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We study the longitudinal dispersion of a passive tracer by a two-dimensional
pressure-driven flow through a layer of heterogeneous porous rock which is bounded
above and below by impermeable seal rock. We assume there are localised regions of
different permeability at random vertical positions within an otherwise uniform layer. This
leads to a Fickian-type dispersion (Eames & Bush, Proc. R. Soc. Lond. A, vol. 455, issue
1990, 1999, pp. 3665–3686) and a shear near the boundaries (Rabinovich et al., Phys.
Rev. E, vol. 86, issue 4, 2012, 046601). We illustrate this effect in a long two-dimensional
layer, consisting of (a) long and thin lenses and (b) elliptical lenses, using expressions
for depth-dependent mean speed and dispersivity to derive a depth-averaged transport
equation for the flow. We derive asymptotic solutions for the layer-averaged dispersal of
tracer, showing that at long times the spreading of the tracer is controlled by the shear.
We discuss the importance of our results for the interpretation of tracer dispersal tests in
layered permeable rocks.
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1. Introduction

In many porous rocks, large-scale heterogeneities lead to preferential flow paths which
can have a dominant impact on the transport by flow through the porous layer. A variety
of approaches have been used to describe the associated dispersion (Greenkorn & Kessler
1969; Matheron & De Marsily 1980; Dagan 1982; Srzic et al. 2013; Kampman et al. 2014).
Many are based on the assumption that the heterogeneities become decorrelated over some
length scale, beyond which the transport becomes Fickian, while at earlier times, the
transport may be anomalous owing to correlations in the velocity field (Koch & Brady
1988; Berkowitz, Scher & Silliman 2000; Zavala-Sanchez, Dentz & Sanchez-Vila 2009).

With heterogeneities of finite scale, in an unbounded zone the dispersion does eventually
become Fickian. A simple approach to demonstrate this result was developed by Eames &
Bush (1999) building on the work of Cala & Greenkorn (1986), who followed the travel
times on different streamlines passing through or around a localised zone of different
permeability. Eames and Bush developed this approach for flow through an array of
elliptical shaped zones of heterogeneity, and determined expressions for the effective
Fickian dispersivity. The approach has since been generalised by Dagan & Lessoff (2001),
Lessoff & Dagan (2001), Dagan & Fiori (2003) and Fiori, Janković & Dagan (2003)
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for a variety of structures of the heterogeneity, and the results have been tested with
detailed numerical simulations (Janković, Fiori & Dagan 2003). Curiously, in developing
this work further, Darvini (2016) and Rabinovich, Dagan & Miloh (2012) found that if
there is a random distribution of heterogeneities in a porous channel with impermeable
boundaries, then as well as the Fickian dispersion, a shear develops in the average
along-channel velocity near the boundary. Rabinovich et al. (2012) developed expressions
for the effective permeability near the boundary for both two- and three-dimensional flow.

Given that many natural rocks include such heterogeneities, in this paper we further
explore the impact of this effective shear on the transport in a bounded heterogeneous
porous layer. First, we present a simple model of the origin of the boundary shear
in a channel, bounded above and below by impermeable rock, and which includes a
series of long, thin rectangular shaped heterogeneities at random positions across the
channel. We then develop a layer-averaged model for the dispersion of tracer in such a
medium, including the effect of the shear and the Fickian dispersivity. We also develop
some asymptotic solutions showing that, at long times, the shear leads to elongation
of the tracer at a rate proportional to t rather than the earlier time Fickian spreading
proportional to t1/2. We then demonstrate similar results for the case of elliptically shaped
zones of heterogeneity, building from the approach of Eames and Bush. We discuss the
possible impact of these results for tracer tests in laterally extensive, vertically confined
permeable layers as may be deployed in the assessment of reservoir connectivity for carbon
capture and storage applications. We note that this shear is distinct from that described
by Matheron & De Marsily (1980), who showed that, with a series of parallel layers of
different permeability, tracer spreads out proportional to time t; physically, that effect is
related to the differing speed of the flow in the different layers.

2. Development of shear flow in a bounded domain

We consider an idealised pressure-driven flow through a layer of permeable rock of
permeability k1 which contains a series of lenses of permeability k2 located at different
random positions across the channel. We assume that the lenses are long and thin, with
length l in the along-flow direction and height h in the cross-flow direction, while the
channel has width H such that l � H, h. The lenses are placed in series so that the
horizontal distance between the edges of successive lenses is much greater than the width
of the channel, (L − l) � H.

It may be shown that for such a configuration, where there is a lens, the flow above
and below the centre of the lens partitions into two parallel streams, with a fraction F =
k2h/(k2h + k1(H − h)) in the lens, and a fraction 1 − F outside the lens (figure 1a,b; cf.
Phillips 2009; Woods 2015). For a random location of the centre of the lens, the probability
P(z) that a streamline at height z in a uniform part of the channel passes through the lens
depends on whether F < 1/2 or F > 1/2, and is given by

P(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z
1 − F for z ≤ F ,

F
1 − F for F ≤ z ≤ 1 − F ,

1 − z
1 − F for z ≥ 1 − F .

(2.1)
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FIGURE 1. (a,b) The streamlines for the flow past a long and thin rectangular lens with
permeability greater than the background permeability (k2/k1 = 10, l = 15, h = 0.05, H = 1),
located with its centre at zc = 0.25 and zc = 0.025 respectively. In each case, the lens diverts
approximately 7 of 21 streamlines across the channel, as indicated in blue. (c) For an assemblage
of lenses in the channel, the probability, P(z), that a streamline at height z goes through a lens is
shown as a function of height z for different values of the fractional flow, F , through each lens.
The three profiles shown in panel (c) correspond to F = 0.4, 0.5, 0.6 for the cases F < 1/2,
F = 1/2 and F > 1/2 respectively.

for F < 1/2. Similarly, for F > 1/2, P(z) is given by

P(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z
1 − F for z ≤ 1 − F ,

1 for 1 − F ≤ z ≤ F ,

1 − z
1 − F for z ≥ F .

(2.2)

This is shown in figure 1(c). The probability varies across the channel since streamlines in
the centre of the channel are more likely to be diverted into the lens, since they can move
upwards or downwards, while those near the boundary are constrained by the boundary
(figure 1a,b).

If the centres of the lenses are a distance L apart, and the lenses have length l(< L),
then, if the flow speed is u∞ in a uniform part of the channel and Q is the total flux of
fluid moving through the channel, the travel time along a streamline in moving a distance
L between the mid-point of the gaps between successive lenses is

ti = l (k1(H − h) + k2h)

kiQ
+ L − l

u∞
for i = 1, 2, (2.3)

where i = 2 or i = 1 depending on whether the streamline passes through the lens or
is diverted around the lens (figure 1a,b). In this simple picture, we neglect the details
of the involved in the adjustment of the flow between regions of uniform permeability
and regions including lenses since L − l, l � H. In appendix B we show this is a good
approximation, using a full two-dimensional simulation of the flow (appendix A).

If there are a series of lenses down the channel with their centres located at the points
xc( j) = (2j − 1)L/2 for j = 1, . . . , n (L > l), but at a series of random vertical positions
across the channel, then in passing through n lenses, there are (n + 1) possible travel
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times along a streamline originally at height z in a uniform part of the channel, depending
on the number of lenses that the streamline passes through. These travel times, given by
nt2, ((n − 1)t2 + t1), ((n − 2)t2 + 2t1), . . . , nt1, have probabilities given by the terms in
the binomial expansion of (P(z) + (1 − P(z)))n.

In the limit of large n (appendix C) this binomial distribution of travel times converges
to a normal distribution for 0 < P < 1, so that the travel time distribution is given by

TTD(x = nL, z, t) = 1√
2πnσ 2

t (z)
exp

(
(t − ntm(z))2

2nσ 2
t (z)

)
, (2.4)

where the mean travel time, tm(z), and the variance of travel time, σ 2
t (z), are given by (cf.

(2.3))

tm(z) = t2P(z) + t1(1 − P(z)), σ 2
t (z) = (t2 − t1)

2P(z)(1 − P(z)). (2.5a,b)

Since P varies across the channel, we see that the mean speed also varies across
the channel, and this leads to the net shear in the flow associated with the boundaries.
Following the work of Levenspiel & Smith (1957), we expect that the tracer concentration
can be expressed in terms of the along-channel-averaged conservation equation,

ct + U(z)cx = D(z)cxx , (2.6)

where the mean flow, U(z), and longitudinal dispersion coefficient, D(z), are given by (cf.
(2.5a,b))

U(z) = L
tm(z)

and D(z) = 1
2

L2 σ 2
t (z)

t3
m(z)

, (2.7a,b)

provided that x = nL � D/U, which requires that

n � σ 2
t (z)

2t2
m(z)

� (t2 − t1)
2P(z)(1 − P(z))

2(t2P(z) + t1(1 − P(z)))2
. (2.8)

Figure 2 shows the profiles of mean speed, U(z), and longitudinal dispersion coefficient,
D(z) (2.7a,b), for a range of values of permeability ratio, k2/k1, and width ratio, h/H, of
the lens to the channel. Note that k2/k1 < 1 represents lenses with permeability lower than
the background permeability, which we refer to as low permeability lenses, and k2/k1 > 1
represents high permeability lenses. Figures 2(c)–2( f ) illustrate that the shear becomes
stronger as either (i) the magnitude of the permeability contrast between the lens and the
background is increased, or (ii) as the cross-layer width of the lens relative to the channel
increases, since this leads to a greater fractional flow through the lens. On the other hand,
for a low permeability lens (k2/k1 < 1), the fractional flow through the lens is a small
fraction of the net flow, and so the probability, P(z), is nearly constant across the channel
except in a narrow region near the top and bottom boundaries, where there is a narrow
region of shear (figure 2a,b).

A pulse of tracer of unit volume injected instantaneously into the fluid at t = 0, (2.6)
has a well-known solution

c(x, z, t) = co

2
√

πD(z)t
exp

(
−(x − U(z)t)2

4D(z)t

)
. (2.9)

Equations (2.9) and (2.4) are analogous once the flow has advanced sufficiently far so
that x � D/U (see (2.8)). We therefore use profiles of mean speed, U(z), and longitudinal
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FIGURE 2. Case l/H = 10, L = 2l = 20. The profiles of mean speed, U(z), and dispersion
coefficient, D(z) (see (2.7a,b)), for a range of values of permeability ratio, k2/k1, and width
ratio, h/H, of the lens to the channel. Panels (a,b) correspond to low permeability lenses with
h/H = 0.1. Panels (c,d) correspond to high permeability lenses with h/H = 0.05. Panels (e, f )
correspond to high permeability lenses with k2/k1 = 10 and varying width ratio h/H.
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FIGURE 3. Case k2/k1 = 10, h/H = 0.05, l/H = 10. (a–d) The tracer concentration, c(x, z, t =
nL/Ū), is shown here at four times after its initial release at x = 0, t = 0, after it has
passed through n = 1, 10, 100, 1000 lenses, respectively. The red dotted line shows the mean
along-channel position of tracer, which is advection driven with speed U(z). Panels (e–h) show
the corresponding depth-averaged profiles, c̄(x, t = nL/Ū).

dispersion coefficient, D(z), to describe the transport of tracer as it passes through an
assemblage of lenses. Although c(x, z, t) strictly represents the probability distribution
of the arrival of tracer at a particular point in space and time, we refer to c(x, z, t) as
the concentration of tracer. Figures 3(a)–3(d) show the predicted transport of a pulse of
tracer along a channel after it has moved through 1, 10, 100 and 1000 lenses, respectively,
according to (2.9).
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3. Layer-averaged model for tracer transport

We define the layer-averaged concentration,

c̄(x, t) = 1
H

∫ H

0
c(x, z, t) dz. (3.1)

Figures 3(e)–3(h) show this layer-averaged concentration profile corresponding to the
distribution of tracer shown in figures 3(a)–3(d). Based on these layer-averaged profiles,
we have estimated the mean position of the centre of mass of tracer, xm(t), and the variance
of longitudinal extent of the tracer, relative to the mean, σ 2(t), as

xm(t) =

∫ ∞

−∞
c̄(x, t)x dx

∫ ∞

−∞
c̄(x, t) dx

, σ 2(t) =

∫ ∞

−∞
c̄(x, t)(x − xm(t))2 dx
∫ ∞

−∞
c̄(x, t) dx

. (3.2a,b)

Figure 4(a) illustrates the evolution of the standard deviation of the tracer, σ , with
time, t. At early times, σ grows as t1/2 but at late times, the spreading of tracer becomes
controlled by the effective mean shear and grows linearly with time t. We define D̂ by
fitting the curve σ ≈ (2D̂t)1/2 to the numerical data at early times (dispersion-controlled
regime), while at late times, we define Û by fitting the curve σ ≈ Ût (shear-controlled
regime) (figure 4a). We expect the transition from the early to the long time regime to
be given by a transition time, τ , which is found by matching the early time and late time
solutions, τ = 2D̂/Û2. Using the properties of the mean flow and dispersion at each height
in the channel, we can define the following quantities

�U2 = 1
H

∫ H

0
(U(z) − Ū)2 dz, Ū = 1

H

∫ H

0
U(z) dz, D̄ = 1

H

∫ H

0
D(z) dz. (3.3a–c)

Figure 4(b) shows the non-dimensional transition time, τ/(2D̄/�U2), plotted for
different values of the cross-layer scale of the lens relative to the channel width, h/H. We
find that the difference between the black dotted line and the red curves is less than 0.1 %
for 0.025 ≤ h/H ≤ 0.32, suggesting that, to leading order, the transition time may indeed
be described as τ ≈ 2D̄/�U2. Consequently, the quantities defined in (3.3a–c) may be
used to provide an estimate for D̂ and Û as obtained from the numerical results (figure 4a).
Indeed, figure 4(c) shows D̂/D̄ and Û/�U as a function of h/H, illustrating that D̂ and Û
are within 0.01% of D̄ and �U. Some of the high frequency fluctuations in figures 4(b) and
4(c) may be a result of the limits of our numerical calculation. Figures 4(d) and 4(e) show
the transition time, estimated as τ = 2D̄/�U2, as a function of the permeability ratio,
k2/k1, and the width ratio, h/H, of the lens to the formation, illustrating that the transition
time from Fickian to shear-driven spreading occurs sooner if more flow is diverted through
the lenses.

3.1. Asymptotic solutions for the depth-averaged concentration profile
The evolution of the depth-averaged concentration (e.g. figure 5a) can be determined
asymptotically at long times. This is described in the following sections for the case
F < 1/2, but these results can be readily generalised to the case F > 1/2.
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FIGURE 4. In panels (a–c), k2/k1 = 2 and l/H = 10. (a) The standard deviation, σ , as a
function of time, t, for three different values of width ratio, h/H, showing the transition from
Fickian to shear-driven spreading of tracer. (b) The red circles represent the non-dimensional
transition time, τ/(2D̄/�U2), as a function of the width ratio, h/H. The transition time, τ , is
estimated numerically as the intersection between the two black curves in panel (a). The black
dotted line in panel (b) represents τ = 2D̄/�U2. (c) Variation of D̂/D̄ and Û/�U for a range
of values of h/H where σ = (2D̂t)1/2 and σ = Ût as represented by the black lines in panel (a).
(d) The transition time, τ = 2D̄/�U2, as a function of the permeability ratio, k2/k1, for width
ratio of the lens to the channel h/H = 0.05. (e) The transition time, τ = 2D̄/�U2, as a function
of the width ratio, h/H, for permeability ratio k2/k1 = 20.

3.1.1. Regions with constant U(z) and D(z)
At the leading edge of the flow, the profiles of the mean speed and dispersion, U(z) and

D(z), are constant over a region 1 − F ≤ (z/H) ≤ F . In this region, the tracer advects
with constant velocity, Uo, and spreads with a constant dispersion coefficient, Do. The
depth-averaged concentration is therefore given by (see (3.1))

c̄(x, t) = 1
H

∫ (1−F)H

FH

co

2
√

πDot
exp

(
−(x − Uot)2

4Dot

)
dz, (3.4)

where Uo = U(z/H = 1/2) = U(F ≤ (z/H) ≤ 1 − F) and Do = D(z/H = 1/2) =
D(F ≤ (z/H) ≤ 1 − F). Equation (3.4) may be expressed in the simpler form

c̄(x, t) = co(1 − 2F)

2
√

πDot
exp

(
−(x − Uot)2

4Dot

)
. (3.5)

Figure 5(c) shows the product of the depth-averaged concentration, c̄(x, t), and
√

t as a
function of the normalised along-channel position, as calculated from a numerical solution
of (2.6). This illustrates the convergence of the numerical solution at the leading edge to
the asymptotic solution given by (3.5) at late times.

3.1.2. Regions with finite but smoothly varying U(z) and D(z)
In the regions 0 < (z/H) ≤ F and 1 − F ≤ (z/H) < 1, the profiles of U(z) and

D(z) vary smoothly and so the tracer is sheared out. By symmetry, the depth-averaged
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FIGURE 5. Case k2/k1 = 10, h/H = 0.05, l/H = 10. (a) Schematic of the depth-averaged
concentration, c̄(x, t), showing the maximum concentration at the front, cf , maximum
concentration at the back, cb, and the width of the pulse of tracer, w. (b) The depth-averaged
concentration of tracer, c̄(x, t), plotted at t = 105 based on the depth-averaged concentration
profile estimated using the analytical solution (orange curve) and the asymptotic solutions
described in § 3.1 (black curves). (c) The product of the depth-averaged concentration and√

t, as a function of the normalised along-channel position, (x − Uot)/
√

Dot, at several times
illustrating the convergence of the front profile to the asymptotic solution given by (3.5) at late
times. (d) The product of the depth-averaged concentration and time, t, as a function of the
normalised along-channel position, x/w, at several times, illustrating the convergence of the
profile to the asymptotic solution given by (3.8) at late times.

concentration in this region is given by

c̄(x, t) = 2
H

∫ FH

0

co

2
√

πD(z)t
exp

(
−(x − U(z)t)2

4D(z)t

)
dz. (3.6)

At long times, at distance x downstream, the concentration of the tracer pulse at a given
depth zo decreases to zero at distances greater than a few multiples of the scale

√
D(zo)t

where zo is defined by the relation x = U(zo)t. If we move upwards or downwards a
small distance δz, then, to leading order, the pulse of tracer will have mean along-channel
position (U(zo) + δzU′(zo))t. Therefore, at along-channel position x = U(zo)t, the tracer
concentration will fall to zero for distances greater than several multiples of the length
scale δz = √

D(zo)t/U′(zo)t from the reference height zo. At long times, the integral in
(3.6) is dominated by the region (zo − nδz < z < zo + nδz), where nδz 	 H and n � 1,
and has an approximate form

c̄(x, t) ≈ 2
H

∫ nδz

−nδz

co

2
√

πD(zo)t
exp

(
−U′2(zo)t

4D(zo)
Z2

)
dZ, (3.7)
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where Z = (z − zo). We approximate the integral by extending the limits to infinity, which
leads to the long time asymptotic result

c̄(x, t) ≈ 2co

|U′(zo)|t , (3.8)

since
∫ ∞

−∞ exp(−z2) dz = √
π.

3.1.3. Regions with finite U(z) and D(z) = 0
At the boundaries of the domain, z/H = 0 and z/H = 1, the dispersion coefficient

D(0) = 0 since the travel time variance, σ 2
t , is zero at the boundaries. By symmetry, at

z/H = 0 and z/H = 1, the depth-averaged concentration is given by

c̄(x, t) = 2
H

∫ H/2

0

co

2
√

πD(z)t
exp

(
−(x − U(z)t)2

4D(z)t

)
dz. (3.9)

At large times, at along-channel position x = U(0)t, the integrand in (3.9) is
dominated by the region 0 < z < nδz = n

√
D′(0)t/U′(0)t 	 H, where n � 1. Now we

can approximate the integral using a Taylor series expansion near z = 0, leading to the
asymptotic result

c̄(x, t) ≈ 2
H

∫ nδz

0

co

2
√

πD′(0)tz
exp

(
−U′2(0)t

4D′(0)
z
)

dz. (3.10)

For large t, this has the approximate solution

c̄(x, t) ≈ 2co

|U′(0)|t , (3.11)

since
∫ ∞

0 (1/
√

z) exp(−z) dz = √
π. Figure 5(d) shows the product of the depth-averaged

concentration, c̄(x, t), and time, t, as a function of the normalised along-channel position,
highlighting the convergence of the depth-averaged concentration profile behind the
leading edge at long times. Figure 5(b) shows a comparison of the depth-averaged
concentration profile from the full numerical solution of the flow and using the solutions
described above at a late time, illustrating the convergence to the asymptotic solutions
described in this section.

4. Log-normal distribution of lenses

Geological formations are often composed of regions with different permeabilities.
Observational data suggest that the distributions of permeability in geological formations
follow a log-normal distribution (Law 1944). Assuming that the formation is composed
of long lenses with a log-normal distribution of permeability, the probability, PK(k), of
a certain permeability, k, is given by a log-normal probability density function, fK(k).
defined as

fK(k) = 1

kσk

√
2π

exp
(

−(ln k − k̄)2

2σ 2
k

)
=⇒ PK(a ≤ k ≤ b) =

∫ b

a
fK(k) dk. (4.1)

For an assemblage of lenses in a channel with a log-normal distribution of permeability
the mean travel time from the centre of one lens to the centre of the next lens, Tm(z), and
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FIGURE 6. For a given log-normal distribution of permeability, panels (a,d) show the profiles
of log-normal probability density function (4.1), panels (b,e) show the mean speed, U(z), and
panels (c, f ) show dispersion coefficient, D(z) (see (2.7a,b)), for a range of values of standard
deviation, σk, and mean permeability, k̄, of the log-normal permeability distribution of the lenses,
as indicated at the top of each column of panels. Panels (g,h) show the transition time from
Fickian to shear-driven spreading, τ = 2D̄/�U2, as a function of the mean permeability, k̄, and
the variance, σk, of the log-normal permeability distribution of the lenses. Here, the width ratio
of the lenses to the formation is h/H = 0.05. In (g), σk = 1, and in (h), k̄ = 0. In all calculations
shown here, L = 2l = 20.

the variance relative to this mean, σ 2
T , are given by (cf. (2.5a,b))

Tm(z) =
∫ ∞

0
tm(k; z)fK(k) dk, σ 2

T (z) =
∫ ∞

0
t2
m(k; z)fK(k) dk − T2

m(z). (4.2a,b)

The profiles of U(z) and D(z) can then be obtained by substituting (4.2a,b) for the mean
and variance of travel time in (2.7a,b). The resulting profiles of the mean flow speed, U(z),
and the longitudinal dispersion coefficient, D(z), are shown in figure 6(a– f ) for a range of
values of k̄ and σk. The profiles show that the shear and dispersion increase with increasing
k̄ or σk since the formation includes more high permeability lenses which divert a large
fraction of the flow (cf. figure 2). In figure 6(e), the profiles of the mean shear for different
mean permeability, k̄, further highlight that high permeability lenses lead to a larger shear.
The transition time, τ , from Fickian to shear-driven spreading, is shown in figure 6(g,h) in
the case where the width of the lenses relative to the formation is h/H = 0.05.

4.1. Asymptotic solution for the depth-averaged concentration profile
With a log-normal distribution of lenses, the mean flow speed, U(z), varies gradually
across the channel (see figure 6). At zo = 0.5 we find that U′(zo) = 0, and so the late-time
depth-averaged concentration at along-channel position x = U(0.5)t is dominated by the
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FIGURE 7. Calculations are shown here for a log-normal distribution of lenses with k̄ = 0,
σk = 1, h/H = 0.05, l/H = 10. The asymptotic solutions are described in § 4.1. (a) The product
of the depth-averaged concentration and time, t, as a function of the normalised along-channel
position, x/w, at several times, illustrating the convergence of the profile to the asymptotic
solution given by (3.8) at late times. (b) The product of the maximum concentration at the leading
edge, cf , and t3/4 as a function of time, t, showing convergence to (4.4) at long times. The black
dotted line represents cf t3/4 = ηo (cf. (4.4)).

region a distance nδz above and below zo = 0.5, where δz = (16D(0.5)/U′′2(0.5)t)1/4,
leading to the approximate expression for the depth-averaged concentration

c̄(x, t) ∼ co

2
√

πD(0.5)t

∫ nδz

−nδz
exp

(
−U′′2(0.5)t

16D(0.5)
z4

)
dz, (4.3)

where nδz 	 H and n � 1. In this limit, the integral is given in terms of the gamma
function

c̄(x = U(0.5)t, t) ∼ co

4
√

πD(0.5)

(
16D(0.5)

U′′2(0.5)t3

)1/4

Γ

(
1
4

)
= ηot−3/4, (4.4)

since
∫ ∞

−∞ exp(−az4) dz = Γ (1/4)/(2 4
√

a). Behind the leading edge, i.e. for z /= 0.5 and at
along-channel position x = U(zo)t, the concentration follows the same solution as in § 3.1
given by (3.8).

Figure 7(a) shows the product of the depth-averaged concentration, c̄(x, t), and time,
t, as a function of the normalised along-channel position, illustrating the convergence of
the depth-averaged profile behind the leading edge to the asymptotic solution given by
(3.8) at long times. Figure 7(b) shows the convergence of the front concentration, cf , to the
asymptotic solution given by (4.4) at long times.

5. Flow through elliptic lenses

We now examine the flow through elliptical lenses of permeability k2 in a background of
permeability k1 = 1. Now there is a distribution of travel times for the streamlines passing
one lens and so we use numerical simulations to estimate the travel times along individual
streamlines (appendix A). Each elliptic region has length l = 1 in the along-flow direction
but variable thickness h in the cross-flow direction, while the channel has fixed width
H = 1.
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FIGURE 8. (a) Streamlines showing the distortion of flow through a high permeability lens
with k2/k1 = 4 and h/H = 0.4. (b) Tracer arrival times, ta(z, zc), at x = 5 for a pulse of passive
tracer released instantaneously into the flow at x = 0, t = 0. (c) Tracer arrival times, ta(z, zc),
as a function of the vertical location, z, in the channel. The different curves represent the arrival
times for different vertical locations, zc, of the lens in the channel, corresponding to a high
permeability lens with k2/k1 = 4 and h/H = 0.4. The black line represents the mean travel time,
tm(z), obtained by averaging N = 81 curves with different vertical locations of the lens in the
channel. Panels (d–f ) show the corresponding figures for a low permeability lens with k2/k1 =
1/4 and h/H = 0.4.

5.1. Travel times with a single lens in the channel
For a lens of given permeability and aspect ratio, the travel time of a streamline
at height z in the uniform flow region, ta(z, zc), depends on the vertical location,
zc, of lens in the channel. Figures 8(c) and 8( f ) show the vertical distribution
of arrival times for 9 locations of the lens across the channel, given by zc =
0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1. For any N discrete values of zc between
z = 0 and z = 1, we can estimate a mean travel time, tm(z), and a variance of travel time,
σ 2

t (z), at each height, z (cf. (2.5a,b)).

tm(z) = 1
N

1∑
zc=0

ta(z, zc), σ 2
t (z) = 1

N

1∑
zc=0

(ta(z, zc) − tm(z))2. (5.1a,b)

Given the travel times along individual streamlines, we model the flow through an
assemblage of lenses assuming that the lenses are randomly distributed in the cross-flow
direction and that they are sufficiently far apart horizontally so that their flow fields are
decorrelated. In all calculations in this section, we choose L = 5l = 5 (see appendix B for
details), and take N = 81 uniformly distributed positions of the lens across the channel
(the results are not sensitive to this precise value for N ≥ 81).

5.2. Continuum model for an assemblage of lenses
The concentration of a passive tracer released into the flow can be described by the mean
flow, U(z), and a longitudinal dispersion coefficient, D(z) given by (2.7a,b) with the tracer
concentration governed by (2.6). In appendix C, we demonstrate that this continuum model
provides a good description of the flow once the tracer has passed through n ≥ 4 lenses.
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FIGURE 9. The mean speed, U(z), and the longitudinal dispersion coefficient, D(z), plotted for
a range of values of the permeability ratio, k2/k1, and the width ratio, h/H, of the lens to the
channel.

Figures 9(a)–9( f ) show the profiles of mean speed, U(z), and longitudinal dispersion
coefficient, D(z), for a range of permeability ratios and aspect ratios of the lens relative
to the formation. As in the previous sections, the cross-layer shear is maximal near the
boundary, and extends a distance from the boundary which increases with the cross-layer
scale of the heterogeneity.

5.3. Transition from Fickian to shear-driven spreading of tracer
As the shear strength increases, the transition from dispersion to advection-driven
spreading of the tracer occurs sooner, as seen in figure 10(a). Again the transition time
from Fickian to shear-driven spreading is well approximated by τ = 2D̄/�U2, where
D̄ and �U are given by (3.3a–c). If the tracer is initially localised in the centre of
the layer, extending vertically by a width d < H, then as the tracer advances, it only
experiences the relatively small shear in the centre of the channel. As a result, as d/H
decreases, the transition time from dispersive spreading to shear-controlled spreading
increases (figure 10b). Indeed, figure 10(c) shows a steep increase in the transition time
for d/H < 0.5 or h/H < 0.1.

In practical situations in which tracer is injected into an aquifer from a well, then
depending on the perforation distribution in the well, the tracer may initially span a
significant width of the layer, so that if the size of heterogeneities is comparable the
layer width, the transition to the regime of shear-driven longitudinal spreading may
occur sooner than predicted by models based on the spread of very localised pulses of
tracer.
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FIGURE 10. Calculations are shown here for high permeability lenses with k2/k1 = 4. In panels
(a,b), the standard deviation, σ , is shown as a function of time, t, for different values of the ratio
of the width of the lens to the channel width, h/H, and the ratio of the vertical width of the
initial pulse of tracer to the channel width, d/H. In (a), d/H = 1, and in (b), h/H = 0.4. (c) The
transition time, τ = 2D̄/�U2, as a function of h/H (blue curve) and d/H (black curve).
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FIGURE 11. Case k2/k1 = 4, h/H = 0.4. (a) The depth-averaged tracer concentration, c̄(x, t),
plotted at t = 105 estimated using the numerical solution (red curve) and the asymptotic solution
given by (3.8) (black curve), illustrating the convergence to the asymptotic solution behind the
leading edge. (b) The product of the maximum concentration at the leading edge, cf , and t3/4 as
a function of time, t, showing convergence to (4.4) at long times. The black dotted line represents
cf t3/4 = ηo (cf. (4.4)).

5.4. Layer-averaged model for tracer transport
Since the profiles of U(z) and D(z) vary smoothly across the channel, we expect that at
late times the depth-averaged concentration is given by analogous asymptotic solutions
to those described in §§ 3 and 4. Indeed on the centreline, along x = U(0.5)t, the
solution is given by (4.4), and behind the leading edge, for x = U(zo)t, the concentration
follows the asymptotic solution given by (3.8). Figure 11(a) shows the convergence of
the depth-averaged profile to these asymptotic solutions at long times, illustrating that
the depth-averaged solutions described in the previous sections also apply to lenses of
different aspect ratio and shape.
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FIGURE 12. For a log-normal permeability distribution with k̄ = 0, σk = 1, showing:
(a) the transition distance dτ = τ Ū, (b) the dimensionless strength of shear, �U/Ū, and
(c) the dimensionless mean dispersion coefficient, D̄/Ūl, as a function of the cross-layer width
of the heterogeneity to the width of the layer, h/H. The colours represent the length of the
heterogeneity, l, in metres. In all cases, the horizontal separation distance, (L − l), between
successive lenses is 10 m, and the width of the channel is H = 10 m.

6. Conclusion

In this work, we have analysed the dispersion of a passive tracer in a pressure-driven
flow through a confined porous medium consisting of a random assemblage of lenses.
Building on earlier work of Rabinovich et al. (2012) and Darvini (2016), we show that
streamlines near the centre of the channel are more likely to divert into the zones of high
permeability (§ 2), and therefore lead to higher mean speeds than streamlines near the
boundaries, consistent with the numerical predictions of Darvini (2016) and the analysis of
Rabinovich et al. (2012). We have established simple expressions for the transition time of
the dispersal of a tracer from the early time Fickian regime to the late time shear-dominated
regime, based on a measure of the shear, �U, and the dispersivity, D, associated with the
heterogeneity. The long-time spreading of tracer injected into the flow has variance which
increases with the distance downstream, x , according to σ ≈ �Ux/Ū ∼ O(0.01 − 0.1)x .
This is in contrast to the earlier phases of the spreading, which are controlled by Fickian
dispersion associated with the heterogeneities (Eames & Bush 1999; Dagan & Fiori 2003),
and which lead to a standard deviation which increases as σ ≈

√
2D̄x/Ū, where D̄ is the

mean dispersivity associated with the randomness of the heterogeneity.
In formations where the thickness of individual layers is typically 1–10 m, and in which

the permeability is log-normally distributed, the distance for transition from Fickian to
shear-driven spreading can vary from 100 to 10 000 m for lenses of thickness 0.1–1 m
(figure 12). Although these are large distances, they are comparable to the scale of
laterally extensive permeable aquifers of finite thickness as being considered for carbon
sequestration projects (e.g. Bentham et al. 2017), and so these effects may be relevant in
interpreting the results of tracer tests.

In the present paper, we neglect effects of molecular diffusion on the transport of the
tracer. In porous rocks, the molecular diffusion is of order Dm ∼ 10−10 m2 s−1 (Phillips
2009). With a more permeable lens of thickness h, diffusion across the lens requires a time
of order h2/Dm, and so provided that this is much longer than the along layer travel time,
L/Ū, then molecular diffusion will be of secondary importance. However, if h2 	 DL/Ū
then molecular diffusion will also become important, leading to suppression of the shear,
and a very long time Taylor-dispersion regime (Taylor 1953). In an aquifer of thickness
H = 10 m, then with a flow speed of U = 10−5–10−6 m s−1, the effects of cross-layer
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diffusion will become important for well–well distances L in excess of approximately
100 km, while the transition from the Fickian diffusion to the shear regime occurs over
a distance of order (100–1000)H ∼ 1–10 km.

In many applications the flow and the permeable formation are three-dimensional and
similar effects will also arise in that case (Rabinovich et al. 2012). In some formations,
some of the lenses of different permeability may be laterally extensive, depending on the
geological process leading their formation. For example in shallow marine environments,
sand bars may have very different scales along-shore and cross-shore. With horizontal
injection wells of scale 1–2 km leading to a dominant flow direction, it may be that the
shear associated with laterally extensive heterogeneities will primarily result from the
upper and lower boundaries, as outlined the present work. However, for more localised
zones of heterogeneity, there may also be cross-flow fluctuation within the plane of the
flow which may enhance the Fickian dispersion; it would be interesting to extend the
present analysis to consider such three dimensional effects (cf. Rabinovich et al. 2012).

In closing we note that in some cases, pulses of chemicals are added to the flow to change
the properties of the formation or the injected fluid; the development of shear could have
an important impact on the effectiveness of such systems and we plan to explore this in a
continuation of this work.
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Appendix A

We model flow through a domain spanning (0, D) in the x direction and (0, H) in the z
direction with D � H, which is driven by a pressure gradient in the x direction.

The flow field u = (u, w) is given by the continuity equation and Darcy’s law for an
isotropic medium, leading to an equation for the pressure field p(x, z),

∇ · u = 0, u = − k
μ

∇p =⇒ ∇ · (k∇p) = 0, (A 1)

where μ is the dynamic viscosity of the fluid, and k(x, z) is the permeability of the porous
medium. We impose pressure boundary conditions

p = 1 at x = 0, p = 0 at x = D, (A 2a,b)

while the no-flux condition through the top and bottom boundaries may be expressed in
terms of n, the normal to the top (z = H) and bottom (z = 0) boundaries,

u · n = 0 =⇒ w = 0 =⇒ pz = 0 at z = 0, H. (A 3)

In order to solve for pressure, we require that the permeability field, k(x, z), is
continuous and differentiable (cf. (A 1)). Equation (A 1) is solved using a pseudo-spectral
code in Dedalus (Burns et al. 2019). We use Fourier modes in the x direction and
Chebyshev modes in the z direction. We use an artificial time-marching scheme to
converge to a fixed point for the pressure. For time stepping, we use a one-stage first-order
Runge–Kutta method with a uniform time step. We run with a resolution of (Nx , Nz)

spectral modes to resolve the permeability field and ensure stability of the time-stepping
method (see table 1). Using the computed pressure field, we estimate the flow field using
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Section k(x, z) D (Nx , Nz)

§ 1 Fast Fourier transform method proposed by Dietrich & Newsam (1993) 544 (32 768, 544)

§ 2
k(x, z)

k1
=

(
k2

k1

)βr(x,z)

, βr(x, z) = exp
(

−
(

(x − xc)
2

(l/2)2

)γ

−
(

(z − zc)
2

(h/2)2

)γ )
40 (16 384, 4096)

§ 3
k(x, z)

k1
=

(
k2

k1

)βe(x,z)

, βe(x, z) = exp
(

−
(

(x − xc)
2

(l/2)2 + (z − zc)
2

(h/2)2

)γ )
20 (8192, 4096)

TABLE 1. The permeability fields, k(x, z), the domain length, D, and the spectral resolution, (Nx , Nz), used in different simulations as described in
each section.
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Darcy’s (A 1). To estimate the travel times along individual streamlines over a region of
length L ≥ l containing the lens, we integrate along each streamline at height z as

ts =
∫ L

0

dx

us(x, z)
, U = L

ts
, (A 4a,b)

where us is the horizontal speed along streamline s and U is the mean flow speed along
individual streamlines which varies with the vertical location z of the streamline in the
channel. Across all simulations, we keep the channel width constant as we do in the
analytic results (H = 1).

Furthermore, to illustrate the evolution of tracer concentration in the domain, a pulse
of inert tracer is injected instantaneously with the flow at t = 0. The concentration of this
tracer c(x, z, t) follows the conservation equation

ct + u · ∇c = κ∇2c, (A 5)

where κ the coefficient of molecular diffusion. The value of κ in our numerical simulations
is chosen to be 10−4. We choose a small enough value of κ so that the time scale for
transverse pore-scale diffusion is negligible compared with the time scales of shear due
to the lens, h2/κ � l/ul, where ul is the velocity within the lens ul (Phillips 2009; Woods
2015). For the parameter values in our calculations, this is consistent with the requirement
that κ 	 O(1 − 10). We solve (A 5) using a third-order four-stage Runge–Kutta method
with a uniform time step.

In the simulations described in § 2, we define the permeability using a rectangular
Gaussian function, βr(x, z), and the simulations described in § 5, we define the
permeability using an elliptic Gaussian function, βe(x, z), where the elliptical region
containing the lens is (see table 1)

(x − xc)
2

(l/2)2
+ (z − zc)

2

(h/2)2
≤ 1. (A 6)

In both sets of simulations, we choose a value of γ to ensure that the permeability varies
smoothly from k2 to k1 over a distance 	 l, h. We choose a value of γ = 20 and find that
our results are not sensitive to the value of γ . Table 1 summarises the parameters in each
set of simulations.

Appendix B

Given the travel time along individual streamlines (2.3), the mean flow speed along each
streamline is thereby given by

U = L
ti

for i = 1, 2. (B 1)

In order to quantify the accuracy of this asymptotic solution for the mean flow speed,
we compare this with the profiles of the mean flow speed obtained from the numerical
simulations described in appendix A (figure 13). As an example, figure 13(a) shows the
streamlines for the flow past a single lens of length l = 4H placed in the centre of the
channel. Figure 13(b) shows the mean flow speed U(z) as a function of the vertical location
z in the channel. The different curves in figure 13(b) show the numerical calculations for
several values of the length of the lens l, where the channel width is kept constant (H = 1).
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FIGURE 13. (a) Streamlines for the flow past a rectangular lens with l = 4H = 4, h = 0.1 and
k2/k1 = 10. (b) The mean flow speed, U(z), as estimated from (B 1) (black profile), and from
numerical simulations for different values of the length of the lens l. In each case the mean
speed is estimated in the region 0 ≤ x ≤ 2l, with the lens centred at x = l, so that the analytical
solution is the same.

In each case, the mean flow speed is calculated over the region 0 ≤ x ≤ L = 2l, where the
centre of the lens is at (xc = l, zc = 0.5) (see appendix A). In figure 13(b), the black curve
represents the analytic solution for the mean flow speed obtained from (B 1). The figure
shows that results from our numerical simulations converge to the analytic solution given
by (B 1) as the length of the lens relative to the channel width is increased.

In the case of long and thin lenses, on entering or leaving the lens, the flow adjusts
rapidly over a short distance compared with the length of the lens. For lenses of length
comparable to the width of the domain, the lateral extent over which the flow is influenced
by the lens may be several multiples of the lens dimension. Figures 8(a) and 8(d) show that
as the flow approaches and then passes through a lens, the streamlines become distorted as
fluid is diverted into the lens, and downstream of the lens the flow then gradually returns
to a uniform flow. We define the zone of influence of the lens, Lcr, to be the horizontal
distance such that for xc − Lcr/2 < x < xc + Lcr/2, the horizontal velocity, u(x, z), across
the channel deviates by more than 0.001 % of the uniform far-field flow.

Figure 14 shows the variation of αcr = l/Lcr with the width ratio, h/H, and the
permeability ratio, k2/k1. As seen from figure 14(a), the vertical extent of the lens, h,
has a significant effect on the value of Lcr since the domain is bounded in the cross-flow
direction. The coefficient, αcr = l/Lcr, provides an approximation for the horizontal
distance between successive lenses in a channel so that the flow fields associated with
individual lenses can be assumed to be independent.

Based on figure 14, we choose a dilution coefficient α = l/L ≈ 0.2 < αcr so that lenses
are in the dilute limit (L = 5l = 5).

Appendix C

We find that the continuum model given by (2.6) provides a good approximation for the
expected mean and variance of tracer once the tracer has passed through n ≥ 4 lenses.
This is demonstrated in terms of the difference between the model prediction (2.6) and
the probability distribution of arrival times of tracer at locations x = nL and at a series of
vertical heights within the layer. Using the N travel times, ta(z, zc), for each lens, i, placed
at N possible vertical locations, zc(i), in the channel, we obtain a range of Nn arrival
times at each vertical location, z, once the tracer has passed through an assemblage of
n lenses. We use these Nn travel times to plot a travel time distribution for the tracer at
different vertical locations once the tracer has passed through n lenses. This is shown by
the histograms in figure 15. The number of bins, Nbins, to plot the histograms using the Nn
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FIGURE 14. Value of αcr = l/Lcr as a function of (a) the ratio of the permeability of the lens
to the background permeability, k2/k1, and (b) the ratio of the width of the lens to the channel
width, h/H. In (a), h/H = 0.4, and in (b), k2/k1 = 8.
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FIGURE 15. Travel time distributions (TTD) at three different vertical locations in the channel
and for a pulse of tracer released instantaneously into the flow at x = 0, t = 0. The arrival
times are estimated at the downstream location x = nL once the tracer has passed through n =
1, 2, 3, 4 lenses respectively and are shown here at three vertical locations, z = 0.15, 0.25, 0.5.
The histograms are binned using Sturges’ formula which uses 
log2(N

n)� + 1 bins. The red
curve is obtained using the continuum model for the flow given by (2.9). The permeability ratio
of the lenses is k2/k1 = 16 and the width ratio is h/H = 0.4.
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travel times is estimated using Sturges’ formula (Sturges 1926),

Nbins = 
log2(N
n)� + 1. (C 1)

Figure 15 shows the normalised model prediction given by (2.9) at three different
vertical heights in the layer, z = 0.15, 0.25, 0.5, once the tracer has passed through
n = 1, 2, 3, 4 lenses respectively. We define a root mean squared difference, ε(z), between
the normalised model prediction (red curves) and the probability distribution given by the
histograms at each height, z, in the layer. We define the vertical average of the root mean
squared difference, ε̄, and find that ε̄ < 0.1 once the tracer has passed through n ≥ 4
lenses. This result is independent of the specific discretisation method with which we
determine the probability distribution of arrival times (Sturges 1926; Scott 1979; Freedman
& Diaconis 1981).
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FIORI, A., JANKOVIĆ, I. & DAGAN, G. 2003 Flow and transport in highly heterogeneous formations:
2. Semianalytical results for isotropic media. Water Resour. Res. 39 (9), 1719.

FREEDMAN, D. & DIACONIS, P. 1981 On the histogram as a density estimator: L2 theory. Probab. Theory
Relat. Fields 57 (4), 453–476.

GREENKORN, R. A. & KESSLER, D. P. 1969 Dispersion in heterogeneous nonuniform anisotropic porous
media. Ind. Engng Chem. 61 (9), 14–32.
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