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Electrokinetic flows with heterogeneous conductivity configuration occur widely
in microfluidic applications such as sample stacking and multidimensional assays.
Electromechanical coupling in these flows may lead to complex flow phenomena,
such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic
instability (EKI). In this work we develop a generalized electrokinetic model suitable
for the study of microchannel flows with conductivity gradients and shallow-channel
geometry. An asymptotic analysis is performed with the channel depth-to-width ratio
as a smallness parameter, and the three-dimensional equations are reduced to a
set of depth-averaged equations governing in-plane flow dynamics. The momentum
equation uses a Darcy–Brinkman–Forchheimer-type formulation, and the convective–
diffusive transport of the conductivity field in the depth direction manifests itself as
a dispersion effect on the in-plane conductivity field. The validity of the model
is assessed by comparing the numerical results with full three-dimensional direct
numerical simulations, and experimental data. The depth-averaged equations provide
the accuracy of three-dimensional modelling with a convenient two-dimensional
equation set applicable to a wide class of microfluidic devices.

1. Introduction
Electrokinetic flows with conductivity gradients occur in a wide range of

microfluidic applications including sample stacking, multidimensional assays and
assays with poorly controlled sample chemistry (Burgi & Chien 1991; Herr et al.
2003). Coupling between electrostatic and mechanical forces in these flows may
sometimes lead to complex flow phenomena including sample dispersion due to
electro-osmotic flow mismatch and electrokinetic instability (EKI). In earlier work
(Lin et al. 2004; Chen et al. 2005; Storey et al. 2005; Bharadwaj & Santiago 2005),
we and our co-authors studied these physical phenomena, and our results provided
good agreement with experimental data (Oddy, Santiago & Mikkelsen 2001; Chen &
Santiago 2002).

A common characteristic of the systems we have previously studied is that
flow channels were all ‘shallow’ with depth dimensions (z) small compared with
channel widths (y) or lengths (x). Shallow-channel geometries are common in
electrokinetic microfluidic devices as they are typically fabricated in glass or silica
using photolithography and wet etching (Reyes et al. 2002). In Lin et al. (2004) and
within the context of EKI study, we demonstrated that a purely two-dimensional
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44 H. Lin, B. D. Storey and J. G. Santiago

model was insufficient in modelling complex electrokinetic flows. A three-dimensional
analysis was required in order to make accurate quantitative predictions of the stability
threshold observed in experiments. In Chen et al. (2005) and Storey et al. (2005), we
proposed various linear or lower-order depth-averaged models for the study of both
convective and absolute EKI. In these models, the full three-dimensional equations
were reduced to sets of effective two-dimensional equations through depth-averaging.
The advantage of this approach is that more complex flow physics can be captured
without resorting to expensive three-dimensional computations.

In this paper, we extend and complete the ideas first developed in Chen et al.
(2005) and Storey et al. (2005). We aim to develop a generalized nonlinear depth-
averaged model suitable for the study of electrokinetic microchannel flows in thin
channels. We accomplish this through a complete asymptotic analysis based on the
small channel aspect ratio. Similar solution approaches can be found in cylindrical
geometries. For example, Ghosal (2003) employed area averaging in the context of
capillary-zone electrophoresis. We will derive a Darcy–Brinkman–Forchheimer-type
of momentum equation in the context of electrokinetic flow, and we shall also present
a generalized two-dimensional Taylor dispersion equation. We evaluate the accuracy
of our model by comparing the model results with full three-dimensional direct
numerical simulations (DNS) and experimental data.

2. Formulation
In Lin et al. (2004), we developed a set of governing equations suitable for the study

of general electrokinetic flows in microchannels, with specific applications to EKI. The
governing equations begin with the conservation of mass for a two-species symmetric
electrolyte solution, Poisson’s equation for the electric field, the conservation of mass
for an incompressible liquid, and the conservation of momentum including the body
force due to an electric field acting on charged fluid (Probstein 1994). These complete
equations are simplified when we make use of three assumptions:

(a) that the charge relaxes instantaneously;
(b) that in the fluid bulk, the difference in cationic and anionic concentrations is

small compared to the background concentration (electroneutrality); and
(c) that the electric double layers that form near the channel walls are very small

compared to the system size.
Assumption (a) holds when the charge relaxation time, ε/σ , is much shorter than the

flow times in the system. Here ε and σ are the permittivity and electrical conductivity,
respectively. Even when the salt concentration is dilute (∼30 μm) and the conductivity
is low, the charge relaxation time is of the order of 1 μs. Assumption (b) holds when
the dimensionless parameter εE0/FC0d � 1. Here, E0 is the magnitude of the applied
field, F is Faraday’s constant, C0 is the background ion concentration, and d is the
channel dimension. Typical of our applications, this number is of the order of 10−5.
Finally, assumption (c) holds when λD/d � 1, where λD is the Debye length. Typical
values for λD are 50 nm or less and the smallest channel dimensions are 10 μm or
greater.

Upon making these assumptions, we arrive at the governing equations which we will
use as our starting point (see Lin et al. 2004 for details). Under the above restrictions,
the (dimensional) governing equations are:

∂σ

∂t
+ v · ∇σ = D∇2σ, (2.1)

∇ · (σ∇Φ) = 0, (2.2)
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Depth-averaged electrokinetic flow model for shallow microchannels 45

ε∇2Φ = −ρE, (2.3)

∇ · v = 0, (2.4)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + μ∇2v − ρE∇Φ. (2.5)

Here D is the diffusivity of the conductivity field which is derived from those of the
composing ion species, v = (u, v, w) is the velocity field, Φ is the electric potential,
ρE is the charge density, ρ is the buffer liquid density (which can be assumed to
be that of water for dilute aqueous buffers), p is the pressure, and μ is the liquid
viscosity. Equations (2.1)–(2.5) represent the conservation of conductivity, current
continuity, Poisson’s equation for the electric potential, conservation of mass for
an incompressible fluid, and conservation of momentum, respectively. Since we are
assuming a symmetric binary electrolyte (such as potassium chloride KCl) it is
convenient to use electrical conductivity and charge density as variables as opposed
to tracking molar concentration of individual ionic species. Note that the electrical
body force term (−ρE∇Φ in (2.5)) is retained even outside the electric double layers,
i.e. in the fluid bulk. The electrical body force is present when the electric field is not
orthogonal to the electrical conductivity gradient (Hoburg & Melcher 1976; Lin et al.
2004; Chen et al. 2005).

These equations are subject to the following boundary conditions at channel walls:

∇σ · n = 0, (2.6)

∇Φ · n = 0, (2.7)

v · n = 0, (2.8)

v · t = −εζ

μ
∇Φ · t, (2.9)

where n and t are the normal and tangent vectors attached to a solid surface,
respectively, ζ is a wall zeta potential, and (2.9) is the Helmholtz–Smoluchowski
formula for electro-osmotic slip velocity. The typical value of ζ for a millimolar
electrolyte with pH � 7 and a glass surface is about −0.1 V (Probstein 1994). It is
well-known that the zeta potential depends upon the local ionic concentration which
can lead to sample dispersion in applications such as field amplified sample stacking
(Burgi & Chien 1991).

It is important to note that the governing equations are strictly only valid for the
fluid outside the thin electric double layers which form near the channel walls. Further,
the boundary conditions are strictly applied at the outer interface of the electric double
layers, not at the channel walls. However, in our applications, the electric double-
layer thickness is typically three orders of magnitude smaller than the smallest channel
dimension, λD/d ∼ 10−3. In this case, we may simply model the electric double layers
through the effective ‘slip’ boundary conditions, equation (2.9) (Probstein 1994).

2.1. Non-dimensionalization and scaling analysis

We non-dimensionalize (2.1)–(2.9) using the following scales:

[x, y] = H, [z] = d, [Φ] = Φo = EoH, [σ ] = σo, [u, v] = Uev≡εE2
od

2

μH
,[

w
]

=
Uevd

H
, [t] = to =

H

Uev

, [p] =
μUevH

d2
, [ζ ] = ζo.

⎫⎪⎬
⎪⎭
(2.10)
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Here, H is a half-width (in the y-direction), and d is the half-depth (z-direction) of
the channel. The characteristic field Eo is taken to be the value of the applied field,
σo is the characteristic conductivity of the electrolyte solution, and ζo is a reference
zeta potential. The scale for the horizontal velocities, the so-called electroviscous
velocity Uev , is set such that the viscous force balances the electrical body force in
(2.5) (Hoburg & Melcher 1976; Lin et al. 2004; Chen et al. 2005; Storey et al. 2005).
Note that the choice of the velocity scale is not unique. In certain applications where
velocity gradients due to electro-osmosis dominate over those due to electroviscous
forces, the appropriate scale may be �Ueo = Ueo,2 − Ueo,1, where Ueo,2 and Ueo,1 are,
respectively, the maximum and minimum values of electro-osmotic velocity. However,
the choice of the dispersion velocity scale does not affect our analysis. We defer
further discussion to § 3.3. We have also set the pressure gradient to be of the same
order of magnitude as the viscous and electric body forces. Finally, the scale for the
vertical velocity w is set such that all three terms in the continuity equation (see
(2.14) below) are of the same order. Owing to the assumed shallow channel depth, we
further define a smallness parameter to be

δ ≡ d

H
. (2.11)

After non-dimensionalization, we obtain the following set of dimensionless equations:

Pedδ

(
∂σ

∂t
+ v · ∇σ

)
=

∂2σ

∂z2
+ δ2∇2

Hσ, (2.12)

δ2∇H · (σ∇HΦ) +
∂

∂z

(
σ

∂Φ

∂z

)
= 0, (2.13)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.14)

Redδ

(
∂u
∂t

+ v · ∇u

)
= −∇Hp +

∂2u
∂z2

+ δ2∇2
H u +

(
∇2

HΦ +
1

δ2

∂2Φ

∂z2

)
∇HΦ, (2.15)

Redδ
3

(
∂w

∂t
+ v · ∇w

)
= −∂p

∂z
+ δ2 ∂2w

∂z2
+ δ4∇2

Hw +

(
∇2

HΦ +
1

δ2

∂2Φ

∂z2

)
∂Φ

∂z
. (2.16)

For convenience, we have denoted the horizontal velocity vector as u ≡ (u, v) to
distinguish it from the three-dimensional velocity vector v. We also denote a two-
dimensional in-plane gradient as

∇H ≡
(

∂

∂x
,

∂

∂y

)
. (2.17)

Different from our presentation in Lin et al. (2004), the Péclet and Reynolds numbers
are now more appropriately based on the small depth scale d , that is

Ped ≡ Uevd

D
, Red ≡ ρUevd

μ
. (2.18)
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The boundary conditions have the same forms except for the tangential velocities, i.e.

v · t = − 1

Rv

ζ∇Φ · t, (2.19)

where the dimensionless group

Rv ≡ −Eod
2

ζoH
(2.20)

denotes the ratio of electroviscous to electro-osmotic velocities.
For our numerical computations, we adopt an empirical correlation for the non-

dimensional zeta potential (Yao et al. 2003),

ζ (σ ) = σ −n. (2.21)

In this relation, we have chosen a zeta potential scale ζo to be that at the reference
conductivity σo. For the power index, we adopt n ≈ 0.33 based on experimental
data (Yao et al. 2003; Sadr et al. 2004). (For a channel surface of fixed charge,
the theoretical value is n= −1/2 based on solutions to the Poisson–Boltzmann
equations (Probstein 1994).) We emphasize that (2.21) is an experimentally validated
approximation and chosen as an example to compute electro-osmotic velocity in
typical glass or silicon microchannels, which facilitates comparison with experiments.
However, our analysis does not depend on the specific form of zeta potential. Our
results can be used with any zeta potential model in so far as the resulting electro-
osmotic velocity at the top (z = + 1) and bottom (z = −1) of the microchannels are
equal at every in-plane (x, y) location. Further discussions on this latter constraint,
as well as the validity of (2.21) are presented in Appendix B. In the following and
without losing generality, we shall simply write the boundary condition (2.19) as

v · t = − 1

Rv

ζ∇Φ ≡ ueo, (2.22)

where ueo denotes the local electro-osmotic velocity, and we shall assume
ueo(x, y, z = + 1) = ueo(x, y, z = −1).

We perform asymptotic analysis on the system of equations (2.12)–(2.16), assuming
that δ � 1. We expand our variables as

f = f0 + δf1 + δ2f2 + · · · , (2.23)

and substitute them into the governing equations for balances on the same order.
Our goal is to construct a set of two-dimensional depth-averaged equations with
first-order (second-order in the momentum equation) consistency in δ. Note that in
the governing equations (2.12)–(2.16) there are two other dimensionless parameters,
namely, Ped and Red . In order for the asymptotic analysis to be valid, Redδ � 1
and Pedδ � 1 must be satisfied. These constraints suggest that both the viscous and
molecular diffusion time scales are much smaller when compared with the convective
time scale. Further discussions on these constraints are deferred to § 3.3.

2.2. Flow field

The flow-field analysis follows a Darcy–Brinkman–Forchheimer (DBF) approach, in
which we include both inertia and in-plane viscous diffusion effects. The DBF model
has been extensively adopted to study flows in porous media and biological tissues
(see for example, Vafai & Tien 1981; Liu & Masliyah 1996; Khaled & Vafai 2003),
and here we extend the model to electrokinetic applications and demonstrate its
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superiority over the simpler lower-order Darcy equation (see (7) in Khaled & Vafai,
and (2.74) below).

The δ0-order balance of (2.14), (2.15) and (2.16) gives

∇H · u0 +
∂w0

∂z
= 0, (2.24)

0 = −∇Hp0 +
∂2u0

∂z2
+ ∇2

HΦ0∇HΦ0, (2.25)

0 = −∂p0

∂z
. (2.26)

In deriving these equations, special attention should be paid to the charge density
terms (1/δ2)∂2Φ/∂z2 in (2.15) and (2.16). The multiplier 1/δ2 suggests that a slight
vertical variations in Φ can generate a large effect. However, our analysis (presented
in § 2.4 and Appendix A) shows that

Φ0 = Φ0(x, y, t), Φ1 = Φ1(x, y, t), Φ2 = Φ2(x, y, t), (2.27)

and the vertical variation of Φ enters only the first-order (δ1) momentum balance via
the third-order electric field Φ3 . Furthermore, (2.26) gives

p0 = p0(x, y, t). (2.28)

This independence of the pressure gradient and the electric body force in the z-
direction in (2.25) suggests that the horizontal velocity u0 can be conveniently
integrated to yield

u0 = U0 + ueo0
, (2.29)

where

Uo ≡
(
∇Hpo − ∇2

HΦo∇HΦo

) (z2 − 1)

2
(2.30)

is the internally generated flow, and we have applied the boundary condition (2.22)
to the leading order.

We define a depth-averaging action as

f̄ ≡ 1
2

∫ 1

−1

f dz. (2.31)

When this action is applied to the velocity fields (2.29), (2.30), we obtain

ū0 = Ū0 + ueo0
, (2.32)

Ū0 = − 1
3

(
∇Hp0 − ∇2

HΦ0∇HΦ0

)
. (2.33)

Now in terms of the depth-averaged flow fields ū0 and Ū0, u0 can be re-expressed as

u0 = ū0 + Ū0

(
1
2

− 3
2
z2

)
. (2.34)

Note that the parabolic velocity profile in (2.34) can induce a dispersion effect on the
conductivity field as we will show in § 2.3.

Next we consider the continuity equation (2.24); depth-averaging and considering
that w(z = ± 1) = 0, we obtain

∇H · ū0 = 0. (2.35)
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Equation (2.24) can also be integrated in the z-direction, making use of (2.34), to
obtain the vertical velocity w0 as

w0 = (∇H · Ū0)

(
z3

2
− z

2

)
. (2.36)

The higher-order depth-averaged velocity fields may be obtained by performing the
asymptotic analysis as well as the integration and depth-averaging actions to higher
orders in δ. The procedure is lengthy but straightforward and we give the details in
Appendix A.

With the evolution equation for the depth-averaged velocity field at different orders,
we may now reconstruct the evolution equation for the total depth-averaged velocity
ū (Ghosal 2003), which we define as

ū(x, y) ≡ ū0 + δū1 + δ2ū2, (2.37)

neglecting higher-order terms. We multiply (A 6) by δ, (A 7) by δ2 and add to (2.32)
to obtain

Redδ

(
∂ ū
∂t

+ ū · ∇H ū

)
= −∇H p̄ + ∇2

HΦ̄∇HΦ̄ − 3(ū − ueo) + δ2∇2
H ū. (2.38)

Here p̄, Φ̄ and ueo are all reconstructed up to δ2 in a similar manner using (2.23), and
in arriving at (2.38) we have arbitrarily added or dropped terms of o(δ2) without losing
the second-order asymptotic consistency. This equation is similar to the DBF equation
in porous media flow (Vafai & Tien 1981; Liu & Masliyah 1996). A linear version
used for convective instability analysis has been introduced in a heuristic way in Chen
et al. (2005). Note that in order to arrive at the final DBF form in (2.38), we have
dropped additional terms in (A 6) and (A 7) (for ū1 and ū2, respectively). In principle,
these terms can be incorporated into (2.38) in a straightforward manner, such that the
final equation is rigorously second order in δ. However, we find such a formulation
is cumbersome and impractical when implemented for numerical simulations, and
we simplify the equations following the standard DBF form instead. Such an ad
hoc simplification is nonetheless justified when we compare the DBF model with a
direct non-depth-averaged model simulation as shown below. Further details on the
simplification are presented in Appendix A.

Finally, because the divergence-free condition is satisfied at all orders ((2.35), (A 8)
and (A 9)), ū also satisfy the continuity equation

∇H · ū = 0. (2.39)

2.3. Conductivity field

The conductivity field obeys the convective–diffusive equation (2.12). Naturally, for
the thin channel that we are interested in with a parabolic velocity distribution
such as (2.34), we would expect a dispersion effect similar to the Taylor–Aris type
(Probstein 1994; Stone & Brenner 1999; Ghosal 2003). The asymptotic analysis on
the conductivity equation yields this result.

The zeroth-order balance of (2.12) is simply

∂2σ0

∂z2
= 0. (2.40)
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This equation suggests that σ0 = σ0(x, y, t), taking into account boundary condition
(2.6). At the δ1-order, we have

Ped

(
∂σ0

∂t
+ u0 · ∇Hσ0

)
=

∂2σ1

∂z2
. (2.41)

When (2.41) is depth-averaged, with ∂σ1/∂z = 0 at z = ± 1, we obtain an evolution
equation for σ0 as

∂σ0

∂t
+ ū0 · ∇Hσ0 = 0. (2.42)

Note that we have taken into consideration that w̄0 = 0 since w0 is an odd function in
z. Now because we are equipped with the z-dependence of u0 (equation (2.34)), and
considering that σ0 is not a function of z, (2.41) can be integrated in the z-direction
for σ1 to obtain

σ1 = 1
4
P ed(Ū0 · ∇Hσ0)

(
z2 − 1

2
z4

)
+ C, (2.43)

where C is an integration constant, and we have used (2.42) when evaluating the
left-hand side of (2.41). Upon averaging, (2.43) yields

σ̄1 = 7
120

P ed(Ū0 · ∇Hσ0) + C, (2.44)

with the aid of which we can re-express (2.43) as

σ1 = σ̄1 + 1
4
P ed(Ū0 · ∇Hσ0)

(
− 7

30
+ z2 − 1

2
z4

)
. (2.45)

The evolution equation for σ1 is revealed only when we go to the δ2-order balance
of (2.12). The equation reads

P ed

(
∂σ1

∂t
+ u1 · ∇Hσ0 + u0 · ∇Hσ1 + w0

∂σ1

∂z

)
=

∂2σ2

∂z2
+ ∇2

Hσ0. (2.46)

Here we have already taken into the consideration that ∂σ0/∂z =0. The depth-
averaging action with ∂σ2/∂z = 0 at z = ± 1 yields an evolution equation for σ1:

P ed

(
∂σ̄1

∂t
+ ū1 · ∇Hσ0 + u0 · ∇Hσ1 + w0

∂σ1

∂z

)
= ∇2

Hσ0. (2.47)

The convoluted averages can be evaluated using the expressions for u0, w0 and σ1, as
given by (2.34), (2.36) and (2.45), respectively. The resulting equation reads

∂σ̄1

∂t
+ ū1 · ∇Hσ0 + ū0 · ∇H σ̄1 =

1

P ed

∇2
Hσ0 + 2

105
P ed[Ū0 · ∇H (Ū0 · ∇Hσ0)

+ (∇H · Ū0)(Ū0 · ∇Hσ0)]. (2.48)

Now similar to the construction of (2.38), we multiply (2.48) by δ, and add to (2.42)
to obtain an evolution equation for σ̄ up to the first order,

∂σ̄

∂t
+ ū · ∇H σ̄ =

δ

P ed

{
∇2

H σ̄ + 2
105

P e2
d∇H · [Ū(Ū · ∇H σ̄ )]

}
, (2.49)

where again all the total variables are reconstructed from their asymptotic expansions
using (2.23), up to δ1, and

Ū ≡ Ū0 + δŪ1 + δ2Ū2 + · · · = ū − ueo. (2.50)

In arriving at (2.49) we have arbitrarily added or dropped terms of o(δ) without
losing the asymptotic consistency. The combination of the last two terms in (2.48)
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yields the Taylor dispersion term ∇H · [Ū(Ū · ∇H σ̄ )] in conservative form in (2.49).
Note that unlike the momentum equation (2.38) in which we included effects up
to the second order, we shall study only the first-order effects in the conductivity
equation. The reason for doing so (or rather, the reason for going to a higher-order
analysis in the momentum equation) will be discussed in § 3.

Equation (2.49) is a generalized two-dimensional Taylor-dispersion formulation.
The right-hand-side term can be re-written as

δ

Ped

∇H · (D∇H σ̄ ), (2.51)

where D is a second-order tensor and defined as (in index form)

Dij ≡ δij +
2

105
Pe2

dŪiŪj . (2.52)

Here, δij denotes the second-order unit tensor. In general D is both heterogeneous
and anisotropic, owing to the non-uniform dispersion velocity Ū .

Note that in one-dimensional geometry (see (3.3) below) and when Ū = const ,
(2.49) recovers the classical Taylor–Aris dispersion formulation, albeit with a different
numerical coefficient (2/105) owing to the geometry. Equation (2.49) can also be
simplified to (10) in Stone & Brenner (1999), when a cylindrically symmetric radial
outflow (inflow) is considered.

When the depth-averaged conductivity is obtained from the evolution equation
(2.49), the full three-dimensional conductivity field can be predicted (up to δ1) using
σ = σ0 + δσ1 and (2.45):

σ (x, y, z) = σ̄ (x, y) + 1
4
Pedδ(Ū · ∇H σ̄ )

(
− 7

30
+ z2 − 1

2
z4

)
. (2.53)

2.4. The Ohmic equation

With the results from the previous section we are now ready to analyse the asymptotic
structure of the electric potential which depends on the instantaneous conductivity
field via the Ohmic current conservation law (2.13).

To the leading order, (2.13) gives

∂

∂z

(
σ0

∂Φ0

∂z

)
= 0. (2.54)

Considering that σ0 = σ0(x, y) and the boundary condition (2.7), this equation suggests
that

∂Φ0/∂z = 0. (2.55)

Using Φ0 = Φ0(x, y), at the next order (δ1) we obtain

∂

∂z

(
σ0

∂Φ1

∂z

)
= 0. (2.56)

We conclude similarly that

∂Φ1/∂z = 0. (2.57)

A governing equation for Φ0 is revealed only at the asymptotic order of δ2, namely

∇H · (σ0∇HΦ0) +
∂

∂z

(
σ0

∂Φ2

∂z

)
= 0, (2.58)

∇H · (σ0∇HΦ0) = 0, (2.59)
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where (2.59) is derived from (2.58) via depth-averaging action and application of
Neumann boundary conditions on Φ2. We may also subtract (2.59) from (2.58) to
yield

∂Φ2/∂z = 0. (2.60)

For our analysis we also require an equation for Φ̄1, which is obtained at O(δ3):

∇H · (σ1∇HΦ0) + ∇H · (σ0∇HΦ1) +
∂

∂z

(
σ0

∂Φ3

∂z

)
= 0, (2.61)

∇H · (σ̄1∇HΦ0) + ∇H · (σ0∇HΦ1) = 0. (2.62)

The reconstruction process up to δ1 (similar to that performed in § 2.3) reveals the
two-dimensional depth-averaged Ohmic equation as

∇H · (σ̄∇HΦ̄) = 0. (2.63)

This equation preserves the form of the original three-dimensional equation (2.2).

2.5. Summary of formulation

Before we proceed, we summarize our equation system. We should keep in mind that
these are the two-dimensional governing equations for depth-averaged quantities. The
equations are:

∂σ̄

∂t
+ ū · ∇H σ̄ =

1

Rae

{
∇2

H σ̄ + 2
105

Ra2
e δ

2∇H · [Ū(Ū · ∇H σ̄ )]
}
, (2.64)

Ū ≡ ū − ueo, ueo ≡ − 1

Rv

ζ∇H Φ̄, (2.65)

∇H · (σ̄∇HΦ̄) = 0, (2.66)

∇H · ū = 0, (2.67)

ReHδ2

(
∂ ū
∂t

+ ū · ∇H ū

)
= −∇H p̄ + ∇2

HΦ̄∇HΦ̄ − 3Ū + δ2∇2
H ū, (2.68)

where

Rae ≡ Ped/δ (2.69)

is the electric Rayleigh number, which is similar to a Péclet number, but defined with
the channel width H instead. We also use the in-plane Reynolds number

ReH ≡ Red/δ = UevH/ν, (2.70)

to be consistent with the new two-dimensional depth-averaged perspective. Note
that when compared with (2.19), we have replaced Φ with the depth-averaged
variable Φ̄ . We will also replace the conductivity in the zeta potential relation (2.21)
with the averaged variable σ̄ , namely, ζ = σ̄ (x, y)−n, n= 0.33. This approximation is
asymptotically consistent and the justification is presented in Appendix B.

We compare our current equation set to the zeroth-order equation set that we
derived and used in previous work (Storey et al. 2005):

∂σ̄

∂t
+ ū · ∇H σ̄ =

1

Rae

∇2
H σ̄ , (2.71)

∇H · (σ̄∇HΦ̄) = 0, (2.72)

∇H · ū = 0, (2.73)
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0 = −∇H p̄ + ∇2
HΦ̄∇HΦ̄ − 3Ū, (2.74)

where Ū and ueo have the same definitions as in (2.65).
The major contributions of the depth-averaged equations are the first-order

correction for (Taylor–Aris-type) dispersion in the conductivity equation and
the second-order-consistent momentum equations. Even though the zeroth-order
equations have been demonstrated to provide excellent results in the linear analysis of
electrokinetic flow instability (Chen et al. 2005; Storey et al. 2005), the higher-order
effects are essential to a number of applications. As we shall see in the next section,
the Taylor dispersion becomes significant when the conductivity gradients and electric
field are colinear. Both Chen et al. (2005) and Storey et al. (2005) considered only
the case where electric field and conductivity gradient were orthogonal. The in-plane
diffusion in the momentum equation, albeit a small quantity compared with the major
balances, provides crucial dissipation at high wavenumbers. The inclusion of this term
(which is a second-order differential operator on ū) also preserves the mathematical
structure similar to the original Navier–Stokes equations, and reproduces boundary
effects not captured by lower-order approximations (e.g. the electro-osmotic slip
conditions at y = ±1 walls).

In § 3, we shall compare numerical results from the new depth-averaged equations
to direct numerical simulations and experimental data to validate the performance of
the new model. In addition to validating the new equations, we will also elucidate the
effects of both Taylor dispersion and in-plane momentum diffusion on the observed
phenomena. In short, we will make detailed numerical comparisons between four
models:

(a) (2.12)–(2.16) solved in three dimensions, hereinafter referred to as the ‘direct
numerical simulation’ (DNS);

(b) (2.64)–(2.68), hereinafter referred to as the ‘higher-order depth-averaged model’;
(c) (2.65)–(2.68), but with (2.71) instead of (2.64) for conductivity, hereinafter

referred to as the ‘higher-order depth-averaged model without dispersion’; and
(d) (2.71)–(2.74), hereinafter referred to as the ‘zeroth-order depth-averaged model’

(although note that (2.71) does include a partial first-order term for molecular
diffusion).
We emphasize that the model (c) is not derived from the asymptotic expansion; this
model is presented only to clarify separately the physical effects of Taylor dispersion
by omitting the associated term from the numerical simulation.

The above equations are studied via numerical simulation, details on the methods
are provided in Appendix C.

3. Results
In this section, we consider two model problems to investigate the behaviour of the

depth-averaged model and assess its validity. These two configurations are shown in
figure 1.

In the Case I (figure 1a), we consider the electric field and the conductivity
gradient to be coaxial. We investigate a small low-conductivity sample surrounded
by a high-conductivity fluid in a periodic channel. This configuration has relevance
to applications such as field amplified sample stacking (FASS) (Burgi & Chien
1991; Bharadwaj, Santiago & Mohammadi 2002), in which dispersion often leads
to significant band-broadening effects (e.g. see Bharadwaj et al. 2002; Ghosal 2004;
Bharadwaj & Santiago 2005).
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Figure 1. Basic flow configurations of study in this paper. (a) Case I, (b) Case II. In both
cases the channel is thin in the z-direction (into the page) and the electric field points along
the x-direction. Dark and light regions, respectively, denote low and high conductivity. The
conductivity is initially assumed to be uniform in the z-direction.

In Case II (figure 1b), we consider the electric field and the conductivity gradients
to be orthogonal. We revisit our previous work (Lin et al. 2004; Storey et al. 2005)
and investigate a periodic shallow channel with the lower half-width filled with low-
conductivity fluid and the upper half filled with high-conductivity fluid. Under this
configuration the higher-order dispersion term (see (2.64) and (3.1) below) is only
active when the flows become fully unstable (it plays no role in the initial growth of
linearized disturbances).

While we will present our results in terms of dimensionless numbers, we base our
parameter choice on typical experiments. For both of the cases the half-width of the
channel is taken to be 500 μm, the channel half-depth is 50 μm (except for cases a, b, d
and e presented in figures 3 and 10). The ratio of the high-to-low conductivity ratio
in all cases is taken as 10:1. The physical parameters of the aqueous fluid are taken
from experimental parameters summarized in table I of Lin et al. (2004).

3.1. Case I: coaxial gradient

We first study a simplified form of Case I to isolate and best illustrate the effect of
the dispersion term, which, from (2.64), has the form

2
105

Ra2
e δ

2∇H · [Ū(Ū · ∇H σ̄ )]. (3.1)

At a local point (xo, yo), this dispersion term can be re-expressed as

2
105

Ra2
e δ

2 ∂

∂n

(
Ū 2 ∂σ̄

∂n

)
, (3.2)

where Ū ≡ |Ū |, and n is defined as the unit vector along the direction of the dispersion
velocity vector Ū(xo, yo). The dispersion effect is maximal if Ū and ∇H σ̄ point to
the same direction, and minimal if they are at normal directions to each other. If
we assume the flow is invariant in y, the conductivity equation is then simplified to
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Figure 2. Shape of the axial conductivity profile as computed with three models for
Rae =21.7, ReH = 0.043, Rv = 2.8 and δ =0.1. The higher-order depth-averaged model and
the direct numerical simulation produce identical results. The zeroth-order depth-averaged
model is inaccurate. The time of the snapshot is t/to = 2.

be one-dimensional:

∂σ̄

∂t
+ ū

∂σ̄

∂x
=

1

Rae

[
∂2σ̄

∂x2
+

2

105
Ra2

e δ
2 ∂

∂x

(
Ū 2 ∂σ̄

∂x

)]
. (3.3)

Here the assumption of invariance in y is made only for simplicity and will be relaxed
shortly. In this one-dimensional case, the Ohmic and the momentum equations become
trivial. The former is

E = I/σ̄ , (3.4)

where E is the electric field and I is the uniform constant ionic current, and the
dispersion velocity Ū is simply given by

Ū = ū − ueo = ū − 1

Rv

ζ (σ̄ )E, (3.5)

where ū must be a constant to obey a constant mass flux. Equation (3.5) suggests
that when the zeta potential depends on conductivity, the dispersion velocity Ū also
becomes x-dependent. This non-uniformity in Ū directly contributes to the non-
uniform dispersion of conductivity, via the second term on the right-hand-side of
(3.3) (where Ū 2 appears within the spatial derivative ∂/∂x.) Equations similar to
(3.3)–(3.5) can be found, for example, in Ghosal (2004), in the context of dispersion
in (cylindrical) capillary electrophoresis devices.

In figure 2, we compare the axial conductivity profile at an instant in time
as computed with the one-dimensional form of the higher-order depth-averaged
model, the zeroth-order depth-averaged model and DNS. Following the y-invariance
assumption, the DNS simulates the complete flow dynamics in the x- and z-directions.
After the flow is computed via DNS, the result is depth-averaged for comparison. In
figure 2, the electric field is taken to be Eo = 5000 Vm−1, the channel length is 500 μm,
the channel depth is 50 μm, and all electrolyte parameters are taken from Lin et al.
(2004). These parameters correspond to δ = 0.1, Rae = 21.7, ReH = 0.043 and Rv =2.8.
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0 0.5 1.0 1.5 2.0
0.2

0.3

0.4

0.5

0.6

0.7

Higher-order model

Zeroth-order model

DNS

a

b

e

d

c

t/t0

V
ar

ia
nc

e

Figure 3. Variance of electrical conductivity σ as a function of time, computed from the
three models, for δ = 0.02, 0.05, 0.1, 0.14 and 0.2 (cases a–e, respectively). Other dimensionless
parameters are identical for all the five cases, namely, Rae = 21.7, ReH = 0.043 and Rv = 2.8. For
small δ (case a) all three models converge. For moderate δ values (cases b–d) the higher-order
model and DNS produce nearly identical results, which deviate from that from the zeroth-order
model. The high-order model begins to lose accuracy when δ is further increased (case e). The
time scale to here is taken to be that of case c, computed with (2.10), such that the variance is
comparable on the same physical time scale.

We see excellent agreement between the higher-order depth-averaged model and the
DNS. This figure shows both the effect of the advective dispersion in increasing the
width of the sample region and in reducing the migration velocity of the peak, as is
commonly known to occur in pressure-driven flows. The evolution computed from
the zeroth-order depth-averaged model includes only molecular diffusion (see (2.71))
and provides the slowest rate at which the sample can spread.

Figure 3 shows the time evolution of sample variance computed from the three
models at different channel depths. The variance, Var(σ ), is computed with the
formula

Var(σ ) = L2
σ =

∫ 2π

0

σ̄ncx
2 dx, (3.6)

where Lσ characterizes the width of the sample plug, and σ̄nc is normalized and
re-centred at the computational domain from the conductivity profiles such as shown
in figure 2. The five cases presented have the same parameters as figure 2, except that
the channel depths are d = 10, 25, 50, 70 and 100 μm, corresponding to δ = 0.02, 0.05,
0.1, 0.14 and 0.2, respectively. The Rayleigh, Reynolds and Rv numbers are constants
for all five cases, and are the same as those used in figure 2. We see that when
δ is small (case a), the DNS, higher-order depth-averaged model, and zeroth-order
depth-averaged model converge and are in close agreement. The convergence of the
three models at small δ agrees with the asymptotic behaviour of the dispersion term
in (3.3), where the dispersion term scales as Ra2

e δ
2.

As δ increases, the DNS and higher-order model depart from the zeroth-order
model (which does not depend on δ) indicating that dispersion is becoming important.
For cases b–d the higher-order depth-averaged model and DNS remain in excellent
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Figure 4. Contours of the deviation from the depth-averaged conductivity. (a) is from DNS
and (b) is from (2.53). We find excellent agreement in the shape and magnitude of the
disturbance fields computed from the two models. The depth-averaged, axial conductivity
profile is shown in figure 2.

agreement. Visible deviation of the higher-order model from DNS is only seen for
case e, δ = 0.2. We tested numerous conditions and find that the higher-order model
performs well under a significant range of parameters. The zeroth-order depth-
averaged model consistently provides erroneous results at moderate values of δ and
realistic operating conditions. This departure from the other two models is only
natural, because dispersion behaves similarly to diffusion, such that the following
scaling laws approximately apply:

L2
σ ∼ 1

Rae

(
1 + 2

105
Ra2

eδ
2Ū 2

)
t, higher-order model,

L2
σ ∼ 1

Rae

t, zeroth-order model,

⎫⎪⎬
⎪⎭ (3.7)

Note that in figure 2, the higher-order and DNS models do not exhibit an exact linear
behaviour owing to the non-uniform and changing dispersion velocity Ū . Evidently for
long enough time, the zeroth-order model is expected to deviate from the higher-order
model (and the DNS) even for small Ra2

e δ
2 values.

In figure 4, we show a comparison of the conductivity fields along the shallow
dimension of the channel (z) as computed from the DNS and predicted from the
higher-order depth-averaged model using (2.53) and assuming y-invariance. The
higher-order depth-averaged model accurately predicts the conductivity structure in
the complete (x, z)-plane. Even though this higher-order model does not directly
compute the variation of the conductivity and velocities in the z-direction, these
results show that we can always use (2.53) to find the variation from the depth-
averaged field. Again, while we show only a snapshot in figure 4, we find the result
to be robust when checking other parameters and times.

We now relax our assumption of y-invariance and evaluate the two-dimensional
behaviour of the governing equations (2.64)–(2.68), under the configuration of Case I.
In these simulations, the channel is assumed to be periodic in x, solid boundaries are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

18
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008001869


58 H. Lin, B. D. Storey and J. G. Santiago

3D

(a) (b) (c)
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Higher-
order
model

HOM
w/o
disp.

Zeroth-
order
model

t/t0 = 0.10 0.75 1.00

Figure 5. Conductivity field at various instances in time using four models. The (blue)
low-conductivity sample plug is placed in a periodic channel (with δ = 0.1) and allowed to travel
in the x-direction and disperse within the channel. The comparison shows that the higher-order
depth-averaged formulation produces near perfect agreement with the three-dimensional DNS.
The utility of the DBF formulation is apparent as the boundary condition at y = ± 1 induces
significant conductivity variations in the y-direction. The time scale to = 5.8 s which is the same
as in figure 3.

placed at y = ±1, and the channel aspect ratio is δ = 0.1. We compare numerical results
from the three-dimensional direct numerical simulation, the two-dimensional higher-
order depth-averaged equations, the two-dimensional higher-order depth-averaged
equations without dispersion (denoted ‘HOM w/o disp.’), and the two-dimensional
zeroth-order depth-averaged equations.

Figure 5 shows excellent agreement between the higher-order depth-averaged model
and the three-dimensional DNS. Note that the DBF form of the momentum equation
(which includes the δ2-order in-plane viscous diffusion) supports the correct boundary
conditions at y = ±1, and we can see from the example that this correction induces
significant variations in the conductivity field across the spanwise direction of the
channel. The same variation in electro-osmotic velocity that causes dispersion across
the depth (z) direction occurs along the spanwise (y) direction as well. As described
in Storey et al. (2005), the zeroth-order depth-averaged equations cannot support
the correct boundary condition at y = ±1 as the overall order of the momentum
equation has been reduced. The situation is analogous to using Euler equations in
high-Reynolds-number flows; the equations are accurate in capturing the behaviour
of the bulk, but the influence of the boundary condition can be very important. Just
as neglecting the thin viscous boundary layer can prove detrimental in traditional
fluid mechanics problems, we also find that proper treatment of all boundary effects
are important in EK flows. We do find that as the channel depth is made smaller,
the zeroth-order model becomes quite accurate in a manner similar to that shown
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Figure 6. Real part of the growth rate versus the wavenumber for Rae = 5000, ReH = 10,
Rv = ∞ (no electro-osmotic flow) and δ = 0.1, as computed with the three models. The
higher-order depth-averaged model quenches the unphysical high-wavenumber growth and
is in agreement with the three-dimensional analysis.

for one-dimensional flows in figure 3. Further advantages of the DBF form of the
momentum equation will be discussed in § 3.2. See Vafai & Tien (1981) and Khaled &
Vafai (2003) for porous media and biological tissue applications.

Note that the higher-order model without convective dispersion in the depth
direction, although less accurate than the complete model at early times (figure 5a, b),
provides good agreement with the three-dimensional DNS at later times (figure 5c).
At later times, convective dispersion across the spanwise (y) direction is perhaps
more important to the development of the conductivity field than dispersion across
the depth (z) direction. The critical importance of spanwise dispersion in channels
with high aspect ratios is discussed in detail by Ajdari, Bontoux & Stone (2005).

3.2. Case II: orthogonal gradient

We now turn to the second configuration (figure 1b) in which the conductivity
gradient is orthogonal to the applied electric field, and we will focus on the study of
electrokinetic instability (EKI).

We first perform a linear stability analysis to further demonstrate the advantage of
the DBF momentum equation. The linearization of the higher-order depth-averaged
equations, (2.64)–(2.68), follows the standard procedure assuming normal modes (see
Lin et al. 2004; Storey et al. 2005 for details). For this particular configuration,
because the base state for Ū is zero, the dispersion term vanishes as a higher-
order effect in the linearized conductivity equation, and the only difference between
the higher-order and zeroth-order models lies within the momentum equations. The
linearization of the zeroth-order equations was presented in Storey et al. (2005). The
higher-order depth-averaged model with and without dispersion are equivalent in this
linear configuration.

Figure 6 plots the dimensionless growth rates as functions of wavenumber as
computed from the three different models. The linear three-dimensional calculation
was presented in Lin et al. (2004) and Storey et al. (2005). We find that the three
models agree at low wavenumbers. However, at higher wavenumbers, the zeroth-order
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(b)
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model
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t/t0 = 35 t/t0 = 52 t/t0 = 87 t/t0 = 121

Figure 7. Snapshots of the conductivity field for three models at two different values of the
electro-osmotic velocity. The high and low conductivity streams are denoted by red and blue,
respectively. Each row is a different computation with time increasing from left to right. (a)
Rv = 12 (lower electro-osmotic velocity), (b) Rv = 3 (higher electro-osmotic velocity), and the
time scale to = 0.06 s. For three-dimensional DNS results, the three-dimensional conductivity
field is first computed and then depth-averaged a posteriori to show the in-plane (x, y)
evolution. In all cases, δ = 0.1, Rae = 2000 and ReH =4.

depth-averaged model predicts unphysical growth rates, whereas the higher-order
depth-averaged model quenches these growths in a manner consistent with the three-
dimensional results. In figure 7, we observe that the nonlinear flow looks qualitatively
different when these high-wavenumber motions are not quenched. Figure 6 is a
representative example of what we observe under a wide range of conditions.

In the nonlinear regime, the higher-order depth-averaged model also provides
superior results when compared with the zeroth-order model, as it captures the
combined effects of the in-plane viscous diffusion and advective dispersion in the
conductivity equation. First, the in-plane viscous diffusion in the higher-order model
provides a natural damping mechanism which assures numerical stability of the
nonlinear computation. In the zeroth-order model, the lack of damping at high
wavenumbers causes these features to grow artificially; these motions must be either
resolved or artificially damped when performing simulations. In order to simulate
the zeroth-order equations successfully, we must include a hyperviscosity term on the
conductivity equation (Boyd 1998; Pope 2000). Though better ‘closure’ models could
be developed, we will show shortly that this use of hyperviscosity becomes unnecessary
when we simply adopt the more physical higher-order depth-averaged model.
Secondly, the dispersion effect in the conductivity equation, albeit a higher-order
one in the linear regime, becomes significant as the dispersion velocity Ū grows along
with the instability. This dispersion effect acts like an additional diffusion mechanism
similar to that predicted by the classical Taylor–Aris theory (Probstein 1994).
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In figure 7, we compute the nonlinear evolution of the EKI using three-dimensional
DNS, the higher-order depth-averaged model, and the zeroth-order depth-averaged
model. We show two cases of relatively high and low electro-osmotic velocity
magnitudes. In all cases δ = 0.1, Rae = 2000 and ReH =4; in figure 7(a) Rv = 12 and in
figure 7(b) Rv = 3. To best illustrate the similarity and difference of the various model
results, we elected to initialize each simulation with a collection of all the linearly
unstable eigenfunctions in the range 0 < k < 7 (see figure 6) with small amplitudes.
These modes grow linearly at first, and nonlinear interactions occur as amplitudes
increase. This initialization is convenient as it provides a repeatable condition across
the three models. Note that the three-dimensional DNS typically requires an order of
magnitude longer of computational time than the two-dimensional depth-averaged
simulations for comparable in-plane (x, y) resolutions and integration time lengths.

Figure 7 demonstrates that the higher-order model provides good agreement when
compared to the three-dimensional DNS. The advantage of the higher-order model
over the zeroth-order model is more apparent at the higher electro-osmotic velocity
(Rv = 3), where dispersion effects are amplified when compared against the Rv =12
case. The results also show clearly that the real nonlinear flow in EKI is much more
damped than predicted by the zeroth-order model; the zeroth-order model over-
predicts mixing rates and under-predicts the electric field threshold for instability.
In observing the results from the zeroth-order model, the lack of damping at high
wavenumbers is apparent in the conductivity fields. The higher-order model damps
EKI dynamics via conductivity dispersion caused by velocity gradients along the
depth (z) direction; this dispersion effect decreases the amplitude of and increases the
width of instability waves.

Another way to assess quantitatively the superiority of the higher-order model over
the zeroth-order model is to compare the maximum spanwise velocity. This velocity
scales as the electroviscous velocity (Lin et al. 2004) and directly quantifies the
strength of the instability. The results are shown in figure 8 for the same cases
as discussed in figure 7. Similar to the presentation in figure 5, we also show
vmax as computed from the higher-order model without the convective dispersion
term. Again the complete higher-order model and the three-dimensional DNS show
excellent agreement, whereas the zeroth-order model over-predicts vmax by an order of
magnitude, and the higher-order model without convective dispersion over-predicts
vmax by approximately 100 and 200%, for the cases of Rv =12 and Rv = 3, respectively.
The qualitative temporal development of the growth and subsequent decay of vmax

are similar across the four models for the low electro-osmotic flow case (they both
peak at about t/to = 50 and then decay). In the high electro-osmotic flow case, the
higher-order models act to delay the development of the instability more significantly.
We conclude that a higher-order depth-averaged formulation is required to model
accurately the velocity field, mixing rate and nonlinear behaviour of EKI.

Finally, we briefly compare results from the higher-order model with experimental
data in Lin et al. (2004); we use the same parameters as the results presented in
that work (e.g. figure 2). The channel aspect ratio in this case is δ = 0.1. Also,
following our previous practice in the same work, we solve the convective diffusion
equation of a low-diffusivity passive tracer to track the instability-stirred flow field.
This passive tracer simulates the high-molecular-weight fluorescence marker used
in the experiments, and facilitates comparison with experiments. The model shows
good agreement with experiments (figure 9). At the lower applied field (25 000 Vm−1,
corresponding to Rae =546.9, ReH = 1.1 and Rv = 0.057), both the experiment and the
model simulation show only slight, sinuous and slowly growing interface disturbances.
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1

2

3
(a)

(b)
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1
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3

zeroth-order model

higher-order model

HOM w/o disp.

3D DNS
vmax

t/t0

Uev

vmax

Uev

Figure 8. Comparison of maximum spanwise velocity. (a) Rv = 12 (b) Rv = 3. For the
depth-averaged models, vmax is taken to be the maximum of the absolute spanwise velocity v
in the (x, y)-plane at every instant of time. For three-dimensional DNS, the spanwise velocity
field is first depth-averaged (a posteriori ), and then the in-plane absolute value and maximum
are obtained. For the cases shown here, the time and velocity scales are to = 0.06 s and Uev = 8
mm s−1, respectively. In all cases, δ = 0.1, Rae =2000 and ReH = 4.

Experiment

(a)

(b)

t = 1 s t = 1.5 s t = 2 s t = 4 s

t = 1 s t = 2.5 s t = 4 s t = 4 s

Higher-order
model

Experiment

Higher-order
model

Figure 9. Comparison of higher-order depth-averaged model predictions with experimental
data. Shown is the evolution of the conductivity field; high conductivity is denoted by
red and low by blue. The parameters are taken from Lin et al. (2004). For both cases
δ = 0.1. (a) Applied field of 25 000 Vm−1 in the streamwise x-direction (Rae = 546.9, ReH = 1.1
and Rv = 0.057). (b) Applied field of 50 000Vm−1(Rae = 2187.5, ReH = 4.38 and Rv = 0.11).
Simulations demonstrate good agreement between model and experimental data. For the
lower applied field of 25 000Vm−1 (a), the centre 1/3 × 1/3 regions for both experiment
and simulation at time t =4 s have been magnified to show details of the slightly disturbed
interfaces.

At the higher applied field of 50000 Vm−1 (Rae = 2187.5, ReH =4.4 and Rv = 0.11),
the experiment and simulation show similar dynamical evolutions, including a capture
of the fastest growing wavenumber, and the rate at which the conductivity interfaces
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break and evolve into the nonlinear rapidly stirred state. When compared with the
purely two-dimensional simulations in Lin et al. (2004) (e.g. figures 6 and 7, in which
the qualitative behaviour of the experiments is only reproduced at much lower applied
electric fields), the higher-order depth-averaged model provides significantly improved
predictions for EKI.

3.3. A discussion on model validity

Our asymptotic analysis has been developed based on combined lubrication (for
the momentum equation) and Taylor–Aris dispersion (for the conductivity equation)
theories. As previously mentioned, the established asymptotic orders from equations
(2.12)–(2.16) are valid only when the constraints Pedδ � 1 and Redδ � 1 are satisfied.
For example, if Pedδ ∼ 1 in (2.12), then the term on the left-hand side of the equation
(Pedδdσ/dt) is of the same order as the ∂2σ/∂z2 term on the right-hand side, violating
the presumption that the latter is the leading term (cf. (2.40)). These constraints are
conveniently understood using the following time-scale arguments:

Redδ =
τν

τc

=
d2/ν

H/U
� 1, (3.8)

Pedδ =
τd

τc

=
d2/D

H/U
� 1, (3.9)

where τν , τd denote the viscous and molecular diffusive time scales in the depth
direction, respectively, τc is the in-plane convective time scale, and U is a characteristic
dispersion velocity. (For significantly unstable electrokinetic flows, the characteristic
dispersion velocity is simply the electroviscous velocity scale. For stable flows with
significant conductivity gradient (e.g. in FASS), the correct dispersion velocity is
typically the electro-osmotic velocity difference between low- and high-conductivity
regions. To avoid any confusion, in the following we will compute the dispersion
velocity directly and a posteriori from numerical simulation, for the estimate of any
dimensionless parameters.) Equation (3.8) suggests that viscous diffusion is much
faster than convection. In all our examples and in general microfluidic applications,
Red is well below 0.1. Therefore, the Reynolds-number constraint is always well
satisfied. The constraint on the Péclet number is more interesting and more detailed
discussion is required.

Equation (3.9) suggests that molecular diffusion in the depth direction is much faster
than in-plane convection. This condition must be satisfied such that any concentration
gradient in the z-direction created by in-plane convection is quickly equilibrated by
diffusion. This constraint is exactly the upper limit in the classical Taylor theory
(Probstein 1994, p. 89):

Ped � 4H/d, (3.10)

where the factor of 4 is from the integration constant in (2.53) in the factor Pedδ/4.
However, there is a subtle difference between the classical Taylor–Aris theory and
our two-dimensional dispersion model. In the former and given sufficient time, the
sample will always spread enough such that the limit L/d 	 Ped is reached, where
L is the characteristic sample width. However, for flows where dispersion is driven
by spanwise conductivity gradients, interface widths are limited by the channel width,
H , and will not grow indefinitely (see figures 5, 7 and 9). For these cases, the limit
(3.10) is effectively a limit on the instantaneous value of Ped .

We examine the above limit a posteriori for the results presented in figure 3. For
reference, we also show the instantaneous Ped in addition to Pedδ in figure 10.
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Figure 10. (a) Typical Ped and (b) Pedδ as a function of x for the 5 cases presented in
figure 3: a, δ =0.02; b, δ = 0.05; c, δ = 0.1; d, δ = 0.14 and e, δ = 0.2. The time is taken at
t/to = 1 for all 5 cases. Here the computed instantaneous dispersion velocity Ū (x) is used to
compute both Ped and Pedδ.

From (3.3), the relative importance of dispersion with respect to molecular diffusion
increases along with Ped (note Ped =Raeδ).

The variation in channel depth in the cases shown in figure 3 leads to variations
in both Ped and Pedδ. For all cases, Ped is calculated according to (2.18) with the
instantaneous dispersion velocity Ū (x) at t/to = 1. As δ increases, Ped increases and
Taylor dispersion plays an important role which can be captured by the higher-order
model (cases b–d in figures 3 and 10). As δ increases further, Pedδ becomes large
enough to exceed the criterion (3.10), and the higher-order depth-averaged model
loses accuracy. A noticeable difference between DNS and the higher-order model
appears only for case e, when Pedδ becomes moderately large and comparable to the
value 4. These comparisons demonstrate that although theoretically (3.10) should be
satisfied for model validity and accuracy, the model performs well even in the regime
of Pedδ ∼ 4.

Similarly, we also analyse Pedδ for the cases presented in figures 5, 7 and 8. For
this purpose we define both an averaged and a maximum dispersion velocity as

Uave ≡ 1

A

∫
A

|Ū |dA, Umax ≡ max(|Ū |), (3.11)

where |Ū | is the magnitude of the internally generated velocity Ū , computed a
posteriori from the higher-order model, and the averaging action is performed over
the entire computational domain A at each instant. The averaged and maximum
parameters Pedδave and Pedδmax are then calculated. Figure 11 shows the time
evolution of these parameters for the examples studied in figure 5, 7 and 8. For
both cases, the flows are in a regime where Taylor dispersion plays a significant
role, and Pedδave are well within the range for which the dispersion theory is valid
as demonstrated via figures 3 and 10. For all cases, Pedδmax indicates greater values
where the model may lose accuracy locally. However, these local deviations are not
expected to cause a significant effect on model validity. The comparisons shown in
figures 7 and 8 demonstrate that there is good agreement between our model and the
three-dimensional DNS.
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Figure 11. Time evolution of Pedδave and Pedδmax . The curves correspond to (a) the case
presented in figure 5, and (b) the Rv = 12 and Rv = 3 cases presented in figures 7 and 8. For
all the cases δ = 0.1.

Finally, in this work we focused on straight-channel geometry. Our model seems
to capture the behaviour near the sidewalls (see e.g. figure 5). We speculate that
this is due to the correct modelling of the velocity boundary conditions in the DBF
momentum equation. As the velocity field converges to the electro-osmotic velocity
on the channel sidewalls, dispersion effect also diminishes to zero. Although the
quasi-two-dimensional assumption breaks down near the three-dimensional sidewalls,
the modelled behaviour approximates the realistic physical situation. Caution must be
taken when applying the model to geometries involving sharp corners (in the (x, y)-
plane). For these cases, the electric field may become singular around the corner, and
the flow field may become highly three-dimensional.

4. Conclusion
In this work, we have presented a depth-averaged model for general electrokinetic

flows with heterogeneous conductivity configurations. Under this context, we have
derived a Darcy–Brinkman–Forchheimer type of momentum equation, as well as
a two-dimensional Taylor dispersion formula that can be also applied to general
convective–diffusion phenomena other than in electrokinetic flow. We find that the
higher-order depth-averaged model provides an excellent framework for analysing
electrokinetic flows in shallow channels where the flow features are large compared
to the depth of the channel. The model presented in this work provides excellent
agreement with more computationally expensive direct numerical simulations of the
three-dimensional governing equations. Though three-dimensional simulations are
feasible, the depth-averaged framework provides a more convenient equation set;
this is particularly true for design optimization efforts which require many trial
simulations. The computational cost of the two-dimensional equations is significantly
less than that of the three-dimensional formulation.

We found that an advective dispersion term in the conductivity equation accurately
captures the convective–diffusion behaviour of the conductivity field in the depth
direction, and provides an important spreading mechanism that is necessary for the
accurate modelling of generalized EK flows in thin microchannels. Unlike the zeroth-
order balance, the second-order DBF momentum equation captures boundary effects

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

18
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008001869


66 H. Lin, B. D. Storey and J. G. Santiago

and is not susceptible to errors in growth rate predictions at large wavenumbers. We
have demonstrated with two examples that the current model is a valid framework for
analysis, and makes reasonable predictions when compared with experimental results.
We emphasize that the zeroth-order equations can be convenient in some instances
for linear predictions and analysis, but taking the expansion to higher orders is the
only realistic option when conducting nonlinear analysis or simulations.

The focus of this paper has been to develop the model framework and demonstrate
via DNS that the higher-order depth-averaged model is appropriate for the study
of generalized electrokinetic flows in thin microchannels with conductivity gradients.
The model is accurate only if the assumptions behind the starting equation set are
also valid. For example, in deriving the initial governing equations we assumed that
charge relaxation was instantaneous, and that the electric double layers were very
thin (see Lin et al. 2004 for details).

Throughout this paper we have analysed simple geometries (periodic channels) in
order to facilitate comparisons between our model and DNS. Future work should
involve further validating these depth-averaged equations against experimental data
(including both FASS and EKI), modelling more complex geometries, and using the
model to make optimal device design predictions.

This work was sponsored by an NSF PECASE Award (J.G. S., Award Contract
number NSF CTS0239080-001) with Dr Michael W. Plesniak as contract monitor.
The authors thank Sanjiva K. Lele for his very constructive insights.

Appendix A. Higher-order velocity fields
The calculation of higher-order velocity fields is straightforward, but algebraically

involved. The first-order (δ1) balance of the momentum equations yields

Red

(
∂u0

∂t
+ u0 · ∇H u0 + w0

∂u0

∂z

)
= −∇Hp1 +

∂2u1

∂z2
+ ∇2

HΦ1∇HΦ0

+ ∇2
HΦ0∇HΦ1 +

∂2Φ3

∂z2
∇HΦ0, (A 1)

∂p1

∂z
= 0. (A 2)

We first note that (A 2) gives p1 = p1(x, y, t). To integrate for u1, we also need an
expression for Φ3, which we derive from an integration of (2.61):

Φ3 =
1

48
Pe[∇H (Ū0 · ∇H ln σ0) · ∇HΦ0]

(
7
5
z2 − z4 + 1

5
z6

)
. (A 3)

In this integration, we have included the z-dependence of σ1 from (2.45). With the
aid of equations (2.34), (2.36) and (A 3), equation (A 1) can be integrated and then
depth-averaged in the z-direction to yield

ū1 = Red

[
− 1

3

(
∂ ū0

∂t
+ ū0 · ∇H ū0

)
− 1

15

(
∂Ū0

∂t
+ Ū0 · ∇H ū0 + ū0 · ∇H Ū0

)

− 1
21

Ū0 · ∇H Ū0 − 2
35

Ū0

(
∇H · Ū0

)]
− 1

3

(
∇Hp1 − ∇2

HΦ1∇HΦ0 − ∇2
HΦ0∇HΦ1

)
+ 2

315
Ped[∇H (Ū0 · ∇H ln σ0) · ∇Φ0]∇Φ0 + ueo1

. (A 4)
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Although all the terms in the above expression can be incorporated in our final
formulation (§ 2.2) in a straightforward manner, their numerical evaluation may
become prohibitively expensive and impractical. Here, we use a simplified version
instead:

ū1 = Red

[
− 1

3

(
∂ ū0

∂t
+ū0 · ∇H ū0

)]
− 1

3

(
∇Hp1−∇2

HΦ1∇HΦ0−∇2
HΦ0∇HΦ0

)
+ueo1

, (A 5)

or

Red

(
∂ ū0

∂t
+ ū0 · ∇H ū0

)
= −∇Hp1 + ∇2

HΦ1∇HΦ0 + ∇2
HΦ0∇HΦ1 − 3(ū1 − ueo1

). (A 6)

That is, we have neglected the ’higher-order’ inertia as well as part of the first-order
electric body force (led by the coefficient Ped2/315). This ad hoc simplification is
justified when we compare our numerical results with direct non-depth-averaged
numerical simulations presented in § 3. However, note that in general the leading
coefficients of the dropped terms in (A 4) (−1/15, −1/21, −2/35 and 2/315) are
much smaller in magnitude when compared with those of the remaining terms (−1/3
and 1).

To arrive at a Darcy–Brinkman–Forchheimer type of equation (Vafai & Tien 1981;
Liu & Masliyah 1996) we also require the δ2 balance involving the evaluation of ū2.
The details of the derivation are not presented here, and we simply list the resulting
equation as

Red

(
∂ ū1

∂t
+ ū0 · ∇H ū1 + ū1 · ∇H ū0

)
= −∇H p̄2 + ∇2

HΦ0∇HΦ2

+ ∇2
HΦ1∇HΦ1 + ∇2

HΦ2∇HΦ0 − 3(ū2 − ueo2
) + ∇2

H ū0. (A 7)

Similar to (A 6), we have also made ad hoc simplifications when arriving at (A 7).
Lastly, a simple verification shows that the continuity equation is satisfied at all

orders, namely,

∇H · ū1 = 0, (A 8)

∇H · ū2 = 0. (A 9)

Appendix B. Zeta potential and electro-osmotic velocity
First, we note that when the zeta correlation (2.21) is used, the Helmholz–

Smoluchowski formula does give a symmetric electro-osmotic velocity, i.e. ueo

(z = + 1) = ueo(z = −1). This is simply because according to (2.53), (2.57), and (2.60),
both σ and Φ are symmetric in z (at least to δ1 for σ and δ2 for Φ).

Further, when arriving at the final depth-averaged equation system, we have
replaced Φ with Φ̄ , and σ with σ̄ in (2.65). For the electric field, this change is
straightforward because Φ is z-independent up to δ2, again according to (2.57) and
(2.60). For conductivity, we can theoretically use (2.53) to evaluate the variable at the
top and bottom of the channel. However, because the zeta potential has only a weak
dependence on σ , ζ ∼ σ −0.33, replacing the latter with σ̄ results in an error of ∼ δ/3,
which is almost second-order in magnitude. Therefore for convenience and simplicity
of the formulation, we use σ̄ instead. This simplification is justified by the favourable
comparison of the depth–averaged model with direct numerical simulations
(figures 2–4).
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Note that (2.21) itself is an approximation: we have assumed that the zeta potential
is identical on the top and bottom walls, depends only on the conductivity (electrolyte
concentration), and that the response to changes in the latter is instantaneous.
These restrictions are certainly not always satisfied. For example, the top and bottom
channel walls may be composed of different material and thus have different chemical
properties. In induced-charge electro-osmosis (Squires & Bazant 2004), the magnitude
of the zeta potential depends also on the strength of the applied electric field. The
surface charge may also have a significant response time to ion concentration (Raviv,
Laurat & Klein 2002). Readers should carefully consider these restrictions for their
applications.

Regardless of the specific forms of the electro-osmotic velocity, our analysis is valid,
and the model is applicable as long as the difference in electro-osmotic velocity (from
the top and bottom of the channel) is small when compared with the dispersion
velocity. This criterion is briefly quantified in the following. (i) |U | 	 |ueo| is satisfied.
This normally occurs in, e.g. EKI when internally generated flow field dominates
(Lin et al. 2004). Under this situation ueo may be completely ignored from the model
system (ueo(z = ± 1) = 0) to good approximation. (ii) If |U | ∼ |ueo| or |U | � |ueo|,
then

|ueo(x, y, z = +1) − ueo(x, y, z = −1)| � |U(x, y)| (B 1)

must be satisfied. This criterion ensures the two-dimensionality of the electro-osmotic
velocity.

Appendix C. Numerical methods
The equations presented in the previous section are solved using extensions of the

numerical models developed in our previous work (Lin et al. 2004; Storey et al. 2005).
All computations are based on Fourier–Chebyshev pseudospectral methods following
some of the standard texts (Canuto et al. 1988; Boyd 2001; Peyret 2002). In all cases,
we are interested in the temporal evolution of the flow, and we therefore assume that
the channels are periodic in the x-direction. This assumption is made for simplicity
and, if relaxed, the conclusions of this paper still hold.

For the two-dimensional depth-averaged simulations, we follow a velocity–pressure
scheme as outlined in Peyret et al. (2002) for the Navier–Stokes equations. The
nonlinear terms are computed in the usual pseudospectral manner; the nonlinear
combinations are computed in physical space whereas the derivatives are computed
in function space. The nonlinear electric body force and the convective terms
are integrated forward using an Adams–Bashforth scheme. The viscous terms are
integrated forward using a Crank–Nicolson scheme. The Stokes problem for the
viscous terms and the Poisson equation for pressure are solved simultaneously using
the influence matrix technique (Canuto 1988; Peyret et al. 2002). The algorithm
that solves the Poisson equation for the pressure is also used in solving the current
continuity equation to obtain the electric potential. Since the current continuity
constraint is nonlinear, an iterative technique is employed.

The nonlinear dispersion term in the depth-averaged conductivity equations cannot
be solved explicitly as it is a diffusive-like term and the resulting time-step stability
constraint is costly. We implement a straightforward iterative technique to solve the
conductivity dispersion and diffusive terms implicitly. We implement a standard
iteration algorithm using the operator without the dispersion term as the pre-
conditioning operator (Canuto 1988; Peyret et al. 2002).
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The three-dimensional simulations use Chebyshev modes to represent the flow in
the (y, z)-plane and Fourier modes are used in the x-direction. The time-advancement
schemes are the same as in the two-dimensional case. The nonlinear terms are also
treated in the same manner. All of the Helmholtz- and Poisson-type equations that
occur in the formulation are solved using influence matrix techniques (Peyret et al.
2002). The viscous terms and continuity equation are coupled together through a
predicted pressure projection method. The electric potential is solved iteratively since
the current continuity equation is nonlinear.
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