotonicity and our assumption that P{ξ = 0} < 1, E(N(t)) ≤ U(t) < ∞ for all t ≥ 0.
Further, condition (6) holds because the subadditivity of U on R entails

0 ≤ E(N(t) − N(t − 1)) ≤ U(1).
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3.1.2. Non-homogeneous Poisson process. Assume that (N(t))t≥0 is a non-homogeneous
Poisson process with mean function m(t) := E(N(t)) for t ≥ 0 which satisfies m(t) ∼ c0tρ0 as
t → ∞ for some positive c0 and ρ0. We can identify (N(t))t≥0 with the process (P(m(t)))t≥0,
where (P(t))t≥0 is a homogeneous Poisson process of unit intensity. As a consequence of the
strong law of large numbers for P(t) we obtain limt→∞ t−ρ0 N(t) = c0 a.s. In view of Remark
2.2, condition (5) holds for the present N(t) with c = c0 and ρ = ρ0. An additional assumption
that m(t) − m(t − 1) = O(tρ0−1) as t → ∞ guarantees that condition (6) also holds.

3.1.3. Positions in the jth generation of a branching random walk. Consider a BRW generated
by a point process with the points given by the successive positions of the same random walk
(Sn)n≥1 as in Subsection 3.1.1. Assume that μ = E(ξ ) < ∞. Denote by (Tk,j)k∈N, j ∈N, the
positions of the jth-generation individuals, and by Nj(t), j ∈N, t ≥ 0, the number of the jth-
generation individuals with positions ≤ t. In this example we identify (Tk)k∈N0 with (Tk,j)k∈N
for some integer j ≥ 2, hence N(t) with Nj(t).

Set Uj(t) := E(Nj(t)) for j ∈N and t ≥ 0. From the representation which is a counterpart
of (2),

Nj(t) =
∑
k≥1

N(k)
1 (t − Tk,j−1), t ≥ 0 (11)

where (N(1)
1 (t))t≥0, (N(2)

1 (t))t≥0, . . . are independent copies of (N1(t))t≥0 which are independent
of (Tk,j−1)k∈N, we obtain

Uj(t) =
∫

[0, t]
U1(t − y) dUj−1(y), t ≥ 0.

By the elementary renewal theorem, U1(t) = O(t) as t → ∞. Further, by monotonicity, Uj(t) ≤
U1(t)Uj−1(t) for t ≥ 0, which shows that Uj(t) < ∞ for all t ≥ 0 and that

Uj(t) = O(t j), t → ∞. (12)

To show that (6) holds we write, by using the subadditivity of U1(t) + 1 and monotonicity
of U1(t),

Uj(t) − Uj(t − 1) =
∫

[0, t−1]
(U1(t − y) − U1(t − 1 − y)) dUj−1(y)

+
∫

(t−1, t]
U1(t − y) dUj−1(y)

≤ (U1(1) + 1)Uj−1(t − 1) + U1(1)(Uj−1(t) − Uj−1(t − 1))

≤ (U1(1) + 1)Uj−1(t).

Invoking (12) proves (6) with ρ = j.
To check (5) we assume for simplicity that σ 2 := Var ξ < ∞ (this condition is by no means

necessary but enables us to avoid some additional calculations). Theorem 1.3 in [8] entails that

Nj(t ·) − (t ·) j/( j!μj)√
σ 2μ−2j−1t2j−1

converges weakly to a ( j − 1)-times integrated Brownian motion in D equipped with the J1-
topology. Of course, this immediately yields (5) with ρ = j and c = ( j!μj)−1.
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3.2. Particular X

Let (ηk)k∈N be independent copies of a random variable η such that, for each k ∈N0, ηk+1
is independent of (T0, . . . , Tk).

In Section 3 of [10] it was checked that the covariance functions f of the response processes
X discussed in parts (a), (b), and (e) below (parts (a) and (b) below) are regularly varying in
R

2+ of index β (satisfy (3)).

(a) Let X(t) = 1{η>t} − P{η > t} with P{η > t} ∼ tβ�(t) as t → ∞ for some β ∈ (−1, 0). In
this case, C(u, w) = (u ∨ w)β for u, w > 0, so that C(u, u + w) = (u + w)β is continuous
in u for every w > 0. Further, v(t) = P{η > t}P{η ≤ t} is bounded. Finally, condition (4)
holds in view of |X(t)| ≤ 1 a.s.

(b) Let X(t) = ηg(t), where E(η) = 0, Var η ∈ (0, ∞), and g : [0, ∞) →R varies regularly
at ∞ of index β/2 for some β > −1 and g ∈ D. In this case, C(u, w) = (uw)β/2 for
u, w > 0, so that C(u, u + w) = (u(u + w))β/2 is continuous in u for every w > 0. Also,
v(t) = (Var η)g2(t) is locally bounded. Let ρ > 0. Observe now that limt→∞ (

√
tρv(t)/

|g(t)|) = ∞ implies that, for all y > 0,

E(X2(t)1{|X(t)|>y
√

tρv(t)}) = g2(t)E(η21{|η|>y
√

tρv(t)/|g(t)|}) = o(v(t)), t → ∞,

that is, (4) holds. The corresponding limit process admits a stochastic integral represen-
tation

Vβ, ρ(u) =
∫

[0, u]
(u − y)β/2 dW(yρ), u > 0,

where (W(u))u≥0 is a Brownian motion and β > −(ρ ∧ 1).

(c) Let X be a D-valued centered random process with finite second moments satisfying, for
some interval I ⊂ (0, ∞), E( sups∈I X2(s)) < ∞. Assume also it is self-similar of Hurst
exponent β/2 for some β > 0. By self-similarity, v(t) = tβE(X2(1)) (locally bounded
function) and

f (ut, wt)

v(t)
= E(X(u)X(w))

E(X2(1))
, u, w > 0,

which shows that f is regularly varying in R
2+ of index β with limit function C(u, w) =

E(X(u)X(w))/E(X2(1)) and that (3) trivially holds. Continuity of C(u, u + w) in u > 0
for every w > 0 is justified by the facts that, with probability one, X(u)X(u + w) does
not have fixed discontinuities and that E( sups∈[a,b] X2(s)) < ∞ for all 0 < a < b < ∞
(using self-similarity) in combination with the Lebesgue dominated convergence theo-
rem: for any deterministic u > 0 lims→0 X(u + s)X(u + s + w) = X(u)X(u + w) a.s., and
for any s ∈R sufficiently close to 0 |X(u + s)X(u + s + w)| ≤ supv∈[a, b] X2(v) a.s. for
large enough b > 0 and small enough a > 0. Finally, condition (4) holds in view of

E(X2(t)1{|X(t)|>y
√

tρv(t)}) = tβE(X2(1)1{|X(1)|>E(X2(1))1/2ytρ/2}) = o(tβ ), t → ∞,

where ρ > 0.
In particular, if X(t) = W(tβ ) for β > 0, where, as before, (W(t))t≥0 is a Brownian

motion, then, for any ρ > 0, Vβ, ρ(u) = (ρB(β + 1, ρ))1/2W(uβ+ρ) for u ≥ 0.

(d) Let X(t) = N(t) − E(N(t)) = N(t) − m(t), where (N(t))t≥0 is a non-homogeneous Poisson
process with mean function m(t) as discussed in Subsection 3.1.2. In this case,
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v(t) = m(t) ∼ c0tρ0 as t → ∞. Since m(t) is a nondecreasing function, it must be locally
bounded. For u, v > 0, f (u, v) = E(N(u) − m(u))(N(v) − m(v)) = m(u ∧ v). Hence, f is
regularly varying in R

2+ of index ρ0 with limit function C(u, v) = (u ∧ v)ρ0 . Further, it is
obvious that (3) holds and that, for every w > 0, C(u, u + w) = uρ0 is continuous in u. It
remains to check that condition (4) holds. To this end, we use Hölder’s inequality and
then Markov’s inequality to obtain, for ρ, y > 0,

E(N(t) − m(t))21{|N(t)−m(t)|>y
√

tρm(t)}
≤ (

E(N(t) − m(t))4)1/2(P{|N(t) − m(t)| > y
√

tρm(t)})1/2

≤ (m(t)(1 + 3m(t)))1/2y−1t−ρ/2 = o(m(t)),

which proves (4).
The limit process Vρ0, ρ is the same time-changed Brownian motion as in point (c) in

which the role of β is played by ρ0.
To give a concrete specialization of Theorem 2.1, let Y(t) denote the number of

second-generation individuals in a BRW generated by a non-homogeneous Poisson pro-
cess (N(t))t≥0 as above. Then (Y(t))t≥0 is a random process with immigration at random
times, for Y(t) admits a representation similar to (11) in which we take j = 2, replace
N2(t) with Y(t) and N1(t) with N(t), and let (Tk,1)k∈N denote the atoms of (N(t))t≥0.
We shall write Tk for Tk,1. According to Theorem 2.1 in combination with the discus-
sion above and in Subsection 3.1.2, we have the following limit theorem with a random
centering:

Y(ut) − ∑
k≥1 m(ut − Tk)1{Tk≤ut}

c0(ρ0B(ρ0 + 1, ρ0))1/2tρ0

f.d.⇒ W(u2ρ0 ), t → ∞,

where (W(u))u≥0 is a Brownian motion.

(e) Let X(t) = (t + 1)β/2Z(t), where β ∈ (−1, 0) and (Z(t))t≥0 is a stationary Ornstein–
Uhlenbeck process with variance 1/2. In this case, f (u, w) = E(X(u)X(w)) = 2−1(u +
1)β/2(w + 1)β/2e−|u−w| is fictitious regularly varying in R

2+ of index β. Furthermore,
condition (3) holds; that is, for every w > 0,

f (ut, (u + w)t)

v(t)
= (ut + 1)β/2((u + w)t + 1)β/2

(t + 1)β
e−wt

converges to 0 as t → ∞ uniformly in u ∈ [a, b] for all 0 < a < b < ∞. This stems from
the fact that while the first factor converges to uβ/2(u + w)β/2 uniformly in u ∈ [a, b], the
second factor converges to zero and does not depend on u. Further, v(t) = 2−1(t + 1)β

is bounded. By stationarity, for each t > 0, Z(t) has the same distribution as a random
variable θ having the normal distribution with zero mean and variance 1/2. Hence, with
ρ > 0,

E(X2(t)1{|X(t)|>y
√

tρv(t)}) = (t + 1)βE(θ21{|θ |>2−1/2ytρ/2}) = o(tβ ), t → ∞;

that is, condition (4) holds. For β > −(ρ ∧ 1), the corresponding limit process Vβ, ρ is a
centered Gaussian process with independent values.
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4. Proof of Theorem 2.1

When C(u, w) = 0 for all u, w > 0, u 
= w, the process Vβ, ρ exists as a Gaussian process
with independent values, see Definition 2.3. Now we intend to show that the Gaussian process
Vβ, ρ is well defined in the complementary case when C(u, w) > 0 for some u, w > 0, u 
= w.
To this end, we check that the function �(s, t) given by

�(s, t) :=
∫ s∧t

0
C(s − y, t − y) dyρ, s, t > 0,

is finite and positive semidefinite; that is, for any j ∈N, any γ1, . . . , γj ∈R, and any 0 <

v1 < · · · < vj < ∞,

0 ≤
j∑

i=1

γ 2
i �(vi, vi) + 2

∑
1≤r<l≤ j

γrγl�(vr, vl)

=
j−1∑
i=1

∫ vi

vi−1

( j∑
s=i

γ 2
s C(vs − y, vs − y) + 2

∑
i≤r<l≤ j

γrγlC(vr − y, vl − y)

)
dyρ

+ γ 2
j

∫ vj

vj−1

C(vj − y, vj − y) dyρ, (13)

where v0 := 0. In view of

| f (s, t)| ≤ 2−1(v(s) + v(t)), s, t ≥ 0, (14)

we infer that
C(s − y, t − y) ≤ 2−1((s − y)β + (t − y)β ). (15)

Since β > −1 by assumption, the latter ensures �(s, t) < ∞ for all s, t > 0. Now we pass to the
proof of (13). Since the second term on the right-hand side of (13) is nonnegative, it suffices
to prove that so is the first. The function C(s,t), s, t > 0, is positive semidefinite as a limit of
positive semidefinite functions. Hence, for each 1 ≤ i ≤ j − 1 and y ∈ (vi−1, vi),

j∑
s=i

γ 2
s C(us − y, us − y) + 2

∑
i≤r<l≤ j

γrγlC(ur − y, ul − y) ≥ 0.

Thus, the process Vβ, ρ does exist as a Gaussian process with covariance function �(s, t),
s, t > 0.

Proof of Theorem 2.1. We treat simultaneously both the case when C(u, w) > 0 for some
u, w > 0, u 
= w, and the complementary case.

According to the Cramér–Wold device relation, (7) is equivalent to
∑j

i=1 αi
∑

k≥0 Xk+1(uit − Tk)1{Tk≤uit}√
ctρv(t)

d→
j∑

i=1

αiVβ,ρ(ui) (16)

for all j ∈N, all α1, . . . , αj ∈R, and all 0 < u1 < · · · < uj < ∞. Here and hereafter,
d→ denotes

convergence in distribution. Since C(y, y) = yβ , we conclude that∫ ui

0
C(ui − y, ui − y) dyρ = ρB(β + 1, ρ)uβ+ρ

i .
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Hence, the random variable
∑j

i=1 αiVβ,ρ(ui) is centered normal with variance

Dβ,ρ(u1, . . . , uj) :=
j∑

i=1

α2
i ρB(β + 1, ρ)uβ+ρ

i + 2
∑

1≤r<l≤ j

αrαl

∫ ur

0
C(ur − y, ul − y)dyρ .

Define the σ -algebras F0 := σ (T0) and Fk := σ (T0, X1, T1, . . . , Xk, Tk) for k ∈N, and set
Ek(·) := E(· |Fk), k ∈N0. Now observe that

Ek

j∑
i=1

αiXk+1(uit − Tk)1{Tk≤uit} = 0, k ∈N0,

which shows that
∑

k≥0
∑j

i=1 αiXk+1(uit − Tk)1{Tk≤uit} is a martingale limit. In view of this,
in order to prove (16), one may use the martingale central limit theorem (Corollary 3.1 in [5]).
The theorem tells us that it suffices to verify

∑
k≥0

Ek(Z2
k+1, t)

P→ Dβ,ρ(u1, . . . , uj), t → ∞, (17)

and ∑
k≥0

Ek
(
Z2

k+1, t1{|Zk+1, t|>y}
) P→ 0, t → ∞, (18)

for all y > 0, where

Zk+1, t :=
∑j

i=1 αi1{Tk≤uit}Xk+1(uit − Tk)√
ctρv(t)

, k ∈N0, t > 0.

Proof of (17). We start by writing

∑
k≥0

Ek(Z2
k+1, t) =

∑j
i=1 α2

i

∑
k≥0 1{Tk≤uit}v(uit − Tk)

ctρv(t)

+ 2
∑

1≤r<l≤ j αrαl
∑

k≥0 1{Tk≤urt}f (urt − Tk, ult − Tk)

ctρv(t)
.

We shall prove that, as t → ∞,

∑
k≥0 1{Tk≤uit}v(uit − Tk)

ctρv(t)
=

∫
[0, ui]

v(t(ui − y)) dN(ty)

ctρv(t)
P→ ρB(β + 1, ρ)uβ+ρ

i (19)

for all 1 ≤ i ≤ j, and that

∑
k≥0 1{Tk≤urt} f (urt − Tk, ult − Tk)

ctρv(t)
=

∫
[0, ur] f (t(ur − y), t(ul − y)) dN(ty)

ctρv(t)
P→

∫ ur

0
C(ur − y, ul − y) dyρ (20)
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for all 1 ≤ r < l ≤ j.

Fix any ur < ul and pick ε ∈ (0, ur ∧ 1). We claim that, as t → ∞,∫
[0, ur−ε]

v(t(ur − y))

v(t)
d

N(ty)

ctρ
P→

∫ ur−ε

0
(ur − y)β dyρ (21)

and ∫
[0, ur−ε]

f (t(ur − y), t(ul − y))

v(t)
d

N(ty)

ctρ
P→

∫ ur−ε

0
C(ur − y, ul − y) dyρ . (22)

To prove these limit relations we need some preparation. For each t > 0, the random function
Gt defined by Gt(y) := 0 for y < 0, := N(ty)/N(tur) for y ∈ [0, ur), and = 1 for y ≥ ur is a ran-
dom distribution function. Similarly, the function G defined by G(y) := 0 for y < 0, := (y/ur)ρ

for y ∈ [0, ur), and = 1 for y ≥ ur is a distribution function. According to (5), for every sequence
(tn)n∈N there exists a subsequence (tns)s∈N such that lims→∞ t−ρ

ns N(tnsy) = cyρ a.s. for each
y ∈ [0, ur]. We would like to stress that the uniformity of the convergence in (5) ensures that the
subsequence (tns)s∈N does not depend on y (without the uniformity assumption we should have
taken a new subsequence (tns)s∈N for each particular y ∈ [0, ur]; this would not be sufficient
for what follows). The last limit relation guarantees that lims→∞ N(tnsy)/N(tnsur) = (y/ur)ρ

a.s. for each y ∈ [0, ur]. Therefore, as s → ∞, Gtns
converges weakly to G with probability one.

Proof of (21). Write
∣∣∣
∫

[0, ur−ε]

v(tns (ur − y))

v(tns )
dGtns

(y) −
∫

[0, ur−ε]
(ur − y)βdG(y)

∣∣∣
≤

∫
[0, ur−ε]

∣∣∣v(tns (ur − y))

v(tns )
− (ur − y)β

∣∣∣dGtns
(y)

+
∣∣∣
∫

[0, ur−ε]
(ur − y)βdGtns

(y) −
∫

[0, ur−ε]
(ur − y)βdG(y)

∣∣∣.
By the uniform convergence theorem for regularly varying functions (Theorem 1.5.2 in [3]),

lim
t→∞

v(t(ur − y))

v(t)
= (ur − y)β (23)

uniformly in y ∈ [0, ur − ε]. This implies that the first summand on the right-hand side of the
penultimate centered formula converges to 0 a.s. as s → ∞. The second summand does so by
the following reasoning. The function g defined by g(y) := (ur − y)ρ for y ∈ [0, ur − ε] and
:= 0 for y > ur − ε is bounded with one discontinuity point. With this at hand it remains to
invoke the aforementioned weak convergence with probability one and the fact that G is a
continuous distribution function. This implies that the left-hand side of the penultimate cen-
tered formula with t replacing tns converges in probability to 0 as t → ∞. Multiplying it by
N(tur)/(ctρ), which converges to uρ

r in probability as t → ∞, we arrive at (21).

Proof of (22) is analogous. Instead of (23) one has to use the following relation which is a
consequence of (3):

lim
t→∞

f (t(ur − y), t(ul − y))

v(t)
= C(ur − y, ul − y)

uniformly in y ∈ [0, ur − ε]. The role of g is now played by g∗(y) := C(ur − y, ul − y) for y ∈
[0, ur − ε] and := 0 for y > ur − ε. In view of (15), this function is bounded. Also, g∗ is a.e.

https://doi.org/10.1017/jpr.2019.88 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.88


262 C. DONG AND A. IKSANOV

continuous by assumption, which in combination with the absolute continuity of G is enough
for completing the proof of (22).

As ε → 0+, the right-hand sides of (21) and (22) converge to∫ ur

0
(ur − y)β dyρ = ρB(β + 1, ρ)uβ+ρ

r

and
∫ ur

0 C(ur − y, ul − y)dyρ , respectively. Thus, relations (19) and (20) are valid if we can
show (see Theorem 4.2 in [2]) that

lim
ε→0+ lim sup

t→∞
P

{∫
(ur−ε, ur] v(t(ur − y)) dN(ty)

ctρv(t)
> δ

}
= 0 (24)

and

lim
ε→0+ lim sup

t→∞
P

{∣∣ ∫
(ur−ε, ur] f (t(ur − y), t(ul − y)) dN(ty)

∣∣
ctρv(t)

> δ

}
= 0 (25)

for any δ > 0.
Using (14) we obtain∫

(ur−ε, ur]
| f (t(ur − y), t(ul − y))| dN(ty) (26)

≤ 2−1
( ∫

(ur−ε, ur]
v(t(ur − y)) dN(ty) +

∫
(ur−ε, ur]

v(t(ul − y)) dN(ty)
)
,

which shows that a proof of (25) includes that of (24). Therefore, we shall only prove (25).
We first treat the second summand on the right-hand side of (26). Since

lim
t→∞

v(t(ul − y))

v(t)
= (ul − y)β

uniformly in y ∈ (ur − ε, ur] (recall that ur < ul) we can use the argument given after formula
(23) to conclude that∫

(ur−ε, ur] v(t(ul − y)) dN(ty)

ctρv(t)
P→

∫
(ur−ε, ur]

(ul − y)βdyρ, t → ∞.

The right-hand side converges to zero as ε → 0+.
Now we are passing to the analysis of the first summand on the right-hand side of (26).

According to Potter’s bound (Theorem 1.5.6 (iii) in [3]), for any chosen A > 1, γ ∈ (0, β)
when β > 0, and γ ∈ (0, β + 1) when β ∈ (−(ρ ∧ 1), 0], there exists t0 > 0 such that

v(t(ur − y))

v(t)
≤ A(ur − y)β−γ

whenever t ≥ t0 and t(ur − y) ≥ t0. Then, for t ≥ t0/ε,∫
(ur−ε, ur] v(t(ur − y)) dN(ty)

ctρv(t)

≤
∫

(ur−ε, ur−t0/t] v(t(ur − y)) dN(ty)

ctρv(t)
+

∫
(ur−t0/t, ur] v(t(ur − y)) dN(ty)

ctρv(t)

≤ A
∫

(ur−ε, ur−t0/t] (ur − y)β−γ dN(ty)

ctρ
+ (N(tur) − N(tur − t0)) supx∈[0, t0] v(x)

ctρv(t)
. (27)
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We claim that the second term on the right-hand side in (27) converges to zero in probability
as t → ∞. For the proof we first note that the function v is locally bounded by assump-
tion. With this at hand, the claim follows from (6) in combination with Markov’s inequality

when β ∈ (−(ρ ∧ 1), 0) or β = 0 and lim inft→∞v(t) = 0 and from t−ρ(N(t) − N(t − t0))
P→0 as

t → ∞ which, in its turn, is a consequence of (5) when β > 0 or β = 0 and lim inft→∞v(t) > 0.
While treating the first summand on the right-hand side in (27) we consider two cases

separately.
Case β > 0 in which β − γ > 0. The first summand is bounded from above by

Aεβ−γ N(tur)/(ctρ), which converges to Aεβ−γ uρ
r in probability as t → ∞. Therefore, for any

δ > 0,
lim sup

t→∞
P{Aεβ−γ N(tur)/(ctρ) > δ} ≤ 1[0,Aεβ−γ uρ

r ](δ).

It remains to note that the right-hand side converges to zero as ε → 0+.
Case β ∈ (−(ρ ∧ 1), 0] in which β − γ < 0. Invoking Markov’s inequality we see that it

suffices to prove that

lim
ε→0+ lim sup

t→∞

∫
(ur−ε, ur] (ur − y)β−γ dL(ty)

tρ
= 0, (28)

where L(t) := E(N(t)) for t ≥ 0.
Write, for large enough t, positive constants C1 and C2, and i = 1, 2,∫

(ur−ε,ur]
(ur − y)β−γ dL(ty)

≤
[εt]∑
k=0

∫
(ur−t−1(k+1),ur−t−1k]

(ur − y)β−γ dL(ty)

≤
[εt]∑
k=0

(k/t)β−γ (L(tur − k) − L(tur − (k + 1)))

≤
⎧⎨
⎩

C1t−(β−γ ) ∑[εt]
k=0 kβ−γ (tur − k)ρ−1 if ρ ≥ 1,

C2t−(β−γ ) ∑[εt]
k=0 kβ−γ (tur − k + 1)ρ−1 if ρ ∈ (0, 1),

≤ Cit
−(β−γ )

[εt]∑
k=1

∫ k

k−1
yβ−γ (tur − y)ρ−1dy

≤ Cit
−(β−γ )

∫ εt

0
yβ−γ (tur − y)ρ−1dy

= Cit
ρ

∫ ε

0
yβ−γ (ur − y)ρ−1dy,

where the third inequality is a consequence of (6), and we take i = 1 when ρ ≥ 1 and i = 2
when ρ ∈ (0, 1). This proves (28), and (17) follows.

Proof of (18). The following inequality holds for real a1, . . . , am:

(a1 + · · · + am)21{|a1+···+am|>y} ≤ (|a1| + · · · + |am|)21{|a1|+···+|am|>y}
≤ m2(|a1| ∨ · · · ∨ |am|)21{m(|a1|∨···∨|am|)>y}
≤ m2(a2

11{|a1|>y/m} + · · · + a2
m1{|am|>y/m}

)
.
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This in combination with the regular variation of tρv(t) guarantees it is sufficient to show that

∑
k≥0

1{Tk≤t}Ek

(
X2

k+1(t − Tk)

tρv(t)
1{|Xk+1(t−Tk)|>y

√
tρv(t)}

)
P→ 0 (29)

for all y > 0.

By Proposition 1.5.8 in [3], tρv(t) ∼ (ρ + β)
∫ t

0 yρ−1v(y) dy as t → ∞. Therefore, while
proving Theorem 2.1 we can interchangeably use tρv(t) or (ρ + β)

∫ t
0 yρ−1v(y) dy in the

denominator of (7). Therefore, without loss of generality we can and do assume that tρv(t)
is nondecreasing, for so is its asymptotic equivalent. Thus, relation (29) follows if we can
prove that

1

tρv(t)

∫
[0, t]

vy(t − x) dN(x)
P→ 0, t → ∞,

for all y > 0.
Fix any y > 0. Formula (4) ensures that given ε > 0 there exists t0 > 0 such that vy(t) ≤ εv(t)

whenever t ≥ t0. With this at hand we obtain

1

tρv(t)

∫
[0, t]

vy(t − x) dN(x) = 1

tρv(t)

( ∫
[0, t−t0]

vy(t − x) dN(x)

+
∫

(t−t0, t]
vy(t − x) dN(x)

)

≤ ε

tρv(t)

∫
[0, t]

v(t − x) dN(x)

+ (N(t) − N(t − t0)) supx∈[0, t0] vy(x)

tρv(t)
.

Using (19) with ui = 1 and denoting the first summand on the right-hand side by J(t, ε), we
conclude that, for any δ > 0,

lim
ε→0+ lim sup

t→∞
P{J(t, ε) > δ} = 0.

Since vy(t) ≤ v(t) for all t ≥ 0, and v is locally bounded by assumption, so is vy. Therefore, the
second summand on the right-hand side converges to zero in probability as t → ∞ by the same
reasoning as given for the second summand on the right-hand side of (27).

The proof of Theorem 2.1 is complete. �
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