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PERFECT SUBSETS OF GENERALIZED BAIRE SPACES
AND LONG GAMES

PHILIPP SCHLICHT

Abstract. We extend Solovay’s theorem about definable subsets of the Baire space to the generalized
Baire space ��, where � is an uncountable cardinal with �<� = �. In the first main theorem, we show
that the perfect set property for all subsets of �� that are definable from elements of �Ord is consistent
relative to the existence of an inaccessible cardinal above �. In the second main theorem, we introduce a
Banach–Mazur type game of length � and show that the determinacy of this game, for all subsets of ��
that are definable from elements of �Ord as winning conditions, is consistent relative to the existence of an
inaccessible cardinal above �. We further obtain some related results about definable functions on �� and
consequences of resurrection axioms for definable subsets of ��.

§1. Introduction. The perfect set property for a subset of the Baire space states
that it either contains a perfect subset, i.e., a nonempty, closed subset without
isolated points, or is countable. By a classical result, this property is provable for the
analytic subsets of theBaire space [11,Corollary 14.8], but not for their complements
[11, Theorem 13.12]. Moreover, by an important result of Solovay, it is consistent
relative to the existence of an inaccessible cardinal, that all subsets of �� that
are definable from countable sequences of ordinals have the perfect set property
[21, Theorem 2].
It is natural to ask whether the last result extends to uncountable cardinals �.
In the uncountable setting, a perfect subset of �� is defined as the set of all cofinal
branches of some <�-closed subtree of the set <�� of all sequences in � of length
strictly less than �. Accordingly, a subset of �� has the perfect set property if it either
contains a perfect subset or has size at most �. The next question (and variants
thereof) was asked by Mekler and Väänänen [18], Kovachev [13], Friedman and
others.

Question 1.1. Is it consistent, relative to the existence of large cardinals, that for
some uncountable cardinal �, the perfect set property holds for all subsets of �� that
are definable from �?

The first main result, which we prove in Theorem 2.19 below, gives a positive
answer to this question.
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Theorem 1.2. For any uncountable regular cardinal � with an inaccessible cardinal
above it, there is a generic extension by a <�-closed forcing in which every subset of
�� that is definable from a �-sequence of ordinals has the perfect set property.
Assuming that there is a proper class of inaccessible cardinals, this can be extended
to the next result, which is proved in Theorem 2.20 below.
Theorem 1.3. Assume that there is a proper class of inaccessible cardinals. Then
there is a class generic extension in which for every infinite regular cardinal �, every
subset of �� that is definable from a �-sequence of ordinals has the perfect set property.
We will further obtain the next result about definable functions in Theorem 2.22.
In the statement, let [X ]��= denote the set of sequences 〈xi | i < �〉 of distinct elements
of X for any set X and any ordinal �.
Theorem 1.4. For any uncountable regular cardinal � with �<� = �, there is a
generic extension by a <�-closed forcing in which for every � < � and every function
f : [��]��= �→ �� that is definable from a �-sequence of ordinals, there is a perfect subset
C of �� such that f�[C ]� is continuous.
We now turn to the Baire property and generalizations thereof, which we study in
the second part of this paper. It is provable that analytic and co-analytic subsets of
�� have the Baire property [12, Theorem 21.6]. Moreover, Solovay proved that it is
consistent, relative to the existence of an inaccessible cardinal, that all subsets of ��
that are definable from elements of �Ord have the Baire property [21, Theorem 2].
The direct generalization of theBaire property, which we here call �-Baire, is given
in Definition 1.12 below.However, the situation for this property in the uncountable
setting is very different compared to both the Baire property in the countable setting
and the perfect set property in the uncountable setting, since there are always Σ11
subsets of �2 that are not �-Baire by the next example. To state the example, we
consider the set

Club� = {x ∈ �2 | ∃C ⊆ � club ∀i ∈ C x(i) 
= 0}
of functions coding elements of the club filter as characteristic functions.

Example 1.5 ([8, Theorem 4.2]). Suppose that � is a cardinal with cof(�) > �.
Then the set Club� is not a �-Baire subset of �2.

Moreover, this counterexample is generalized to subsets of �� in [4] as follows.
If S is a subset of �, we consider the set

ClubS� = {x ∈ �� | ∃C ⊆ � club ∀i ∈ C x(i) ∈ S}.
Example 1.6 ([4,Theorem 3.10]). Suppose that � is an uncountable cardinal with
�<� = � and S is a bi-stationary subset of �. Then the set ClubS� is not a �-Baire
subset of ��.

It is worthwhile to mention that there are further strengthenings of this failure
that can be found in [16, Proposition 3.7].
Since the Baire property for subsets of �� is characterized by the Banach–Mazur
game [12, Theorem 8.33], it is useful to consider a generalization of this game of
uncountable length (see Definition 3.5 below). However, because of the asymmetry
of the game at limit times, the condition that a given subset A of �� is �-Baire is
stronger than the determinacy of the Banach–Mazur game of length � for the set
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A as a winning condition. This motivates the following question, which was asked
in [13].

Question 1.7. Is it consistent, relative to the existence of large cardinals, that for
some uncountable cardinal �, the Banach–Mazur game of length � is determined for
all subsets of �� that are definable from � as winning conditions?

The second main result, which we prove in Theorem 3.28 below, gives a positive
answer to this question.

Theorem 1.8. For any uncountable regular cardinal � with an inaccessible cardinal
above it, there is a generic extension by a <�-closed forcing in which the Banach–
Mazur game of length � is determined for any subset of �� that is definable from a
�-sequence of ordinals.

We will moreover use the Banach–Mazur game to define a generalization of
the Baire property, which we call almost Baire, in Section 3.1, and show that it
is consistent that this property holds for the same class of definable sets that is
considered above.
We now turn to the question whether the conclusions of the above results follow
from strong axioms. In the countable setting, it is well known thatM#n is absolute
to all set generic extensions for all natural numbers n and that, therefore, the theory
of (H�1 ,∈) is absolute to all generic extensions if there is a proper class of Woodin
cardinals (see [19,22]). Hence the conclusion of Solovay’s theorem [21, Theorem 1]
for projective sets is provable from a proper class of Woodin cardinals.1

In the uncountable setting, the theory of (H�2 ,∈) is not absolute to all generic
extensions that preserve�1, since both the existence and nonexistence of�1-Kurepa
trees can be forced by<�1-closed forcings, assuming the existence of an inaccessible
cardinal. Therefore, we will consider a variant of the resurrection axiom that was
introduced by Hamkins and Johnstone [7]. The idea for such axioms is to postulate
that certain properties of the groundmodelwhichmight be lost in a generic extension
can be resurrected by passing to a further extension.
We will see that variants of the conclusions of the above results follow from such
an axioms for a class of <�-closed forcings. If � is a regular cardinal, we say that
� is �-inaccessible if � > � is regular and �<� < � holds for all cardinals � < �.
The following result is proved in Theorem 4.4 below.

Theorem 1.9. Suppose that � is an uncountable regular cardinal, and the resurrec-
tion axiom RA� (see Definition 4.2 below) holds for the class of forcings Col(�,<�),
where � is �-inaccessible. Then the following statements hold for every subset A of ��
that is definable over (H�+ ,∈) with parameters inH�+ .
(1) A has the perfect set property.
(2) The Banach–Mazur game of length � with A as a winning condition is
determined.

This paper is organized as follows. In the remainder of this section, we will
collect several definitions and facts about trees and forcings. In Section 2, we will
prove among other results the consistency of the perfect set property for definable
subsets of ��. In Section 3, we will prove among other results the consistency of

1Infinitely many Woodin cardinals are sufficient by [17].
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the almost Baire property for definable subsets of ��. Finally, in Section 4, we will
derive variants of the conclusions of the main results from resurrection axioms.
For notation, we will assume throughout this paper that κ is an uncountable
regular cardinal with κ<κ = κ and � is an uncountable regular cardinal. The results
in this paper are motivated by work of Solovay [21], Mekler and Väänänen [18],
Donder andKovachev [13] and some ideas from this work have already been applied
in subsequent work [14, 15].

1.1. Trees and perfect sets. We always assume that � is a regular uncountable
cardinal. The standard topology (or bounded topology) on �� is generated by the
basic open sets

Nt = {x ∈ �� | t ⊆ x}
for t ∈ <��. The generalized Baire space for � is the set �� of functions f : � → �
with the standard topology.
Since we will work with definable subsets of ��, we will use the following
notation.

Definition 1.10. If ϕ(x, y) is a formula with the two free variables x, y and z is
a set, let

A�ϕ,z = {x ∈ �� | ϕ(x, z)}.
If ϕ(x) is a formula with the free variable x, let

A�ϕ = {x ∈ �� | ϕ(x)}.
The following definition generalizes perfect trees and perfect sets to the
uncountable setting.

Definition 1.11. Suppose that T is a subtree of <��, that is a downwards closed
subset of <��.

(a) predT (t) = {s ∈ T | s � t} and l(t) = dom(t).
(b) A node s in T is terminal if it has no direct successors in T and splitting if it
has at least two direct successors in T .

(c) A branch in T is a sequence b ∈ �� with b�α ∈ T for all α < �.
(d) The body of T is the set [T ] of branches in T .
(e) T is closed (<�-closed) if every strictly increasing sequence in T of length<�
has an upper bound in T .

(f) T is perfect (�-perfect) if T is closed and the set of splitting nodes in T is
cofinal in the tree order of T , that is, above every node there is some splitting
node.

(g) A subset A of �� is perfect (�-perfect, superclosed) if A = [T ] = {x ∈ �� |
∀α < �(x�α ∈ T )} for some perfect tree T .

(h) A subset A of �� has the perfect set property if |A| ≤ � or A has a perfect
subset.

Väänänen [23, Section 2] introduced a different notion of �-perfect sets based on
a game of length �. We will see in Section 2 that the perfect set property associated
to this notion is equivalent to our definition.Moreover, Kanamori [10] introduced a
variant of Sacks forcing for �, leading to a corresponding stronger notion of perfect
sets (see also [5]), but our results do not hold for this notion.
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In the following definition, a �-algebra of subsets of �� is a set of subsets of ��
that is closed under complements, unions of length � and intersections of length �.

Definition 1.12. Suppose that A, B are subsets of ��.

(a) A is �-Borel (Borel) if it is an element of the smallest �-algebra containing
the open subsets of ��.

(b) A is �-meager (meager) in B if A ∩ B is the union of � many nowhere dense
subsets of B, and �-comeager (comeager) in B if its complement is �-meager
in B. Moreover, we will omit B if it is equal to ��.

(c) A is �-Baire (Baire) if there is an open subset U of �� such that AU is
�-meager.

1.2. Forcings. A forcing P = (P,≤) consists of a set P and a transitive reflexive
relation (also called a pre-order) ≤ with domain P. We will also write p ∈ P for
conditions p ∈ P by identifying P with its domain. If P is a separative partial order,
we will assume that B(P) denotes a fixed Boolean completion such that P is a dense
subset of B(P).

Definition 1.13. (a) An atom in a forcing P is a condition p ∈ P with no
incompatible extensions. Moreover, a forcing P is nonatomic if it has no
atoms.

(b) A forcing P is homogeneous if for all p, q ∈ P, there is an automorphism

 : P→ P such that 
(p) and q are compatible.

The sub-equivalence in the next definition is stronger than the standard notion of
equivalence for separative partial orders, which states that the Boolean completions
are isomorphic. This specific definition is used in several constructions in the proofs
below.

Definition 1.14. Suppose that P, Q are forcings.

(a) A sub-isomorphism � : P → Q is an isomorphism between P and a dense
subset of Q.

(b) P, Q are sub-equivalent (P � Q) if there are sub-isomorphisms � : R → P,
� : R→ Q for some forcing R.

(c) P, Q are equivalent (P � Q) if there are sub-isomorphisms � : P → R,
� : Q→ R for some forcing R.

(d) P, Q are isomorphic (P ∼= Q) if there is an isomorphism � : P→ Q.
(e) if � : P→ Q is a sub-isomorphism, we define a P-name �� for each Q-name �
by induction on the rank as

�� = {(�, p) | p ∈ P, ∃q ∈ Q (, q) ∈ �, �(p) ≤ q}.
It is easy to check that in Definition 1.14 (e), for any P-generic filter G and for
the upwards closure H of �[G ] in Q, (��)G = �H .

Lemma 1.15. Suppose that P, Q, R are forcings.

(1) If � : P→ Q, � : P→ R are sub-isomorphisms, then there is a partial order S and
isomorphisms onto dense subforcings �∗ : Q→ S, �∗ : R→ S with �∗� = �∗�.

(2) If P � Q, then P � Q.
(3) The relation � is transitive.
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Proof. For the first claim, let ≤P,≤Q,≤R be the given forcing preorders. We can
assume that Q, R are disjoint and let S = Q ∪ R. Moreover, we define the relation
≤S on S by u ≤S v if u ≤Q v, u ≤R v or for some p ∈ P,

(u ≤Q �(p) and �(p) ≤R v) or (u ≤R �(p) and �(p) ≤Q v).
It is then easy to check that ≤S is transitive and reflexive, ≤S�Q =≤Q and �, � are
sub-isomorphisms into S.
We now let u ≡S v if u ≤S v and v ≤S u and let S denote the poset that is
obtained as a quotient of S by≡S with the partial order induced by≤S . Let further
�∗ : Q→ S, �(q) = [q] and �∗ : R→ S, �∗(r) = [r], where [p] denotes the equivalence
class of p ∈ S with respect to ≡S . By the definitions, �∗, �∗ are sub-isomorphisms
into S that commute in the required fashion.
Moreover, this immediately implies the second claim.
For the last claim, suppose that P � Q and Q � R are witnessed by sub-
isomorphisms � : P → S, � : Q → S, � : Q → T and � : R → T. By the first claim,
there is a partial order U and sub-isomorphisms �∗ : S → U, �∗ : T → U with
�∗� = �∗�. Then �∗�, �∗� witness that P � R. �
Definition 1.16. Suppose that P, Q are forcings.

(a) A complete subforcing P of Q (P � Q) is a subforcing of Q such that every
maximal antichain in P is maximal in Q.

(b) A complete embedding i : P → Q is a homomorphism with respect to ≤ and
⊥ with the property that for every q ∈ Q, there is a condition p ∈ P (called
a reduction of q) such that for every r ≤ p in P, i(r) is compatible with q.

(c) Suppose that i : P→ Q is a complete embedding and G is P-generic over V .
The quotient forcing Q/G for G in Q is defined as the subforcing

Q/G = {q ∈ Q | ∀p ∈ G i(p) ‖ q}
of Q. Moreover, we fix a P-name Q/P for the quotient forcing for P in Ġ ,
where Ġ is a P-name for the P-generic filter, and also refer to this as (a name
for) the quotient forcing for P in Q.

It is a standard fact that a subforcing P of Q is a complete subforcing if and only
if the identity on P is a complete embedding.

Definition 1.17 (see [1, Definition 0.1], [3, Definition 5.2]). Suppose that P
and Q are forcings.

(a) A projection 
 : Q→ P is a homomorphism with respect to≤ such that 
[Q]
is dense in P and for all q ∈ Q and all p ≤ 
(q), there is a condition q̄ ≤ q
with 
(q̄) ≤ p.

(b) Suppose that 
 : Q → P is a projection and G is a P-generic filter over V .
The quotient forcing Q/G for G in Q relative to 
 is defined as the subforcing

Q/G = {q ∈ Q | 
(q) ∈ G}
of Q. Moreover, we fix a P-name (Q/P)
 for the quotient forcing for Ġ in Q
relative to 
, where Ġ is a P-name for the P-generic filter, and will refer to
this as (a name for) the quotient forcing for P in Q relative to 
.
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In Definition 1.17, by standard facts about quotient forcing, for any P-generic
filterG overV , anyQ/G-generic filterH overV [G ] isQ-generic overV .Moreover,
anyQ-generic filterH overV induces theP-generic filterG = 
[H ] overV andH is
[(Q/P)
]H -generic overV [G ] withV [H ] = V [G ∗H ]. Assuming that P andQ have
weakest elements �P and �Q, respectively, it is easy to see that the condition that

[Q] is dense in P in Definition 1.17 is equivalent to the condition that 
(�Q) = �P.
It is easy to check that the following map is actually a projection.

Definition 1.18. Suppose that P, Q are complete Boolean algebras and P is a
complete subalgebra of Q. We define the natural projection 
 : Q→ P by


(q) = infp∈P, p≥q p.

We will further use the following notation when working with quotient forcings
induced by names.

Definition 1.19. If P is a complete Boolean algebra and  is a P-name for a
subset of a set x, let B() = BP() denote the complete Boolean subalgebra of P
that is generated by the Boolean values �y ∈ �P for all y ∈ x. Moreover, we will
also use this notation if  is a name for a set that can be coded as a subset of a
ground model set in an absolute way.

Moreover, we will often add Cohen subsets to a regular cardinal κ with κ<κ = κ.
The following definition of the forcing for adding Cohen subsets is non-standard,
but essential in several proofs below. In the following definitions, let Succ denote
the class of successor ordinals.

Definition 1.20. Suppose that � is a regular uncountable cardinal.
(a) Add(�, 1) is defined as the forcing

Add(�, 1) = {p : α → � | α < �},
ordered by reverse inclusion.

(b) Add∗(�, 1) is defined as the dense subforcing

Add∗(�, 1) = {p ∈ Add(�, 1) | dom(p) ∈ Succ}
of Add(�, 1).

(c) Add(�, �) is defined as the <�-support product
∏
i<� Add(�, 1) for any

ordinal �.

We will often use the following standard facts about adding Cohen subsets and
collapse forcings.
Lemma 1.21. Suppose that � is a regular uncountable cardinal.
(1) If �<� = � and P is a nonatomic<�-closed forcing of size �, then P has a dense
subset that is isomorphic to Add∗(�, 1). In particular, P is sub-equivalent to
Add(�, 1).

(2) [6, Lemma 2.2] Suppose that � > � is a cardinal with �<� = �, P is a separative
<�-closed forcing of size � and �P forces that � has size �. Then P has a dense
subset that is isomorphic to the dense subforcing

Col∗(�, �) = {p ∈ Col(�, �) | dom(p) ∈ Succ}
of Col(�, �). In particular, P is sub-equivalent to Col(�, �).

https://doi.org/10.1017/jsl.2017.44 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.44


1324 PHILIPP SCHLICHT

Proof. Since the proof of the first claim is straightforward and well known, we
do not include it here. The proof of the second claim is an adaptation of the proof
of [9, Lemma 26.7] that can be found in [6, Lemma 2.2]. �
1.3. A counterexample for quotient forcings. The following well known example
of a quotient of Add(κ, 1) that does not preserve stationary subsets of κ shows that
the proofs of regularity properties for definable subsets of �� in Solovay’s model
do not generalize to any uncountable regular cardinal.
For any uncountable regular cardinal κ with κ<κ = κ, we define a complete sub-
forcing of the Boolean completion B(Add(κ, 1)) of Add(κ, 1) such that its quotient
forcing in B(Add(κ, 1)) does not preserve stationary subsets of κ.
For any condition p ∈ Add(κ, 1), we consider the set sp = {α ∈ dom(p) |
p(α) 
= 0}. Suppose that Ġ is an Add(κ, 1)-name for the generic filterG and Ṡ is an
Add(κ, 1)-name for

⋃
p∈G sp. Then �Add(κ,1) forces that Ṡ is a bi-stationary subset

of κ. Moreover, if S is a subset of κ, we define

QS = {p ∈ Add(κ, 1) | sp is a closed subset of S}.
Lemma 1.22. Suppose that κ<κ = κ and Q̇ is an Add(κ, 1)-name forQṠ , where Ṡ
is defined as above. Then Add(κ, 1) ∗ Q̇ is sub-equivalent to Add(κ, 1).
Proof. The set

{(p, q̌) | p, q ∈ Add(κ, 1), dom(p) = dom(q), p �Add(κ,1) q̌ ∈ Q̇}
is a nonatomic <κ-closed dense subset of Add(κ, 1) ∗ Q, hence Add(κ, 1) ∗ Q is
sub-equivalent to Add(κ, 1) by Lemma 1.21. �
It is forced by �P that Q̇ shoots a club through Ṡ and hence Q̇ is not stationary
set preserving. Thus, Q̇ is a name for the required quotient forcing. In particular,
such a forcing fails to be <κ-closed.
Now suppose that κ is an uncountable regular cardinal and � > κ is inaccessible.
An argument analogous to the proof of [21, Theorem 1] shows that after forcing
with Col(κ,<�), all Σ11 subsets of

κκ have the perfect set property. However, this
proof fails to work for Π11 subsets of

κκ precisely because some quotient forcings,
such as the ones appearing in Lemma 1.22, are not necessarily <κ-closed.

Remark 1.23. In the situation of Lemma 1.22, �P forces that QṠ is <κ-
distributive, since it appears in a two-step iteration which is <κ-distributive.
However, in general one needs to require more conditions on S to ensure that
QS is <κ-distributive. For instance, assuming that the GCH holds, it is suffi-
cient that S is a fat stationary subset of κ in the sense that for every club C in
κ, S ∩ C contains closed subsets of arbitrarily large order types below κ (see
[2, Theorems 1 & 2]).

§2. The perfect set property. We always assume that κ is an uncountable regular
cardinal with κ<κ = κ and that � is an uncountable regular cardinal. We define the
length of various types of objects in the next definition.

Definition 2.1. (a) Let l(s) = dom(s) for any function s .
(b) Let l(t) = sups∈t l(s) for t ⊆ <��.
(c) Let l(p) = l(t) for p = (t, s) and t, s ⊆ <��.
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2.1. Perfect set games. The perfect set property is characterized by the perfect
set game.

Definition 2.2. The perfect set game F�(A) of length � for a subset A of �2
is defined as follows. The first (even) player, player I, plays some sα ∈ <�2 in all
even rounds α. The second (odd) player, player II, plays some sα ∈ <�2 in all odd
rounds α. Together, they play a strictly increasing sequence �s = 〈sα | α < �〉 with
sα ∈ <�2 for all α < �. Player II has to satisfy the additional requirement that
l(sα+1) = l(sα) + 1 for all even ordinals α < �. The combined sequence �s of moves
of both players defines a sequence

⋃

α<�

sα = x = 〈x(i) | i < �〉 ∈ �2.

Player I wins if x ∈ A. Moreover, if t ∈ <�2, the game F t� (A) is defined as F�(A)
with the additional requirement that t ⊆ s0 for the first move s0 of player I.
The perfect set game characterizes the perfect set property for subsets of �2 in the
following sense.
Lemma 2.3 ([13, Lemma 7.2.2]). Suppose that A is a subset of �2 and t ∈ <�2.
(1) Player I has a winning strategy in F t� (A) if and only if A ∩ Nt has a perfect
subset.

(2) Player II has a winning strategy in F t� (A) if and only if |A ∩Nt | ≤ �.
The perfect set property is equivalent to the following variant defined in
[23, Section 2].

Definition 2.4. The game V�(A) of length � for a subset A of �2 is defined as
follows. The first (even) player, player I, plays an ordinal αi in all even rounds i .
The second (odd) player, player II, plays an element xi of A in all odd rounds i .
Moreover, the sequence 〈αi | i < �〉 of moves of player I has to be continuous.
Player II wins if for all i < j < �, xi�αi = xj�αi and xi 
= xj .
Lemma 2.5. Suppose that A is a subset of ��. Then A has a perfect subset if and
only there is a closed subset C of A such that player II has a winning strategy in
V�(C ).
Proof. If A has a perfect subset C , then it is straightforward to define a winning
strategy for player II in V�(C ).
Now suppose that C is a closed subset of A and that player II has a winning
strategy  in V�(C ). Using , we can inductively construct 〈xs , ts , �s | s ∈ <�2〉
such that the following conditions hold for all r, s ∈ <�2.
(1) (a) tr � ts if r � s .
(b) tr�〈0〉 ⊥ tr�〈1〉.
(c) ts =

⋃
u�s tu if l(s) is a limit.

(2) l(ts ) = �s .
(3) ts ⊆ xs .
(4) Let cs denote the closure of the set {α < l(s) | ∃ᾱ α = ᾱ+1, s(ᾱ) = 1} and

 : cs → �s its transitive collapse. Then

〈�s�
−1(α), xs�
−1(α) | α < �s 〉
is a partial run of V�(C ) according to .
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The last condition ensures the existence of partial runs that split exactly at the
times α where s has successor length α and the last value 1 and at the limits of such
times. In particular, whenever α < �s , 
−1(α) = ᾱ + 1 and s(ᾱ) = 1, the partial
run for s is extended by player I playing an ordinal �s�(ᾱ+1) and player II responding
with an element xs�(ᾱ+1) of A that splits from xs�ᾱ , and whenever s(ᾱ) = 0, the
partial run for s is not extended.
We thus obtain a perfect tree T = {t ∈ <�2 | ∃s ∈ <�2 t ⊆ ts}. Since C is closed,
it follows from the construction that [T ] ⊆ C , proving the claim. �
2.2. The perfect set property for definable sets. We will show that forcing with
Add(κ, 1) adds a perfect set of Add(κ, 1)-generic elements of κκ whose quotient
forcings are sub-equivalent to Add(κ, 1). More precisely, each of these elements
will have an Add(κ, 1)-name that generates a complete subalgebra of B(Add(κ, 1))
whose quotient forcing in B(Add(κ, 1)) is sub-equivalent to Add(κ, 1).
This will be proved by considering the following forcing P. The forcing adds a
perfect subtree of <κκ by approximations of size <κ.

Definition 2.6. Let P denote the set of pairs (t, s) such that
(a) t ⊆ <κκ is a tree of size <κ,
(b) every node u ∈ t has at most two direct successors in t,
(c) s ⊆ t and if u ∈ t is nonterminal in t, then u ∈ s if and only if u has exactly
one successor in t.

Let (t, s) ≤ (u, v) if u ⊆ t and s ∩ u = v.
The set s marks the non-branching nodes in the tree. It follows from the definition
of P that the forcing adds a perfect binary splitting subtree of <κκ. Since every
decreasing sequence of length< κ in P has an infimum, |P| = κ and P is nonatomic,
the forcing is sub-equivalent to Add(κ, 1) by Lemma 1.21.
In the remainder of this section, we write TG =

⋃
(t,s)∈G t if G is a P-generic filter

over V .
Lemma 2.7. Suppose thatG isP-generic overV andT = TG . ThenV [G ] = V [T ].
Proof. SinceT ∈ V [G ], it is sufficient to show thatG ∈ V [T ]. SinceG is generic,
for all (t, s) ∈ P, (t, s) ∈ G if and only if (t, s) is compatible with all conditions
in G . Hence the elements (t, s) of G are exactly the pairs (t, s) such that s ⊆ t ⊆ T
and s is the set of u ∈ t such that u has exactly one direct successor in T . Hence
G ∈ V [T ]. �
If b = ∪g for some Add(κ, 1)-generic filter g over V as in the next lemma, we
will also say that b is Add(κ, 1)-generic over V .
Lemma 2.8. Suppose thatG is P-generic and b, c are distinct branches in T = TG .
Then there is anAdd(κ, 1)×Add(κ, 1)-generic filter g × h over V in V [T ] such that
b =

⋃
g and c =

⋃
h.

Proof. Suppose that b, c are distinct branches in T and , � are P-names for b, c
in the sense that G = b and �G = c. Moreover, let Ṫ be a P-name for T . Then
there is a condition p0 ∈ G with p0 �P , � ∈ [Ṫ ] and p0 �P  
= �. We can assume
that p0 = �P by replacing , � with names that satisfy these conditions for p0 = �P.
Now suppose thatD is a dense open subset of Add(κ, 1)×Add(κ, 1) and let

E = {q ∈ P | ∃(u, v) ∈ D, q �P u ⊆ , v ⊆ �}.

https://doi.org/10.1017/jsl.2017.44 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.44


PERFECT SUBSETS OF GENERALIZEDBAIRE SPACES 1327

Claim. E is dense.
Proof. Suppose that p ∈ P. Since �P �P  
= �, we can assume by extending p
that for some α < l(p), p decides (α), �(α) and these values are different. We let
q0 = p and choose successively for each n ∈ � an extension qn+1 ≤ qn such that
l(qn) < l(qn+1) and qn+1 decides both �l(qn) and ��l(qn). Finally, let q = infn∈� qn
and suppose that q = (tq , sq). Since the lengths l(qn) form a strictly increasing
sequence, � = l(q) = supn∈� l(qn) is a limit ordinal. Moreover, by the choice of the
sequence of conditions, there are u, v ∈ �κ with u 
= v and q �P �� = u, ��� = v.
We first claim that (u�α), (v�α) ∈ tq for all α < �. It is sufficient to prove that
(u�α) ∈ tq for all α < � by symmetry. To see this, suppose towards a contradiction
that u�α /∈ tq for some α < �. Suppose that α is minimal. We extend q = (tq , sq)
to r = (tr , sr) as follows. We choose � < κ with u(α) 
= � and let tr = tq ∪
{u�α, (u�α)�〈�〉} and sr = sq∪{u�α}. Then r �P u(α) = � and hence r �P u 
⊆ ,
contradicting the fact that q �P �� = u by the choice of q and u. This shows that
u�α ∈ tq for all α < �.
Since D is dense in Add(κ, 1) × Add(κ, 1), there are conditions ū ≤ u, v̄ ≤ v
with (ū, v̄) ∈ D. SinceD is open, we can assume that l(ū) = l(v̄) = � for some limit
ordinal � with � < � < κ. Now let

x = {ū�� | � ≤ � < �} ∪ {v̄�� | � ≤ � < �}.
Moreover, let t̄ = tq ∪ x, s̄ = sq ∪ x and r = (t̄ , s̄). Then r ∈ P and r ≤ p.
Subclaim. r �P ū ⊆ , v̄ ⊆ �.
Proof. It is sufficient to prove r �P ū ⊆  by symmetry. Since r ≤ q and q �P
�� = u by the choice of u, we have r �P �� = u. Since u = ū�� ∈ x ⊆ sq ∪ x = s̄
by the definition of x and s̄ and since r = (t̄ , s̄) ∈ P, the node u = ū�� has the
unique direct successor ū�(� + 1) in t. Hence r �P �(� + 1) = ū�(� + 1). An
analogous argument shows inductively that r �P �(� + 1) = ū�(� + 1) for all �
with � ≤ � < �. Hence r �P �� = ū. �
This implies that r ≤ p and r ∈ E, proving the claim. �
Let g = {s ∈ <κκ | s ⊆ b}, h = {s ∈ <κκ | s ⊆ h}. The previous claim implies
that g × h is Add(κ, 1)×Add(κ, 1)-generic over V . �
We obtain the same result for <κ many branches in TG .
Lemma 2.9. Suppose that G is P-generic and 〈bi | i < �〉 is a sequence of distinct
branches in T = TG for some � < κ. Then there is anAdd(κ, �)-generic filter

∏
i<� gi

over V in V [G ] with bi =
⋃
gi for all i < �.

Proof. The proof is as the proof of Lemma 2.8, but instead of working with
names , � for branches in TG with �P �P  
= �, we work with a sequence
〈i | i < �〉 of names for branches in TG with �P �P i 
= j for all i < j < �. �
We will show that for every branch b of T = TG , the quotient forcing relative to
a name for b is equivalent to Add(κ, 1). Suppose that Ṫ is a P-name for T and ḃ
is a P-name for a branch in Ṫ , in the sense that these properties are forced by �P.
Moreover, if p ∈ P, let ḃp = {(α, �) | p � ḃ(α) = �}.
Lemma 2.10. If p = (t, s) ∈ P and � ⊆ dom(ḃp), then
(1) ḃp�� ∈ t for all � < �, if � is a limit, and
(2) ḃp�� ∈ t if � is a successor.
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Proof. Suppose that � is least such that the claim fails. First suppose that � is a
limit. In this case, suppose that � < � is least with ḃp�� /∈ t and define q = (u, v) ≤ p
by u = t ∪ {ḃp��, (ḃp��)�〈�〉} for some � 
= ḃp(�) and v = s ∪ {ḃp��}. Then
q �P ḃ(�) = �, contradicting the definition of ḃp. Now suppose that � is a successor.
Then � = � + 1 and ḃp�� = r�〈α〉 for some r ∈ t with l(r) = � . In particular,
p �P ḃ(�) = α. We distinguish two cases.
First suppose that r ∈ s . If r has a successor r�〈�〉 in t, then this successor is
unique and α 
= �, since we have r�〈α〉 = ḃp�� /∈ t by the assumption on �. Then
p �P ḃ(�) = �, contradicting the fact that p �P ḃ(�) = α. If r has no successor in
t, let � be an ordinal below κ with � 
= α. Let u = t∪{r�〈�〉}, v = s and q = (u, s).
Then q �P ḃ(�) = �, contradicting the fact that p �P ḃ(�) = α.
Second, suppose that r /∈ s . If r is nonterminal in t, then r has exactly two suc-
cessors r�〈�〉, r�〈�〉 in t with �, � 
= α. Then p �P ḃ�� ∈ t, contradicting the fact
that p �P ḃ(�) = α. If r is terminal in t, let �, � be below κ with �, � 
= α.
Let u = t ∪ {r�〈�〉, r�〈�〉}, v = s , and q = (u, s). Then q �P ḃ(�) 
= α,
contradicting the fact that p �P ḃ(�) = α. �
Let P∗ denote the set of conditions p = (t, s) ∈ P such that l(t) is a limit ordinal
and l(ḃp) = l(t).
Lemma 2.11. P∗ is dense in P.
Proof. Suppose that p ∈ P and let p0 = p = (t0, s0). We choose successively for
each n ∈ � a condition pn+1 = (tn+1, sn+1) that decides ḃ�l(tn) with pn+1 ≤ pn and
l(tn) < l(tn+1). Let t =

⋃
n∈� tn, s =

⋃
n∈� sn and q = (t, s). By the construction,

l(q) is a limit and l(q) ≤ l(ḃq). Moreover, we have l(bq) ≤ l(q) by Lemma 2.10 and
hence q ∈ P∗. �
We will expand P to determine the quotient forcing in V [G ] for a branch
ḃG ∈ [TG ]. The precise statement is given in Lemma 2.16 below.
Suppose that ḃ is aP-name for a branch inTĠ , where Ġ is a name for theP-generic
filter, in the sense that this is forced by �P. Let

Q = {(ḃp, q) | p ∈ P∗ and (q = p or q = 1P)}
and for all (u, p), (v, q) ∈ P, let (u, p) ≤ (v, q) if v ⊆ u and p ≤P q. Moreover, let

Q0 = {(ḃp,�P) | p ∈ P∗},
Q1 = {(ḃp, p) | p ∈ P∗}.

ThenQ = Q0∪Q1,Q1 is a dense subforcing ofQ andQ0∩Q1 contains atmost�Q.We
further consider themap e : P∗ → Q1, e(p) = (ḃp, p). Since e is an isomorphism, P∗

is dense inP andQ1 is dense inQ, it follows that the forcingsP,Q are sub-equivalent.
Lemma 2.12. The map 
 = 
Q,Q0 : Q→ Q0, 
(ḃp, r) = (ḃp,�P) is a projection.
Proof. By the definition, 
 is a homomorphism with respect to ≤ and it is
surjective onto Q0.
To prove the remaining requirement for projections, first suppose that u =
(ḃp, p) ∈ Q1 and v = (ḃq, 1P) ∈ Q0 are conditions with v ≤ 
(u). In particu-
lar, ḃp ⊆ ḃq and hence l(p) ≤ l(q). It is sufficient to show that u, v are compatible
in Q, since for any extension w ≤ u, v, we have 
(w) ≤ v by the definition of 
 and
since v ∈ Q0.
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To see that u, v are compatible, suppose that p = (t, s). Since p ∈ P∗, l(p) is a
limit and ḃp is cofinal in t by the definition of P∗. Let

t̄ = t ∪ {ḃq � α | l(ḃp) ≤ α < l(ḃq)},
s̄ = s ∪ {ḃq � α | l(ḃp) ≤ α < l(ḃq)},

and p̄ = (t̄, s̄). Then p̄ ∈ P and p̄ ≤ p. Moreover, it follows from Lemma 2.10 that
ḃq ⊆ ḃp̄.
We can choose a condition r ≤ p̄ with r ∈ P∗, since P∗ is dense in P, and let
w = (ḃr , r) ∈ Q1. Since u = (ḃp, p) and r ≤ p, we have w ≤ u. Since v = (ḃq , 1P)
and ḃq ⊆ ḃp̄ ⊆ ḃr , we have w ≤ v, and in particular, u, v are compatible.
Second, suppose that u = (ḃp,�P) ∈ Q0 and v is as above. Since (ḃp,�P) ≤ u,
the required statement follows from the property of (ḃp, p) that we just proved. �
Lemma 2.13. Q0 is a complete subforcing of Q.
Proof. It is sufficient to show that every maximal antichain A in Q0 is maximal
in Q. Let

D0 = {p ∈ Q0 | ∃q ∈ A p ≤ q},
D = {p ∈ Q | ∃q ∈ A p ≤ q}.

It is sufficient to show thatD is dense in Q, since this implies thatA is a maximal
antichain in Q. To see thatD is dense, suppose that u ∈ Q. If u ∈ Q0, then there is
a condition v ≤ u in D0 ⊆ D, since D0 is dense in Q0 by the assumption that A is
maximal in Q0. Now suppose that u = (ḃp, p) ∈ Q1. Since D0 is dense in Q0, there
is some v = (ḃq, 1P) ∈ D0 with ḃp ⊆ ḃq. Since v ≤ 
(u) and 
 is a projection by
Lemma 2.12, there is some w ≤ u with 
(w) ≤ v. Then w ≤ 
(w) ≤ v ∈ D0 and
hence w ∈ D by the definition of D, proving thatD is dense in Q. �
Let e : P∗ → Q1, e(p) = (ḃp, p) be the isomorphism between P∗ and Q1 that
was given after the definition of Q above. If G is a P-generic filter over V , then the
upwards closure

H = {q ∈ Q | ∃p ∈ G e(p) ≤ q}
of e[G ] in Q is a Q-generic filter over V . In the following, we will write TH = TG ,
where TG is the perfect tree adjoined by G that is given after the definition of P
above.
Since it is convenient to work with complete Boolean algebras, we will now check
that P is separative.

Lemma 2.14. P is a separative partial order.

Proof. It is easy to see that P is a partial order. To show that P is separative,
suppose that (t, s), (v, u) are conditions in P with (t, s) 
≤ (v, u).
We first assume that v ⊆ t. Then s ∩v 
= u. We claim that (t, s), (v, u) are already
incompatible. Otherwise there is a common extension (y, x), so that x ∩ t = s and
y ∩v = u. However, this implies that s ∩v = (x ∩ t)∩v = x ∩v = u, contradicting
the fact that s ∩ v 
= u.
We now assume that v 
⊆ t and choose some w ∈ v \ t. We can assume that (t, s),
(v, u) are compatible, so that (t ∪ v, s ∪ u) is a condition. We define y ⊆ t ∪ v by
removing all nodes strictly abovew. To define x, we first let x̄ = (y \{w})∩ (s ∪u).
Let x = x̄ if w ∈ u and x = x̄ ∪ {w} otherwise. The choice of x implies that
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(y, x), (v, u) are incompatible, since w ∈ x ⇔ w /∈ u. This is sufficient, since
(y, x) ≤ (t, s). �
Moreover, it follows from the previous lemma and Lemma 2.10 that Q is also a
separative partial order.
If R is a complete Boolean algebra and  is an R-name for an element of κκ, as
a special case of the notation given in Definition 1.19, we will write B() = BR()
for the complete Boolean subalgebra of R that is generated by the Boolean values
�(α) = ��R for ordinals α, � < κ.
We will use the following terminology for quotient forcings relative to elements
of κκ in a generic extension.

Definition 2.15. Suppose that R is a separative forcing, S is any other forcing,
G is R-generic over V and c ∈ V [G ] is a set that can be coded as a subset of a
ground model set in an absolute way. We say that c has S as a quotient in V [G ] if
there is aR-name ċ with ċG = c such that for the B(ċ)-generic filterG0 = G ∩B(ċ),
the quotient forcing [B(R)/B(ċ)]G0 is equivalent to S in V [G0].

Lemma 2.16. �B(ḃ) forces that the quotient forcing B(P)/B(ḃ) is sub-equivalent to
Add(κ, 1).
Proof. Let ḃQ denote the Q-name induced by the P-name ḃ via the sub-
isomorphism e : P∗ → Q defined above. Since e induces an isomorphism B(P) ∼=
B(Q) on the Boolean completions, it is sufficient to prove the claim forQ, ḃQ instead
of P, ḃ. Moreover, it follows from the definition of Q0 that B(ḃQ) is equal to the
complete subalgebra of B(Q) generated byQ0. SinceQ0 is a complete subforcing of
Q by Lemma 2.13, it is therefore sufficient to prove that Q0 forces that the quotient
forcing Q/Q0 is equivalent to Add(κ, 1).
It follows from Lemma 2.8 that Q forces that there is an Add(κ, 1)-generic filter
over V [ḃQ] in V [Ġ ], where Ġ is a name for the Q-generic filter, and therefore Q
forces that the quotient forcing Q/Q0 is nonatomic.
We have that 
 : Q → Q0 is a projection (with 
�Q0 = idQ0 ) by Lemma 2.12
and Q0 is a complete subforcing of Q by Lemma 2.13. Since moreover 
(q) ≥ q
for all q ∈ Q, it is easy to check that Q0 forces that the quotient forcing Q/Q0
given in Definition 1.16 and the quotient forcing (Q/Q0)
 with respect to 
 given in
Definition 1.17 are equal. Hence we can consider (Q/Q0)
 instead of Q/Q0.
Now suppose that G0 is Q0-generic over V and b = ḃG0 . By the definition of the
quotient forcing with respect to 
 in Definition 1.17, we have

[(Q/Q0)
]G0 = {(ḃp, q) ∈ Q | 
(ḃp, q) ∈ G0} = {(ḃp, q) ∈ Q | ḃp ⊆ b}.
It follows from the definitions of P∗ and Q that the last set in the equation is a
<κ-closed subset of Q. Since we already argued that the quotient forcing is
nonatomic, it is sub-equivalent to Add(κ, 1) by Lemma 1.21. �
The next result shows that the statement of the previous lemma also holds for
names for sequences of length<κ of branches inTG . For the statement of the result,
we assume that � < κ, Ġ is a P-name for the P-generic filter and  is a P-name for a
sequence of length � of distinct branches in TĠ , in the sense that this is forced by �P.

Lemma 2.17. �B() forces that the quotient forcing B(P)/B() is sub-equivalent to
Add(κ, 1).
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Proof. The proof is analogous to the proof of Lemma 2.16, but instead of
working with a name ḃ for a branch in TĠ , we work with the name  for a sequence
of branches in TĠ . As in the definitions ofQ,Q0 before Lemma 2.12, we can define
variants of these forcings with respect to  instead of ḃ and thus obtain the required
properties as in the proofs of Lemmas 2.12 and 2.13. �
The previous two lemmas imply that ḃG and G have Add(κ, 1) as a quotient in
V [G ] for every P-generic filter G over V .

Lemma 2.18. Suppose that � is an uncountable regular cardinal, � > � is inacces-
sible andG is Add(�, 1)-generic over V . Then in V [G ], there is a perfect subtree T of
<�� such that for every � < �, every sequence 〈xi | i < �〉 of distinct branches of T is
Add(�, �)-generic over V and has Add(�, 1) as a quotient in V [G ].

Proof. Since P is sub-equivalent to Add(�, 1), there is a P-generic filter H
over V with V [G ] = V [H ]. Let C = [TH ]V [H ], where TH is the tree given after
Definition 2.6.
We first assume that � = 1. By Lemma 2.8, every x ∈ C is Add(�, 1)-generic over
V and by Lemma 2.16, every x ∈ C has Add(�, 1) as a quotient in V [G ].
The proof is analogous for arbitrary � < �. By Lemma 2.9, any sequence
�x = 〈xi | i < �〉 of distinct elements of C is Add(�, �)-generic over V and by
Lemma 2.17, �x has Add(�, 1) as a quotient in V [G ]. �
In the next proof, we will use the following notation Col(�,X ) for subforcings of
the Levy collapse Col(�,<�). Suppose that � < � are cardinals and X ⊆ � is not
an ordinal (to avoid a conflict with the notation for the standard collapse). We then
write

Col(�,X ) = {p ∈ Col(�,<�) | dom(p) ⊆ X × �}.
Let further GX = G ∩ Col(�,X ) and G� = G ∩ Col(�,<�) for any Col(�,<�)-
generic filter G over V and any � < �.
The notation Col(�,X ) will be used for intervals X , for which we use the
standard notation

(α, �) = {� ∈ Ord | α < � < �},
[α, �) = {� ∈ Ord | α ≤ � < �}.

Moreover, wewill use the following consequence of Lemma 1.21 in the next proof.
Suppose that � is regular and � > � is inaccessible. If R is a separative <�-closed
forcing of size <� and � < � is an ordinal, then R× Col(�,<�) and Col(�, [�, �))
are sub-equivalent.

Theorem 2.19. Suppose that � is an uncountable regular cardinal, � > � is inac-
cessible and G is Col(�,<�)-generic over V . Then in V [G ], every subset of �� that is
definable from an element of �V has the perfect set property.

Proof. Suppose that ϕ(x, y) is a formula with two free variables and z ∈ Ord�.
Using the set A�ϕ,z given in Definition 1.10, let

(A�ϕ,z)
V [G ] = {x ∈ (��)V [G ] | V [G ] � ϕ(x, z)}.

Moreover, for any subclassM of V [G ], let

AM = (A�ϕ,z)
V [G ] ∩M.
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To prove the perfect set property for AV [G ] in V [G ], suppose that in V [G ], AV [G ]

has size �+. We will show that A has a perfect subset in V [G ].
Since Col(�,<�) has the �-cc, there is some � < � with z ∈ V [G� ]. Since AV [G ]
has size �+ in V [G ], there is some ordinal � with � < � < � and AV [G� ] 
= AV [G� ].
Moreover, it follows from the definition of AM that this inequality remains true
when � increases. Let � be a cardinal with � < � < �, �<� = � and AV [G� ] 
= AV [G� ].
The forcing Col(�, [� + 1, �)) is sub-equivalent to Add(�, 1) × Col(�,<�) by
the remarks before the statement of this theorem. Hence there is an Add(�, 1) ×
Col(�,<�)-generic filter g × h over V [G�+1] with V [G ] = V [G�+1 × g × h].
Claim. AV [G�+1] 
= AV [G�+1×g].
Proof. We will prove the claim by writing the extension V [G ] with the generic
filters added in a different order. For the original generic filter G , we have

V [G ] = V [G� ×G[�,�+1) ×G(�,�)],
but we can also write V [G ] as

V [G ] = V [G� ×G[�,�+1) × g × h]
by the choice of g, h above.
Since �<� = � and � has size � in V [G�+1], Col(�, [�, � + 1)) is a nonatomic
<�-closed forcing of size �. Hence it is sub-equivalent to Add(�, 1) in V [G�+1] by
Lemma 1.21. It follows that there is a Col(�, [�, � + 1))-generic filter k overV [G�+1]
with

V [G�+1 × g] = V [G�+1 × k].
Hence we can write V [G ] as

V [G ] = V [G� ×G[�,�+1) × k × h]
by replacing g with k in the factorization above. By changing the order, we trivially
obtain

V [G ] = V [G� × k ×G[�,�+1) × h].
We have AV [G� ] 
= AV [G�+1] by the choice of �. By the last factorization of V [G ],
this implies that

AV [G� ] 
= AV [G�×k]
by homogeneity of the forcings. Hence we can find some x ∈ AV [G�×k] \ AV [G� ] =
AV [G�×k]\V [G� ]. In particular, x /∈ V [G� ]. Since the filtersG[�,�+1) and k aremutually
generic over V [G� ] by the choice of k, we have V [G�+1] ∩ V [G� × k] = V [G� ].
However, this implies that x cannot be in V [G�+1], since it is not in V [G� ]. Since
we also have

x ∈ V [G� × k] ⊆ V [G�+1 × k] = V [G�+1 × g],
it now follows that x ∈ V [G�+1 × g] \ V [G�+1] and thus x ∈ AV [G�+1×g] \ AV [G�+1],
proving the claim. �
We have

V [G ] = V [G�+1 × g × h]
by the choice of g, h above. We now choose an Add(�, 1)-name  witnessing the
previous claim.More precisely,  is anAdd(�, 1)-name inV [G�+1] for a new element
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of �� such that �Add(�,1) forces that  ∈ Aϕ,y in every further Col(�,<�)-generic
extension. Such a name exists by the maximality principle applied to Add(�, 1).
Since the forcing P given in Definition 2.6 is sub-equivalent to Add(�, 1), we can
replace the Add(�, 1)-generic filter g with a P-generic filter. Since the definition of
P is absolute between models with the same V�, the definition of P yields the same
forcing in V and V [G�+1 × h]. Let gP be a P-generic filter over V [G�+1 × h] with

V [G�+1 × gP × h] = V [G�+1 × g × h].
Claim. In V [G ], the set [TgP ] is a perfect subset of A

V [G ].
Proof. Since TgP is a perfect tree and therefore [TgP ] is a perfect set, it is sufficient
to show that it is a subset of AV [G ].
Every branch b in TgP is Add(�, 1)-generic over V [G�+1 × h] by Lemma 2.8
applied to forcing with P over the model V [G�+1 × h]. Moreover, every branch
b in TgP has Add(�, 1) as a quotient in V [G�+1 × gP × h] over V [G�+1 × h] by
Lemma 2.16 applied to the same situation. It follows that every branch b in TgP
has Add(�, 1)× Col(�,<�) and hence also Col(�,<�) as a quotient in V [G ] over
V [G�+1 × h].
Since we identify the branch b with an Add(�, 1)-generic filter over V [G�+1 × h]
that is given by Lemma 2.8, we will also write b . By the choice of  and by the
previous statements, we have

b ∈ (Aκϕ,y)V [G�+1×gP×h] = AV [G ],
proving the claim. �
The last claim completes the proof of Theorem 2.19, since the set [TgP ] witnesses
the perfect set property of AV [G ]. �
From the last result, we immediately obtain the consistency of the perfect set
property for all subsets of �� with DC�. For instance, it is consistent relative to
the existence of an inaccessible cardinal that this is the case in the �-Chang model
C� = L(Ord�). We further obtain the following global version of the perfect set
property.

Theorem 2.20. Suppose that there is a proper class of inaccessible cardinals. Then
there is a class generic extension of V in which for every infinite regular cardinal �,
the perfect set property holds for every subset of �� that is definable from an element
of �V .
Proof. Let C be the closure of the class of inaccessible cardinals and � and let

〈κα | α ≥ 1〉 be the order-preserving enumeration of C .
We define the following Easton support iteration 〈Pα, Ṗα | α ∈ Ord〉 with
bounded support at regular limits and full support at singular limits. Let P0 = {�}.
If α > 0, let �̇α be a Pα-name for the least regular cardinal � ≥ κα that is not
collapsed by Pα and let Ṗα be a Pα-name for Col(�̇α , <κα+1). Moreover, we can
assume that the names Ṗα are chosen in a canonical fashion, so that the iteration is
definable.
Let P be the iterated forcing defined by this iteration and let further Ṗ(α) be a

Pα-name for the tail forcing of the iteration at stage α. It follows from the definition
of the iteration that �Pα �Pα Ṗ(α) is <κα-closed and that Pα is strictly smaller than
κα+1 for all α ∈ Ord.
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Now suppose that G is P-generic over V . We will write Gα = G ∩ Pα and
P(α) = (Ṗ(α))Gα forα ∈ Ord.Moreover, let �α = �̇Gα forα ≥ 1 and�� = 〈�α | α ≥ 1〉.
Claim. (1) If κα is inaccessible inV , then κα remains regular inV [G ], �α = κα
and κ+V [G ]α = κα+1.

(2) If κα is a singular limit in V , then �α > κα and κ
+V [G ]
α = �α .

Proof. If κα is inaccessible in V , it follows from the Δ-system lemma that Pα has
the κα-cc. The remaining claims easily follow from this and the fact that P(α+1) is
<κα+1-closed.
If κα is a singular limit in V , then �α is the least regular cardinal strictly above
κα in V [Gα] by the definition of �̇α . Moreover, �α is not collapsed in V [G ], since
P(α+1) is <κα+1-closed. �
By the previous claim, �� enumerates the class of infinite regular cardinals inV [G ].
Therefore, we suppose that α ≥ 1, κ = �α and A is a subset of κκ in V [G ] that is
definable from an element of κV .

Claim. A has the perfect set property in V [G ].

Proof. Since �Pα forces that Ṗ� is homogeneous for all � ∈ Ord, the tail forcing
P(�) is homogeneous for all � ∈ Ord. Since P(α+1) is homogeneous, A is an element
of V [Gα+1]. Since κ = �α , Ṗα is a name for Col(κ,<κα+1) and hence A has the
perfect set property in V [Gα+1] by [21, Theorem 2] for κ = � and by Theorem
2.19 for κ > �. Since P(α+1) is κα+1-closed, this implies that A has the perfect set
property in V [G ]. �
The last claim completes the proof of Theorem 2.20. �
We further remark that the conclusion of Theorem 2.19 has the following
consequence. We define the Bernstein property for a subset A of �� to mean that A
or its complement in �� have a perfect subset.

Lemma 2.21. Suppose that � is an uncountable regular cardinal and all subsets of
�� that are definable from elements of �Ord have the perfect set property. Then the
following statements hold.

(1) All subsets of �� that are definable from elements of �Ord have the Bernstein
property.

(2) There is no well-order on �� that is definable from an element of �Ord.

Proof. The first claim is immediate. To prove the second claim, suppose towards
a contradiction that there is a well-order on �� that is definable from an element of
�Ord. Using a standard construction, one can then construct a definable Bernstein
set by induction. �
We finally use the previous results to prove a result about definable functions
on κκ. In the statement of the next result, let [X ]��= denote the set of sequences
〈xi | i < �〉 of distinct elements of X for any set X and any ordinal �.
Theorem 2.22. Suppose that � is an uncountable regular cardinal, R is a
<�-distributive forcing and � < �.

(1) Suppose that G is Add(�, 1) × R-generic over V . Then in V [G ], for every
function f : [��]��= �→ �� that is definable from an element of V , there is a
perfect subset C of �� such that f�[C ]��= is continuous.
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(2) Suppose that G is Add(�, �+) × R-generic over V . Then in V [G ], for every
function f : [��]��= �→ �� that is definable from an element of �V , there is a
perfect subset C of �� such that f�[C ]��= is continuous.

Proof. We can assume that �<� = � by replacing V with an intermediate model.
To prove the first claim, it suffices to consider the trivial forcing R = {�}, since it
is easy to see that this implies the claim for arbitrary <�-distributive forcings R.
By Lemma 2.18, there is a perfect subset C of �� in V [G ] such that for every
sequence �x = 〈xi | i < �〉 of distinct elements of C , �x is Add(�, �)-generic over V
and has Add(�, 1) as a quotient in V [G ] over V .
Suppose that in V [G ], we have a function f : [��]��= → �� that is definable from
an element of V . Then there is a formula ϕ(�x, y, α, t) and some y ∈ V such that
for all �x ∈ [��]��= in V [G ], α < � and t ∈ <��, we have

f(�x)�α = t ⇔ V [G ] � ϕ(�x, y, α, t).
Moreover, let �(�x, y, α, t) denote the formula

�Add(�,1) �Add(κ,1) ϕ(�x, y, α, t).

For each sequence of distinct elements of C of length �, we consider the
Add(�, �)-generic extension V [�x] of V . Since �x has Add(�, 1) as a quotient in
V [G ], we have for all α < � and t ∈ <�� that

f(�x)�α = t ⇔ �Add(�,1) �V [�x]Add(�,1) ϕ(�x, y, α, t)⇔ V [�x] � �(�x, y, α, t).
In particular, it follows that f(�x) ∈ V [�x].
Claim. f�[C ]��= is continuous.
Proof. Let  be anAdd(�, �)-name for the sequence of Add(�, 1)-generic subsets
of � added by the Add(�, �)-generic filter.
For every �x ∈ [C ]��= and every α < �, there is a condition �p = 〈pi | i < �〉 in the
Add(�, �)-generic filter added by �x with

�p �VAdd(�,�) �(, y, α,f(�x)�α).

Since �p is in the generic filter added by �x, we have pi ⊆ xi for all i < �. Now
suppose that �y = 〈yi | i < �〉 is a sequence of distinct elements of C with pi ⊆ yi
for all i < �. By the choice of �p and the fact that �y is Add(�, �)-generic over V and
has Add(�, 1) as a quotient in V [G ], we have f(�x)�α = f(�y)�α. It follows that
f�[C ]��= is continuous. �
To prove the second claim, it suffices to consider the trivial forcing R, as in
the first claim. Suppose that f is defined from the parameter y ∈ �V . We write
Gα = G ∩ Add(�, α) for α < �+. Since Add(�, �+) is �+-cc, there is some α < �+
with y ∈ V [Gα]. SinceV [G ] is anAdd(�, �+)-generic extension ofV [Gα], the claim
now follows from the first claim. �

§3. The almost Baire property. In the first part of this section, we define an
analogue to the Baire property. This property is characterized by a Banach–Mazur
type game (see [12, Section 8.H]) of uncountable length.
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3.1. Banach–Mazur games. In this section, we assume that � is an infinite regular
cardinal with �<� = � (we write � instead of κ, since � = � is allowed). The standard
topology (or bounded topology) on �� is generated by the basic open sets

Nt = {x ∈ �� | t ⊆ x}
for t ∈ <��. The analogue to the Baire property will be defined using the following
types of functions.

Definition 3.1. Suppose that f : <�� → <�� is given.
(1) f is a homomorphism if for all s � t in <��, we have f(s) � f(t).
(2) f is continuous if for every limit � < � and every strictly increasing sequence

〈sα | α < �〉 in <��, we have
f(

⋃

α<�

sα) =
⋃

α<�

f(sα).

(3) f is dense if for all s ∈ <��, the set
{f(s�〈α〉) | α < �}

is dense above f(s) in the sense that for any t ⊇ f(s), there is some α < �
with f(s�〈α〉) ⊇ t.

(4) If f is a homomorphism, let f∗ denote the function f∗ : �� → �� defined by

f∗(x) =
⋃

α<�

f(x�α).

By using such functions on <��, we can characterize comeager subsets of ��,
which were defined in Definition 1.12, as follows.
Lemma 3.2. Suppose that � is an infinite cardinal with �<� = � and t ∈ <��.
A subset A of �� is comeager in Nt if and only if there is a dense continuous
homomorphism f : <�� → <�� with f(∅) = t and ran(f∗) ⊆ A.
Proof. To prove the first implication, suppose that A is comeager in Nt . Then
there is a sequence 〈Uα | α < �〉 of dense open subsets of Nt with

⋂
α<� Uα ⊆ A.

Since any intersection of strictly less than � many dense open subsets ofNt is again
dense open in Nt , we can assume that U� ⊆ Uα for all α < � < �.
We now define f(s) by induction on l(s). Let f(∅) = t. In the successor case,
suppose that l(s) = � and that f(s) is defined. Since U� is a dense open subset
of Nt , the set

K = {u � f(s) | Nu ⊆ U�}
is dense above f(s) in the sense that for every t ⊇ f(s), there is some v ∈ K with
t ⊆ v. Since �<� = �, we can choose an enumeration 〈tα | α < �〉 of K . We then
define f(s�〈α〉) = tα for all α < �. In the limit case, suppose that l(s) = � is a limit
and that f(s��̄) is defined for all �̄ < �. We then define f(s) =

⋃
�̄<� f(s��̄).

It follows from the construction that f satisfies the required properties and that
ran(f∗) ⊆ ⋂

α<� Uα ⊆ A.
To prove the reverse implication, suppose that f satisfies the conditions stated
above. For any x ∈ ��, let

Kx = {s ∈ <�� | t ⊆ s, f(s) ⊆ x}.
Since f(∅) = t, Kx is nonempty for any x ∈ Nt .
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Claim. For any x ∈ Nt , if Kx has no maximal elements, then x ∈ A.
Proof. Since Kx is nonempty and has no maximal elements, we can build a
strictly increasing sequence 〈sα | α < �〉 in <�� with s0 = t and f(sα) ⊆ x for all
α < �. By the definition of f∗, this implies that x ∈ ran(f∗) ⊆ A. �
For any s ∈ <�� with t ⊆ s , we now consider the set Cs of x ∈ Nt such that s is a
maximal element ofKx . It is easy to see thatCs is a closed nowhere dense subset of
Nf(s). Since Nt \ A ⊆ ⋃

s⊇t Cs by the previous claim, it follows that A is comeager
in Nt . �
We now define an asymmetric version of the Baire property, using the functions
above.

Definition 3.3. A subset A of �� is almost �-Baire (almost Baire) if there is a
dense homomorphism f : <�� → <�� with one of the following properties.

(a) ran(f∗) ⊆ A.
(b) ran(f∗) ⊆ �� \ A, f is continuous and f(∅) = ∅.
Since every homomorphism is continuous for � = �, it follows immediately from
Lemma 3.2 that a subset A of �� is almost Baire if and only if there is some
t ∈ <�� such that A is comeager in Nt or �� \ A is comeager. It can be easily
seen that this implies that for every class Γ of subsets of �� that is closed under
continuous preimages, the almost Baire property for all sets in Γ is equivalent to
the Baire property for all sets in Γ.
The continuity in the definition of almost Baire is necessary by the next result. To
state this result, let Club� denote the set

Club� = {x ∈ �� | ∃C ⊆ � club ∀i ∈ C x(i) 
= 0}
of functions coding elements of the club filter on � as characteristic functions, and

NS� = {x ∈ �� | ∃C ⊆ � club ∀i ∈ C x(i) = 0}
the set of functions coding elements of the non-stationary ideal on �.

Lemma 3.4. Club� and NS� are almost Baire subsets of ��, but for every dense
continuous homomorphism f : <�� → <��, we have ran(f∗) ∩ Club� 
= ∅ and
ran(f∗) ∩NS� 
= ∅.
Proof. It is easy to see that Club� and NS� are almost Baire subsets of ��.
Since the remaining claims are symmetric, it is sufficient to prove that
ran(f∗) ∩ Club� 
= ∅. We define a sequence 〈x(�) | � < �〉 with values in � by
the following induction. Suppose that � < �, s = 〈x(α) | α < �〉 is already defined
and l(f(s)) = �. If � is a successor, since f is dense, there is some � < � such that
f(s�〈�〉)(�) = 1. If � is a limit, the same conclusion follows from the additional
assumption that f is continuous. In both cases, we let x(�) = �.
By the construction, we have x ∈ ran(f∗) ∩ Club� and hence ran(f∗) ∩
Club� 
= ∅, proving the claim. �
The motivation for the definition of the almost Baire property comes from its
connection with the following game.

Definition 3.5. The Banach–Mazur game G�(A) of length � for a subset A of
�� is defined as follows. The first (even) player, player I, plays an element of <��

https://doi.org/10.1017/jsl.2017.44 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.44


1338 PHILIPP SCHLICHT

in each even round. The second (odd) player, player II, plays an element of <�� in
each odd round. Together, they play a strictly increasing sequence �s = 〈sα | α < �〉
with sα ∈ <�� for all α < �. Thus the sequence of moves of both players defines a
sequence ⋃

α<�

sα = x = 〈x(i) | i < �〉 ∈ ��

and the first player wins this run if x ∈ A.
The Banach–Mazur game of length � with these rules, but without a specific
winning set, is denoted byG� . Moreover, for any t ∈ <��, the gameGt� (A) is defined
as G�(A) but with the additional requirement that t ⊆ s0 for the first move s0 of
player I.

We will also consider the games G2� (A) and G
2,(s,t)
� (A) for (s, t) ∈ (<��)2 with

l(s) = l(t) that are defined in analogy with G�(A). In these games, the players play
elements (u, v) of (<��)2 with l(u) = l(v) and A is a subset of (��)2. It is easy to
check that all results for G� in this section also hold for G2� , since the proofs can be
easily modified to work for this game.
The next two results show the equivalence between the determinacy ofG�(A) and
the almost Baire property for A.
Lemma 3.6. The following are pairs of equivalent statements for any subset A
of ��.
(1) (a) Player I has a winning strategy in G�(A).
(b) There is a dense homomorphism f : <�� → <�� with ran(f∗) ⊆ A.

(2) (a) Player II has a winning strategy in G�(A).
(b) There is a dense continuous homomorphism f : <�� → <�� with
ran(f∗) ⊆ �� \ A and f(∅) = ∅.

Proof. We will only prove the first equivalence, since the proof of the second
equivalence is analogous.
To prove the first implication, suppose that player I has a winning strategy  in
G�(A). For all t ∈ <��, by induction on l(t), we will define f(t) and partial runs

�st = 〈st(α) | α < 2 · l(t) + 1〉
according to  such that �st ⊆ �su for all t ⊆ u andf(t)(α) = st(2 ·α) for allα < l(t).
We begin by considering the first move v = (∅) of player I according to  and
defining f(∅) = v and �s∅ = 〈v〉. In the successor step, suppose that t ∈ <�� and
f(t), �st are defined. Moreover, suppose that 〈uα | α < �〉 is an enumeration of the
possible responses of player II to �st and that for each α < �, vα is the response of
player I to �s�t 〈uα〉 according to . Let �st�〈α〉 = �s

�
t 〈uα, vα〉 and f(t�〈α〉) = vα .

In the limit step, suppose that l(t) is a limit and that �st�α and f(t�α) are defined
for all α < l(t). If v is the response of player I to

⋃
α<l(t) �st�α according to , let

�st = (
⋃
α<l(t) �st�α)

�〈v〉 and f(t) = v. This completes the definition of f and by the
construction, f is a dense homomorphism with ran(f∗) ⊆ A.
To prove the second implication, suppose that f : <�� → <�� is a dense homo-
morphism with ran(f∗) ⊆ A. We will define a winning strategy  for player I in
G�(A). To this end, by induction on l(�s), we will define t�s , (�s) ∈ �<� for all partial
runs �s of even length according to  such that l(t�s�2·α) = α, t�s�2·α ⊆ t�s�2·� and
(�s�2 · α) = f(t�s�2·α) for all α, � with 2 · α ≤ 2 · � ≤ l(�s).
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We begin by defininig (∅) = f(∅). In the successor step, suppose that l(�s) is even
and that t�s�α , (�s�α) are defined for all even α ≤ l(�s). Moreover, suppose that u is
a possible move of player II extending the partial run �s�〈(�s)〉, so that (�s) � u.
Since f is dense, there is some α < � with u � f(t��s 〈α〉). Let t�s�〈(�s),u〉 = t

�
�s 〈α〉

and (�s�〈(�s), u〉) = f(�s�〈(�s), u〉).
In the limit step, suppose that l(�s) = � is a limit and t�s�α , (�s�α) are defined for
all even α < l(�s). Let t�s =

⋃
α<� t�s�α and (�s) = f(t�s ). It is now easy to check that

 is a winning strategy for player I in G�(A). �
In the next result, we will consider the following stronger type of strategy for G�
that only relies on the union of the previous moves.

Definition 3.7. A tactic in G� is a strategy  such that there is a map
̄ : <�� → <�� with the property that

(�s) = ̄(
⋃

α<�

sα)

for all �s = 〈sα | α < �〉 ∈ dom().
The next result, which follows from [13, Lemma 7.3.2], relates the Banach–Mazur
game of length � with the �-Baire property.
Lemma 3.8. Suppose that A is a subset of �� and t ∈ <��.
(1) (Kovachev) The following conditions are equivalent.
(a) A is meager in Nt .
(b) Player II has a winning strategy in Gt�(A).
(c) Player II has a winning tactic in Gt�(A).

(2) If A ∩Nt is �-Baire, then the following conditions are equivalent.
(a) A is meager in Nt .
(b) Player I does not have a winning strategy in Gt�(A).

(3) If � = �, then the following conditions are equivalent.
(a) A is comeager in Nu for some u ⊇ t.
(b) Player I has a winning strategy in Gt�(A).

Proof. The first claim is proved in [13, Lemma 7.3.2]. Since the remaining claims
are easy consequences of this, we only sketch the proofs.
For the second claim, suppose that A is not meager in Nt . Since A is �-Baire,
A ∩ Nu is comeager in Nu for some u ⊇ t. By the first claim, there is a winning
strategy  for player II in Gu� (Nu \ A). This means that player II succeeds with
playing in A. Since it is harder for player II to win because she or he does not play
at limits, we easily obtain a winning strategy � for player I in Gt� (A) with the first
move u from .
For the third claim, suppose that A is comeager in Nu for some u ⊇ t. Since
player II has a winning strategy inGu�(

�� \A) by the first claim, we obtain a winning
strategy for player I in Gt�(A) with the first move u by switching the roles of the
players. The reverse implication follows similarly from the first claim. �
This shows together with Lemma 3.2 that for any class Γ of subsets of the Baire
space �� that is closed under continuous preimages, the statement that G�(A) is
determined for all sets A ∈ Γ is equivalent to the statement that all sets in Γ have
the property of Baire.
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Moreover, the previous result shows that G�(A) is determined for every �-Baire
subset A of ��. The game is also determined for some Σ11 subsets of

�� that are
not �-Baire, since it is easy to see that player I has a winning strategy in G�(A)
if A is one of the sets Club� , NS� that are defined after Definition 3.3. This leads
to the question for which definable subsets A of κκ the Banach–Mazur game is
determined. We study this question in the next section.

3.2. The almost Baire property for definable sets. As before, we always assume
that κ is an uncountable regular cardinal with κ<κ = κ.
In this section, we will prove that it is consistent for the Banach–Mazur gameGκ
to be determined for all subsets of κκ that are definable from elements of κOrd. This
will also imply that it is consistent that the almost Baire property holds for all such
sets by the results in the previous section.
The following notions will be used to construct strategies for the first player
in Gκ .

Definition 3.9. (i) An almost strategy for player I in Gκ is a partial strategy
 such that dom() is dense in the following sense. Suppose that � < κ is odd,
�s = 〈sα | α < �〉 is a strictly increasing sequence in <κκ according to  and⋃
α<� sα � v. Then there is somew ∈ <κκwith v ⊆ w and �s�〈w〉 ∈ dom().

(ii) If , � are partial strategies for player I in Gκ, then � expands  if for every
run �s = 〈sα | α < κ〉 according to �, there is a run �t = 〈tα | α < κ〉
according to  with the same outcome

⋃
α<κ sα =

⋃
α<κ tα .

(iii) Suppose that A is a subset of κκ. A partial strategy  for player I in Gκ(A)
is winning if for every run �s = 〈sα | α < κ〉 according to , the outcome⋃
α<κ sα is in A.

The next result shows that to construct a winning strategy for player I in Gκ(A),
it is sufficient to construct a winning almost strategy. In the statement, we call a
definition or a formula Vκ-absolute if it is absolute to outer models W ⊇ V with
(Vκ)W = Vκ.

Lemma 3.10. There is a Vκ-absolute definable function that maps every almost
strategy  for player I inGκ to a strategy � that expands  and moreover, this property
of , � is Vκ-absolute.
Proof. Wefix awellordering≺ of <κκ.Wewill define � by induction on the length
of partial runs. To this end, for any partial run �t = 〈tα | α < �〉 that is according to
�, as defined up to this stage, we will define a revised partial run rev(�t) = 〈rα | α < �〉
according to  with rα = tα for all even α < � and let �(�t) = (rev(�t)).
In the successor step, suppose that the construction has been carried out for some
even ordinal � < κ and that�t = 〈tα | α < �+2〉 is a partial run. If �t is not according
to �, then we give �(�t) the ≺-least possible value. If �t is according to �, then �t�� is
according to � and hence (rev(�t��)) = �(�t��) = t� by the induction hypothesis for
�. Since  is an almost strategy, there is some u � t�+1 with �t�〈t� , u〉 ∈ dom().
For the ≺-least such u, we let

rev(�t) = rev(�t��)�〈t� , u〉.
In the limit step, suppose that �t = 〈tα | α < �〉 is a partial run of limit length
� < κ and that the construction has been carried out strictly below �. If �t is not
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according to �, then we give �(�t) the ≺-least possible value. If �t is according to �,
then we let

rev(�t) =
⋃

2·α<�
rev(�t�2 · α).

Moreover, let �(�t) = (rev(�t)).
It is easy to see that the construction of the function and its required prop-
erties are absolute to any model of set theory with the same Vκ that also
contains ≺. �
We now collect some definitions that are relevant for the following proofs.
The subsets S of Add(κ, 1)2 introduced below will represent two-step iterated
forcings that are sub-equivalent to Add(κ, 1).

Definition 3.11. A set S is called a level subset of Add(κ, 1)2 if it consists of
pairs (s, t) ∈ Add(κ, 1)2 with l(s) = l(t). We further define the following properties,
which such a set might have.

(a) S is closed if for every strictly increasing sequence 〈(sα, tα) | α < �〉 in S,
there is some (s, t) ∈ S with s ⊇ ⋃

α<� sα and t ⊇
⋃
α<� tα.

(b) S is limit-closed if for every strictly increasing sequence 〈(sα, tα) | α < �〉
in S, s =

⋃
α<� sα and t =

⋃
α<� tα , we have (s, t) ∈ S.

(c) S is perfect if it is closed and every element of S has incompatible successors
in S.

Moreover, we let split(S) denote the set of splitting nodes, i.e., the elements of S
with incompatible direct successors in S.

Note that for subtrees, the notions of closure and limit closure that we have just
defined are equivalent.
The next definitions will be used below to define a forcing that adds a winning set
for player I in Gκ .

Definition 3.12. Suppose that S is a level subset of Add(κ, 1)2. An S-tree p
consists of pairs (s, t) such that s , t are strictly increasing sequences with l(s) = l(t)
and the following conditions hold for all (s, t), (u, v) ∈ p and all α < l(s).
(a) (s(α), t(α)) ∈ S.
(b) (s�α, t�α) ∈ p.
(c) If �, � < l(s) are even,

⋃
ran(s��) =

⋃
ran(u��) and

⋃
ran(t��) =⋃

ran(v��), then s(�) = u(�) and t(�) = v(�).

Remark 3.13. The condition in Definition 3.12 (c) can be replaced with the
following statement. If � < l(s) is even, s�� = u�� and t�� = v��, then s(�) = u(�)
and t(�) = v(�). Using this alternative definition, one can prove analogous results
to all that follows.

The S-trees of size<κ will be the conditions in a forcing that adds an S-tree with
the following properties.

Definition 3.14. Suppose that S is a level subset of Add(κ, 1)2 and p is an
S-tree.
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(a) Let l(p) = sup(s,t)∈p l(s) and

ht(p) = sup
(s,t)∈p,α<l(s)

l(s(α)).

(b) An S-tree p is called superclosed if
(i) if 〈(sα, tα) | α < �〉 is a strictly increasing sequence in p, then there is
some (s, t) ∈ p which extends (sα, tα) for all α < �.

(ii) p has no maximal elements.
(c) An S-tree p is called strategic if it is superclosed and the following condition
holds. If (s, t) ∈ p, l(s) = l(t) = � +1, � is even and u � s(�), then there are
v,w ∈ <κκ with v ⊇ u and (s�〈v〉, t�〈w〉) ∈ p.

Note that we have l(s) ≤ ht(s) for all (s, t) ∈ p, since s is strictly increasing by
the definition of S-trees. We will further work with the following weak projection
of superclosed S-trees, which differs from the standard notion of projection.

Definition 3.15. If S is a level subset of Add(κ, 1)2 and T is a superclosed
S-tree, we define the following objects.
(a) The body [T ] of T is the set of (x, y) ∈ Add(κ, 1)2 such that there are
�s = 〈sα | α < κ〉 and �t = 〈tα | α < κ〉 with 〈(sα, tα) | α < �〉 ∈ T for all
� < κ and

x =
⋃

α<κ

sα, y =
⋃

α<κ

tα.

(b) The projection p[T ] of T is the set of x ∈ κκ such that (x, y) ∈ [T ] for some
y ∈ κκ.

The strategic S-trees are defined for the following purpose.
Lemma 3.16. Suppose that S is a perfect level subset of Add(κ, 1)2 and T is
a strategic S-tree. Then there is a winning strategy for player I in Gκ(p[T ]) that
remains so in all outer modelsW ⊇ V with (Vκ)W = Vκ.
Proof. We fix a wellordering ≺ of <κκ. It is sufficient to construct a winning
almost strategy for player I in Gκ(p[T ]) by Lemma 3.10, and this will be done as
follows, by induction on � < κ. We will define  for partial runs of length strictly
below �, and will simultaneously, for each partial run �s according to  with odd
length l(�s) ≤ �, define a sequence �t�s with (�s,�t�s ) ∈ T and �t�s�α ⊆ �t�s for all odd
α < l(�s).
In the successor step, we assume that the construction has been carried out up to
� = 2� +1 for some � < κ and that �s = 〈sα | α < �〉 is a partial run according to .
Let

Ψ(u)⇐⇒ u ⊇ s2� and ∃v ⊇ �t�s (2�) (�s�〈u〉, �t ��s 〈v〉) ∈ T.
Since T is strategic, the set D = {u | Ψ(u)} is dense above s2� , in the sense that for
every u ⊇ s2� , there is some v ⊇ u with Ψ(v). Since we are constructing an almost
strategy, it is sufficient to define (�s�〈u〉) for all u ∈ D.
Given u ∈ D, let v ⊇ �t�s (2�) be ≺-least with (�s�〈u〉, �t ��s 〈v〉) ∈ T . Since T is an
S-tree and by Definition 3.12 (c), there is a unique pair (u∗, v∗) with

(�s�〈u, u∗〉, �t ��s 〈v, v∗〉) ∈ T.
Now let (�s�〈u〉) = u∗ and �t�s�〈u,u∗〉 = �t

�
�s 〈v, v∗〉.
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In the limit step, we assume that the construction has been carried out strictly
below � for some � ∈ Lim and that �s = 〈sα | α < �〉 is a partial run according to .
We first let �t =

⋃
α<�
�t�s�2α+1. Since T is superclosed, there is a pair (u, v) with

(�s�〈u〉, �t�〈v〉) ∈ T , and moreover this pair is unique, since T is an S-tree and by
Definition 3.12 (c). Let (�s) = u and �t�s�〈u〉 = �t

�
�s 〈v〉.

This completes the construction of . To prove that  wins, suppose that
�s = 〈sα | α < κ〉 is a run according to  and let �t = ⋃

α<κ
�t�s�2α+1. Then

〈(�s�2α + 1, �t�s�2α+1) | α < κ〉 witnesses that the outcome
⋃
α<κ sα is in p[T ] and

hence player I wins, proving the claim. �
Definition 3.17. Suppose that S is a perfect level subset of Add(κ, 1)2. The
forcing PS consists of all S-trees of size strictly less than κ, ordered by reverse
inclusion.

If G is a PS -generic filter over V , we will write TG =
⋃
G . Moreover, for any

perfect level subset S of Add(κ, 1)2, we will write 
S : S → Add(κ, 1) for the
projection to the first coordinate.
In the situation below, we will additionally assume that 
S : S → Add(κ, 1) is a
projection. It is then easy to see that the forcing PS is nonatomic, <κ-closed and
has size κ, and is hence sub-equivalent to Add(κ, 1) by Lemma 1.21.

Lemma 3.18. If S is a perfect level subset of Add(κ, 1)2 such that 
S : S →
Add(κ, 1) is a projection and G is PS-generic over V , then TG is a strategic S-tree.

Proof. Since every condition in PS is an S-tree, it follows immediately that TG is
again an S-tree. Moreover, since S is perfect, it can be shown by a straightforward
density argument that TG is superclosed.
To see that TG is strategic, suppose that (s, t) ∈ TG , l(s) = l(t) = � +1, � is even
and u � s(�). Then there is some p ∈ G with (s, t) ∈ p. Since 
S : S → Add(κ, 1)
is a projection by our assumption, there is some (v,w) ∈ S with u ⊆ v. We now
claim that the set

D = {q ≤ p | (s�〈v〉, t�〈w〉) ∈ q}
is dense below p. To see this, suppose that q ≤ p. Since � is even, it is easy to check
that q ∪ {s�〈v〉, t�〈w〉} is again a condition in PS , and thus D is dense below p.
It follows immediately that TG is strategic. �
In the next lemma, we will write Qp for the subforcing

Qp = {q ∈ Q | q ≤ p}
of a forcing Q below a condition p ∈ Q.
Lemma 3.19. Suppose that R is a complete Boolean algebra and Q is a complete
subalgebra such that Q, R, Add(κ, 1) are sub-equivalent. Moreover, suppose that
p ∈ Q, r ∈ Add(κ, 1) and � : Add(κ, 1)r → Qp is a sub-isomorphism. Then there is a
perfect limit-closed level subset S of Add(κ, 1)2r such that 
S is a projection and

�Add(κ,1)r Rp/Q
(�)
p � S/Add(κ, 1)
Sr .

Proof. Since Add(κ, 1)r is isomorphic to Add(κ, 1), we can assume that r =
�Add(κ,1) and p = �Q. Let Q0 = �[Q] (note that � necessarily preserves infima) and
fix an arbitrary sub-isomorphism � : Add(κ, 1) → R. Moreover, we let 
 : R → Q
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denote the natural projection as given in Definition 1.18. Since 
(r) ≥ r for all
r ∈ R, it is then easy to show that R/Q = R/Q
.
Since 
, � are projections, it follows that 
� : Add(κ, 1)→ Q is also a projection.
Hence we can define

Q̇ = Add(κ, 1)/Q
�.

Moreover, since � is a sub-isomorphism, Q forces that � : Q̇ → (R/Q)
 is a sub-
isomorphism. Thus by Lemma 1.15, it is sufficient to prove the existence of a set S
as above with

�Add(κ,1) Q̇(�) � S/Add(κ, 1)
S
and we will prove this in the following claims.
We will write Lim for the class of limit ordinals. For any pair (s, t) ∈ Add(κ, 1)2
with l(s) = l(t) ∈ Lim, we further say that

〈(sα, tα) | α < cof l(s)〉
is an intertwined sequence for (s, t) if

s =
⋃

α<cof l(s)

sα, t =
⋃

α<cof l(s)

tα

and 
�(tα+1) ≤ �(sα) ≤ 
�(tα) for all for all α < cof l(s). We now consider
the subset S of Add(κ, 1)2 that consists of all pairs (s, t) ∈ Add(κ, 1)2 with
l(s) = l(t) ∈ Lim such that there is an intertwined sequence for (s, t).
Claim. For every (s, t) ∈ S, there is some (u, v) ≤ (s, t) with (�(u), v̌) ∈ Q0 ∗ Q̇.
Proof. Suppose that 〈(sα, tα) | α < cof l(s)〉 is an intertwined sequence for (s, t).
Since 
� is order-preserving, we have


�(t) ≤ 
�(tα+1) ≤ �(sα)
for all α < cof l(s) and hence 
�(t) ≤ �(s) by the assumption that � preserves
infima.
Since Q0 is dense in Q, there is some u ∈ Add(κ, 1) with �(u) ≤ 
�(t). Then

�(u) ≤ 
�(t) ≤ �(s)
and since � is a sub-isomorphism, this implies that u ≤ s and hence (u, t) ≤ (s, t).
Thus by the remark before the claim, (u, t) witnesses the conclusion of the claim. �
Claim. For every (u, v) ∈ Add(κ, 1)2 with (�(u), v̌) ∈ Q0 ∗ Q̇, there is some
(s, t) ≤ (u, v) in S.
Proof. We can assume that l(u) > l(v) by extending u. We will construct an
intertwined sequence 〈(sn, tn) | n < �〉 by induction.
We choose (s0, t0) = (u, v), so that �(s0) ≤ 
�(t0) by the remark before the first
claim. Now suppose that we have already constructed (sn, tn) with �(sn) ≤ 
�(tn).
Since 
� is a projection, there is some tn+1 ≤ tn with 
�(tn+1) ≤ �(sn), and we
can further assume that l(tn+1) > l(sn). Moreover, since Q0 is dense in Q, there
is some sn+1 ∈ Add(κ, 1) with �(sn+1) ≤ 
�(tn), and we can further assume that
l(sn+1) > l(tn+1). Then

�(sn+1) ≤ 
�(tn) ≤ �(sn)

https://doi.org/10.1017/jsl.2017.44 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.44


PERFECT SUBSETS OF GENERALIZEDBAIRE SPACES 1345

and since � is a sub-isomorphism, this implies that sn+1≤ sn and hence
(sn+1, tn+1) ≤ (sn, tn).
Letting s =

⋃
n<� sn, t =

⋃
n∈� tn, we have l(s) = l(t) and there is an intertwined

sequence for (s, t) by the construction. Thus (s, t) ≤ (u, v) and (s, t) ∈ S. �
Since Q0 is nonatomic, it follows immediately from the two previous claims that
S is perfect. Moreover, since the projection onto the first coordinate of Q ∗ Q̇ is a
projection in the sense of Definition 1.17, the claims show that 
S : S → Add(κ, 1)
is also a projection.

Claim. S is limit-closed.

Proof. Suppose that 〈(sα, tα) | α < cof �〉 is a strictly increasing sequence in S
and

s =
⋃

α<cof l(s)

sα, t =
⋃

α<cof l(s)

tα.

For each α < cof �, we choose an element (uα, vα) of an intertwined sequence
for (sα+1, tα+1) with l(uα) > l(sα). It follows that 〈(uα, vα) | α < cof l(�)〉 is an
intertwined sequence for (s, t). �
Claim. �Add(κ,1) Q̇(�) � (S/Add(κ, 1))
S .
Proof. We consider the forcing

T = {(s, t) ∈ Add(κ, 1) | (s, t) ∈ S or (�(s), ť) ∈ Q0 ∗ Q̇}.
We first claim that Add(κ, 1) forces that S/Add(κ, 1)
S is a dense subforcing of
T/Add(κ, 1)
T . To prove this, assume that G is Add(κ, 1)-generic over V and

(s, t) ∈ [S/Add(κ, 1)
S ]G,
so that 
S(s, t) = s ∈ G . Since 
S is a projection and by the claims above, the set

D = {u ≤ s | ∃v (u, v) ≤ (s, t), (�(u), v̌) ∈ Q0 ∗ Q̇}
is dense below s in Add(κ, 1). Letting u ∈ G ∩D, there is some v with (u, v) ≤ (s, t)
and (�(u), v̌) ∈ Q0 ∗ Q̇. Since (�(u), v̌) ∈ Q0 ∗ Q̇ and Q0 is separative, we have
�(u) ≤ 
�(v) by the definition of Q0. We now write G (�) for the upwards closure of
�[G ] in Q. Since u ∈ G , we have �(u) ∈ G (�), 
�(v) ∈ G (�) and hence

(u, v) ∈ [Q̇(�)]G = [Add(κ, 1)/Q
�]G.
An analogous argument shows that Add(κ, 1) also forces that Q̇(�) is a dense
subforcing of T/Add(κ, 1)
T . �
The last claim completes the proof of Lemma 3.19. �
We now fix a perfect level subset S of Add(κ, 1)2 such that 
S : S → Add(κ, 1) is
a projection and let P = PS . Since S is perfect, it is easy to see that P is a nonatomic
<κ-closed forcing of size κ and hence P and Add(κ, 1) are sub-equivalent by
Lemma 1.21.
In the remainder of this section, we will consider P-names ḟ, ġ such that

�P �P ḟ, ġ : κ → <κκ, ∀α < κ (ḟ�α, ġ�α) ∈ TĠ ,
where Ġ is a fixed name for the P-generic filter. We will call such pairs (ḟ, ġ)
adequate and will always assume below that (ḟ, ġ), (ḣ, k̇) are such pairs.
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The aim of the next lemmas is to show that for any adequate pair (ḟ, ġ), there is
a dense subforcing of P that projects onto a forcing for adding

⋃
ran(ḟ),

⋃
ran(ġ)

with a nice quotient forcing. This follows a similar line of reasoning as the arguments
for the perfect set property in Section 2.2.

Definition 3.20. Let P∗
ḟ,ġ
be the subforcing of P consisting of the conditions

p such that the following statements hold for some �p < κ and some fp, gp ∈
<κAdd(κ, 1).

(a) l(p) = ht(p) = �p ∈ Lim.
(b) p �P ḟ��p = fp, ġ��p = gp.
(c) (fp�α, gp�α) ∈ p for all α < �p.

Let further P

ḟ,ġ
be the subforcing of P consisting of the conditions p that satisfy

requirements (a) and (b). Moreover, let sp =
⋃
ran(fg��p) and tp =

⋃
ran(gp��p)

for any p ∈ P

ḟ,ġ
.

We will also denote the corresponding values for an adequate pair (ḣ, k̇) and any
q ∈ P


ḣ,k̇
by hp, kp ∈ <κAdd(κ, 1) and up, vp ∈ <κκ.

Lemma 3.21. P

ḟ,ġ

∩ P

ḣ,k̇
is a dense subforcing of P.

Proof. Note that in general, we have l(p) ≤ ht(p) for all p ∈ P by the definition
of the length and the height. To prove the claim, we assume thatp in P and construct
a strictly decreasing sequence 〈pn | n ∈ �〉 in P with p0 = p as follows.
If pn is defined and ht(pn) = α, we choose a condition pn+1 with l(pn+1) > α
that decides ḟ�α, ġ�α, ḣ�α and k̇�α. Then p
 =

⋃
n∈� pn is a condition in P with

p
 ≤ p that satisfies requirements (a) and (b) in Definition 3.20 for both (ḟ, ġ) and
(ḣ, k̇), and thus p
 ∈ P


ḟ,ġ
∩ P


ḣ,k̇
. �

Using the following lemma, we will see that P∗
ḟ,ġ
is also a dense subforcing of P.

Lemma 3.22. Suppose thatp is a condition inP

ḟ,ġ
and�, � ≤ �p are even.Moreover,

suppose that q ≤ p is a condition in P and (s, t) ∈ q with l(s) = l(t) > � and
⋃
ran(s��) =

⋃
ran(fp��),

⋃
ran(t��) =

⋃
ran(gp��).

Then q �P ḟ(�) = s(�), ġ(�) = t(�).
Proof. We assume that G is any P-generic filter over V with q ∈ G and let
(u, v) = (ḟG�� + 1, ġG �� + 1). Since (ḟ, ġ) is an adequate pair, it follows that
(u, v) ∈ TG . Thus (s, t), (u, v) are elements of the same S-tree TG and therefore
s(�) = u(�) and t(�) = v(�) by Definition 3.12 (c), as required. �
Lemma 3.23. P∗

ḟ,ġ
∩ P∗

ḣ,k̇
is a dense subforcing of P.

Proof. We will derive the conclusion from the next claim.

Claim. For any condition p ∈ P

ḟ,ġ
, we have that p ∪ {(fp�α, gp�α) | α < �p} is

again a condition in P

ḟ,ġ
.

Proof. We fix a condition p ∈ P

ḟ,ġ
. For any even ordinal � < �p, let Ψ� denote

the statement that there exist an even ordinal � < �p and some (s, t) ∈ p with
l(s) = l(t) > � that satisfy the following conditions.
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(a)
⋃
ran(s��) =

⋃
ran(fp��) and

⋃
ran(t��) =

⋃
ran(gp��).

(b) s(�) = fp(�) and t(�) = gp(�).

Subclaim. If � ≤ �p is an even ordinal and Ψ� holds for all even ordinals � < �,
then q = p ∪ {(fp��, gp��) | � < �} is a condition in P
ḟ,ġ .
Proof. It is sufficient to check that q satisfies Definition 3.12 (c). To this end,
suppose that � < � is even, (u, v) ∈ p, l(u) = � is even,⋃ ran(u�α) = ⋃

ran(fp��)
and

⋃
ran(v�α) =

⋃
ran(gp��). Now let � < �p and (s, t) ∈ pwitnessΨ� . It follows

from condition (a) and Definition 3.12 (c) for p that u(α) = s(�) and v(α) = t(�).
Moreover, by condition (b), u(α) = s(�) = fp(�) and v(α) = t(�) = gp(�), as
required. �
Subclaim. Ψ� holds for all even ordinals � < �p.

Proof. Towards a contradiction, we assume that � < �p is the least even ordinal
such that Ψ� fails. Since Ψα holds for all even ordinals α < � by the minimality
of �, the previous subclaim implies that

q = p ∪ {(fp�α, gp�α) | α < �}
is a condition in P.
Since S is perfect, there is some (u, v) ∈ S with u ⊇ ⋃

ran(fp�α) and v ⊇⋃
ran(gp�α). We can further assume that (u, v) 
= (fp(�), gp(�)) by extending u, v.
If (a) holds for an even ordinal � < �p and some (s, t) ∈ p with l(s) = l(t) > � ,
we also have (b) by Lemma 3.22.Hence we can assume that there are no such � < �p
and (s, t) ∈ p. It follows that q ∪ {(u, v)} is a condition in P by Definition 3.12 (c)
and further q �P (ḟ(�), ġ(�)) = (u, v) by Lemma 3.22. However, since q ≤ p, this
contradicts the fact that (u, v) 
= (fp(�), gp(�)). �
The previous subclaims show that r = p∪{(fp�α, gp�α) | α < �p} is a condition
in P. Since moreover p ∈ P


ḟ,ġ
and l(r) = ht(r) = �p, we have r ∈ P
ḟ,ġ . �

To see that P∗
ḟ,ġ

∩ P∗
ḣ,k̇
is a dense subforcing of P, assume that p is an arbitrary

condition in P. By Lemma 3.21, there is some q ≤ p in P

ḟ,ġ

∩ P

ḣ,k̇
. By the previous

claim applied to (ḟ, ġ) and q, we obtain some r ≤ q in P∗
ḟ,ġ

∩ P

ḣ,k̇
, and by then

applying the claim to (ḣ, k̇) and r, we obtain the required condition s ≤ r in
P∗
ḟ,ġ

∩ P∗
ḣ,k̇
. �

As for P, it is easy to see that P∗
ḟ,ġ
is a nonatomic<κ-closed forcing of size κ and

hence P∗
ḟ,ġ
and Add(κ, 1) are sub-equivalent by Lemma 1.21.

As defined before Lemma 3.19, we will write Qp for the subforcing

Qp = {q ∈ Q | q ≤ p}
of a forcing Q below a condition p ∈ Q in the following lemmas.
Lemma 3.24. Letting P∗ = P∗

ḟ,ġ
∩ P∗

ḣ,k̇
, for any condition r in P∗ with (sr, tr) 
=

(ur, vr), the map

�r : P∗r → S(sr ,tr) × S(ur ,vr), �r(p) = ((sp, tp), (up, vp))
is a projection.
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Proof. It follows from the definition of sp, tp, up, vp that �r is order-preserving.
For the remaining requirement on projections, suppose that p ∈ P∗, p ≤ r and
((s, t), (u, v)) ∈ S(sr ,tr) × S(ur ,vr) are given with sp ⊆ s , tp ⊆ t, up ⊆ u, vp ⊆ v.
We can moreover assume that these subsets are strict by extending s , t, u, v.
By the definition of P∗

ḟ,ġ
and P∗

ḣ,k̇
, we have (fp�α, gp�α), (hp�α, kp�α) ∈ p for

all α < �p. Since moreover (sr, tr) 
= (ur, vr),
q = p ∪ {(fp, gp), (f�

p (�p, s), g
�
p (�p, t)), (hp, kp), (h

�
p (�p, s), k

�
p (�p, t))}

is downwards closed and satisfies Definition 3.12 (c), hence it is a condition in P.
Finally,

q �P ḟ(�p) = s, ġ(�p) = t, ḣ(�p) = u, k̇(�p) = v
by Lemma 3.22. Now any condition r ≤ q in P∗ is as required. �
In the next two lemmas, we let P∗ = P∗

ḟ,ġ
.

Lemma 3.25. Letting P∗ = P∗
ḟ,ġ
, for any condition r in P∗, the map

�r : P∗r → S(sr ,tr), �r(p) = (sp, tp)
is a projection and (sr, tr) forces that the quotient forcing [P∗r /S(sr ,tr)]

�r andAdd(κ, 1)
are sub-equivalent.

Proof. It can be proved as in the proof of Lemma 3.24 that �r is a projection
and moreover, it follows from Lemma 3.24 that the quotient forcing [P∗r /S(sr ,tr)]

�r is
nonatomic. Since the quotient forcing had size κ and is<κ-closed by the definitions
of sp, tp and P∗ḟ,ġ , it is sub-equivalent to Add(κ, 1) by Lemma 1.21. �
Ournext aim is to calculate a quotient forcing for a given branch in the superclosed
S-tree that is added by P. Since it is convenient to work with a separative forcing,
but P and P∗ are not separative, we will assume that T is a dense subforcing of P∗

that is isomorphic to Add∗(κ, 1) and that ṪT is a name for the superclosed S-tree
added by T. We will further assume that ḃ is a T-name with �P � ḃ = ran(

⋃
ḟ) for

the adequate pair (ḟ, ġ) considered above.
If moreover r is any condition in T, then


S�r : P∗r → Add(κ, 1)sr , 
S�r(p) = sp
is a projection, since �r : P∗r → S(sr ,tr) is a projection by Lemma 3.25 and 
S is a
projection by the assumption on S.
For any r ∈ T, we further choose a Tr-name ḃr with r �T ḃ = ḃr . It follows from
the definition of sp that �T forces that ḃr =

⋃
p∈Ġ sp, where Ġ is a name for the

T-generic filter. Using the fact that 
S�r is a projection, it then follows easily that
r forces that ḃr is Add(κ, 1)-generic over V . Moreover, since this holds for every
condition r in T, it follows that �T forces that ḃ is Add(κ, 1)-generic over V .
In the next lemma, we will fix a condition r in T and let R = B(Tr), Q = BR(ḃ).
It is clear that the map

� : Add(κ, 1)sr → Q, �(s) = �s ⊆ ḃ�
preserves ≤ and ⊥, and since 
S�r is a projection, we have that �(s) 
= 0Q for all
s ∈ Add(κ, 1)sr and that ran(�) is dense in Q, so that � is a sub-isomorphism.
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We will further consider the natural projection 
 : R → Q, 
(p) = infp≤q∈Q q.
Since T is dense in P∗, 
�Tr and 
S�r�Tr are projections and it can be checked from
the definitions of 
s , �r that 
�Tr = �
S�r�Tr .
Lemma 3.26. Suppose that T and ḃ are as above and r ∈ T.
(1) If 
 : R→ Q and � : Add(κ, 1)sr → Q are as above, then

�Add(κ,1)sr (Rr/Q

)(�) � [S(sr ,tr)/Add(κ, 1)sr ]
S ×Add(κ, 1).

(2) If G is T-generic over V with r ∈ G , then there is an
([S(sr ,tr)/Add(κ, 1)sr ]


S )ḃ
G ×Add(κ, 1)-generic filter h overW = V [ḃG ] with

W [h] = V [G ].
Proof. Since we argued before this lemma that 
�Tr = �
S�r�Tr , we have

�Add(κ,1)sr (Tr/Q

�Tr )(�) = [Tr/Add(κ, 1)sr ]


S�r�Tr . (3.1)

Moreover, since Tr is dense in both Rr and P∗r , Add(κ, 1)sr forces that

(Tr/Q
�Tr )(�) ⊆ (Rr/Q
)(�)
[Tr/Add(κ, 1)sr ]


S�r�Tr ⊆ [P∗r /Add(κ, 1)sr ]
S�r
are dense subforcings. With Equation 3.1, this shows that

�Add(κ,1)sr (Rr/Q

)(�) � [P∗r /Add(κ, 1)sr ]
S�r . (3.2)

Using Lemma 3.25 and the properties of projections, one can now show that

�Add(κ,1)sr [P
∗
r /Add(κ, 1)sr ]


S�r � [S(sr ,tr)/Add(κ, 1)sr ]
S ×Add(κ, 1). (3.3)

By Equations 3.2 and 3.3 and Lemma 1.15,

�Add(κ,1)sr (Rr/Q

)(�) � [S(sr ,tr)/Add(κ, 1)sr ]
S ×Add(κ, 1). (3.4)

For the second claim, it follows from the definition of � that

[(Rr/Q
)(�)]G = (Rr/Q
)G
(�)
= (Rr/Q
)ḃ

G

,

where G (�) denotes the upwards closure of �[G ] in Q. Then by Equation 3.4,

(Rr/Q
)ḃ
G � ([S(sr ,tr)/Add(κ, 1)sr ]
S )ḃ

G ×Add(κ, 1).
The claim now follows from the standard properties of quotient forcings. �
Lemma 3.27. Suppose that S is a <κ-distributive forcing and F = G ×H × I is
Add(κ, 1)×Add(κ, 1)× S-generic over V . Moreover, suppose that

x ∈ (Aκϕ,z)V [F ] ∩ κκ ∩ V [G ]
is Add(κ, 1)-generic over V , where ϕ(u, v) is a formula and z ∈ V [I ]. Then in V [F ],
there is a winning strategy for player I in Gκ((Aκϕ,z)

V [F ]).

Proof. Wefirst note thatx isAdd(κ, 1)-generic overV [I ], sinceG , I aremutually
generic. Therefore, by replacing V [I ] with V , the claim follows from the claim for
the special case whereS does not add any new sets, whichwe assume in the following.
Suppose that ẋ is an Add(κ, 1)-name for x such that �Add(κ,1) forces that

�Add(κ,1) ẋ ∈ Aϕ,z holds and that ẋ is Add(κ, 1)-generic over V . Let further
R = B(Add(κ, 1)), Q = B(ẋ)R and

� : Add(κ, 1)→ Q, �(s) = �s ⊆ ẋ�R.
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Claim. There is a condition r ∈ Add(κ, 1) such that ��Add(κ, 1)r : Add(κ, 1)r →
Q�(r) is a sub-isomorphism.

Proof. We first claim that there is a condition r ∈ Add(κ, 1) such that for all
s ≤ r in Add(κ, 1) and all α < κ, �(s) 
= �(s�〈α〉). Otherwise

D = {s�〈α〉 | s ∈ Add(κ, 1), α < κ, ∃� 
= α �(s) = �(s�〈�〉)}
is dense in Add(κ, 1). However, by the definition of �, this contradicts the
assumption that ẋ is a name for an Add(κ, 1)-generic over V .
We now fix such a condition r ∈ Add(κ, 1). To prove the claim, it is sufficient to
show that the subforcing U = {�(s) | s ∈ Add(κ, 1), s ≤ r} is dense in Q�(r).
Subclaim. U � R�(r).
Proof. Otherwise, there is a subset A of U that is an antichain in R�(r) and
is maximal in U, but not in R�(r). We can then choose some q ∈ R�(r) that is
incompatible with all elements of A. However, if J is R�(r)-generic over V with
q ∈ J , then ẋJ cannot be Add(κ, 1)-generic over V by the choice of A and q,
contradicting the choice of ẋ. �
Let V denote the Boolean subalgebra of Q�(r) generated by U. Since U is closed
under finite conjunctions, U is dense in V and it hence follows from the previous
subclaim that V � R�(r). It then follows from [9, Exercise 7.31] applied to V and
R�(r) thatQ�(r) is a Boolean completion of V, in particular V is dense in Q�(r). �
Suppose that r ∈ Add(κ, 1) is chosen as in the previous claim and let � =
��Add(κ, 1)r . We can further assume that r = �Add(κ,1), since the remaining proof
is analogous for arbitrary r.
We further choose a Q-name ẋQ with �R ẋQ = ẋ and an Add(κ, 1)-name ẏ for
the Add(κ, 1)-generic real, so that �Q �(ẏ) = ẋQ by the definition of �.
By Lemma 3.19, there is a perfect limit-closed level subset S of Add(κ, 1)2 such
that 
S is a projection and

�Add(κ,1) R/Q(�) � S/Add(κ, 1)
S . (3.5)

It follows from the properties of ẋ stated above that

�Q �R/Q×Add(κ,1) ẋQ ∈ Aκϕ,z .
Since � is a sub-isomorphism and by the properties of ẏ and ẋQ, this implies

�Add(κ,1) �R/Q(�)×Add(κ,1) ẏ ∈ Aκϕ,z
and by Equation 3.5,

�Add(κ,1) �S/Add(κ,1)
S×Add(κ,1) ẏ ∈ Aκϕ,z . (3.6)

Now suppose that Ṫ is a PS-name for the tree added by the PS-generic filter.
In the next claim, we will identify Ṫ with the induced PS ×Add(κ, 1)-name.
Claim. PS × Add(κ, 1) forces that p[Ṫ ] ⊆ Aκϕ,z .
Proof. Suppose that ḃ is a PS -name with � �PS ḃ ∈ p[Ṫ ]. We can then find an
adequate pair (ḟ, ġ) with �PS �

⋃
ran(ḟ) = ḃ and let P∗ = P∗

ḟ,ġ
.

Now let T be the dense subforcing of P∗ that is introduced before Lemma 3.26.
Moreover, suppose that G is T-generic over V and r ∈ G . Since T is dense in PS ,
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we can assume that ḃ is a T-name. Then there is an ([S(sr ,tr)/Add(κ, 1)sr ]

S )ḃ

G ×
Add(κ, 1)-generic filter h overW = V [ḃG ] withW [h] = V [G ] by Lemma 3.26.
Since Add(κ, 1)2 � Add(κ, 1) and since r forces that [S(sr ,tr)/Add(κ, 1)sr ]
S
is a complete subforcing of [S/Add(κ, 1)]
S , the claim now follows from
Equation 3.6. �
Lemma 3.16 implies thatPS×Add(κ, 1) forces that player I has awinning strategy
in Gκ(p[Ṫ ]). Since PS × Add(κ, 1) is sub-equivalent to Add(κ, 1)2, the statement
now follows from the previous claim. �
In the next proof, we will use the notation Col(�,X ) for collapse forcings that
was introduced before Theorem 2.19. We will further use the analogous notation
Add(�,X ) to denote the subforcing of Add(�, �) with support X ⊆ � and let
GX = G ∩Add(�,X ) for any Add(�, �)-generic filter G .
Theorem 3.28. Suppose that � is an uncountable regular cardinal, � > � is inac-
cessible and � is any cardinal. Then Col(�,<�) × Add(κ, �) forces that G�(A) is
determined for every subset A of �� that is definable from an element of �V .
Proof. We work in an extension of V by a fixed Col(�,<�)×Add(κ, �)-generic
filterG×H . First note that everyx ∈ �� is an element ofV [G�×HX ] for some � < �
and some subset X of � of size strictly less than �, since Col(�,<�) × Add(κ, �)
has the �-cc by the Δ-system lemma. In this situation, we will say that x is absorbed
by G� ,HX .
Now assume that ϕ(x, y) is a formula with two free variables and z ∈ �V . We let

AM = (A�ϕ,z)
V [G×H ] ∩M

for any transitive subclassM of V [G ×H ], where A�ϕ,z is given in Definition 1.10.
Since Add(�, 1) is <�-closed and P(Add(�, 1))V has size �, the set of Add(�, 1)-
generic elements of �� overV is comeager. Therefore, if there is noAdd(�, 1)-generic
element of �� over V in A�ϕ,z , then by Lemma 3.8, player II has a winning strategy
in G�(A�ϕ,z). We can hence assume that there is an Add(�, 1)-generic element x of
A�ϕ,z over V .
We will rearrange the generic extension to apply Lemma 3.27. To this end, we
assume that x is absorbed by G� ,HX as above. It follows from Lemma 1.21 that we
can find a Col(�, [�, �))×Add(�, 1)-generic filter g × h with V [G[�,�)] = V [g × h]
and hence the generic extension can be written as

V [G ×H ] = V [g ×H�\X × h ×G� ×HX ].
Since the filters g ×H�\X × h and G� ×HX are mutually generic, it follows that x
is also Add(�, 1)-generic over V [g ×H�\X × h].
Now let W = V [g ×H�\X ]. Since the forcing Col(�,<�) × Add(�,X ) has size
� inW , is <�-closed and nonatomic, there is an Add(�, 1)-generic filter k overW
with W [k] = W [G� × HX ] by Lemma 1.21. Then V [G × H ] = W [h × k] is an
Add(�, 1)2-generic extension ofW and

x ∈ (A�ϕ,z)W [h×k] ∩ �� ∩W [h × k].
By Lemma 3.27, player I has a winning strategy in G�(A�ϕ,z). �
By Lemma 3.6, the previous result implies that the almost Baire property for
the class of definable sets considered there is consistent with arbitrary values of 2�.
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Moreover, as in the proof of Theorem 2.20, we immediately obtain the following
result.

Theorem 3.29. Suppose there is a proper class of inaccessible cardinals. Then there
is a class generic extension V [G ] of V in which for every regular cardinal � and for
every subset A of �� that is definable from an element of �V , G�(A) is determined.

Since the almost Baire property immediately implies the Bernstein property, we
obtain the following result as in the proof of Lemma 2.21.

Lemma 3.30. Suppose that � is an uncountable regular cardinal and all subsets of
�� that are definable from elements of �Ord have the almost Baire property. Then the
following statements hold.

(1) All subsets of �� that are definable from elements of �Ord have the Bernstein
property.

(2) There is no well-order on �� that is definable from an element of �Ord.

It is further possible to obtain results for homogeneous sets for definable colorings
for which player I has a winning strategy in Gκ , which extend Theorem 2.22 and
will appear in a later paper.

§4. Implications of resurrection axioms. In this section, we obtain versions of the
main theorems from a variant of the resurrection axiom introduced by Hamkins
and Johnstone [7]. As above, we assume that � is an uncountable regular cardinal.
Moreover, we will use the sets Aϕ,z and Aϕ given in Definition 1.10. Our result is
motivated by the following sufficient condition for the existence of a perfect subset
of a given Σ11 subset of

��.

Lemma 4.1. (1) Suppose that ϕ(x, y) is a Σ11-formula and z ∈ �Ord is a
parameter. If |A�ϕ,z | > � holds in every Col(�, 2�)-generic extension of V ,
then A�ϕ,z has a perfect subset.

(2) Suppose that V = L. Then there is a Π11 formula ϕ(x) such that |A�ϕ | > �
holds in every generic extension of V , but A�ϕ does not have a perfect subset.

Proof. For the first claim, it follows by standard arguments that there is a level
subset S of (<��)2 with the property that A�ϕ,z is the projection of S in every
outer model with the same V� as V . By the assumption, there are Col(�, 2�)-names
, � such that Col(�, 2�) forces that (, �) is a new element of [S]. Using these
names, we can construct sequences 〈pu | u ∈ <�2〉 of conditions in Col(κ, 2�) and
〈(su, tu) | u ∈ <�2〉 of nodes in S such that the following conditions hold for all
u � v in <�2.

(a) ps � ts �  & us � �.
(b) pu ⊆ pv , su � sv and tu � tv .
(c) tu�〈0〉 
= tu�〈1〉.

Let T denote the level subset of (<��)2 that is obtained as the downwards closure
of the set of pairs (su, tu) for u ∈ <�2. By the above conditions, its projection
proj(T ) = {x ∈ �� | ∃y ∈ �� (x, y) ∈ [T ]} is a perfect subset of A�ϕ,z .
For the second claim, we have a subtree T of <�� with |[T ]| > � and no perfect
subtrees by [15, Proposition 7.2]. We claim that the formula ϕ(x) stating that
x ∈ [T ] or x /∈ L satisfies the requirement. It follows from the choice of T that
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[T ] does not have a perfect subset. To show the remaining condition, we work in
a generic extension V [G ] of V . If (�+)L = �+, then |A�ϕ | ≥ |[T ]| ≥ |[T ]L| > �.
If (�+)L = �, then |(��)L| ≤ � and hence |A�ϕ | > � by the choice of ϕ. �
We now formulate the resurrection axiom at � for a given class of forcings. By a
definable class of forcings we will mean a class Γϕ,z = {x | ϕ(x, z)}, where ϕ(x, y)
is a formula with two free variables with the property that it is provable in ZFC−

that x is a forcing for all sets x, y with �(x, y), and z is a set parameter.

Definition 4.2. Assuming that Γ is a definable class of forcings, we define the
resurrection axiom RA�(Γ) to hold if for all P ∈ Γ, there is a P-name Q̇ such that
�P Q̇ ∈ Γ andH�+ ≺+ H(�+)V [G ] holds for every P ∗ Q̇-generic filter G over V .
If � is a regular cardinal, we say that � is �-inaccessible if � > � is regular and
�<� < � holds for all cardinals � < �. It can then be shown as in [7, Theorem 18]
that the axiomRA�(Γ) for the class of forcingsCol(�,<�), where � is �-inaccessible,
is consistent from an uplifting cardinal � > � (see [7, Definition 10]).

Lemma 4.3. Suppose that � is �-inaccessible, ϕ(x, y) is a formula and z is a set
parameter. Then Col(�,<�) forces the following statements.

(1) If |A�ϕ,z | > �, then A�ϕ,z has a perfect subset.
(2) If there is anAdd(�, 1)-generic element of �� inA�ϕ,z , then player I has a winning
strategy in G�(A�ϕ,z).

Proof. Since � is �-inaccessible, it follows from a standard argument using the
Δ-system lemma that Col(�,<�) is �-cc.
For the first claim, it follows from the assumption that there is a Col(�,<�)-name
 for a new element ofA�ϕ,z . By the �-cc, we can assume that  is a Col(�,<�)-name
for some ordinal � < �. Since � is �-inaccessible, it is easy to see that there are
unboundedly many cardinals � ∈ Card ∩ � with �<� = �. To prove the claim, we
work in a Col(�,<�)-generic extension of V . We can now show as in the proof of
Theorem 2.19 (for Col(�,<�) instead of Col(κ,<�)) thatA�ϕ,z has a perfect subset.
For the second claim, it follows from the assumption that there is a Col(�,<�)-
name  for an Add(κ, 1)-generic element of κκ in A�ϕ,z . We can again argue as in
the proof of Theorem 3.28 (for Col(�,<�) instead of Col(κ,<�)). �
Our last result follows immediately from Lemma 4.3 and the definition of the
resurrection axiom.

Theorem 4.4. Suppose that Γ is the class of forcings Col(�,<�), where � is
�-inaccessible. Assuming that RA�(Γ) holds, the following statements hold for every
subset A of �� that is definable over (H�+ ,∈) with parameters in H�+ .
(1) A has the perfect set property.
(2) The game G�(A) is determined.

§5. Questions. We conclude with some open questions. We first note that by
standard arguments, an inaccessible cardinal is necessary to obtain the perfect
set property for �-Borel subsets of ��. The most striking question is whether the
conclusion of Theorem 3.28 can be achieved without an inaccessible cardinal as
in [20].

https://doi.org/10.1017/jsl.2017.44 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.44


1354 PHILIPP SCHLICHT

Question 5.1. Can the almost Baire property for all subsets of �� definable from
an element of �Ord, for some uncountable regular cardinal �, be forced over any model
of ZFC?

Moreover, we ask whether the conclusions of our results hold in the following
other well known models.

Question 5.2. Do the conclusions of the main results, Theorems 2.19 and 3.28,
hold in the Silver collapse [3,Definition 20.1] and in the Kunen collapse [3, Section 20]
of an inaccessible cardinal � to �+, where � is any uncountable regular cardinal?

Since the existence of winning strategies implies the existence of winning tactics
for the Banach–Mazur game of length �, it is natural to consider the same problem
in the present context.

Question 5.3. Is it consistent that for some uncountable regular cardinal � and for
all subsets A of �� that are definable from elements of �Ord, either player I or player
II has a winning tactic in G�(A)?

Moreover, in analogy to the Baire property, it is natural to ask the following
question, which arose in a discussion with Philipp Lücke.

Question 5.4. Does the almost Baire property for all subsets of �� definable from
elements of �Ord imply a version of the Kuratowski-Ulam theorem?

Finally, the similarities to other regularity properties suggest that our results can
be extended as follows.

Question 5.5. Can we prove results analogous to the main results for games
associated to other regularity properties such as the Hurewicz dichotomy?
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