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Sumsets of semiconvex sets
Imre Ruzsa and Jozsef Solymosi

Abstract. We investigate additive properties of sets A, where A = {a1 , a2 , . . . , ak} is a monotone
increasing set of real numbers, and the differences of consecutive elements are all distinct. It is
known that ∣A+ B∣ ≥ c∣A∣∣B∣1/2 for any finite set of numbers B. The bound is tight up to the constant
multiplier. We give a new proof to this result using bounds on crossing numbers of geometric graphs.
We construct examples showing the limits of possible improvements. In particular, we show that there
are arbitrarily large sets with different consecutive differences and sub-quadratic sumset size.

1 Introduction

Given two sets of numbers, A and B, the sumset of A and B, denoted by A+ B, is

A+ B = {a + b ∶ a, b ∈ A and b ∈ B}.

Let A = {a1 , a2 , . . . , ak} be a finite set of real numbers with the property that

a i − a i−1 < a i+1 − a i(1.1)

for any 1 < i < k. Sets with this property are said to be convex sets.
Improving on a result of Hegyvári [4], Elekes et al. [2] proved that if A is convex,

then ∣A+ B∣ ≥ ck3/2 for any set B with ∣B∣ = k. A set, A, has distinct consecutive
differences if for any 1 ≤ i , j ≤ k, a i+1 − a i = a j+1 − a j implies i = j.

The following theorem, which was proved in [8], generalizes the result of Elekes
et al.

Theorem 1.1 [8] Let A and B be finite sets of real numbers with ∣A∣ = k and ∣B∣ = �. If
A has distinct consecutive differences, then

∣A+ B∣ ≥ ck
√
�.

In particular, if k = �, then

∣A+ B∣ ≥ ck3/2 ,

where c > 0 is an absolute constant.

Although the above theorem is tight, i.e. there are sets A and B such that the
above bound is sharp up to the multiplicative constant (see in [8]), several questions
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remain open. Below, we list six questions. In all of them, A denotes a set with distinct
consecutive differences. Here, and later in the paper, we are using the asymptotic
notation f (x) ≫ g(x) when there is a constant c such that f (x) ≥ g(x)/ logc f (x)
holds as x goes to infinity.
(1) What can we say about the structure of A when there is a set B, ∣B∣ = ∣A∣ = k so

that ∣A+ B∣ = O(k3/2)?
(2) There is no restriction on B in Theorem 1.1. What happens if B also has distinct

consecutive differences?
(3) What is the minimum size of A+ A?
(4) What is the best bound on ∣A+ B∣ if A is convex?
(5) What is the best bound on ∣A+ A∣ if A is convex?
(6) What is the minimum size of A+ B if A and B are convex?

All questions above are open. In this paper, we will consider the first three
questions. The following list summarises the best known estimates.
(1) If there is a set B, ∣B∣ = ∣A∣ = k so that ∣A+ B∣ = O(k3/2) then the sumset is evenly

distributed, E1.5(A, B) ≪ k9/4 (in this paper).
(2) Even if both A and B have distinct consecutive differences, there are examples

when ∣B∣ = ∣A∣ = k and ∣A+ B∣ = ck3/2 (in this paper).
(3) There are constructions for sets A such that ∣A+ A∣ ≤ ∣A∣2−c with some c >

0.1 (in this paper). No better lower bound is known than what follows from
Theorem 1.1.

(4) What is the best bound on ∣A+ B∣ if A is convex? No better lower bound is
known than what follows from Theorem 1.1, and no construction is known
showing ∣A+ B∣ ≤ (∣A∣∣B∣)1−c with some c > 0.

(5) If A is convex then ∣A+ A∣ ≫ ∣A∣30/19 according to a recent result of Rudnev and
Stevens in [7], building on earlier results in [5, 10, 12].

(6) If A and B are convex and ∣A∣ = ∣B∣ then ∣A+ B∣ ≫ ∣A∣30/19 [13]. No construction
is known showing ∣A+ B∣ ≤ (∣A∣∣B∣)1−c with some c > 0.

There are interesting works relaxing and strengthening the notation of convex
sequences, like in [9], [3], and [14].

2 Lower bounds using crossing numbers

2.1 Proof of Theorem 1.1

In this section, we offer a new proof for Theorem 1.1 by giving a bound in terms of
additive energy. As the original proof in [8], this is also a simple proof, but here, we
are using graph theory, the crossing number bound, which gives more information
about the structure of A. The variants of the crossing bounds we are going to use are
all originate from the classical crossing bound by Ajtai et al. in [1].

Proof of Theorem 1.1 For the given sets, A = {a1 , a2 , . . . , ak} in which the con-
secutive differences are all distinct and an arbitrary set B = {b1 , . . . , b�} we define
a geometric graph, G. The vertices of the graph are points on the x axis, the values
of the sumset A+ B. Two vertices, u, v ∈ {A+ B} are connected by an edge, an
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Figure 1: The number of crossings between two translates of A is at most 2k − 1.

upper semicircular arc, iff there is an a i ∈ A and b j ∈ B such that u = a i + b j and
v = a i+1 + b j . So G consists of translates of the path, P, with vertex set A where
the consecutive vertices are connected by a semicircular arc (Figure 1). Since the
consecutive differences are all different in A, the graph has no multiple edges. We
are going to bound the crossing number of this graph from below and from above to
get a bound on ∣A+ B∣. For the upper bound, note that any two translates of P have at
most 2k − 1 crossings, so the number of crossings in G is at most

cr(G) ≤ (∣B∣
2
)(2k − 1) ≤ ∣B∣2k.(2.1)

There are various bounds on the crossing number of graphs. In our case, this is the
convex crossing number (which is the same as the one-page crossing number) applies.
The lower bound is a bit better than for general crossing numbers. It was proved in
[11] that for ∣B∣(k − 1) edges and ∣A+ B∣ vertices the number of crossings is at least

cr(G) ≥ (∣B∣(k − 1))3

27∣A+ B∣2 ,(2.2)

which proves Theorem 1.1, with the constant c = 1/
√

27 ≈ 0.19, since

∣B∣2k ≥ (∣B∣(k − 1))3

27∣A+ B∣2 ,(2.3)

implies that

∣A+ B∣ ≥ ∣A∣∣B∣1/2√
27

. ∎

Our goal is not only to give another simple proof to this result, but also to
understand the structure of A a bit better when the above bound is close to being
tight. One would expect that uneven degree distributions might improve the bound.
If in our graph, G , a vertex v ∈ {A+ B} has degree d that means that there are at least
d/2 ways to write v as v = a + b, where a ∈ A and b ∈ B. Using the usual notation in
additive combinatorics, rA+B(x) denotes the number of ways to write x as x = a + b,
where a ∈ A and b ∈ B. The additive energy of the two sets is defined as

E(A, B) = E2(A, B) = ∑
x∈{A+B}

r2
A+B(x).

In a similar way, for any α > 1 one can define

Eα(A, B) = ∑
x∈{A+B}

rα
A+B(x).
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We are going to use a crossing number bound from [6] to get an estimate on
E1.5(A, B) when A has distinct consecutive differences.

Theorem 2.1 (Theorem 1 in [6]) For any simple graph G on n vertices with vertex
degrees d1 ≥ d2 ≥ ⋯ ≥ dn we have

cr(G) ≥ 1
36000n

n
∑
i=1

id3
i − 4.01n2 .

Note that for any sequence of positive real numbers d1 ≥ d2 ≥ ⋯ ≥ dn , we have the
inequality

n
∑
i=1

id3
i ≤ (

n
∑
i=1

d3/2
i )

2

≤ (ln n + 1)
n
∑
i=1

id3
i ,

which leads us to

∣B∣2k + 4.01∣A+ B∣2 ≥ c1

∣A+ B∣ ln ∣A+ B∣
⎛
⎝ ∑

x∈{A+B}
r3/2

A+B(x)
⎞
⎠

2

.

We use this bound in the case when ∣B∣ = ∣A∣ = k. By Theorem 1.1 and the inequality
above, we get the following result.

Theorem 2.2 If A is a set where the consecutive differences are distinct, and B is an
arbitrary set such that ∣A∣ = ∣B∣, then1

∣A+ B∣ ≫
⎛
⎝ ∑

x∈{A+B}
r3/2

A+B(x)
⎞
⎠

2/3

= E1.5(A, B)2/3 .

This bound—up to the log factor—is an improved version of Theorem 1.1. By
Jensen’s inequality, the right hand side is minimal if rA+B(x) is the average, k2/∣A+ B∣,
for all x ∈ {A+ B}, and then ∣A+ B∣ ≈ k3/2 .

There is another, more direct way to measure the smoothness of the degree
sequence, to count the number of x ∈ {A+ B} which have high multiplicity, i.e., there
are many ways to express x as a sum. For this, let us choose a set S ⊂ {A+ B} which
is a collection of such elements.

Theorem 2.3 Suppose that A is a set with consecutive differences being all distinct, and
B is an arbitrary set. Let S ⊂ {A+ B} a set such that

∑
x∈S

rA+B(x) ≥ ∣A∣∣B∣
Δ

.(2.4)

1We remind the reader that the≫ notation hides a possible logc multiplier as we defined it in Section 1.
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Then there is a constant, cΔ > 1/(2Δ)3 , so the following inequality holds

∣A+ B∣ ≥ cΔ ∣B∣∣A∣2
∣S∣ .(2.5)

As in the previous theorem, this result implies Theorem 1.1. Setting S = {A+ B}
gives ∣A+ B∣ = Ω (∣B∣1/2∣A∣) , as in Theorem 1.1. At the other end, if ∣S∣ ≈ ∣A∣, then the
sumset is as large as possible, it is Ω(∣A∣∣B∣).

Proof We will work with G as defined in the proof of Theorem 1.1 and we are going
to use a simple crossing bound from [6].

Lemma 2.4 (Lemma 2.1 in [6]) Let G(U , V) be a bipartite graph with vertex classes
U and V , and suppose that its number of edges satisfies e ≥ 6 max(∣U ∣, ∣V ∣). Then we
have

cr(G(U , V)) ≥ e3

108∣U ∣∣V ∣ . ∎

From the proof of Theorem 1.1, we know that cr(G) ≤ ∣A∣∣B∣2 . There are two simple
cases to consider; when a δ-fraction of the edges with an endpoint in S are inside
of S , or the (1 − δ)-fraction of them connect S with the outside of S (we are going
to optimize for 0 < δ < 1 at the end of our calculation). For the first case, we apply
a classical crossing bound for the induced subgraph of G on S , denoted by HS . By
inequality (2.2), we have

∣A∣∣B∣2 ≥ cr(HS) ≥
(δ∣A∣∣B∣/Δ)3

27∣S∣2 ≥ (δ∣A∣∣B∣/Δ)3

27∣A+ B∣∣S∣ ,

which gives the required inequality

∣A+ B∣ ≥ ( δ
3Δ

)
3 ∣B∣∣A∣2

∣S∣ .

In the second case, we can assume that ∣A∣∣B∣2 ≥ 6∣A+ B∣, so Lemma 2 is applicable
with V = S and U = {A+ B} ∖ S .

∣A∣∣B∣2 ≥ e3

108∣U ∣∣V ∣ >
((1 − δ)∣A∣∣B∣/Δ)3

125∣S∣∣A+ B∣ ,

which gives

∣A+ B∣ > ( 1 − δ
5Δ

)
3 ∣B∣∣A∣2

∣S∣ .

Choosing δ to make the constant multipliers in the two cases equal, we see that
one can set cΔ > 1/(2Δ)3 in Theorem 2.3. ∎

One can be more specific in defining S , we can bound the number of x ∈ A+ B
such that rA+B(x) ≥ t.
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Corollary 2.5 Suppose that A is a set with consecutive differences being all distinct,
and B is an arbitrary set. Let t > 1 an arbitrary integer and St ⊂ {A+ B} a set such that

min
x∈S t

{rA+B(x)} ≥ t.(2.6)

Then

∣St ∣ <
3∣A+ B∣1/2∣A∣1/2∣B∣

t3/2 .

Proof Set

Δ = ∣A∣∣B∣
t∣St ∣

so the following inequality holds

∑
x∈S t

rA+B(x) ≥ ∣St ∣t =
∣A∣∣B∣

Δ
,

and we can apply Theorem 2.3. Solving inequality (2.5) for ∣St ∣ we get the desired
result. ∎

Another advantage of using crossing numbers in this context is that there are
effective bounds for multigraphs, so we get the following result.

Claim 2.6 Let A and B be finite sets of real numbers with ∣A∣ = k and ∣B∣ = �. If in A
any consecutive difference, a i − a i−1 , has multiplicity at most m then

∣A+ B∣ ≥ ck
√
�√

m
,

where c > 0 is a universal constant.

Proof The claim follows directly from the crossing bound for multigraphs (see e.g.,
in [15]) and from our upper bound in equation (2.1).

k�2 ≥ cr(G) ≥ c(k�)3

m∣A+ B∣2 . ∎

2.2 A small improvement on the crossing number bound

In the above results, we used crossing number bounds, however, we could have used
a slightly better graph parameter for our purposes. It might be interesting if one
would like to improve the constant multiplier in the lower bounds. For any graph,
Gn , an interval drawing is given by a one-to-one map, Φ ∶ V(Gn) → R, where an edge
(v i , v j) ∈ E(V(Gn) maps to the interval [Φ(v i), Φ(v j)]. Two vertex-disjoint edges,
(v j , v j) and (vk , v�), are intersecting (under the map Φ) if they share an interior point,

[Φ(v i), Φ(v j)] ∩ [Φ(vk), Φ(v�)] ≠ ∅.
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Definition 2.1 For a given graph Gn , the intersecting number, int(Gn), is the lowest
number of edge intersections of an interval drawing of Gn .

Our upper bound in (2.1) holds for the intersection number of Gn and it is clear
that

int(Gn) ≥ cr(Gn).

The inequality is strict if one edge (interval) contains another inside. The maximum
number of crossing-free edges in Gn is about 2n, while for intersection-free Gn it is
at most 1.5n. Using the probabilistic approach of Székely (as we will see in the proof
of Claim 2.7), one can show that if the number of edges, e , is at least 2.25n, then

int(Gn) ≥
0.0658e3

n2 ,

which is better than the inequality used in equation (2.3) since 1/27 ≈ 0.037 < 0.0658.
As an example we show the following bound:

Claim 2.7 Let A = {a1 , a2 , . . . , ak} be a finite set of real numbers with distinct
consecutive differences which are not too far from each other, i.e.,

a i − a i−1 ≤ 2(a j − a j−1)(2.7)

for any 1 < i , j ≤ k, and let B ⊂ R an arbitrary finite set. Then

∣A+ B∣ ≥ 2
3
√

3
∣A∣∣B∣1/2 .

Proof To see this, note that by condition (2.7) if a subgraph of G∣A+B∣ on n vertices
is intersection free, then it has at most n − 1 edges. If the number of edges is at
least 1.5n then there are at least 0.5n intersections. The number of edges in G∣A+B∣
is (k − 1)∣B∣ ≈ ∣A∣∣B∣, so let’s select a random subgraph of G∣A+B∣ choosing the vertices
independently at random with probability p = 1.5∣A+B∣

∣A∣∣B∣ . Then the expected number of

vertices is 1.5∣A+B∣2
∣A∣∣B∣ , the number of edges is (1.5∣A+B∣)2

∣A∣∣B∣ , and the expected number of
intersections is at least p4 ⋅ int(G∣A+B∣). From here, we have

( 1.5∣A+ B∣
∣A∣∣B∣ )

4

⋅ int(G∣A+B∣) ≥ 0.5 ⋅ 1.5∣A+ B∣2
∣A∣∣B∣ ,

and

∣A∣∣B∣2 ≥ int(G∣A+B∣) ≥ 0.5 ⋅ (∣A∣∣B∣)3

1.53∣A+ B∣2 . ∎

Note that in the proof we only used the weaker condition that a i+2 − a i ≠ a j for
any 1 ≤ i , j ≤ k.
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3 Constructions

3.1 Both A and B have distinct consecutive differences.

In this section, we are going to show constructions which indicate the limitations of
possible lower bounds on the size of sumsets forced by local conditions, like distinct
consecutive differences in a set.

Theorem 3.1 For arbitrary large integer k, there are sets, A and B, such that in both
sets the consecutive differences are distinct, ∣A∣ ≈ ∣B∣ ≥ k and ∣A+ B∣ ≤ c∣A∣∣B∣1/2 , where
c > 0 is a universal constant.

Proof Let n and k be relative prime numbers, 1 < n < k, such that k − n is small (we
will assign their exact values later). Set A is defined as

A = { jk ∣ 0 ≤ j < n/2}.

Between two consecutive numbers of A there is at least one multiple of n. Let us
choose one of them and add it to A. In this way, we have n − 1 numbers, all below
kn/2. All consecutive differences are distinct since the difference is either of the form
jk − in or in − jk. If jk − in = j′k − i′n, then ( j − j′)k = (i − i′)n, so n ∣ j − j′ , j = j′
and then i = i′ . The same holds for the in − jk = i′n − j′k case. If jk − in = i′n − j′k,
then ( j + j′)k = (i + i′)n, so n ∣ j + j′ , j + j′ < n, so j = j′ = 0, which is not possible.

The construction of B follows the same algorithm, using numbers m, r.

B = { jr ∣ 0 ≤ j < m/2}.

We choose m, r in a way that A+ B is small. To achieve this let 1 < a < b < c < d
be four pairwise relative prime numbers close to each other, e.g., a = 6t + 1, b = 6t +
2, c = 6t + 3, d = 6t + 5. Let n = ab, k = cd , m = ac, r = bd . The elements in both sets
are less than abcd/2, so the sumset is subset of [0, abcd). All elements of the sumset
are divisible by one of the numbers a, b, c, d , so its cardinality is less than 4bcd . The
cardinality of the sets is at least a2 and

4bcd < (4 + ε)(a2)3/2 . ∎

3.2 Bounding the size of A+A.

The best known lower bound on ∣A+ A∣, where A has distinct consecutive differences
follows from Theorem 1.1. One can use the structure of the graph G defined by A+ A
to improve the constant multiplier in Theorem 1.1, but it is still ∣A+ A∣ = Ω(∣A∣3/2). In
this direction, the best result is due to Schoen [9] who proved a better bound if A is
a tdcd set. Schoen calls a a set a tdcd-set (totally distinct consecutive differences) if
for every fixed 1 ≤ d < ∣A∣, all differences a i − a i−d , where d < i < n, are distinct. For
tdcd sets Schoen proved that there is a constant c > 0 such that ∣A+ A∣ ≥ c∣A∣3/2+c .

The next construction shows that there are sets A with distinct consecutive
differences such that ∣A+ A∣ ≤ c∣A∣2−c .
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Theorem 3.2 There is a constant, c > 0.1, such that for arbitrarily large n there is a set
A with distinct consecutive differences, ∣A∣ ≥ n, such that ∣A+ A∣ = O (∣A∣2−c) .

Proof For the construction of A, we are going to use a set of integers with larger
difference set than sumset. Searching for sets with many more differences than sums,
we selected the set S = {0, 1, 3, 7, 12, 22, 30}. S has 43 distinct pairwise differences and
28 sums.

If the reader would like to follow the construction with a smaller set then one can
perform all steps using the S = {0, 1, 3} set, and then c > 0 is a bit below 0.1 ( c ≈ 0.92),
but the steps are easier to check. The selected seven element set is a result of a simple
optimization to maximize c. We are going to revisit the selection of S at the end of the
proof.

First, we construct a set of k-dimensional vectors, Qk , in a sequence that consec-
utive vectors have distinct (vector) differences. Let us consider S as the vertex set of a
complete digraph on seven vertices, and assign a value to every edge as follows: If the
edge is v i → v j then its value is defined as w(i , j) = v i − v j . For example, w(2, 4) = −6,
and w(3, 3) = 0. We will consider walks in this digraph. The first walk is an Euler tour
starting and ending in v1 . Listing the indices of the vertices in sequence as the tour
goes we have e.g.,

E = {1, 3, 5, 2, 6, 4, 7, 2, 4, 1, 5, 7, 3, 6, 1, 2, 3, 4, 5, 6, 7, 1, 7,
5, 3, 7, 4, 6, 5, 1, 6, 2, 5, 4, 3, 1, 4, 2, 7, 6, 3, 2, 1}.

Using the values assigned to the vertices, we have our first multiset of (one
dimensional) vectors,

Q1 = {0, 3, 12, 1, 22, 7, 30, 1, 7, 0, 12, 30, 3, 22, 0, 1, 3, 7, 12, 22, 30,
0, 30, 12, 3, 30, 7, 22, 12, 0, 22, 1, 12, 7, 3, 0, 7, 1, 30, 22, 3, 1, 0}.

By the construction, all consecutive differences are distinct, we used all differences but
0. We define Qk+1 recursively, using Qk . There will be 43∣Qk ∣ = 43k+1 , not necessarily
distinct k + 1 dimensional vectors in Qk+1 , such that all consecutive differences are
distinct. The first k coordinates are periodically repeating vectors, lets take k copies,
blocks, of Qk , one after the other. We choose the last, (k + 1)th coordinate for every
vector in blocks using Q1 as follows. In the first block all (k + 1)th coordinates
are 0. In the second block, we alternate 3 and 0, as 3, 0, 3, 0, . . . , 0, 3. The third is
12, 3, 12, 3, . . . , 3, 12. For the ith block, (i > 1), we use the ith and i − 1th entries of
Q1 and alternate them starting (and ending) with the ith. Note that the first and last
vectors are identical.

In this way, all consecutive vectors have distinct differences. If the differences in
the last coordinate are the same in two pairs of consecutive vectors, then there are
three cases.
• First, the two pairs are selected from the same Qk block. In this case, the differences

of the first k coordinates are distinct by induction.
• The second case when one of the pairs is between two blocks. There is only one

pair of blocks where the last and the first vectors have a given difference in the last
coordinate, so the other pair is inside one block. But in the difference vector of pairs
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0,0,0,0 ……...0,0 3,0,3,0 ……...0,3 12,3,12,3 …3,12 1,3,1,3 ……...3,1 0,1,0,1 ……...1,0

Qk Qk Qk QkQk ...

Figure 2: The recursion getting Qk+1 from Qk .

between blocks the first k coordinates are zero, while differences of consecutive
vectors in the same block have some nonzero coordinates among the first k.

• The third case is when one pair is in one block and the other is in another block. It
is only possible if one pair is in a block with last coordinates a, b, a, . . . , b, a and the
other is in the block with b, a, . . . , a, b, but in this case the positions of the two pairs
relative to their blocks are different due to parity, so by induction the differences are
distinct in the first k coordinates.
Our next step is to construct an increasing sequence of numbers using the vectors

in Qk keeping the same order and keeping the property that consecutive elements
have distinct differences. If v⃗ i ∈ Qk has coordinates v⃗ i

T = [ν1 , ν2 , . . . , νk], then let us
define b i = ν1 + 100ν2 + 1002ν3 + . . . + 100k−1νk . With this definition b i ≤ 100k , and
the consecutive differences (in the order of the vectors in Qk) are all distinct. To make
the sequence monotone increasing, we define

A = {a i ∣ a i = b i + i100k , 1 ≤ i ≤ 43k} .

The sumset, A+ A, consists of sums a i + a j = b i + b j + (i + j)100k . From the
selection of the initial set, S , we see that ∣{b i + b j ∣1 ≤ i , j ≤ 43k}∣ ≤ 28k , so we have
the bound ∣A+ A∣ ≤ 28k ⋅ 2 ⋅ 43k while ∣A∣ = 43k . By this construction we get a set A,
with distinct consecutive differences and ∣A+ A∣ ≤ 2∣A∣2−c where

c =
log 43

28
log 43

≈ 0.11406.

From the construction, we see that we needed a set S with small sumset and
large difference set. We were searching among Sidon sets, i.e., sets where all pairwise
sums are distinct. In such sets, if the size of S is x then ∣S + S∣ = (x

2) + x and ∣S − S∣ =
x(x − 1) + 1. As we are looking for a large c above, we want to find the maximum of
the function

log x(x−1)+1
(x

2)+x

log x(x − 1) + 1
,

for positive x . The maximum is 0.114058 . . . when x ≈ 6.99618, so we selected S to be
a seven-element Sidon set, {0, 1, 3, 7, 12, 22, 30}. ∎
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