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We give sharp conditions under which the composition of two homeomorphisms of
finite distortion is of finite distortion and has integrable distortion. As an application,
we obtain a generalization of the classical uniqueness theorem of homeomorphic
solution to the measurable Riemann mapping problem.

1. Introduction

Let Ω, Ω′, Ω′′ be domains in R
n. The main theme running throughout this paper

is homeomorphisms f : Ω
onto−−−→ Ω′ and g : Ω′ onto−−−→ Ω′′ and their composition h =

g ◦ f : Ω → Ω′′. The term W
1,p
loc(Ω, Ω′)-homeomorphism refers to a continuous

bijection f : Ω → Ω′ whose components belong to the Sobolev space W
1,p
loc(Ω),

1 � p � ∞. If the exponent p need not be spelled out, we simply say that f is a
Sobolev homeomorphism. Recall the following concept, originally proposed in [15].

Definition 1.1. A homeomorphism f : Ω
onto−−−→ Ω′ is called a bi-Sobolev mapping

if f ∈ W
1,p
loc(Ω, Ω′) and its inverse f−1 ∈ W

1,p
loc(Ω

′, Ω), for some 1 � p � ∞.

When the Sobolev exponent of f is essential, we shall emphasize it by saying
that f is a W

1,p
loc(Ω, Ω′) bi-Sobolev map. It is well known [32] that the Sobolev

regularity of homeomorphisms in W
1,p
loc(Ω, Ω′) is preserved under a bi-Lipschitz

change of variables in the domain Ω. Another useful class of change of variables
for Sobolev functions is furnished by quasiconformal mappings, which are a natural
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generalization of conformal mappings. By virtue of the classical analytic definition,
a Sobolev homeomorphism f : Ω

onto−−−→ Ω′ is K-quasiconformal, 1 � K < ∞, if

|Df(x)|n � KJf (x) for almost every x ∈ Ω. (1.1)

Hereafter, |Df(x)| denotes the operator norm of the differential matrix and Jf (x) =
J(x, f) = detDf(x) is the Jacobian determinant. If f is K-quasiconformal, then,
for any ϕ ∈ W

1,n
loc (Ω′), the composition ϕ ◦ f belongs to W

1,n
loc (Ω) [2]. Then the chain

rule shows that, whenever g : Ω′ → R
n is K ′-quasiconformal for some K ′ � 1, the

composition g ◦ f : Ω → R
n is K·K ′-quasiconformal.

Further developments of geometric function theory are concerned with non-
injective mappings, also allowing K to depend on x. The following conditions are
necessary for a viable theory of such mappings.

Definition 1.2. A mapping f ∈ W
1,1
loc(Ω, Rn) is said to have finite distortion if

there exists a measurable function K : Ω → [1,∞) such that

|Df(x)|n � K(x)Jf (x). (1.2)

Moreover, we assume that Jf ∈ L1
loc(Ω).

Note that in the case of a homeomorphism the assumption on local integrability
of the Jacobian determinant is redundant. As a matter of fact, (bona fide) local L1-
integrability of the Jacobian holds for every Sobolev homeomorphism. The above
definition, introduced in [1,16,19], was worked out and thoroughly developed in [4,9,
17,21,22]. However, the concept of mappings of finite distortion can be traced back
to the work of Vodop′janov and Gol’dštĕın [31] and Iwaniec and Šverák [18]. We take
an opportunity here to explain the essence of mappings of finite distortion. First
of all, note that the existence of a measurable function K finite almost everywhere
(a.e.) and satisfying (1.2) amounts to saying that

Jf (x) = 0 =⇒ Df(x) = 0 a.e. (1.3)

This condition makes it possible to consider the distortion quotient

|Df(x)|n
Jf (x)

for almost every x ∈ Ω. (1.4)

Hereafter, the undetermined ratio 0/0 is understood to be equal to 1 for x in the
zero set of the Jacobian

Kf (x) =

⎧⎪⎨
⎪⎩

|Df(x)|n
Jf (x)

if Jf (x) > 0,

1 otherwise.
(1.5)

In other words, Kf is the smallest function greater than or equal to 1 for which
(1.2) holds a.e. A part of the study of mappings of finite distortion that is vital to
us is the regularity of the inverse of a Sobolev homeomorphism [3, 6, 12, 14, 15, 25].
In particular, we recall the following result from [3]. If f is a homeomorphism in
W

1,n−1
loc with finite distortion, then f−1 is in W

1,1
loc and has finite distortion. In [13]
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the following question was raised: when does a composition g ◦ f of two homeomor-
phisms f : Ω → Ω′ and g : Ω′ → Ω′′ of finite distortion also have finite distortion?
The major difficulty lies in the fact that f−1 need not satisfy the N -condition of
Lusin. In other words, the image of a null set (in terms of Lebesgue measure) under
f−1 may fail to be measurable. This poses serious problems concerning the mea-
surability of the composition g ◦ f . For this reason we assume that f−1 satisfies
the N -condition of Lusin. Concerning the composition map, the next result can be
easily deduced by following [10]. Let f : Ω

onto−−−→Ω′ and g : Ω′ onto−−−→Ω′′ be homeomor-
phisms, with f−1 and g W

1,n
loc -regular and of finite distortion. Then g ◦ f belongs to

W
1,1
loc by [10, theorem 1.1]. Recently, in [29] it was observed that the above argument

yields also that (g ◦ f)−1 = f−1 ◦ g−1 belongs to W
1,1
loc, that is, g ◦ f is a bi-Sobolev

mapping. Hence, in dimension n = 2, the composition has finite distortion, by a
new strategic characterization of Sobolev homeomorphisms of finite distortion [15].
We give more details in § 3. Here we only remark that, in general, the Jacobian of
a homeomorphism of finite distortion may vanish on a set of positive measure [16],
but such sets must have no interior. Let us mention here an alarming recent dis-
covery that W

1,p
loc(Ω, Ω′)-homeomorphisms, with 1 � p < n, may have vanishing

Jacobian determinant a.e. in Ω. Such amazing mappings have been constructed by
Hencl [11].

In [13] Hencl and Koskela studied the integrability properties of the distortion of
the composition map g ◦ f . On this subject, we state the following theorem.

Theorem 1.3. Let f : Ω
onto−−−→Ω′ and g : Ω′ onto−−−→Ω′′ be homeomorphisms of finite

distortion. Assume that

Kg ∈ Exploc(Ω
′), (1.6)

Kf ∈ Ln
loc(Ω). (1.7)

Then
g ◦ f : Ω → Ω′′ is a mapping of finite distortion (1.8)

and
Kg ◦ f ∈ L1

loc(Ω). (1.9)

Actually, in § 4 we present a sharp result (see theorem 4.1) that is more general
than theorem 1.3.

As is well known, the case of dimension n = 2 is quite special. It is rather
extraordinary that bi-Sobolev homeomorphisms are exactly those that have finite
distortion [15]. Quasiconformal mappings provide a particularly useful class, which
lies between homeomorphisms and diffeomorphisms. They are more flexible than
bi-Lipschitz homeomorphisms. Bi-Sobolev mappings are even more flexible. For a
bi-Sobolev map f : Ω → Ω′ we shall examine the distortion tensor ; that is, a Borel
measurable matrix field

Gf (x) =

⎧⎪⎨
⎪⎩

Dtf(x)Df(x)
Jf (x)

if Jf (x) > 0,

I otherwise.
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Hence, Gf is a symmetric matrix with det Gf ≡ 1. Note that, for all ξ ∈ R
2 and

for almost every x ∈ Ω, we have

|ξ|2
Kf (x)

� 〈Gf (x)ξ, ξ〉 � Kf (x)|ξ|2.

As an application of our results in §§ 3 and 4, in § 5 we obtain the following
uniqueness result.

Theorem 1.4. Let Ω and Ω′ be planar domains. Let g, h : Ω
onto−−−→Ω′ be W1,2-

homeomorphisms of finite distortion and assume that

Gg(x) = Gh(x) (1.10)

for almost every x ∈ Ω. Then the mapping

ϕ = g ◦ h−1 is conformal. (1.11)

2. Preliminary results

2.1. Notation

Given a square matrix A, we denote by |A| its operator norm, that is,

|A| = sup{|Aξ| : ξ ∈ R
n, |ξ| = 1}.

The adjugate adjA is the transpose of the cofactor matrix. So, we have the formula

A(adjA) = (adjA)A = I det A,

where I denotes the identity matrix. Thus, if A is non-singular,

1
det A

adjA = A−1. (2.1)

The well-known Hadamard inequality implies

|adjA| � |A|n−1.

2.2. Some function spaces

Our main source here is [16, § 4.12]. We need to consider the Zygmund space
Lp logα L(Ω) for 1 � p < ∞, α ∈ R (α � 0 for p = 1) and Ω ⊂ R

n. This is the
Orlicz space generated by the function

Φ(t) = tp logα(a + t), t � 0,

where a > 0 is a suitably large constant, so that Φ is increasing and convex on
[0,∞[ . The choice of a is immaterial, as we shall always consider these spaces
on bounded domains. Thus, more explicitly, for a measurable function u on Ω,
u ∈ Lp logα L(Ω) simply means that∫

Ω

|u|p logα(a + |u|) dx < ∞.
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As an example, for α = 0 we have the ordinary Lebesgue spaces. We consider in
Lp logα L(Ω) the Luxemburg norm

‖u‖Lp logα L = inf
{

λ > 0:
∫

Ω

Φ(|u|/λ) dx � 1
}

.

The following Hölder-type inequality for Zygmund spaces will be important:

‖u1 · · ·uk‖Lp logα L � C‖u1‖Lp1 logα1 L · · · ‖uk‖Lpk logαk L, (2.2)

where pi > 1, αi ∈ R, for i = 1, . . . , k, and

1
p

=
1
p1

+ · · · +
1
pk

,
α

p
=

α1

p1
+ · · · +

αk

pk
.

The positive constant C in (2.2) is independent of ui. We write

u ∈ Lp logα Lloc(Ω) if u ∈ Lp logα L(E),

for every compact subset E of Ω.
The exponential class Exp(Ω) is formed by measurable functions u on Ω for

which there exists λ = λ(u) > 0 such that

exp(λ|u|) ∈ L1(Ω).

The space Exploc(Ω) is defined in a similar way to above.
We shall need the following elementary inequality.

Lemma 2.1. Fix λ > 0 and α > 0. Then, for all a � 0, b � 0, we have

aαb � C[exp(λa) + b logα(e + b)], (2.3)

where

C =
(

e + α

λe

)α

.

Proof. If

a � e + α

λe
log(e + b),

then the inequality is trivial. In the opposite case, we have

aαb � exp
[
α log a +

λe
e + α

a

]

and it is easily seen that the right-hand side does not exceed C exp(λa). Indeed,
this is equivalent to

e + α

λe
exp

[
λ

e + α
a − log a

]
� 1,

and the minimum of the expression in the left-hand side for a > 0 is exactly 1.
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2.3. Differentiability properties

We decompose the domain Ω of a given mapping f as follows:

Ω = Rf ∪ Zf ∪ Ef ,

where

Rf = {x ∈ Ω : f is differentiable at x and Jf (x) �= 0},

Zf = {x ∈ Ω : f is differentiable at x and Jf (x) = 0},

Ef = {x ∈ Ω : f is not differentiable at x}.

Differentiability is understood in the classical sense. These are Borel sets if f is a
homeomorphism. Moreover, f(Rf ) = Rf−1 and, for all x ∈ Rf ,

Df−1(f(x)) = (Df(x))−1, Jf−1(f(x)) =
1

Jf (x)
. (2.4)

A Sobolev homeomorphism f is known to be differentiable a.e. in Ω if |Df | ∈ L
p
loc

with p > n−1 [30]. For such a map |Ef | vanishes and either Jf (x) � 0 or Jf (x) � 0
a.e. We will assume Jf � 0. Moreover, Df is a Borel function and is the differential
also in the sense of distributions.

2.4. Area formula

Let f : Ω → R
n be a mapping defined in a domain of R

n. We say that f satisfies
the Lusin N -condition if the implication

|E| = 0 =⇒ |f(E)| = 0

holds for any set E ⊂ Ω. Here, |E| denotes the Lebesgue measure of E. For a
homeomorphism f , the N -condition holds if f ∈ W1,n [27], but may fail if f ∈ W1,p

with p < n [26]. Sharp results ensuring the N -condition can be found in [21,22]. Let
f ∈ W

1,1
loc(Ω, Rn) be a homeomorphism and let η be a non-negative Borel measurable

function on R
n. We have the inequality∫

B

η(f(x))|Jf (x)| dx �
∫

f(B)
η(y) dy (2.5)

for every B ⊂ Ω Borel set [5, theorem 3.1.8]. We note the following consequence of
(2.5). If B′ ⊂ f(Ω) is a Borel subset with |B′| = 0, then Jf (x) = 0 for almost every
x ∈ f−1(B′). Indeed, ∫

f−1(B′)
|Jf (x)| dx �

∫
B′

dy = |B′| = 0.

For example, if f−1 is differentiable a.e. on f(Ω), then Jf (x) = 0, for almost every
x ∈ f−1(Ef−1). We say that the area formula holds for f on B if (2.5) is valid as
an equality, that is, ∫

B

η(f(x))|Jf (x)| dx =
∫

f(B)
η(y) dy, (2.6)
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for all η. It is well known that there exists a set Ω̃ ⊂ Ω of full measure such that the
area formula holds for f on Ω̃. As a consequence, if f is a Sobolev homeomorphism
with f−1 satisfying the N -condition, then Jf (x) > 0 for almost every x ∈ Ω. Indeed,
by the area formula (2.6) with B = Ω̃,

|f({x ∈ Ω̃ : Jf (x) = 0})| = 0

and hence, by N -condition for f−1, and since Ω̃ has full measure,

|{x ∈ Ω : Jf (x) = 0}| = |{x ∈ Ω̃ : Jf (x) = 0} ∪ (Ω \ Ω̃)| = 0.

Moreover, the area formula holds on each set B on which f satisfies the N -condition.
Note that the area formula holds on the set Rf ∪ Zf , where f is differentiable. In
particular, we have the following version of the Sard theorem

|f(Zf )| = 0. (2.7)

Therefore, if f is a homeomorphism differentiable a.e. and satisfying the N -condi-
tion, then f−1 is also differentiable a.e. In fact, f−1 is differentiable in f(Rf ), which
is a subset of full measure of f(Ω), since

f(Ω) \ f(Rf ) = f(Zf ) ∪ f(Ef )

has measure zero by (2.7) and the N -condition, as |Ef | = 0 by assumptions.

2.5. Distortion functions

There are several distortion functions of interest in geometric function theory.
We refer the reader to [16] for a comprehensive treatment. Here, in addition to the
outer distortion already introduced in (1.5), we shall need to consider the inner
distortion. A mapping f ∈ W

1,n−1
loc (Ω; Rn) has finite inner distortion if Jf is strictly

positive a.e. on the set where adjDf �= 0. We also assume that the Jacobian is
locally integrable. For such a map, we call inner distortion of f the smallest function
KI

f � 1 such that
|adjDf(x)|n � KI

f (x)Jf (x)n−1, (2.8)

for almost every x ∈ Ω. Clearly, a map of finite outer distortion has also finite
inner distortion and KI

f � (Kf )n−1, as a consequence of the Hadamard inequality.
In dimension n = 2 the two notions coincide.

2.6. Radial stretching

Many critical examples are provided by radial stretchings

f(x) =
x

|x|ρ(|x|). (2.9)

In what follows, we assume that ρ is an absolutely continuous and strictly increasing
function on the interval [0, 1] satisfying ρ(0) = 0 and ρ(1) = 1. As a consequence,
the map defined by (2.9) is a Sobolev homeomorphism of the unit ball B onto itself,
the inverse mapping being of course

f−1(y) =
y

|y|ρ
−1(|y|). (2.10)
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Moreover, we can easily find (setting r = |x|)

Df(x) =
ρ(r)
r

I +
[
ρ′(r) − ρ(r)

r

]
x ⊗ x

r2 , Jf (x) = ρ′(r)
[
ρ(r)
r

]n−1

.

Hence, Jf (x) � 0, for almost every x ∈ B. If we also assume that r �→ ρ(r)/r is
increasing, then |Df(x)| = ρ′(r), and hence f has finite distortion K = Kf given
by

K(x) = K(r) =
[
rρ′(r)
ρ(r)

]n−1

. (2.11)

Moreover, we also find

adjDf(x) =
[
ρ(r)
r

]n−2{
ρ′(r)I +

[
ρ(r)
r

− ρ′(r)
]
x ⊗ x

r2

}
(2.12)

and the inner distortion is

KI(x) =
rρ′(r)
ρ(r)

= K(x)1/(n−1). (2.13)

We can immediately express ρ in terms of K from (2.11):

ρ(r) = exp
[ ∫ r

1
K(t)1/(n−1) dt

t

]
. (2.14)

Conversely, given a function K � 1 with K1/(n−1) locally integrable on ]0, 1], for-
mula (2.14) yields the function ρ verifying (2.11), ρ(0) = 0, ρ(1) = 1, and such that
r �→ ρ(r)/r is increasing.

3. Composition of Sobolev homeomorphisms

Under the assumption (1.6) that g has locally exponentially integrable distortion,
we can easily obtain |Dg| ∈ Ln log−1 Lloc, but without any additional condition
we cannot deduce that g ∈ W

1,n
loc . So [13, theorem 1.1] does not apply to show-

ing that the composition g ◦ f belongs to W
1,1
loc. On the other hand, (1.7) implies

|Df−1| ∈ Ln log1/(n−1) Lloc (see corollary 4.5). To take advantage of this regularity
of f−1 and compensate for the lack of regularity of g, we need to extend [10, theo-
rem 1.1] concerning the composition of Sobolev mappings to the case of derivatives
in Zygmund classes.

Theorem 3.1. Let r > n−1 and α ∈ R be given numbers and set q = r/(r−n+1).
Let f : Ω → R

n be a homeomorphism with f−1 of finite distortion, u ∈ W
1,1
loc(f(Ω)),

and assume that

|Df−1| ∈ Lr logα Lloc(f(Ω)), |∇u| ∈ Lq log−α(q−1) Lloc(f(Ω)). (3.1)

Moreover, for q > n, or q = n and α < −1, assume also that u is continuous. Then
u ◦ f ∈ W

1,1
loc(Ω).
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As is well known, for q > n there is a continuous representative of u. This is true
also if q = n and α < −1, so that β = −α(q − 1) > n − 1 [20]. Indeed, this can
also be deduced easily using Hölder’s inequality in Zygmund spaces (2.2). Fixing a
ball B � Ω and denoting as usual by uB the integral mean of u over B, for almost
every x ∈ B, we have

|u(x) − uB | � C

∫
B

|x − y|1−n|∇u(y)| dy

� C‖ |x − · |−1‖n−1
Ln logα L(B)‖∇u‖Ln logβ L(B). (3.2)

The first inequality in (3.2) is well known, while the second follows by (2.2).
Since the function y �→ 1/|y| belongs to Ln logα Lloc(Rn), by a routine argument,
(3.2) implies, for example, that the approximation of u by standard mollification
converges locally uniformly on Ω. The choice of the continuous representative of
u avoids problems in defining u ◦ f . On the other hand, if q < n, or q = n and
α � −1, then f−1 satisfies the N -condition of Lusin [21], and hence u ◦ f does not
depend on the representative of u.

Proof of theorem 3.1. Consider first the case u ∈ C∞(f(Ω)). Then, u being locally
Lipschitz continuous and f continuous, we have u ◦ f ∈ W

1,1
loc and

∇(u ◦ f)(x) = ∇u(f(x))Df(x).

Moreover, f has finite distortion [14,25], and hence

Jf (x) = 0 =⇒ ∇(u ◦ f)(x) = 0.

Let us prove that, for any ball B � Ω, we have∫
B

|∇(u ◦ f)| dx �
∫

f(B)
|∇u(y)||Df−1(y)|n−1 dy. (3.3)

Recall [30] that f−1 is differentiable a.e., i.e., |Ef−1 | = 0, thus Jf (x) = 0 for almost
every x ∈ f−1(Ef−1) (see § 2.4). Furthermore, by Sard’s lemma, |f−1(Zf−1)| = 0
and therefore ∇(u ◦ f)(x) = 0 for almost every x ∈ Ω \ f−1(Rf−1). On the other
hand, for all y ∈ Rf−1 we have

Jf (f−1(y)) =
1

Jf−1(y)
, Df(f−1(y)) = (Df−1(y))−1. (3.4)

Now, defining the Borel set A = B ∩ f−1(Rf−1), by using area formula (2.5) and
(3.4) we compute

∫
B

|∇(u ◦ f)| dx �
∫

A

|∇u(f(x))| |Df(x)|
Jf (x)

Jf (x) dx

�
∫

f(A)
|∇u(y)| |Df(f−1(y))|

Jf (f−1(y))
dy

�
∫

f(B)
|∇u(y)| |adjDf−1(y)| dy, (3.5)
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which implies (3.3). Using Hölder’s inequality in Zygmund spaces (2.2), we deduce
from (3.3) that∫

B

|∇(u ◦ f)| dx � C‖∇u‖Lq log−α(q−1) L(f(B))‖Df−1‖n−1
Lr logα L(f(B)).

Now let u be an arbitrary function in W
1,1
loc(f(Ω)) satisfying the assumptions. As

in [10], by the estimate (3.3) we see that, if uj , j = 1, 2, . . . , is an approximation of
u by standard mollification, then ∇(uj ◦ f) is a Cauchy sequence in L1(B).

Corollary 3.2. Let f : Ω
onto−−−→Ω′ and g : Ω′ onto−−−→Ω′′ be homeomorphisms, with

f−1 and g of finite distortion. If

|Df−1| ∈ Ln logα Lloc and |Dg| ∈ Ln log−α(n−1) Lloc,

with α � 0, then h = g ◦ f ∈ W
1,1
loc and has finite distortion. Moreover,

Kh(x) � Kg(f(x))Kf (x) for almost every x ∈ Ω. (3.6)

Proof. Note that, for r = n, the number q defined in theorem 3.1 equals n, hence
h ∈ W

1,1
loc. Furthermore, the chain rule is valid, as f and g are differentiable a.e.

This follows directly by [30] for g and f−1, and then also for f , as f−1 verifies the
N -condition (see § 2.4). The map h is differentiable at every point x in the set of
full measure

E = f−1(Rf−1 ∩ (Rg ∪ Zg)),

and we have

Dh(x) = Dg(f(x))Df(x), Jh(x) = Jg(f(x))Jf (x). (3.7)

From these formulae we can deduce that

Jh(x) = 0 =⇒ Dh(x) = 0, (3.8)

for almost every x ∈ Ω, that is, the composition map h has finite distortion. To
this end, recall that since g has finite distortion, there exists a set E′ ⊂ Ω′ such
that |Ω′ \ E′| = 0 and

Jg(y) = 0 =⇒ Dg(y) = 0 for every y ∈ E′.

By (3.7), Jh(x) = 0 can only happen on E for

x ∈ f−1(Rf−1 ∩ Zg),

so that Jg(f(x)) = 0, hence also Dg(f(x)) = 0 and in turn Dh(x) = 0, if f(x) ∈ E′.
Therefore, (3.8) holds at every point x in the set of full measure

f−1(Rf−1 ∩ (Rg ∪ Zg) ∩ E′).

The above argument also gives

Kh(x) =
|Dh(x)|n

Jh(x)
� |Dg(f(x))|n

Jg(f(x))
· |Df(x)|n

Jf (x)
= Kg(f(x))Kf (x)

on f−1(Rf−1 ∩ Rg), and Kh(x) = 1 a.e. on the complementary. Thus, inequality
(3.6) follows.
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4. Integrability of the distortion of the composition map

In [13, theorem 6.3] some integrability properties of the distortion of the composition
map h = g ◦ f are proved under suitable integrability assumptions on the distortion
functions Kf and Kg. We prove the optimal integrability of Kh in the following
theorem.

Theorem 4.1. Given p � n − 1 and α > 0, define

q =
αp

α + n − 1
. (4.1)

Let f : Ω
onto−−−→Ω′ and g : Ω′ onto−−−→Ω′′ be homeomorphisms of finite distortion. Assume

that

Kα
g ∈ Exploc(Ω

′), (4.2)

Kf ∈ L
p
loc(Ω), (4.3)

and, if α � 1 and α(p − n + 1) < 1, also

|Dg| ∈ Ln log−p+n−1 Lloc(Ω). (4.4)

Then the composition g ◦ f : Ω → Ω′′ has finite distortion verifying

Kq
g ◦ f ∈ L1

loc(Ω). (4.5)

Note that the above statement reduces to theorem 1.3 for p = n and α = 1. The
integrability property (4.5) is optimal in view of examples 4.6 and 4.7. To prove
theorem 4.1 we need to deduce regularity of f−1 as a consequence of integrability
assumptions on the distortion Kf . We give a sharp statement in terms of the inner
distortion.

Lemma 4.2. Let n � 2, let 1 � q < ∞ and let Ω ⊂ R
n be a domain. If f ∈

W
1,n−1
loc (Ω; Rn) is a homeomorphism of finite inner distortion, with KI

f ∈ L
q
loc(Ω),

then f−1 ∈ W
1,n
loc (f(Ω); Rn) has finite distortion and

Jf−1 logq(e + Jf−1) ∈ L1
loc(f(Ω)), (4.6)

|Df−1|n logq−1(e + |Df−1|) ∈ L1
loc(f(Ω)). (4.7)

Proof. By [6, theorem 2.3] we know that f−1 ∈ W
1,1
loc has finite (outer) distortion.

Moreover, by [6, equation (2.7)] and the area formula (2.5), we get f−1 ∈ W
1,n
loc ,

since KI
f ∈ L1

loc. In particular, we have (4.7) for q = 1. As a matter of fact, (4.7)
and (4.6) are equivalent to each other, for all q � 1. Indeed, (4.7) implies (4.6)
with no conditions on the distortion, assuming merely Jf−1 � 0 a.e., by higher
integrability of the Jacobian determinant [8]. On the other hand, (4.6) is equivalent
to Jf−1 logq(e + |Df−1|) ∈ L1

loc by (2.3), and hence implies (4.7) by (4.15) (for
α = q). Note also that f−1 is differentiable a.e. [30] and satisfies the N -condition
[27], hence Jf (x) > 0 for almost every x ∈ Ω and also f is differentiable a.e. (see
§ 2.4). Assume now that q > 1. There is an interesting iterative argument which
proves that

|Df−1|n logα−1(e + |Df−1|) ∈ L1
loc(f(Ω)) (4.8)
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for any α such that

1 � α < q. (4.9)

We briefly describe this argument now; more details will be given later. Let γ =
1 − 1/q. Assume that

logβ

(
e +

1
Jf

)
∈ L1

loc (4.10)

for some β � 0. Then, arguing as in the proof of [13, lemma 6.2], essentially using
the area formula, we can show that

|Df−1|n logγβ(e + |Df−1|) ∈ L1
loc. (4.11)

By the higher integrability of the Jacobian determinant, (4.11) implies

Jf−1 logγβ+1(e + Jf−1) ∈ L1
loc. (4.12)

By the area formula again, as in the proof of theorem 6.1 of [12], we then have

logγβ+1
(

e +
1
Jf

)
∈ L1

loc. (4.13)

If β < γβ + 1, then (4.13) is stronger than the condition (4.10) we started with,
and we can iterate the above argument. Clearly, (4.10) holds with β = 0; hence, we
find in turn that

Jf−1 log(e + Jf−1), Jf−1 logγ+1(e + Jf−1), Jf−1 logγ(γ+1)+1(e + Jf−1), . . . ,

are locally integrable. As

1 + γ + γ2 + · · · =
1

1 − γ
= q,

obviously with a finite number of steps we get (4.8) for every fixed α satisfying
(4.9). To prove (4.6) and (4.7) we need to make the above argument more precise.
Let B � f(Ω) and µ ∈ C∞

0 (B), µ � 0. We start with the following estimate:

∫
B

µnJf−1 logα(e + µ|Df−1|) dy

� C

∫
B

F dy + C

∫
B

µn|Df−1|n logα−1(e + µ|Df−1|) dy, (4.14)

with

F = |f−1 ⊗ ∇µ|(|f−1 ⊗ ∇µ| + µ|Df−1|)n−1 logq(e + |f−1 ⊗ ∇µ| + µ|Df−1|).

Estimate (4.14) follows from corollary 3.2 and example 2.8 of [7]. Note that the
constant C = C(n, q) > 0 in (4.14) can be chosen independent of α satisfying (4.9).
Moreover, F ∈ L1(B). Now we consider the last term in (4.14). Since f−1 has finite
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distortion, by Young’s inequality, for ε ∈ ]0, 1[ we can write
∫

B

µn|Df−1|n logα−1(e + µ|Df−1|) dy

=
∫

B

µn |Df−1|n
(εJf−1)(α−1)/α

(εJf−1)(α−1)/α logα−1(e + µ|Df−1|) dy

� ε1−q

∫
B

µn

(
|Df−1|n

Jf−1

)α

Jf−1 dy

+ ε

∫
B

µnJf−1 logα(e + µ|Df−1|) dy. (4.15)

Inserting (4.15) into (4.14) and choosing ε so that Cε = 1
2 , we get

∫
B

µnJf−1 logα(e + µ|Df−1|) dy � C

∫
B

F dy + C

∫
B

µn

(
|Df−1|n

Jf−1

)α

Jf−1 dy.

(4.16)
Note that, on the left-hand side, we can absorb a term appearing on the right-hand
side, since, by our iterative argument, we already know that it is converging. We
now pass to the limit in (4.16) as α → q, using the monotone convergence theorem,
and obtain∫

B

µnJf−1 logq(e + µ|Df−1|) dy � C

∫
B

F dy + C

∫
B

µn

(
|Df−1|n

Jf−1

)q

Jf−1 dy.

(4.17)
We conclude by showing that the last integral in (4.17) is finite, under the assump-
tion KI

f ∈ L
q
loc. To this end, we use the area formula and (2.4). As

|Df−1(f(x))|n
Jf−1(f(x))

= Jf (x)|(Df(x))−1|n =
|adjDf(x)|n

Jf (x)n−1 � KI
f (x),

we find that∫
B

µn(y)
(

|Df−1(y)|n
Jf−1(y)

)q

Jf−1(y) dy �
∫

f−1(B)
µn(f(x))KI

f (x)q dx

is finite.

Remark 4.3. The case in which n = 2 is contained in [23].

The result of lemma 4.2 is optimal in the following sense.

Example 4.4. For every q � 1, there exists a Lipschitz homeomorphism f of finite
inner distortion KI

f ∈ L
q
loc such that

Jf−1 logp(e + Jf−1) and |Df−1|n logp−1(e + |Df−1|)

are not locally integrable, for any p > q. From the proof of lemma 4.2, we can clearly
equivalently show that logp(e + 1/Jf ) is not locally integrable. We can construct a
homeomorphism with the required properties as a radial stretching (2.9) onto the
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unit ball B (cf. § 2.6); the inverse map is given by (2.10). As we have seen, we can
prescribe the inner distortion function of f . We set (for r = |x|)

KI
f (x) =

(
r log

e
r

)−n/q

, (4.18)

so that clearly KI
f ∈ Lq(B). According to (2.13) and (2.14), we find

ρ(r) = exp
[ ∫ r

1
t−1−n/q

(
log

e
t

)−n/q

dt

]
. (4.19)

By (4.19) we easily see that

lim
r→0

ρ(r)
r

= lim
r→0

ρ′(r) = 0,

so that actually f ∈ C1(B̄; B̄). Moreover, we have, as r → 0,

|log ρ(r)| ∼ (r|log r|)−n/q. (4.20)

For r close to 0, we have

log
1

Jf (x)
= |log ρ′(r)| + (n − 1)|log ρ(r)| − (n − 1)|log r|.

Therefore, since r �→ |log r|p is integrable on B, by (4.20) we see that logp(e +
1/Jf ) �∈ L1

loc(B), as desired.

Corollary 4.5. Let p � n−1 and f ∈ W
1,1
loc(Ω; Rn) be a homeomorphism of finite

outer distortion Kf ∈ L
p
loc(Ω). Then

Jf−1 logp/(n−1)(e + Jf−1) ∈ L1
loc(f(Ω)),

|Df−1|n logp/(n−1)−1(e + |Df−1|) ∈ L1
loc(f(Ω)).

Proof. It suffices to recall that KI
f � Kn−1

f and to remark that, by Hölder’s inequal-
ity, as Jf ∈ L1

loc, the assumption Kf ∈ L
p
loc implies

|Df | ∈ L
np/(p+1)
loc .

Proof of theorem 4.1. Let us start by showing that (4.4) holds in each case. When
not explicitly assumed, (4.4) is a consequence of (4.2). In fact, in the case α >
1 we get |Dg| ∈ Ln

loc by [7, theorem 4.1]. If α � 1, then, by (2.3), we deduce
|Dg| ∈ Ln log−1/α Lloc. Hence, (4.4) follows if α(p−n+1) � 1. On the other hand,
by corollary 4.5, assumption (4.3) implies

Jf−1 ∈ L log/p(n−1) Lloc(Ω′), |Df−1| ∈ Ln log(p−n+1)/n−1 Lloc(Ω′).

Then, by corollary 3.2 we know that h = g ◦ f ∈ W
1,1
loc has finite distortion and that

(3.6) holds. We only need to prove (4.5). By Hölder’s inequality and (4.3), it clearly
suffices to show that (Kg ◦ f)pq/(p−q) ∈ L1

loc. To this end, we note that f−1 satisfies
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the N -condition and, hence, for a fixed compact subset A of Ω, by the area formula
we have ∫

A

Kg(f(x))pq/(p−q) dx =
∫

f(A)
Kg(y)pq/(p−q)Jf−1(y) dy. (4.21)

Moreover, by (4.2) we find λ > 0, so that∫
f(A)

exp[λKg(y)α] dy < ∞. (4.22)

As
pq

p − q

1
α

=
p

n − 1
,

using the elementary inequality (2.3) of lemma 2.1, we have

Kg
pq/(p−q)Jf−1 � C[exp(λKg

α) + Jf−1 logp/(n−1)(e + Jf−1)],

concluding the proof.

The following example shows that we cannot drop assumption (4.2) of exponential
integrability of Kg.

Example 4.6. There exist two homeomorphisms of finite distortion f : B → B,
g : B → B such that exp(λKf ) ∈ L1 for all λ < n, Kg ∈ Lp, for all p < ∞, but
Kq

h /∈ L1 for any q > 0. We consider two radial stretchings

f(x) =
x

|x|ρ1(|x|), g(x) =
x

|x|ρ2(|x|), (4.23)

with r �→ ρi(r)/r increasing, i = 1, 2 (compare with § 2.6). The composition map-
ping is

h(x) = g(f(x)) =
x

|x|ρ2(ρ1(|x|)) (4.24)

and, by (2.11), it follows that its distortion is

Kh(x) = Kh(r) = Kg(f(x))Kf (x). (4.25)

We can prescribe the distortion function of f and of g. We set

Kf (r) = log
e
r
, Kg(r) = exp

[(
log

e
r

)ϑ]
,

where ϑ satisfies
n − 1

n
< ϑ < 1.

It may readily be checked that Kf and Kg have the stated properties. Let us show
that Kq

h is not integrable. It clearly suffices to show that (Kg ◦ f)q �∈ L1. From
(2.14) we deduce

ρ1(r) = exp
[ ∫ r

1

(
log

e
t

)1/(n−1) dt

t

]
= exp

{
n − 1

n

[
1 −

(
log

e
r

)n/(n−1)]}
,
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and hence

Kg(f(x)) = exp
[(

log
e

ρ1(r)

)ϑ]
= exp

{[
1
n

+
n − 1

n

(
log

e
r

)n/(n−1)]ϑ}
,

which clearly implies the claim.

Our next example shows that the integrability of Kq
h ∈ L1

loc is optimal in dimen-
sion n = 2.

Example 4.7. Here, we consider the case n = 2. For every p � 1 and α > 0, there
exist two homeomorphisms of finite distortion f : B → B, g : B → B such that
Kf ∈ Lp, exp(λKα

g ) ∈ L1 for all λ < 2, but Ks
h /∈ L1

loc, for any s > q. As in
example 4.6, we consider two radial stretchings given by (4.23), with r �→ ρi(r)/r
increasing, i = 1, 2. The composition mapping is given by (4.24) and its distortion
by (4.25). We set

Kf (r) =
(

r log
e
r

)−2/p

, Kg(r) =
(

log
e
r

)1/α

.

Then, we easily find Kf ∈ Lp(B) and exp(λKg
α) ∈ L1(B) if λ < 2. On the other

hand,

Kh(r) = (1 − log ρ1(r))1/α

(
r log

e
r

)−2/p

.

Moreover, as in example 4.4, for r → 0 we have

|log ρ1(r)| ∼
(

r log
e
r

)−2/p

,

and hence

Kh(r) ∼
(

r log
e
r

)−2/p(
1 +

1
α

)
.

Since
1
p

(
1 +

1
α

)
=

1
q
,

clearly Ks
h is not locally integrable for s > q.

5. A uniqueness theorem

In this section, we consider the case of planar mappings; that is, we assume n = 2.
Given a matrix field G = G(x) and a function K = K(x) � 1 that are Borel
measurable in a domain Ω and satisfy

G(x) = GT(x), det G(x) = 1, (5.1)

and
|ξ|2

K(x)
� 〈G(x)ξ, ξ〉 � K(x)|ξ|2 (5.2)
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for almost every x ∈ Ω and all ξ ∈ R
2, the measurable Riemann mapping problem

consists in finding a bi-Sobolev homeomorphism f : Ω → f(Ω) such that G is its
distortion tensor, that is,

Gf (x) = G(x) for almost every x ∈ Ω, (5.3)
Kf (x) � K(x) for almost every x ∈ Ω. (5.4)

This is a difficult problem that was solved classically by Morrey [24] for K ∈ L∞,
and by David [4] for K ∈ Exp (see also [17]). In this section, using the results of
previous sections, we address the question of the uniqueness of solution f to equa-
tion (5.3) in the following sense. Recall that a diffeomorphism ϕ is called conformal
in Ω if, for every x ∈ Ω, it preserves the angle between any pair of smooth curves
passing through x. In our planar context here, an orientation-preserving conformal
map ϕ is holomorphic, that is, satisfies the Cauchy–Riemann equations

∂ϕ1

∂x1
=

∂ϕ2

∂x2
,

∂ϕ1

∂x2
= −∂ϕ2

∂x1
, (5.5)

at every point of Ω. Note that, by the Weyl lemma, it is enough that (5.5) holds
in the sense of distributions to conclude that ϕ is holomorphic, and (5.5) actually
holds at every point. The Cauchy–Riemann system (5.5) can be rewritten in various
equivalent ways:

|Dϕ|2 = Jϕ, DTϕDϕ = JϕI, DTϕ = adjDϕ. (5.6)

Furthermore, if ϕ is a mapping of finite distortion, then the Cauchy–Riemann sys-
tem (5.5) is also equivalent to the validity of either of the following equations a.e.:

Gϕ = I, Kϕ = 1. (5.7)

Now, it is easy to see that post-composing a bi-Sobolev mapping with a conformal
map does not change the distortion tensor. More precisely, if h : Ω

onto−−−→Ω′ is a bi-
Sobolev mapping and ϕ : Ω′ → Ω′ is a conformal map, then ϕ ◦ h is bi-Sobolev
and

Gϕ ◦ h(x) = Gh(x) for almost every x ∈ Ω. (5.8)

Indeed, since ϕ is locally Lipschitz continuous and h is continuous, we have ϕ ◦ h ∈
W

1,1
loc and, for almost every x ∈ Ω,

D(ϕ ◦ h)(x) = Dϕ(h(x))Dh(x), (5.9)

and hence

DT(ϕ ◦ h)(x)D(ϕ ◦ h)(x) = DTh(x)DTϕ(h(x))Dϕ(h(x))Dh(x). (5.10)

Therefore, using the characterization of conformality expressed by the second equal-
ity at (5.6), we immediately find

DT(ϕ ◦ h)(x)D(ϕ ◦ h)(x) = Jϕ(h(x))DTh(x)Dh(x). (5.11)

Moreover, by (5.9), we get Jϕ ◦ h(x) = Jϕ(h(x))Jh(x) and then conclude by (5.11)
with the desired equality (5.8), simply dividing by the Jacobian Jϕ ◦ h(x) and recall-
ing that Jϕ does not vanish at any point, as ϕ is injective. In this section we prove
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theorem 1.4, which is a uniqueness result for the solution of equation (5.3) modulo
a post-composition with a conformal mapping. To the best of our knowledge, only
the most general uniqueness theorem has been proved in [28, corollary 5.5]. Note
that we only assume g and h in W

1,2
loc(Ω, Ω′), whereas in [28] it is also required that

g−1 and h−1 belong to W
1,2
loc(Ω

′, Ω).

Proof of theorem 1.4. Since h ∈ W
1,2
loc, it is differentiable a.e. and satisfies the N -

condition. Also, h−1 is differentiable a.e., and Jh−1(y) > 0, for almost every y ∈ Ω′

(see § 2.4), that is, Rh−1 is a subset of Ω′ of full measure, |Ω′ \ Rh−1 | = 0. Similarly,
g is differentiable a.e. in Ω as well. Therefore, we can find a Borel subset F of Ω,
having full measure, |Ω \ F | = 0, such that g is differentiable and (1.10) holds, for
all x ∈ F . Recalling that g has finite distortion, we may also assume that

Jg(x) = 0 =⇒ Dg(x) = 0, (5.12)

for all x ∈ F . By corollary 3.2, the mapping

ϕ = g ◦ h−1 : Ω′ → Ω′

belongs to ∈ W
1,1
loc(Ω

′, Ω′) and has finite distortion. Also, ϕ is differentiable at every
point of the set of full measure E′ = Rh−1 ∩ h(F ), and by the chain rule we have

Dϕ(y) = Dg(h−1(y))Dh−1(y), Jϕ(y) = Jg(h−1(y))Jh−1(y). (5.13)

Moreover, for all y ∈ E′,

Dh−1(y) = (Dh(h−1(y)))−1, Jh−1(y) =
1

Jh(h−1(y))
, (5.14)

and, by (1.10),

Gg(h−1(y)) = Gh(h−1(y)). (5.15)

In order to compute Gϕ, let us consider the set

Z = {y ∈ h(F ) : Jg(h−1(y)) = 0}.

For all y ∈ E′ \ Z, we have

Jg(h−1(y)) > 0, Jh(h−1(y)) > 0, Jϕ(y) > 0.

Therefore, by definition,

Gϕ(y) =
Dtϕ(y)Dϕ(y)

Jϕ(y)

=
DTh−1(y)Dtg(h−1(y))Dg(h−1(y))Dh−1(y)

Jg(h−1(y))Jh−1(y)

=
1

Jh−1(y)
DTh−1(y)Gg(h−1(y))Dh−1(y).
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By (5.15),

Gϕ(y) =
1

Jh−1(y)
DTh−1(y)Gh(h−1(y))Dh−1(y)

=
DTh−1(y)Dth(h−1(y))Dh(h−1(y))Dh−1(y)

Jh(h−1(y))Jh−1(y)

and, by (5.14), it is easily seen that

Gϕ(y) = I. (5.16)

On the other hand, if y ∈ E′ ∩ Z, then Jg(h−1(y)) = 0 and we have (5.16) imme-
diately by definition. Therefore, (5.16) holds for every y ∈ E′ and we conclude the
proof.

Remark 5.1. We only need to assume (1.10) at points x such that both Jg(x) �= 0
and Jh(x) �= 0.
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