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BOOTSTRAPPING INDIVIDUAL CLAIM HISTORIES
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ABSTRACT

The bootstrap method BICH is given for estimating mean square prediction 
errors and predictive distributions of  non-life claim reserves under weak 
 conditions. The dates of claim occurrence, reporting and fi nalization and the 
payment dates and amounts of  individual fi nalized historic claims form a 
claim set from which samples with replacement are drawn. We assume that all 
claims are independent and that the historic claims are distributed as the 
object claims, possibly after infl ation adjustment and segmentation on a back-
ground variable, whose distribution could have changed over time due to port-
folio change. Also we introduce the new reserving function RDC, using all 
these dates and payments for reserve predictions. We study three reserving 
functions: chain ladder, the Schnieper (1991) method and RDC. Checks with 
simulated cases obeying the assumptions of Mack (1999) for chain ladder and 
Liu and Verrall (2009) for Schnieper’s method, respectively, confi rm the validity 
of our method. BICH is used to compare the three reserving functions, of which 
RDC is found overall best in simulated cases.
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1. INTRODUCTION

For claim reserve MSEP (Mean Square Error of  Prediction) calculations, the 
analytic method of Mack (1999) is available for chain ladder under certain 
mean, variance and independence assumption. Liu and Verrall (2009) give 
assumptions and algorithms enabling analytic MSEP computations for the 
Schnieper (1991) reserves. See also Section 10.2 of Wüthrich and Merz (2008).

Other stochastic reserving methods use bootstrapping in the form of drawing 
random upper triangles, Ur of  development history and lower triangles, Vr

of  future development (outcomes in the bootstrap world), by sampling
with replacement from standardized residuals within a development triangle.
On each such random triangle a reserving method is applied to obtain a reserve 
prediction. This yields MSEP estimates transferable to the real world. The 
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292 S. ROSENLUND

model of  this method is usually that the residuals are the deviations from 
estimated mean values in a GLM (Generalized Linear Model) that assumes 
that the increments X obey Var[X ] = fE[X ]p, with p usually assumed to be 
either 1 (Poisson) or 2 (Gamma). See Björkwall et al. (2009) for an overview, 
contributions and further references.

Norberg (1993) and Norberg (1999) introduced the individual claim loss 
model as marked Poisson processes. The model is studied in Larsen (2007). 
Several Poisson and other parametric models are assumed and their parame-
ters estimated. A bootstrap procedure is sketched, but not implemented in 
practice, as step 2 p. 131.

Zhao and Zhou (2010) used semi-competing risks copula and semi-survival 
copula models to fi t the dependence structure of the claim occurrence times 
with reporting delays in the individual claim loss model of Larsen (2007) and 
Taylor et al. (2008), in order to study IBNR reserves. Also here a Poisson 
arrival process is assumed.

An overview of the area is given by Wüthrich and Merz (2008).
In this paper we describe how to use sampling with replacement from a set 

of detailed complete claim histories for claims that are fi nalized. Applying a 
reserving method to each such sample, using only payments up to relevant 
development periods, we get predictions in the bootstrap world that can be 
compared to the known outcomes of  these fi nalized claims. The model is 
essentially that claims are IID and that the historic claims are distributed as 
the object claims, apart from infl ation. Here ‘object’ refers to the set of partly 
non-fi nalized claims whose future we wish to predict. This allows variance 
estimates and also estimates of the full predictive distributions for the object 
claim reserves. The method is computer-intensive, since a large set of claim 
histories is read into memory and used repeatedly for sampling. In return it 
does not need much mathematical-statistical theory. We call it

BICH = Bootstrapping Individual Claim Histories

BICH can rank reserving methods by their MSEPs under weak conditions.
A reserve model is one thing and a reserving method another thing. A method 
derived under a model can perform well even if  the model is not true. BICH 
measures this.

We also give a new reserving method using all claim numbers of and pay-
ments on both open and settled individual claims without any distributional 
assumptions. It is a generalization of the PPCF (expected Payments Per Claim 
Finalized) method. See Fisher and Lange (1973) and Sawkins (1979). The 
parameters of the claim distribution are broken down in many small details 
while conditioning on observable variables with many combinations. It is 
described in Appendix A. We call it

RDC = Reserve by Detailed Conditioning

The reserving methods studied with BICH in the sequel are the chain ladder, 
the Schnieper (1991) method and RDC. In comparing reserving methods we 
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can choose the best one. Also, variable parameters in RDC can be calibrated 
to give the smallest MSEP. Overall we fi nd that RDC is best for the situations 
studied.

BICH and RDC are intended for cases where many claims are reported in 
the fi rst development period, say at least a couple of hundreds. Then it is nor-
mally better to not use insurance exposures to generate claims in bootstrapping 
or to compute reserves by using e.g. a Poisson process, since claim frequencies 
mostly oscillate in a not completely predictable manner. Thus we can avoid 
stochastic process theory. Our study concerns IBNR (Incurred But Not Reported) 
and RBNS (Reported But Not Settled) claims. We do not study the UPR 
(Unearned Premium Reserve) of covered but not yet incurred claims, which 
would need insurance exposure.

Since the reserve of a business line is, in our model, a sum of the reserves 
of several independent claims, a CLT (central limit theorem) can be invoked 
unless a few large claims dominate the overall development. Hence the variance 
estimates are useful. They can e.g. be used to compute the variance for the sum 
of reserves from several business lines. Moreover, the full predictive distributions 
are given in the form of eleven important percentiles in the author’s program.

As observed in Larsen (2007) and Zhao and Zhou (2010), distributions for 
payment delays and sizes may change over time, making the use of covariates 
desirable. We take account of such heterogeneity by segmentation on a back-
ground variable.

The word payment in the sequel can be replaced by change of incurred 
(payment sum plus claims-handler reserve). So payments can be both positive 
and negative.

Large claims, as judged at reporting, might have to be excluded from the 
analysis.

The organization of  the paper is as follows. Section 2 introduces the
claim info that is supposed to be available, assumptions and perspectives on 
these. The bootstrap procedure is described in Section 3. Section 4 deals with 
application guidelines. In Section 5 the segmentation mechanism is described. 
 Section 6 gives estimates and tests. In Section 7 the necessary data are described 
and four numerical examples are given, where Section 7.7 gives results of bench-
mark tests to validate BICH and Section 7.8 compares reserving methods. 
After a conclusion in Section 8, the RDC method is described in Appendix A.

Free program for BICH, RDC, GLM etc.: www.stigrosenlund.se/rapp.htm

2. MODEL ASSUMPTIONS

We consider claim periods i  !  {1,  …,  n}, for which we want to predict future 
payments, and development periods j  !  {1,  …,  n}. The present time is at the 
end of period n or in other words at the beginning of claim period n  +  1.

In Section 5 we describe a mechanism for segmentation by a background 
variable. For simplicity this mechanism will not appear in the notation of 
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294 S. ROSENLUND

 sections other than Section 5 and Section 7.6, where segmentation is applied 
in Example 4.

First we formulate historic and object claims, not including segmentation. 

2.1. Historic claims for bootstrap

Let Z  =  {Z1, Z2,  …,  ZK} be a set of K historic fi nalized claims which occurred 
more than n  +  s  –  1 time periods ago, i.e. in periods – s  +  1, – s, – s  –  1, …. Their 
payments are thus known up to and including development period n  +  s. Here 
s  !  {0, 1, …} is the length of a maximal tail time after n. A claim is here a set

 Zr = {W(r),  F(r),  Y(r,1),  …, Y(r, F(r))}, (2.1)

where W(r) is the period index of the customer claim reporting date, F(r) the 
period index of the claim fi nalization date, and Y(r, j) the payment sum for 
development period index j. Period index is defi ned so that the claim occur-
rence date falls in the period with index 1. The notation W(r) is chosen since 
this variable can be called waiting-for-report period or reporting delay, albeit 
with smallest value 1 instead of 0. Henceforth period will mean period index, 
for shortness.

A claim reported at occurrence thus has W(r)  =  1. If it is reported one period 
later, e.g. in the following month if  month is the time unit, then W(r) = 2, etc. 
The payment sum made in the claim occurrence period has j  =  1. The claim 
occurrence dates of these claims do not appear in this notation — only the 
report, fi nalization and development periods. The claims in Z will be used for 
bootstrapping.

2.2. Object claims

Let Ti  =  {Ti (1), Ti (2), …} be a set of fi nalized and non-fi nalized claims from 
the claim occurrence period i  !  {1,  …,  n}. Claims in Ti are defi ned by the 
common occurrence period i, the report and fi nalization periods, and a 
sequence of payments per development period. As in (2.1), with i added as 
superscript. Thus, using the form of (2.1),

 Ti (k) = {Wi (k),  Fi (k),  Yi (k, 1),  …,  Yi (k, Fi (k))} (2.2)

is the k:th claim in Ti. The whole collection of sets is T  =  {T1,  …,  Tn}. The 
payments are known only up to and including development period n  –  i  +  1 
for claims in claim period i. Our objective is, for each i, to predict the sum of 
remaining payments and estimate the MSEP from the real remaining sum for 
these claims. The claims for i that are fi nalized could be part of Z. If  the busi-
ness is special and so new that data are available only back to the fi rst fi nalized 
period, then only the claims of T1 can be used for bootstrap. Let (W, F, P) 
denote the probability space. Defi ne the known history of claim development 
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in T up to and including calendar period n as a s-algebra G  1  s{T}. Here 
s{T} denotes the s-algebra induced by T. Let Fi�(k)  =  Fi(k) if  Fi(k)  #  n  +  1  –  i, 
otherwise 0. Then Fi�(k) is known even if  Fi(k) is not, and thus set

.( ( ( ({ ), ), , ), , ( , ); ; ) }W k k Y k Y k i i n W k n i1 1 1G i i i i if # # #s= - + - +� n 1F

Consider a G-measurable reserving function 

 Ri   =  reserve-ex-ante for claim period  i  !  {1,  …,  n}, (2.3)
 

which is a prediction computed before the actual remaining payment sum is 
known.

BICH is in the program currently equipped with these Ri functions: chain 
ladder (possibly combined with an exponential tail predicting payments at 
n  +  1,  …,  n  +  s), the Schnieper (1991) method and RDC.

For claim set Ti we defi ne these further random variables.

Mi   =   number of reported claims now, i.e. with Wi (k)  #  n  –  i  +  1 (2.4)

   Ni   =   total number of claims in Ti, not known at the end of claim period n (2.5)

  Y ( ,k
i

)Yij
i

k

N

1
=

=

j/    =   payment sum for i and j over all claims Ti (k) (2.6)

ijH Yi
j

n i

1

1

=

- +

= /    =   sum of known payments per claim period (2.7)

 ijYR
j n i

n s

2= - +

+

i = /    =   reserve ex-post = unknown remaining payment sum

      =   outstanding loss liabilities, see (1.17) in Wüthrich and Merz (2008). (2.8)

  Qi   =   Ri / Ri   =   ratio of reserve-ex-post to reserve-ex-ante (2.9)

   ti
2   =   E[(Ri  –  Ri)

2  |  G]   =   MSEP of period i (2.10)

The MSEP ti
2 is the main object of our study.

2.3. BICH assumptions and a hypothesis

In Section 3 we describe bootstrap images G(n) of  G and ti
(n)2 of  ti

2 using Z, 
where n is the bootstrap repetition of sample index. Assumption A5 deals with 
these images.

A1. All claims are fi nalized after development period n  +  s, i.e. Yi (k, j)  =  0
for j > n  +  s. For methods Schnieper and RDC we require that s  =  0.

A2. Z1, Z2,  …,  ZK are IID random vectors with variable size of the form (2.1).

A3. Ti (1), T i (2),  …,  Ti (Ni ) are IID random vectors of the same form (2.2).
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A4. T i (1) is distributed as Z1 after multiplying T i(1):s payments by ci, for 
constants ci > 0. For method RDC we require that ci  /  c for some c.

A5. There are subsets G (n)  !  G(n) with P(G (n))  >  0 such that ci
2  E[ti

(n)2  | G (n)]  =  ti
2.

A5 states that all particular possible bootstrap upper triangle outcomes in G (n), 
as far as can be judged beforehand, give the same information on the MSEPs 
of reserves-ex-ante from actual reserves-ex-post. The sets G (n) would normally 
in applications make these upper triangle outcomes similar to the object tri-
angle, after adjustment by the factor ci. In practice this means that the boot-
strapped claims shall not differ too much from object claims in the properties 
of the latter that are known and that can be judged to infl uence the MSEPs. 

We need many claims reported in the fi rst development period for A5 to 
hold, although this might not be suffi cient. We discuss further requirements in 
Section 4.

Given A5 we can estimate the MSEPs. See Section 6.1, expressions (6.1)-
(6.4).

We want the reserve-ex-post to have the reserve-ex-ante as expected value, 
i.e. Ri should refl ect the best-estimate values for Ri. We formulate it as a 
hypothesis, not as an assumption. Its truth depends on the situation and the 
reserving function used. For chain ladder, the Mack (1999) condition CL1 
implies its truth. We describe how to test the hypothesis in Sections 4 and 6.

H0:  E[Ri | G]  =  Ri or equivalently E[Qi  |  G]  =  1 (application dependent truth)

2.3.1. Perspectives on assumptions

BICH assumes IID claims, after infl ation adjustment and segmentation. This 
is a natural and weak assumption for the intended use of bootstrapping indi-
vidual claims, with many claims reported initially and no insurance exposure 
use. BICH predictions for claim period i are in the price level of i. Predictions 
in the price level at the end of n are obtained by multiplying the reserves and 
MSEP square roots by cn / ci for estimates ci. See expression (6.2). If  the price 
levels of the times of future payments are desired in the predictions (not imple-
mented), then further assumptions on future infl ation are needed.

Other authors mentioned in the introduction place various assumptions
on aggregated triangle data. Formally the BICH assumptions are not weaker 
than the latter ones, or the other way around, since they are set up in quite 
different frameworks. One may ask whether a set of assumptions for aggre-
gated triangle data found in the literature for a method M can be satisfi ed by 
a construction of IID claims, such that MSEP estimates computed by BICH 
are the same as those computed by M. If  that is the case, then in a loose sense 
the BICH assumptions are weaker. As is seen in Example 1, this holds for the 
CL1, CL2, CL3 conditions of Mack (1999). Similarly, construction of IID claims 
such that triangle increments follow a specifi ed GLM, as described in Björk-
wall et al. (2009), is also possible.
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The Liu and Verrall (2009) assumptions for the Schnieper (1991) model are 
slightly different. Assumption 4 of the former states uncorrelatedness between 
development periods. In particular increments from new claim reportings are 
assumed to be uncorrelated. The BICH assumptions are not weak enough to 
cover this, since the total number of claims given the number reported now is 
negatively binomial with the latter as parameter. See Sections 3 and 7.4 below. 
BICH admits any kind of dependence between development periods for indi-
vidual claims. But it cannot admit independence between development periods 
for the totality of all claims, unless all claims are reported in the fi rst develop-
ment period, i.e. unless P(W  =  1)  =  1, where W  =  W(r) as defi ned in (2.1).

However, in the Schnieper (1991) and Liu and Verrall (2009) model all 
distributions are conditional on the history, where the fi rst development period 
j  =  1 is known for all claim periods. So we can regard the fi rst increment as 
non-stochastic. Thus the BICH and Liu and Verrall (2009) conditions can 
coexist, if  all claims are reported in the claim occurrence period or the next 
period. In other words, we can employ BICH under the Liu and Verrall (2009) 
conditions if  P(W  #  2)  =  1. For e.g. most quarterly consumer insurance data, 
this covers the reporting delay.

The Larsen (2007) algorithm would resemble the one presented here, but 
since it would augment uncertainty from outcomes of  experiments with 
parameters for Gamma, Pareto etc., with parameter estimation uncertainty, it 
would use stronger assumptions than we use here.

3. THE BICH BOOTSTRAP PROCEDURE

We describe how to make a bootstrap image of the claims of T using Z. The 
segmentation described in Section 5 does not appear in the notation of this 
section, but it is to be understood that it can be used. First we present an 
overview in fi ve steps S1–S5, which is outlined in more detail below.

S1. Identify a set Z of  fi nalized claims distributed as the object claims after 
infl ation adjustment. Also identify possible suitable subsets G (1) as in Sec-
tions 4.1 and 4.2.

S2. Draw a random sample, numbered n, with replacement from Z such that 
the number of  bootstrapped claims reported ‘now’ per claim period i 
equals the corresponding number of object claims Mi.

S3. Provided G (n) occurred, compute the bootstrap images of (2.3), (2.5)–(2.9) 
and add to sums that shall be used for estimates.

S4. Go back to S2 until S2 and S3 have been repeated B times with G (n) occur-
ring. Set B  =  2,000 for example.

S5. Compute MSEP estimates, etc., and statistics for test of H0 in Section 6.

We make B0 IID repetitions of this image. All performed repetitions are num-
bered consecutively with index n. By Assumption A5 we might want to use 
only some of these repetitions by conditioning on some sets G (n) of  outcomes. 
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The number of used repetitions where G (n) occurred, which will be fi xed, is 
denoted B. (Then B0 is a random variable, having a negative binomial distribu-
tion NB(B, p) with moment generating function E[etB0]  =  (pet / [1 –  (1  –  p)et ])B, 
if  the probability is p in every repetition that the outcome will be used. Recall 
that the number of trials in IID repetitions until a given number of successes 
is obtained is a negative binomial variable.) The used repetitions are found in 
the subsequence n1, n2,  …,  nB . We index it by t, writing nt  (t  =  1,  …,  B). Since 
the repetitions are IID, the subsets G (n) should be defi ned in the same way, with 
all P(G (n)) equal.

In each repetition we draw, with replacement and separately for each i, 
successive claims from Z until exactly Mi of  them have report period W(r) #
n  –  i  +  1, i.e. have been reported ‘now’ in the bootstrap world. In the sequel, when 
writing ‘now’ we refer to this report condition in the bootstrap world. Writing 
now without quotes concerning reporting we refer to the object claims. Defi ne

 Ni
(n) = total number drawn, of which Mi are reported ‘now’.  (3.1)

By Assumption A4, it is immediate that the conditional distribution of Ni
(n)  |  Mi 

is a bootstrap approximation of the conditional distribution of Ni  | Mi in the 
real world, since Ni

(n) as well as Ni is a negatively binomial random number of 
claims, realized from an infi nite sequence of IID random entities, until Mi of  
them have satisfi ed the reported ‘now’ condition.

As prediction we can use

 i
tN B N1

i
t

B

1
=

=

( )n/  (3.2)

Now recall that K is the number of  claims that can be used for bootstrap.
If we sample at random a claim from {Z1, Z2,  …,  ZK} with probability 1/K, then 
it can represent any object claim. Let for i  !  {1,  …,  n} and n  !  {1, 2,  …,  B0}

 
i,i,i N1 , ,U Uf ( )n

( ) ( )n n
 (3.3)

be IID integer valued and uniformly distributed on {1,  …,  K}. Namely,

 1,,1 1 ,r fU = 1( ) /P K K= =, .( )1 r  (3.4)

We use the fi nalized claims

 
i,i,i 1 N

, ,Z ZU U( ) fn
( )n

( )n  

as an image of the claim set Ti of  claims that occurred in claim period i.
In other words, we draw with replacement iNi

n
11n ==

B0 ( )n//  claims from Z 
with equal probability for each r  =  1,  …,  K in each drawing. For the examples 
of Section 7 this is about 5,000 million claims.
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We will use the superindex (n) for bootstrap variables, with (1) for the fi rst 
variable of the repetitions as a representative of the sequence of IID bootstrap 
variables. Averages will have superindex (-).

A bootstrap image of  the Yi (k, j) of  T i is ,i k ,U( )Y j( )n   =  payment sum in 
development period j of the k:th claim drawn from Z to represent claim period i. 
See (2.1). Let F�(i, r)  =  F(r) if F(r)  #  n  –  i  +  1, otherwise 0. The bootstrap image 
of G is

U( ), , , ,

,

i i i i

i

,W Uk k k k{ , , 1), , 1)U U n i- +( ) (Y

k

, ( ;Yfi

1#

,

( ) } .i n W U n i1

G
( ( ) ( ) ( ) ( )

( )
# #

s=

- +

n n n n n

n

) F

;

�

The reserve-ex-ante of this image is obtained by using the same function on G(n) 
as was used on G to get Ri in (2.3).

 Ri
(n) = bootstrap reserve-ex-ante for claim period i, i  =  1,  …,  n (3.5)

Bootstrap images of the random variables of (2.6)–(2.10) are 

 ,iij

i

kU ,(Y Y j
k

N

1

( )

=
=

n

)( )n ( )n/  (3.6)

 ijiH Y
j

n i

1

1
=

=

- +
( )n ( )n/  (3.7)

 ijR Yi
j n i

n s

2
=

= - +

+
( )n ( )n/  (3.8)

 /i ii
( )n ( )nRQ R( )= n  (3.9)

 G
2
;i RE[ ]( ) ( ) ( )

i i= -n n nt( )2n ,( )R  (3.10)

where the last one is unobservable and determined by which events in G(n) 
occur.

In Section 6 we will explain how to use this mean square deviation measure 
together with an adjustment factor ci refl ecting possible infl ation.

The approach is to generate prescribed numbers of claims reported ‘now’. 
It works if  those numbers are large enough. This eliminates the need for insur-
ance exposures and too much modeling. For example, claim sizes could depend 
on reporting delays, but we can ignore this possible dependence. Say that
90 percent of claims fi nally below 10,000 EUR, but only 10 percent of claims 
fi nally at least 10,000 EUR, are reported immediately at occurrence. Regardless, 
the bootstrapped sample for any claim period will, under our assumptions, 
contain small and large claims proportionally to their frequencies in the object 
claim data set.
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4. APPLICATION GUIDELINES

We do not here distinguish between estimation error and prediction error. 
Since Z forms a discrete empirical distribution that is an estimate of an under-
lying one, there is however an estimation error, which is hard to quantify.
So A4 and A5 cannot be exactly true. For K suffi ciently large the empirical 
distribution is a good approximation, see Section 4.3.

In applications where Z and T are from the same line of  business and 
where we have access to the full history and where we judge the claim and 
payment processes to be suffi ciently time-homogeneous, we want to use all 
claims back to the earliest fi nalized claim period in order to make the best pos-
sible prediction, thus setting s  =  0. Choosing s > 0 by not going back that far, 
BICH can however shed light on the performance of tail prediction methods.

The real n  +  s might be large, but payments after some moderate n  +  s 
negligible, e.g. less than one percent of the total claim cost.

Hypothesis H0 can be tested in the bootstrap world by computing the 
empirical distribution of  Qi

(n)  =  Ri
(n)  /  Ri

(n) conditional on G (n). Let Qi
(–) be the 

mean of  this distribution and 0.01s (Qi
(–)) its standard error. See (6.13) and 

(6.14) in Section 6.1 below. If  the confi dence interval [Qi
(–)  –  1.96  ≈  0.01s (Qi

(–)), 
Qi

(–)  +  1.96  ≈  0.01s (Qi
(–))] contains 1, then H0 can be accepted at the 95 percent 

level, if  B is large enough for CLT use. Normally B  =  2,000 suffi ces.
H0 states that the reserve prediction is the mean of the fi nally realized reserve. 

If  true, then

 G i[ ]Var i ; t=R  (4.1)

The purpose of ci in Assumption A4 is to adjust for infl ation or defl ation. The 
adjustment by a factor dependent only on claim-period is a simplifi cation of 
reality, since the development period also could infl uence the degree of infl a-
tion in the payments. For the present purpose the simplifi ed model normally 
suffi ces. If  not, the claim payments can be adjusted before the BICH algorithm 
is run.

4.1. Subsets with reserves close to mean reserves

A class of subsets G(n) that is implemented in the program for BICH is the 
following: in a fi rst run Ri

(–), the empirical bootstrap mean reserves-ex-ante per 
claim period, are computed to suffi cient closeness to their expectations, i.e. 
after suffi cient convergence. See (6.7) below. In a second run two factors b1  <  b2 
are used to bound the outcomes. Namely, so that all outcomes n are thrown 
away that do not have every Ri

(n) (i  !  {1,  …,  n}), the bootstrap reserve-ex-ante 
per claim period, within the interval with endpoints b1 Ri

(–) and b2 Ri
(–). For 

example we can take b1  =  0.80 and b2  =  1.25. If  b1 Ri
(–) is positive then it is the 

left endpoint, and if  it is negative it is the right endpoint. If  the probability 
for an outcome to be used and not thrown away is p then we have to make 
about B0  =  B/p repetitions to obtain B useful samples.
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The randomness in this bootstrap can however, decrease too much with 
too narrow sets G (n), so this needs to be done carefully.

4.2. Subsets with fi xed numbers of claims per known reporting period

Another kind of subsets G (n) is defi ned by letting all bootstrapped claim reporting 
numbers per known development period be equal to the corresponding numbers 
of the object claim set. Namely, letting Aiw be the number of claims reported 
in development period w  $  1, the corresponding bootstrapped numbers A(

iw
n)  

in  repetition n should be these for w  #  n  –  i  +  1. This is sometimes a reasonable 
bounding of the bootstrap outcomes to make them more like the object outcome. 
In other cases this bounding can decrease the randomness of bootstrap too much.

Since the waiting time between such bootstrap outcomes will be long, the actual 
procedure is as follows. Claims with W  =  w  #  n  –  i  +  1 are drawn until Aiw have been 
obtained. After that they are rejected. Claims with W  >  n  –  i  +  1 are drawn until the 
number drawn with W  #  n  –  i  +  1, including rejected ones, is Mi. This creates a 
bootstrap distribution equal to the one obtained by using G (n) as literally defi ned. 

4.3. When will BICH work?

When will BICH work, assuming A1–A4 and that we try to determine sets G (n) 
for A5 as best as possible? That is, when can we make A5 hold? We have stated 
that, with at least a couple of hundred claims reported initially BICH outperforms 
using insurance exposures. This would not, however, always be suffi cient for A5.

The number K of  fi nalized claims in Z should be suffi ciently large to ade-
quately represent the claim distribution, considering its dispersion.

Take the extreme case of all payments being 1000 EUR and always made 
in development periods W, W  +  1, W  +  2, where W is the development period 
of reporting. Then K  =  200 would be suffi cient.

On the other hand, suppose there are large claims above the 0.1 percentile, 
which constitute half  of  expected claim cost (= sum of payments) and are 
highly variable. If  the payment made in the reporting period says little about 
the fi nal claim cost, then K might need to be at least 1 million. If  the repre-
sentativeness of Z for large claims is in doubt, then a table of percentiles for 
Z should be made and compared to percentile tables for several other business 
lines in addition to the one under consideration, or for several competing 
companies, such that this total business can be regarded as having about the same 
tail distribution as the sets Ti of  object claims. If  the compared tail percentile 
tables are about the same, then Z should do.

5. BICH SEGMENTATION

The fi nalized claims in Z could have a different distribution of some back-
ground variables than the sets Ti of object claims. For example, the proportion 
of historic claims coming from business line 7 might be 0.03 in the fi nalized 
claims, while it is 0.08 for claim period 12 in the set of object claims.
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Another cause of  such discrepancy can be seasonal variations. Say that 
claims occurring in August are on the average more expensive and their pay-
ments more drawn out than in other months. If  the Zr are evenly distributed 
over the year, then bootstrapping from all these for the object claim period 8 
(August) could be misleading if  the time unit of the analysis is month.

Therefore BICH has an option for segmentation by a background variable, 
which possibly is a combination of many such variables. This works so that, 
separately per claim period, the proportions of the background variable values 
in the claims of the bootstrapped sample that have been reported ‘now’ will 
be equal to the proportions in the set of object claims reported now.

The model is then that the assumptions of  Section 2 hold separately per 
segment. This is the non-parametric way to model dependence on background 
variables. It works if  there are suffi ciently many claims in each discrete seg-
ment. This is analogous to stratifi ed survey sampling aiming to make estimates 
and forecasts more accurate.

However, there is a caveat in that we cannot have too few historic claims 
per segment. Also suffi ciently many, say at least one hundred, object claims 
should be reported in the fi rst development period. In the bootstrap, each seg-
ment is a discrete distribution of claims with fi nitely many points in the space 
of Z. The fewer points in this discrete distribution, the less similarity to the real 
corresponding distribution. The latter would normally be best represented by 
a distribution on an infi nite set of points. In the extreme case that each segment 
has just one historic claim all randomness disappears. The percentile analysis 
recommended in Section 4.3 is appropriate for each segment separately.

The generalization of the procedure of Section 3 is the following:

Mvi = number of  claims in T i reported in segment v, v  !  {1,  …,  s0},
where Mvv 1= i

0s/   =  Mi

Zvr (v  =  1,  …,  s0;  r  =  1,  …,  Kv) are the claims of Z in segment v,
where Kv  $  1 and Kvv 1= .K0

#
s/  Segment variable values in the historic 

claims not found in the object claims cannot be used. If  there are such 
values, then  K Kvv 1= .0 1

s/

The segmentation bootstrap is to draw Mvi reported claims with replacement from 
the Zvr. Totals vi vi,N M( )n

$  including claims not reported ‘now’, are then used to 
compute reserves separately per segment. These are added and mean square devi-
ation estimates are computed, as described in Section 6.1. The segmentation mech-
anism has not appeared in the preceding sections and will not appear in the 
following sections other than Section 7.6, but is to be understood to be available.

6. INFERENCE FROM BICH BOOTSTRAP

6.1. Estimates

The idea is now to estimate ci
2 E[ti

(1)2 | G(1)], equal to ti
2 under our assumptions, 

by sample statistics of  the sample of  B repetitions n1,  …,  nB where G (n) occur.
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We transfer the bootstrap mean square error estimates to MSEP estimates 
for the object reserve predictions Ri. Defi ne the estimate

 i
tRt .B R1 ( (

i i
t

B

1

2
t= - nn

=

) )
^ h/  (6.1)

To make the variance of ti suffi ciently small is only a matter of making B suf-
fi ciently large and computations time.

Estimate the conditional prediction error of Ri | G by fi rst making an infl a-
tion estimate equal to the ratio of payments, see (6.6) below, namely for chain 
ladder and Schnieper

 ci = Hi / Hi
(–) (6.2) 

and, in accordance with Assumption A4, for RDC

 Hr
)

rc Hi
r

n

r

n

1 1
=

= =

-(// /  (6.3)

and then a transfer of the bootstrap estimate to the real world by

 ti  =   ci ti (6.4) 

for which we give an approximate 95% confi dence interval of

 i it t1.96 ( ,di !=t 2 2)  (6.5)

where, treating ci as fi xed due to its small variance, we compute

 i-ii i it c R t( ) ( ) .d B R1
1 ( ) ( )

t

B
2 2 2

1

2
t t= -n n

=
B -

2
^ h9 C/

The bootstrap distribution of i
nt t t/n( ( ) (RQ Ri i

)n)
=  is an estimate of the distribu-

tion of the real world ratio of (reserve-ex-post) / (reserve-ex-ante). Björkwall 
et al. (2009) remark, in the context of  triangle-only bootstraps, that the
99.5 percentile might be unreliable. BICH should yield better high percentile 
estimates, at least for consumer insurance with thousands of  claims per
year, provided our model assumptions are suffi ciently satisfi ed, in particular 
so that suffi ciently many large claims are represented in Z. See the discussion 
in Section 4.3.

For confi dence intervals for quantiles, see  Wilcox (1997), p. 87. We give a 
simple way to compensate for quantile uncertainty. Let qp be the p-quantile for 

tn(Qi
)  and let qp be the empirical p-quantile obtained with B samples. Let p0  =   

p
t( n(P )Qi #
) q . Let us regard X  =  pB = number of observations #  qp as random 

and qp as fi xed. Then X is binomial (B, p0), and with a normal approximation 
we can state with approximately 95% confi dence that p0  $  pu  =  p   –  1.6449  

95371_Astin42-1_12_Rosenlund.indd   30395371_Astin42-1_12_Rosenlund.indd   303 5/06/12   13:595/06/12   13:59

https://doi.org/10.2143/AST.42.1.2160744 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160744


304 S. ROSENLUND

( ) .p p B1 - /  This is equivalent to qpu
  #  qp0

  =  qp (95%). Taking p = 0.996034 
and B = 10,000 gives pu  =  0.995, so that the true 99.5 percentile is # the empir-
ical 99.6034 percentile with + 95% confi dence. We can determine B from pu 
and p as B  =  1.64492 p(1  –  p) / (p  –  pu)2. Taking e.g. pu = 0.995 and p = 0.9955 
yields B = 48,481.

Let v (X ) denote 100 times the CV (coeffi cient of variation) of a random 
variable X, i.e. the CV in percent. Let v̂ (X ) denote its estimate. The following 
averages, standard errors (except (6.10)) and CV-estimates to illuminate the 
model are then calculated with BICH:

 ii
t)H B H1

t

B

1
=

=

- ( )n( /  (6.6)

 )
i i

t- (R RB
1

t

B

1
=

=

)n( /  (6.7)

 )- Ri
t(R B

1
i

t

B

1
=

=

( )n/  (6.8)

 )
i i

t -(D R[ ] B 1
1( )

i
t

B

1

1 =
-

-n

=

nR (R ) 2
_ i/  (6.9)

 )-
i i

(t(D [ ] R RR B 1
1( )

i
t

B

1

1 =
-

-n

=

n ) 2
` j/  (6.10)

 v̂
) )

i i i100- -D R( ) [ ] /B
1 ( )1= n( (R R  (6.11)

 v̂
) )

i i i100- -D( ) [ ]B R R1 ( )1= n( (R /  (6.12)

 )-
i i

( t t tn( ( (R/Q B Q B R1 1
i i

t

B

t

B

1 1
= =

= =

) )n n)/ /  (6.13)

 ) )- t
i

( n(( ) 100 ( ) .s Q B B Q Q1
1

i i
t

B

1

2
=

-
- -

=

) (
^ h/  (6.14)

The ratio Qi
(–) of  mean (reserve-ex-post) / (reserve-ex-ante) in bootstrap and its 

standard error 0.01s (Qi
(–)) serve to judge whether Hypothesis H0 is suffi ciently 

true, and if  not give ideas for improvement of the reserving function Ri.

6.2. Test for similarity of bootstrap and object triangles

The mean value estimate Ri
(–) in (6.7) and the standard deviation estimate

D [ i
)n(R 1 ] in (6.9) can be used to judge if  the realized bootstrap images nt are 
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suffi ciently like the outcome of G, after multiplication by the constant ci of  
Assumption A4.

We propose also the following test. We defi ne a metric of distance between 
increment triangles that admits different general levels, refl ecting Assumption 
A4. Thus we measure the difference between two normalized triangles. Let U1 
and U2 be triangles of known development, where

U1   =   {Vij,   i  !  {1,  …,  n},  j  !  {1,  …,  n  –  i  +  1}},

U2   =   {Wij,  i  !  {1,  …,  n},  j  !  {1,  …,  n  –  i  +  1}}.

Then set

 ,
rk rk

ij

V W
ij( )

| | | |
,

, ,
,

n

k r k r
i j

1 2 = -r
V W

U U / //  (6.15)

with sums over {i  $  1, j  $  1, i  +  j  #  n  +  1} and {k  $  1, r  $  1, k  +  r  #  n  +  1}.
We defi ne U0 as the object triangle and Ut as the bootstrap triangles, i.e.

U0   =   {Yij,  i   !  {1,  …,  n},  j  !  {1,  …,  n  –  i  +  1}}

Ut   =   { ij
tY ( )n ,  i   !  {1,  …,  n},  j  !  {1,  …,  n  –  i  +  1}} for t  !  {1, 2,  …,  B}.

The arithmetic mean bootstrapped triangle, which is computed as the triangle 
of arithmetic means of the elements, is

 ][E. UtUB
1

t

B

1
1=-

=

U /  (6.16)

where the . holds for suffi ciently large B by the strong law of large numbers. 
We would ideally like to have Ut  =   U–  =   U0 for all t, since all relevant ran-

domness in the real world is conditional on G, of  which U0 is a function.
In applications however, this would destroy the randomness of the lower future 
triangles Ut. And volatility is also necessary to judge parameter uncertainty. 
We tried experiments with G (n) defi ned by rn(·), but they were not successful.

We propose to compare rn(E[U1], U0) to the distribution of rn(E[U1], Ut).
If  the former is less than e.g. the 95% percentile of the latter, then U0 can be 
assumed to have been drawn from the distribution of Ut.

We have to compute the value rn(U–, U0) and percentiles for the empirical 
distribution of rn(U–, Ut) in two bootstrap stages. The fi rst one for computing U– to 
suffi cient closeness to its expectation E[U1], and the second one for percentiles.

7. DATA AND EXAMPLES WITH TABLES OF BICH APPLICATIONS

7.1. Real data

BICH requires detailed data of possibly many millions lines of claim info, in 
contrast to the triangle-only methods. This presupposes that large claim tables 
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with one line per payment are available, which we strongly recommend at least 
for middle-size to large insurance companies.

7.2. Simulated data

We give four examples. For secrecy reasons only simulated data are used. The 
bootstrapped claims had the same distribution as the object claims. The num-
ber of bootstrap repetitions was B  =  10,000 for all examples. The subsets G (n) 
with boundaries b1 and b2, described in Section 4.1, had no effect for Exam-
ples 1, 3 , 4 so we set G (n) to the whole sample space of experiment n. For 
Example 2, the mechanism generating G (n) described in Section 4.2 was used.

The values of rn(U–, U0) were as expected for simulated data which obey our 
assumptions, i.e. most below the 90% percentile.

We have also computed examples with real data (from Länsförsäkringar 
Alliance) for change of incurred, where claims-handler practice had changed 
over time. For those the value of rn(U–, U0) was above the max-value of the 
distribution of rn(U–, Ut). So for those cases the rn-test proved its power to show 
when BICH is not appropriate. These examples are not rendered here.

Table 3 gives a comparison of standard errors by Mack (1999) and by BICH, 
and of MSEP s by the Schnieper (1991), Liu and Verrall (2009) method and 
by BICH.

We give detailed tables only for Example 1 with chain ladder. Then in Sec-
tion 7.8 we compare chain ladder, the Schnieper (1991) method and RDC side 
by side. We give reserve predictions, MSEP square roots and, for Example 4, 
the ratios of mean (reserve-ex-post) / (reserve-ex-ante). In all cases the confi -
dence interval widths and standard errors are so small that the differences 
between methods are certain, except for the MSEP s 233,891, 231,280, 
1,347,084 and 1,359,985 in Table 6.

The time period is month. For Examples 1, 3, 4 we simulated 1,000,000 
claims with probability 1/24 for each one of  the claim occurrence months 
2008-01, …, 2009-12. For Example 2 we simulated 50,000 claims for each one 
of the claim occurrence months 2008-01, …, 2009-12. The claims of 2009 are 
the object claims and those of 2008 are the bootstrap claims. Thus n  =  12.

For claim periods i such that all claim reportings are known, i.e. such the larg-
est possible value of W is #  n  –  i  +  1, the Schnieper (1991) reserves are the same 
as the chain ladder reserves. Thus we do not give Schnieper results for those i.

The exposures required for the Schnieper reserves are for all examples the 
number of claims reported in the fi rst development period, as given by (7.7), 
also when P(W  >  2)  >  0. This should be the best choice, even if  insurance 
exposures are known.

7.3. Example 1 satisfying the Mack assumptions

Tables 1 and 2 give output from BICH applying chain ladder. The assumptions 
of Mack (1999) hold with a  =  1 and wik  =  1.
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Report month was supposed to be the same as occurrence month. I.e. no 
IBNR (taken as distinct from RBNS) was constructed, so that Ni  =  Mi.
(The Mack assumptions cannot be satisfi ed for an individual claim reported 
in a later period than the claim period without all payments being 0 with prob-
ability 1). No tail was assumed, i.e. all claims are fi nalized within the fi rst 
twelve development periods. For each claim, 12 increments for development 
periods j  =  1,  …,  12 paid in the months claim-month  +  j  –  1 were recursively 
simulated with expectations and variances determined by these vectors

j 1 2 3 4 5 6 7 8 9 10 11

fj 1.60 1.50 1.40 1.35 1.30 1.25 1.20 1.15 1.10 1.07 1.01

sj
2 60 50 40 35 30 25 20 15 10 7 1

 

in this way. The fi rst increment Ci1 was drawn from a uniform distribution on 
(0,100), i.e. with mean 50. Then for j  =  1,  …,  11 the increment Ci, j  +  1  –  Ci, j was 
drawn from a lognormal distribution with mean ( fj  –  1)Ci, j and variance sj

2Ci, j. 
Thus the development factors Fi, j  =  Ci, j  +  1 / Ci, j and the cumulative amounts Ci, j 
satisfy the conditions (CL1), (CL2), (CL3), with fj and sj

2 having the same 
meaning, in Mack (1999).

Table 1 gives object variables and the transferred prediction error estimate 
ti by (6.4) from the bootstrap world.

Table 2 gives bootstrap variables. The two rightmost columns can be made 
arbitrarily small by taking B arbitrarily large. Hypothesis H0 is true. Hence ti 
is also a standard error, i.e. an estimate of  the standard deviation of  Ri con-
ditional on G.

The program also gives a table of percentiles of the predictive distribution 
of the ratio (reserve-ex-post) / (reserve-ex-ante), but it is not rendered here.

7.4. Example 2 satisfying the Liu and Verrall assumptions

The Schnieper method is to partition the increments in claim period i and 
development period j into increments Nij from new claims reported in j and 
increments – Dij from claims reported before j, where 1  #  i,  j  #  n. (The minus 
sign of the latter refl ects the concrete reinsurance case considered in Schnieper 
(1991), where the claims-handler reserve presumably typically was set too high 
for an individual claim). The total increment is then Nij   –  Dij. Assumptions for 
means and variances of the distributions of Nij and Dij, and for dependence 
and correlation, are stated. An exposure number Ei per claim period i is 
 supposed to be available and used for the distribution of Nij. For details, see 
Schnieper (1991) and Liu and Verrall (2009).

As remarked in Section 2.3, the BICH and Liu and Verrall (2009) condi-
tions can coexist, if  all claims are reported in the claim occurrence period
or the next period. So, for Example 2, we assume that P (W  #  2)  =  1. We can 
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deduce the values of l2 and s2
2, as defi ned in A1� of  Schnieper (1991) and (2.3), 

(2.5) of Liu and Verrall (2009). We can also set suitable values for Ei. This will 
enable us to construct a claim set obeying the BICH and Liu and Verrall 

TABLE 1

EXAMPLE 1. OBJECT STATISTICS AND ESTIMATES

i
Mi

(2.4)

Ni

(3.2)

Hi

(2.7)

Ri

(2.3)
ti

(6.4)
Conf. interval for ti

(6.5)

1 41,697 41,697 25,264,318 0 0 0 0
2 41,363 41,363 24,632,778 246,737 6,483 6,392 6,572
3 41,578 41,578 23,180,702 1,854,974 16,733 16,497 16,964
4 41,689 41,689 21,384,930 4,017,889 25,061 24,717 25,400
5 41,602 41,602 18,332,901 6,707,639 32,381 31,926 32,829
6 41,962 41,962 15,604,248 9,960,468 42,949 42,350 43,540
7 41,862 41,862 12,230,428 12,810,982 51,732 51,005 52,448
8 41,914 41,914 9,524,612 15,816,812 63,980 63,106 64,843
9 41,631 41,631 6,935,343 17,988,816 77,279 76,204 78,340
10 41,623 41,623 4,971,429 20,041,740 93,787 92,489 95,068
11 41,861 41,861 3,339,478 21,842,293 116,764 115,141 118,365
12 41,614 41,614 2,075,695 22,931,216 144,441 142,462 146,393

TT 500,396 500,396 167,476,861 134,219,568 314,510 310,079 318,879 

TABLE 2

EXAMPLE 1. BOOTSTRAP STATISTICS AND ESTIMATES

i
Hi

(–)

(6.6)

Ri
(–)

(6.7)

Ri
(–)

(6.8)

D[Ri
(n1)]

(6.9)

Qi
(–)

(6.13)

s (Qi
(–))

(6.14)

v̂(Ri
(–))

(6.11)
v̂(Ri

(–))
(6.12)

1 25,220,947 0 0 0 0.0000 0.0000 0.0000 0.0000
2 24,772,169 244,265 244,228 4,812 1.0002 0.0267 0.0197 0.0198
3 23,275,940 1,872,850 1,872,685 15,287 0.9999 0.0090 0.0082 0.0095
4 21,215,806 4,002,615 4,002,171 27,468 0.9999 0.0062 0.0069 0.0080
5 18,405,531 6,757,415 6,757,088 44,368 1.0000 0.0048 0.0066 0.0074
6 15,469,705 9,912,876 9,912,563 62,433 1.0000 0.0043 0.0063 0.0070
7 12,347,380 12,973,470 12,973,036 80,089 1.0000 0.0040 0.0062 0.0070
8 9,506,985 15,842,589 15,842,691 92,538 1.0000 0.0040 0.0058 0.0066
9 6,991,668 18,187,886 18,187,235 103,609 1.0000 0.0043 0.0057 0.0067
10 4,995,341 20,177,470 20,176,366 109,673 0.9999 0.0047 0.0054 0.0067
11 3,347,400 21,971,247 21,971,925 104,154 1.0000 0.0053 0.0047 0.0066
12 2,080,615 23,089,631 23,091,563 81,190 1.0001 0.0063 0.0035 0.0065

TT 167,629,487 135,032,312 135,031,551 359,368 1.0000 0.0023 0.0027 0.0024
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(2009) assumptions and to compute the exact parameter and MSEP values for 
this set. Let

  Aiw = number of claims reported in development period w, w  !  {1, 2}. (7.1)

Let p  =  P(W  =  1). Then Ai1  +  Ai2  | Ai1 is negatively binomial NB(Ai1, p). From 
the properties of this distribution (see Section 3 after the overview) we get

 A A AAiE[ ] (1 ) / Var[ ] (1 ) / .p p p pi i i i i1
2

; ;= - = -1 1 1A A2 2  (7.2)

Let Xik, k  !  {1,  …,  Ai2}, be the payments for those claims in claim period i 
and development period 2 that have W  =  2. In the BICH model, these are IID 
and independent of the past history. Let m  =  E[Xik] and s2  =  Var[Xik]. Then

 i Xi ,N k
k

A

2
1

i

=
=

2

/  (7.3)

,AA NA,A N ,Ni ii i i i ii iE[ ] E[E[ ] ] ] ( ) / ,A p1i i2 1 1 2 2 1 1 1 1; ; ; ;= = -m p1= 2E[ AmN N

 (7.4)

A A AN A, ,Ni i ii i i i iiVar[ ] Var[E[ ] ] E[Var[ ] ,A Ni i2 1 1 2 1 1 2 2 1 1; ; ; ; ;= + ]2N N N

(1 ) / (1 )p p- -A A, , /N N A Ai i i i iVar[ ] E[ ] .p pi i i1 1
2

1 1
2

1
2 2

; ;= + = +m m sA 1A2 2s

 (7.5)

Thus

 
A ,N

p

p

A

i

i ,N

i i

i i /

E[ ] (1 ) /

Var[ ] ( ) (1 )

A p

A p p

i

i

2 1 1

2 1 1
2 2

;

;

= -

= + -

m

m s 2

1

1

N

N
*  (7.6)

If  we proceed like this for Ni3, Ni4, … when P(W  $  3)  >  0, we get similar but 
more complicated expressions showing how Ni1, Ni2,  …,  Nin are dependent.

Now we regard Ai1 and Ni1 as non-stochastic, as described at the end of 
Section 2.3. So if  we take

 Ei  =  Ai1 (7.7)

the conditions for the Schnieper (1991) and Liu and Verrall (2009) model are 
satisfi ed. Here l2 and s2

2 are given by the coeffi cients for Ai1 in (7.6).
A similar construction cannot be applied for j  $  3 when P(W  $  3)  >  0.
We let P(W  =  1)  =  p  =  0.75 and P(W  =  2)  =  1  –  p  =  0.25. All claims had 

their last payment in development period 12. The payment at development 
period W was uniformly distributed on (50,70). At subsequent development 
periods j, the incremental payment had a uniform distribution with mean – dj X 
and variance tj

2 X, where X was the claim’s cumulative payment before j. The 
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dj and tj
2 are given below and have the same meaning as in A1� of  Schnieper 

(1991) and (2.3), (2.5) of Liu and Verrall (2009).

j 2 3 4 5 6 7 8 9 10 11 12

dj – 0.40 0.10 – 0.06 – 0.07 0.05 0.06 – 0.03 – 0.03 0.02 – 0.02 0.01

tj
2 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.07 0.05 0.03 0.00

Using (7.6) we compute:

j 1 2

lj m = 60 m(1  –  p) / p = 20

sj
2 s2 = 400/12 = 33.3333… (m2  +  ps2) (1  –  p) / p2 = 1611.1111 … 

Results are given only in Table 3. Section 7.8 does not deal with Example 2. 
The Schnieper method should be best here, but no signifi cant difference 
between it and the chain ladder could be found, even with 40,000 bootstrap 
repetitions. No signifi cant differences could either be found between the 
Schnieper and RDC methods, although the latter presupposes only the general 
BICH assumptions and contains no mean or variance structures.

The exact MSEP values were obtained by using the real parameter values 
above for lj, sj

2, dj and tj
2 in the MSEP formulas of Liu and Verrall (2009), 

version “L & V Original”. The reserves themselves were computed using 
 estimates.

Version “L & V Original” was used also for the MSEP estimates. Version 
“L & V with adjustment” gave the same results after rounding to integers. Ver-
sion “Mack’s Approximation” differed only, after rounding to integers, in the 
value for i = 12. That version’s MSEP  was 8,234, hardly distinguishable 
from 8,239.

7.5. Example 3

With probability 0.6 a claim is reported in period 1, i.e. in the claim occurrence 
month. With probability 0.2 in period 2, with probability 0.1 in period 3 and 
with probability 0.1 in period 4. (This gives IBNR factors 1.6667, 1.2500 and 
1.1111 for the last claim month, next last month and the month before that).

The total claim amount for a claim was simulated in two steps. First a 
random mean claim m was drawn from a uniform distribution on (0,100), i.e. 
with mean 50. Then a lognormal claim amount X with mean m and variance 
m2 was generated. These were then simulated to be paid in Q equal payments 
X/Q in the months {report-month, report-month  +  1, …, report-month  +  Q  –  1}, 
with P(Q  =  j)  =  1/9 ( j  =  1,  …,  9). Thus no payment was made later than 
month 12.
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7.6. Example 4

Two segments of claim were simulated, with the segment 1 claims occurring 
in months 01–03 and the segment 2 claims occurring in months 04–12. Thus, 
we use segmenting with s0  =  2, as described in Section 5. For the RDC method 
to work there should be at least some fi nalized object claims with the last pos-
sible F in each segment. Otherwise there will be a negative bias. So we let the 
segment 1 claims have F  #  n  =  12, making the month 01 claims fi nalized. And 
we let the segment 2 claims have F  #  n  –  3  =  9, making the month 04 claims 
fi nalized.

First we simulated the reporting delay W. Then given W, we simulated the 
life length L  =  F  –  W  +  1. The probabilities were these. P under w means 
P(W  =  w) and P under l means P(L  =  l).

The monthly payments, counted with index h  $  1 from reporting, are 
Y(r,  h  +  W  –  1). We follow here expression (2.1) for bootstrap claims. Analo-
gously for object claims. They were constructed recursively from a sequence 
of random means mh to be lognormal with mean mh and variance mh

2, condi-
tional on mh.

First m1 was drawn from a uniform distribution, conditional on L.

m1   +   U (0, 100 L 1- ) for segment 1,

m1  +   U (0, 100  / L 1- ) for segment 2.

Then for h  =  2,  …,  L

mh  =  Y(r, h  –  1  +  W  –  1)  (1  +  0.1(W  –  1)) for segment 1,

mh  =  Y(r, h  –  1  +  W  –  1)  (1  –  0.1(W  –  1)) for segment 2.

7.7. Benchmark tests of BICH

For Example 1, Table 3 compares the standard errors ti with those of Mack 
(1999) and with the exact standard deviations. The latter were computed by 
using the real fj and sj

2, not their estimates, in the Mack formulas. Condition 
CL1 of Mack (1999) is satisfi ed, so the standard deviations are the same as the 
MSEP square roots.

For Example 2, the comparison is between ti, the Liu and Verrall (2009) 
MSEP square roots for the Schnieper (1991) reserves and the exact values, as 
described in Section 7.4. The total over all claim periods for the latter was 
omitted, due to the computational complexity.

Seg w 1 2 3 4 l 1 2 3 4 5 6 7 8 9

1 P 0.60 0.20 0.10 0.10 P 0.00 0.00 0.30 0.10 0.10 0.10 0.10 0.10 0.20

2 P 0.70 0.15 0.15 P 0.00 0.60 0.10 0.10 0.05 0.05 0.10
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It is seen that ti is closer to the true values than the estimates of Mack (1999) 
and Liu and Verrall (2009) , respectively. This is a natural consequence of the 
former being computed using millions of lines of detailed data and the latter 
being computed using only a few aggregated numbers. If  only a few hundred 
claims had been available, the comparison could have been reversed.

The value of Table 3 is as a benchmark for the BICH method. The impli-
cation, albeit vague, is that we trust BICH to give correct prediction errors in 
other situations with about the same number of claims and the same variation 
of payments. 

TABLE 3

COMPARING STANDARD ERRORS AND MSEPS

i

EXAMPLE 1 EXAMPLE 2

ti

(6.4)
Mack

s.e. (Cin)

Exact 
standard 
deviation

Schnieper 
reserve

ti

BICH
MSEP

Liu and 
Verrall

MSEP
Exact
MSEP

1 0 0 0 0 0 0 0
2 6,483 3,646 6,992 – 37,713 0 0 0
3 16,733 9,273 17,250 36,386 407 214 404
4 25,061 24,530 25,253 – 39,280 647 543 648
5 32,381 25,595 33,337 70,669 858 590 856
6 42,949 40,981 42,934 177,981 1,086 630 1,085
7 51,732 47,473 52,506 – 49,094 1,456 1,127 1,466
8 63,980 55,950 64,592 – 247,514 1,871 1,481 1,865
9 77,279 65,797 77,637 13,427 2,182 1,966 2,226
10 93,787 81,563 94,404 224,620 2,592 2,302 2,631
11 116,764 107,167 116,842 – 165,387 3,151 2,877 3,131
12 144,441 141,901 146,029 1,477,940 8,263 8,239 8,448

TT 314,510 281,812 316,165 1,462,034 11,154

7.8. Using BICH to compare reserving methods

For Examples 1, 3, 4 we now compare chain ladder, Schnieper and RDC
using their BICH MSEPs. Example 2 showed no signifi cant MSEP differ-
ences. For RDC we used q0  =  500 for the number of quantile intervals of paid 
up to ‘now’. The difference in results between q0  =  100 and q0  =  500 was not 
large. No upper limit w0, as described in Section A.2, was set for Examples 1 
and 4. For Example 3, a couple of BICH bootstraps showed that we should 
set w0  =  1, which is in line with the claim simulation construction.

As can be seen from Table 4, chain ladder is only slightly better than RDC 
for Example 1, although the simulated claims were tailor-made for chain ladder. 
When we made a PPCF type computation, using only fi nalized claims for mean 
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payment estimates, we obtained total prediction error about 535,000, which is 
much worse than 325,508 for RDC. For Examples 3 and 4 RDC was better. 
The Schnieper method performed between chain ladder and RDC.

TABLE 4

EXAMPLE 1. COMPARISON

i
CHAIN LADDER RDC

Ri ti Ri ti

1 0 0 0 0
2 246,737 6,483 247,337 6,510
3 1,854,974 16,733 1,853,444 17,244
4 4,017,889 25,061 4,010,803 25,847
5 6,707,639 32,381 6,710,155 34,172
6 9,960,468 42,949 9,955,997 43,979
7 12,810,982 51,732 12,831,583 53,120
8 15,816,812 63,980 15,848,494 65,843
9 17,988,816 77,279 18,006,636 80,318
10 20,041,740 93,787 20,018,086 96,109
11 21,842,293 116,764 21,862,177 119,753
12 22,931,216 144,441 22,940,208 146,503

TT 134,219,568 314,510 134,284,919 325,508

TABLE 5

EXAMPLE 3. COMPARISON

i
CHAIN LADDER SCHNIEPER RDC

Ri ti Ri ti Ri ti

1 0 0

same
as

chain
ladder

0 0
2 2,758 257 2,440 18
3 10,752 590 10,020 156
4 30,383 1,055 30,503 354
5 77,833 1,723 79,320 667
6 157,909 2,611 160,583 1,183
7 278,019 3,821 274,719 1,888
8 448,487 5,360 443,958 2,788
9 666,052 7,434 672,901 3,844
10 979,091 10,957 979,568 10,651 969,195 7,051
11 1,332,668 15,485 1,331,496 14,230 1,327,760 9,850
12 1,707,369 24,276 1,708,036 19,355 1,713,257 13,349

TT 5,691,321 36,237 5,691,292 32,109 5,684,656 20,929
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Run time for RDC was about fi ve hours, while chain ladder takes less than 
an hour. For MSEP estimate precision it will not in practice be necessary to 
make B  =  10,000 repetitions, which we made here to be certain of our results. 
For these examples B  =  2,000 repetitions should suffi ce. Larger B might be 
needed for quantiles, see Section 6. 

In Table 6, for Example 4 with segmentation, we give also the mean ratios 
Qi

(–) of reserve-ex-post to reserve-ex-ante. These were not close to 1 for all 
claim periods, as they were for Examples 1 and 3.

8. CONCLUSION

We have shown that BICH gives good prediction error estimates under the 
natural conditions of  essentially IID claims with suffi ciently many fi nalized 
ones. A new method RDC, also derived for IID claims, is integrated into 
BICH and compared with chain ladder and the Schnieper method in BICH 
bootstraps.
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TABLE 6

EXAMPLE 4. COMPARISON

i
CHAIN LADDER SCHNIEPER RDC

Ri ti Qi
(–) Ri ti Qi

(–) Ri ti Qi
(–)

1 0 0

same
as

chain
ladder

0 0
2 781,236 639,083 1.1615 743,633 635,319 1.1967
3 1,951,032 928,295 1.0388 2,146,695 886,785 1.0591
4 0 0 0.0000 0 0 0.0000
5 16,185 8,858 1.1186 18,791 9,567 2.0326
6 73,082 19,854 1.0229 71,237 21,881 1.2023
7 448,671 56,890 1.0057 444,991 51,257 1.0249
8 1,057,292 99,351 1.0022 1,052,013 90,488 1.0089
9 2,072,212 136,817 1.0008 2,168,135 123,484 1.0056
10 4,496,636 171,564 1.0003 4,466,886 156,713 1.0016
11 8,463,515 213,716 1.0002 8,471,478 209,846 1.0006 8,487,404 190,951 1.0008
12 15,771,619 242,177 1.0000 15,817,473 233,891 1.0004 15,888,240 231,280 0.9999

TT 35,131,481 1,347,084 1.0002 35,185,297 1,359,985 1.0014 35,488,026 1,295,050 1.0042 
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APPENDIX A. RDC METHOD

A.1. The RDC framework

We describe the RDC (Reserve by Detailed Conditioning) method for reserving 
using customer waiting-for-report periods W, fi nalization periods F and payments 
Y (·) of individual claims. Payments on open and settled claims are pooled in 
a way that we surmise is optimal or near optimal. The assumption is that all 
claims in Z and T, respectively, are IID. RDC can be used without bootstrap-
ping, in which case Z is not needed. In other words we require that ci   /   c for 
some c in Assumption A4. In practice this means that payments must have 
been adjusted for infl ation beforehand. We also assume no tail, i.e. P(F  #  n)  =  1. 
We do neither consider the possibility of reopening a fi nalized claim.

No other assumptions are made. No likelihood expressions will appear in 
the sequel. We do not even prescribe a mean value or variance structure. The 
method is intended to be unbiased and give small mean square prediction 
errors in any situation with IID claims without tails, possibly after segmenta-
tion as described in Section 5. If  special assumptions are applicable — such 
as independence of individual payments or independence of the sequence of 
individual payments and F — algorithms using these will be better. But we 
aim to show that the RDC method will then only be marginally worse while 
notably better in other situations.

Besides offering an alternative to chain ladder and other methods at the 
aggregate level, a purpose of RDC is to offer a much enhanced PPCF method 
for reserving individual claims, using both fi nalized and non-fi nalized claims 
for estimates of claim life length and payment parameters, while avoiding the 
bias that a naive use of non-fi nalized claims can entail. Thus, RDC can replace 
claims-handler reserves for claim types with some volume, not too long devel-
opment and not too large payments. In the sequel payments are primarily 
intended to mean payments, not changes in incurred (payment sum plus claims-
handler reserve).

Broadly, we break down the parameters of the distribution of a claim, as 
formulated in (A.1) below, in many small details while conditioning on observ-
able variables with many combinations. The form of the probability estimates 
in Section A.3 and Theorem A.1 for mean payments show that RDC gives 
consistent reserve predictions for large numbers of  claims. Still, with fi nite 
samples we might risk instability from overparametrization. However, we con-
tend that the adding of many individual claim reserves will, by the law of large 
numbers, often make the total RDC reserve for a claim period more stable 
than other reserving functions such as chain ladder and Schnieper’s method. 
BICH bootstraps will help to set parameters for maximal stability. The conten-
tion was corroborated by BICH bootstraps on simulated data in Section 7.8.

Consider a claim in the object claim set T as described by (2.2). We sup-
press the claim period superscript i  !  {1,  …,  n} and the claim number k below. 
Thus
 {W,  F,  Y(1),  …,  Y(F )} (A.1)
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is a claim with some distribution, the parameters of which we attempt to infer. 
Recall that W  =  1 if  the claim is reported in the claim occurrence period. 
Likewise F  =  1 if  fi nalized in the claim occurrence period. Defi ne

 L = F – W + 1 = life length of claim (A.2)

The following terminology will be used:

• W # n  –  i  +  1: the claim is reported;
• L # n  –  i  –  W  +  2: the claim is fi nalized, i.e. settled. Then it is also reported;
• W # n  –  i  +  1 and L > n  –  i  –  W  +  2: the claim is reported but still open.

Defi ne the sum of amounts paid up to and including period t from reporting 
as

 {1 n-( ) ( ), 0,1, , },H t Y tW
h

t

1
f=

=

!h +/  (A.3)

where h is counted from reporting with the reporting period W having h  =  1.
Then H(0)  =  0, H(L) is the total claim cost and H(n  –  i  –  W  +  2) is the pay-

ment sum up to and including the now development period n  –  i  +  1. It follows 
that H(L)  –  H(n  –  i  –  W  +  2) is the remaining payment sum for a reported 
open claim after development period n  –  i  +  1, i.e. the reserve-ex-post. 

We want to predict the expected remaining payment sum from the known 
sum. Consider this expression.

 E[ ( ) ( ) , ( ),L H t L t H t W2;-H ] (A.4)

For t  =  n  –  i  –  W  +  2 an estimate of (A.4) gives the RBNS (Reported But Not 
Settled) reserve of a reported open claim. For t  =  0 we obtain the IBNR (Incurred 
But Not Reported) reserve per claim.

The assumption in Wüthrich and Merz (2008), Chapter 10.1.2 under Pre-
dicting Reported Open Claims, the =

(d)
 expression, is that, in our notation, H(t) 

without Y(·) suffi ces for inference. This might or might not be true, but any 
model using the individual payments Y(·) would need special and questionable 
assumptions to be workable. Hence we will not use the individual payments 
Y(·) summing to H(t). If  the Wüthrich and Merz (2008) assumption is not 
true our calculus is valid anyway, but the reserve estimates could have smaller 
variances if  Y(·) were used individually.

In the sequel, any ratio with denominator 0 is defi ned to be 0.

A.2. Parameters and observable variables used in conditioning

There is no parametric model in the RDC method for the dependence of the 
reserve on H(t). Therefore we must approximate the conditioning variable H(t) 
with its empirical quantile intervals for reported claims in T that have L > t. 
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Let q0 be the number of even-spaced quantile intervals fi xed in advance. Then 
q0  =  1 means no conditioning with respect to H(t). With q0  =  2 we condition 
with respect to whether the quantile of H(t) is at most 0.5 or not. With q0  =  3 
with respect to which one of the intervals (0, 3

1 ], ( 3
1 , 3

2 ], ( 3
2 , 1] the quantile of 

H(t) belongs to, etc. In simulations we have used up to q0  =  500. Let Q0  /  1 
and for t > 0

Qt = interval number of the quantile of H(t) for L > t, Qt  !  {1,  …,  q0}. (A.5)

At some point the prediction error ti in (2.10) will stop decreasing noticeably 
with increasing q0. Taking note of Wüthrich and Merz (2008), last paragraph 
of Chapter 10, we risk overparametrization with too large q0. In our simulated 
examples with a clear dependence on H(t) we have, however, not found any 
q0

max such that ti increases for q0 > q0
max.

For W it might not be feasible to condition with respect to all its possible 
values, if  the distribution of the sequence Y(W ),Y(W  +  1),  …, Y(W  +  L  –  1) 
does not depend much or at all on W. Therefore we might want to fi x a num-
ber w0  $  1 in advance and condition with respect to W  /  w0, the minimum of 
W and w0. BICH bootstraps will indicate the proper value of w0. If  we do not 
fi x w0 in advance, then w0 will be the largest number w such that P(W  =  w) > 0. 
Anyway w0  #  n, since we assume no tail. The distribution of W itself  is not 
studied or used in any other way than via chain ladder predictions of future 
numbers of claims per W, see (A.31).

We defi ne the underlying reserve for a claim as

 ww =( , , ) E[ ( ) , , ],R q w t H t L t Q qt 0/2;= - = W( )H L  (A.6)

whose value we wish to estimate. For

 0  #  t  #  n  –  1     t  +  1  #  l  #  n     t  +  1  #  h  #  l

defi ne probabilities and expected payments

 ,t2l ( , ,q w w) P( , ),p t L Q q wt 0/;= = = =l WL  (A.7)

 wl ( , , ) E[ ( ) , , ] .1q w t L Q q wWh t 0/;= = = =-m lY W+h  (A.8)

Then, we have

 ( , , )q w tlp l( , , ) ( , ) .R q w t w t
h tt

n

h
11

=
l

l = += +

m ,q//  (A.9)

A.3. Probability estimates

Probability estimates are obtained via estimates of the probabilities for fi nali-
zation in a period, given that the claim was not fi nalized before that. I.e. with

 ( , , ) P(r q w t L Q q W w wt 0/$= = =l l ,; , )L = l  (A.10)
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it holds, with an empty product defi ned as 1,

 l ( , , ) ( , , ) [ ( , , )] .q w t r q w t r q w t
k t

k
1

1
= -l

l

= +

-

1p %  (A.11)

This is shown by chaining successive conditional survival probabilities. Namely, 
suppressing q and w we can write (A.11) in this equivalent way.

 L k$ L $ l( ) P( ) P( )P L t k
k t 1

1
2 2; ; ;= =

l

= +

-

l L = lL Lf p%  (A.12)

An estimate of (A.10) is obtained from making the observations

l

l ( , , ) number of finalized claims with , ,

( , , ) number of reported claims with , ,

q w t L Q q W w w

q w t L Q q W w w

t

t

0

0

/

/$

= = = =

= = =

l

l

I

J

F

*  (A.13)

and using as estimates

 
l

r

r

( , , )

( , , ) ( , , ) ( , , ),

q w t

q w t I q w t q w t n

1n

1

=

=l l l ,/F J
*  (A.14)

which give the estimates pl of  pl

 r( , , ) ( , , ) [ ( , , ) .p rq w t q w t q w t
k t

k
1

1
= -l l

l

= +

-

]1%  (A.15)

This indirect way allows us to use both fi nalized and open claims. If  only 
fi nalized claims were used, the estimates would have larger variance than 
possible.

The discrete distributions defi ned above is a way to structure our observations 
into an empirical distribution.

A.4. Mean payment estimates

For estimates of mlh(q,w,t) we shall combine payments from open and fi nalized 
claims. Only known payments, i.e. with h  #  n  –  i  –  W  +  2, are used. The sums 
of Y(h  +  W  –  1) is over all reported claims in all claim periods i  !  {1,  …,  n}. 
With

 lh Y (( , , ) )1Y q w t
{ , , , }L L Q q wn i W W w2 t 0

=
/# l= = =- - +

h W+ -F /  (A.16)

an estimate of mlh(q,w,t) using only fi nalized claims is lh l( (, , ) / .Y q w t I , , )q w tFF
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But we also want to use the open claims. Thus we observe the following 
variables derived from open claims for t  #  n  –  2. They are not defi ned and not 
used for t  =  n  –  1, where (A.22) alone determines (A.27). For

 0  #  t  #  n  –  2     t  +  1  #  r  #  n  –  1     t  +  1  #  h  #  r

defi ne claim numbers and payment sums for open claims known to be open at 
period r, i.e. L  >  r, (counted from reporting) but not known to be open later 
than r.

 
r ( , , ) number of claims with 2 ,

, , ,

I q w t n i W r

L r Q q W w wt 0/2

= - - + =

= =

5

 
(A.17)

 rh (Y( , , ) ) .Y q w t h W 1
{ , , ,i W r L r Q q W w w2 > t 0

= + -
/- - + = = =n }

5 /  (A.18)

Below we drop (q, w, t) from the notation, since these parameters are fi xed in 
equations (A.19) – (A.42).

We compute the predicted number of open claims at r with L  =  l as

 rp , 1,p r nI Ir
r n1 f

=
+ +

= +l
l

+

l , .f
p5 5  (A.19)

It is easy to see that it holds, with the degree of approximation depending on 
the precision of the estimates pl,

 rh I I m] .r
r

n

r
1

; l
l

l
= +

h
5 5 5E .[Y /  (A.20)

Now we have a non-trivial problem in distributing rhY5  among the possible 
L-values r  +  1, …,  n. Namely, we need predicted payment sums rlhY5  with L  =  l 
such that

 rhrl .Y Y
r

n

h
1l = +

5 5=/  (A.21)

We propose an involved procedure, which is unfortunately hard to understand. 
But it is one that has shown itself  to yield good results in BICH bootstraps. 
We defi ne claim number sums Il

(r) (normally not integers but real numbers) 
and payment sums lhY ( )r  that are computed recursively in r, starting at r  =  l and 
going down to r  =  h. In each step the results of the previous steps are used. 
We use the appropriate Il

(r) and lhY ( )r  for an estimate of mlh that uses both fi nal-
ized and open claims in a way that can be presumed optimal or near optimal. 
The recursion is downwards because rlhY5  can be predicted with higher preci-
sion for larger r. For r  =  n  –  1 only l  =  n is possible, so that a prediction using 
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1, ,n n h- 1,n n-Y I/5 5  is as good as one obtained from fi nalized claims with the same 
number of claims in the denominator. And so on.

Defi ne for

 0  #  t  #  n  –  1     t  +  1  #  l  #  n     t  +  1  #  h  #  l

initial values determined by fi nalized claims

 
l lh h

llI I

Y Y

=

=

F( )

( ) F

l

l
*  (A.22)

and the recursion

 ,1
r hl l

,2
hlh

-
l l

...,
I I I

Y Y Y
r l

=

=
= -

rl
l

+ 5

5+
( )r ( )r 1+

h
( )r ( )r 1+

*  (A.23)

where, with

 hnrh Y nrn /Y II( )
rh

r

r

n
1

1

1
=

n

+

= +

-

b 5 5 ( )r 1+
c m/  (A.24)

we distribute rhY5  so that, for fi xed h, a new mean payment estimate that can 
be made at this step, separately for open claims at this r alone, is proportional 
to the previous estimate using all r gone through from the top so far, namely

 lhr hl

l

,
Y

I
Y

I rh= b
rl
5

5 ( )

( )

r 1+

r 1+
  which gives  lh

r hl =
l

Y
I
Y

Irh rlb5 5 ,
( )

( )

r 1+

r 1+
 (A.25)

provided brh is defi ned, i.e. at least one of its terms within ( ) – 1 has both numer-
ator and denominator not 0. If  this is not the case, we let all new mean pay-
ment estimates, separately for this r alone, for fi xed h be equal, namely

 rhr hl
nr 1+ ppY Y

f
=

+ +
l5 5p

  (if  brh is not defi ned) (A.26)

The constructions (A.25) and (A.26) satisfy (A.21).
The fi nal mean payment estimates will be

 
lh

l
l

hm , , , ; , ,
I
Y

h t n h n1 f f= = + =l(

(

)h

)h

 (A.27)

We now state that, under natural conditions, the estimate mlh converges almost 
surely (with probability one) to mlh as the sample of claims increases to infi nity. 
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If this is true, convergence of E[mlh] to mlh follows, provided we assume some 
reasonable bounding of each absolute payment |Y( j)|, as defi ned by (A.1), 
that guarantees that convergence almost surely implies convergence in mean, 
by the dominated convergence theorem.

Let N  =  N1  +  …  +  Nn be the number of claims as defi ned by (2.5). When we 
write N  "  3 we let all Ni  "  3. With a.s. is meant convergence almost surely.

Theorem A.1. Assume that one or both hold of these two conditions

(i) np m hn 0 for h r
r

n

1
! # #

n = +

l/

(ii) P(Y (h  +  W  –  1)  $  0 | L  =  n,  Qt  =  q,  W w0/  =  w)  =  1 for n  > h

Then lllim m
N hm=
"3

h  almost surely.

The proof is given in Section A.6.

A.5. Total reserve per claim and claim period

We use the building blocks computed to get the fi nal reserve estimate per claim

 ( , , )q w tl .lR ( , , ) ( , , )mpq w t q w t
1h tt

n

1

l

l = += +
h= //  (A.28)

We can now obtain the IBNR reserve Ri
 I and the RBNS reserve Ri

 R for claim 
period i. These together give the reserve per claim period as defi ned by (2.3)

 Ri  =  Ri
 I + Ri

 R. (A.29)

A.5.1. IBNR reserve

     R (1, ww 0/ , 0) = reserve of an unreported claim with W = w. (A.30) 

We predict the number of such claims per claim period i very simply with chain 
ladder applied to claim reportings. More precisely, a claim contributes 1 to the 
increment of development period W in the chain ladder algorithm. With

        
A

number of claims reported in development period

chain ladder prediction of for 2

A w

A w n i

iw

iw iw $

=

= - + ,
*  (A.31)

we obtain the IBNR reserve for claim period i as

 A w/ ,iR R ( , .w1 0i
w n i

n

2
0

= - +
w

I )= /  (A.32)
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A breakdown into development periods j is obtained by taking h  +  w  –  1  =  j 
i.e. h  =  j  –  w  +  1 in mlh of  (A.28), giving for j $ n  –  i  +  2

     A w/ijR p ( , , ) .ww w1 0 ,i
j w

n

w n i

j

j w
12

0 1 0/
l

l l
= - += - +

- +w
I ( , , )1 0m= //  (A.33)

A.5.2. RBNS reserve

For RBNS in claim period i we have

    w(R , )Q n i W 2n i W 2 0/ - - +- - + , W  = reserve of an open claim. (A.34)

Let for claim period i

( ,i ,I q )w5  = number of open claims with W = w and W + .Q qn i 2 =- -  (A.35)

Then the RBNS reserve for claim period i is

 w( ,i /i ,R R, ) ( , .I q w q n i ww 2
q

q

w

n i

11

1

0

0

= - - +
==

- +

)5R //  (A.36)

Like the IBNR reserve, a breakdown into development periods j is obtained 
from h  =  j  –  w  +  1 in (A.28), giving for j  $  n  –  i  +  2

         
( ,iI , )q w w

w

ij

m

R p ( , )

( , ) .

n i w

n i w

w

w

2

2,

j w

n

q

q

w

n i

j w

111

1

0

1 0

0

/

/

= - - +

- - +

5

l
l

l

= -==

-

- +

R

+

,

,

q

q

+

///
 (A.37)

A.6. Proof of Theorem A1

We use induction in the form of downwards recursion. Namely, we shall show 
that (A.39) implies (A.42). First note that

 rh

nr
a.s.lim

I
Y

pN rr

n

11
f+ +"3

n

n
n

+= +

m h5

5

p
p

= /  (A.38)

Assume

 lh
l

l

1, , a.s.lim
I
Y

r n
N h f= = +
"3

m l,
( )

( )

r 1+

r 1+
 (A.39)

If  (i) holds brh will be defi ned for N large enough. Then 

      rh nh
=

nr p 1 a.s.lim lim pI
Y

I
Y

( )N rh N r
r

n

r n
1

1 1

1

f
=

+ +" "3 3 n

n
+

= + +

-

b
p

5

5 ( )r 1+

f p/  (A.40)
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Hence by (A.25)

 r hl
l a.s.lim

I
Y

N h=
"3

m
rl
5

5

 (A.41)

Thus, suppressing r, l, h in the right side of (A.23) and writing its terms as 
functions of N only, we have Il

(r)  =  I1N  +  I2N and lhY ( )r   =  Y1N  +  Y2N where Y1N  /
I1N   "   mlh and Y2N  / I2N   "   mlh a.s. Hence

 lh
l

l

a.s.lim
I
Y

N h
"3

m=
( )

( )

r

r  (A.42)

Now assume that (i) is not true for some r  =  r0 but that (ii) holds. Then for
n  >  r0 the probability is 0 of observing any non-zero payment with life length 
L  =  n, and we must have mnh  =  0. Then (A.42) holds with value 0.

By the strong law of large numbers (A.39) holds for r  +  1  =  l, since the 
numerator and denominator are given by (A.22) and use fi nalized claims only.

Going down to r  =  h fi nishes the induction proof. ¡
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