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Abstract

We consider subgraph counts in general preferential attachment models with power-
law degree exponent τ > 2. For all subgraphs H, we find the scaling of the expected
number of subgraphs as a power of the number of vertices. We prove our results on
the expected number of subgraphs by defining an optimization problem that finds the
optimal subgraph structure in terms of the indices of the vertices that together span it and
by using the representation of the preferential attachment model as a Pólya urn model.
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1. Introduction

The degree distribution of many real-world networks can be approximated by a power-law
distribution [12],[30], where, for most networks, the degree exponent τ was found to be be-
tween 2 and 3, so that the degree distribution has infinite variance. Another important property
of networks are subgraph counts, also referred to as motif counts. In many real-world networks,
several subgraphs were found to appear more frequently than other subgraphs [19]. Which type
of subgraph appears most frequently varies for different networks, and the most frequently
occurring subgraphs are believed to be correlated with the function of the network [19], [20],
[32]. The triangle is the most studied subgraph, allowing for the computation of the clustering
coefficient of the network, which expresses the fraction of connected neighbors of a vertex.

To investigate which subgraphs occur more frequently than expected in a given network,
the subgraph count in a given network is usually compared to the subgraph count in a random
graph null model [13], [18], [20], [21]. Several random graph models could potentially serve
as null models. In practice, the null model is frequently obtained by randomly switching edges
while preserving the degrees. This model, however, is not mathematically tractable for τ < 3,
so that it requires simulations to estimate the subgraph count in such networks [17], [31].

Several other null models for simple, scale-free networks exist, such as the configuration
model [5], the rank-1 inhomogeneous random graph [4], [9], the preferential attachment
model, [2] or hyperbolic random graphs [16]. When the degree exponent satisfies τ < 3,
the configuration model results in a network with many multiple edges and self-loops [28,
Chapter 7], so that it is not a null model for simple networks anymore. A possible solution is
to merge all multiple edges of the configuration model, and consider the erased configuration
model instead [8]. This model is mathematically tractable, and subgraph counts for this model
were derived in [29].
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In this paper, we analyze subgraph counts for a different random graph null model, the
preferential attachment model. The preferential attachment model was first introduced by
Albert and Barabási [1], [2]. In their original work, they described a growing random graph
model where a new vertex appears at each time step. The new vertex connects with a fixed
number of existing vertices chosen with probability proportional to the degrees. This original
Albert–Barabási model has been generalized over the last years, generating the broad class of
random graphs called preferential attachment models (PAMs).

The original Albert–Barabási model is known to produce a power-law degree distribution
with τ = 3 [2]. Often, a modification is considered, where edges are attached to vertices
with probability proportional to the degree plus a constant δ. The constant δ allows us to
obtain different values for the power-law exponent τ . For δ = 0, we retrieve the original
Albert–Barabási model.

The PAM can also be extended to the case where new vertices come into the graph with a
number m≥ 1 of edges, each attached to an existing vertex (or also to the new vertex itself)
[3], [15], [28]. In the present paper we focus on the case where m is fixed, and our results hold
for any value of δ >−m. Taking δ ∈ (−m, 0) results in τ ∈ (2, 3), as observed in many real-
world networks. An important difference between the preferential attachment model and most
other random graph null models is that edges can be interpreted as directed. Thus, it allows us
to study directed subgraphs. This is a major advantage of the PAM over other random graph
null models, since most real-world network subgraphs in, for example, biological networks are
directed as well [20], [25].

1.1. Literature on subgraphs in PAMs

We now briefly summarize existing results on specific subgraph counts in PAMs. The
triangle is the most studied subgraph, allowing us to investigate clustering in the PAM.
Bollobás and Riordan [6] proved that, for any integer-valued function T(t), there exists a PAM
with T(t) triangles, where t denotes the number of vertices in the PAM. They further showed
that the clustering coefficient in the Albert–Barabási model is of order (log t)2/t, while the
expected number of triangles is of order (log t)3 and, more generally, the expected number of
cycles of length l scales as (log t)l.

Eggmann and Noble [11] considered δ > 0, so that τ > 3 and investigated the number of
subgraphs for m= 1 (so subtrees), and, for m≥ 2, they studied the number of triangles and
the clustering coefficient. They observed that the expected number of triangles is of order
log t, while the clustering coefficient is of order log t/t, which is different than the results
in [6]. Our result on general subgraphs for any value of δ in Theorem 1 explains this difference
(in particular, we refer the reader to (3)).

In a series of papers [22], [23], [24] Prokhorenkova et al. proved results on the clustering
coefficient and the number of triangles for a broad class of PAMs, assuming general properties
on the attachment probabilities. These attachment probabilities are in a form that increases the
probability of creating a triangle. In this setting the number of triangles is of order t, while the
clustering coefficients behave differently depending on the exact attachment probabilities.

1.2. Our contribution

For every directed subgraph, we obtain the scaling of the expected number of such
subgraphs in the PAM, generalizing the above results on triangles, cycles, and subtrees.
Furthermore, we identify the most likely degrees of vertices participating in such subgraphs,
which shows that subgraphs in the PAM are typically formed between vertices with degrees of
a specific order of magnitude. The order of magnitude of these degrees can be found using an
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optimization problem. For general subgraphs, our results provide the scaling of the expected
number of such subgraphs in the network size t. For the triangle subgraph, we obtain precise
asymptotic results on the subgraph count, which allows us to study clustering in the PAM.

We use the interpretation of the PAM as a Pólya urn graph. This interpretation allows to
view the edges as being present independently, so that we are able to obtain the probability
that a subgraph H is present on a specific set of vertices.

1.3. Organization of the paper

We first define the specific PAM we study and explain its interpretation as a Pólya urn graph
in Section 2. After that, we present our result on the scaling of the number of subgraphs in the
PAM and the exact asymptotics on the number of triangles in Section 3. Section 4 then provides
an important ingredient for the proof of the scaling of the expected number of subgraphs: a
lemma that describes the probability that a specific subgraph is present on a subset of vertices.
After that, we prove our main results in Section 5 and Section 6. Finally, in Section 8 we give
conclusions and a discussion of our results.

2. Definitions

In this section, we define the specific PAM we study. Then, we give the definition of a Pólya
urn graph in Section 2.2, and we specify how we count subgraphs in Section 2.3.

2.1. PAM

As mentioned in Section 1, different versions of PAMs exist. Here we define the specific
PAM we consider, which is a modification of [3, Model 3].

Definition 1. (Sequential PAM.) Fix m ∈N≥ 2, δ >−m. Then (PAt(m, δ))t∈N is a sequence of
random graphs defined as follows.

• For t= 1, PA1(m, δ) consists of a single vertex with no edges.

• For t= 2, PA2(m, δ) consists of two vertices with m edges between them.

• For t≥ 3, PAt(m, δ) is constructed recursively as follows. Conditioning on the graph at
time t− 1, we add a vertex t to the graph, with m new edges. Edges start from vertex
t and, for j= 1, . . . ,m, they are attached sequentially to vertices Et,1, . . . , Et,m chosen
with probability

P(Et,j = i | PAt−1,j−1(m, δ))=

⎧⎪⎪⎨⎪⎪⎩
Di(t− 1)+ δ

2m(t− 2)+ (t− 1)δ
if j= 1,

Di(t− 1, j− 1)+ δ
2m(t− 2)+ (j− 1)+ (t− 1)δ

if j= 2, . . . ,m.
(1)

In (1) PAt−1,j−1 denotes the graph of size t after the first j− 1 edges of vertex t have been
attached. Furthermore, Di(t− 1) denotes the degree of i in PAt−1(m, δ), while Di(t− 1, j− 1)
denotes the degree of vertex i in PAt−1,j−1. We assume that PAt−1,0 = PAt−1.

To keep the notation light, we write PAt instead of PAt(m, δ) throughout the rest of the
paper. The first term in the denominator of (1) describes the total degree of the first t− 1
vertices in PAt−1,j−1 when t− 1 vertices are present and j− 1 edges have been attached. The
term (t− 1)δ in the denominator comes from the fact that there are t− 1 vertices to which an
edge can attach. Note that we do not allow for self-loops, but we do allow for multiple edges.
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The PAM of Definition 1 is a graph with no self-loops, but possibly with multiple edges. In
this setting, new edges are added sequentially one by one, with intermediate updates of degrees
in the attachment probabilities as in (1). Several other possible definitions of PAMs exist. For
example, we can allow edges to be attached to their original vertex, thus generating self-loops,
or we can force the edges to be attached to distinct vertices, in order to prevent the formation
of multiple edges (for example, [3, Model 2]). We can also attach the m edges independently
of each other, without intermediate degree update, as in [3, Model 1].

All these models have in common the fact that edges choose the vertex to be attached to
according to probabilities of the from (1), where in the numerator the degree of the vertex, k,
appears as an argument of an affine function f (k)= k+ δ. For this reason, these models are
called affine PAMs. The parameter δ determines the initial attractiveness of vertices when they
have degree 0, or, equivalently, the prominence of the effect of high degrees in the attachment
probabilities. When δ→∞, this creates a PAM where edges are attached uniformly (i.e. the
degrees are no more relevant). For a list of affine PAMs, with differences and similarities
explained, we refer the reader to [14, Chapter 4, Section 3] and the references therein.

Affine PAMs, for fixed m ∈N and δ >−m, are known to generate graphs where the
asymptotic degree sequence is close to a power law [27, Lemma 4.7], where the degree
exponent τ satisfies τ = 3+ δ/m.

2.2. PAMs as Pólya urn graphs

As mentioned, our results are based on the Pólya urn interpretation of PAMs. We now
explain this interpretation in more detail. An urn scheme consists of an urn, with blue balls and
red balls. At every time step, we draw a ball from the urn and we replace it by two balls of the
same color. We start with B0 = b0 blue balls and R0 = r0 red balls. We consider two weight
functions,

Wb(k)= ab + k and Wr(k)= ar + k.

Conditionally on the number of blue balls Bn and red balls Rn, at time n+ 1 the probability of
drawing a blue ball is equal to

Wb(Bn)

Wb(Bn)+Wr(Rn)
.

The evolution of the number of balls ((Bn, Rn))n∈N obeys [27, Theorem 4.2]

P(Bn = B0 + k)=E[P(Bin(n, ψ)= k | ψ)],

where ψ has a beta distribution with parameters B0 + ab and R0 + ar. In other words, the
number of blue balls (equivalently, of red balls) is given by a binomial distribution with a
random probability of successψ (equivalently, 1−ψ). Sometimes we call the random variable
ψ the intensity or strength of the blue balls in the urn. We can also see the urn process as two
different urns, one containing only blue balls and the other only red balls, and we choose a urn
proportionally to the number of balls in the urns. In this case, the result is the same, but we can
say that ψ is the strength of the blue balls urn and 1−ψ is the strength of the red balls urn.

The sequential model PAt can be interpreted as an experiment with t urns, where the number
of balls in each urn represents the degree of a vertex in the graph. First, we introduce a random
graph model.

Definition 2. (Pólya urn graph.) Fix m≥ 1 and δ >−m. Let t ∈N be the size of the graph. Let
ψ1 = 1, and consider ψ2, . . . , ψt independent random variables, where

ψk
D=Beta(m+ δ,m(2k− 3)+ (k− 1)δ).
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FIGURE 1: Two labeled triangles.

Define

ϕj =ψj

t∏
i=j+1

(1−ψi), Sk =
k∑

j=1

ϕj, Ik = [Sk−1, Sk). (2)

Conditioning on ψ1, . . . , ψt, let {Uk,j}j=1,...,m
k=2,...,t be independent random variables, with Uk,j

uniformly distributed on [0, Sk−1]. Then, the corresponding Pólya urn graph PUt is the graph
of size t where, for u< v, the number of edges between u and v is equal to the number of
variables Uv,j in Iu for j= 1, . . . ,m (multiple edges are allowed).

The two sequences of graphs (PAt)t∈N and (PUt)t∈N have the same distribution [3, Theorem
2.1], [27, Chapter 4]. The beta distributions in Definition 2 come from the Pólya urn
interpretation of the sequential model, using urns with affine weight functions.

Throughout this paper, we will use the fact that we can interpret the PAM as a Pólya urn
graph to prove as well as to interpret our results on the number of subgraphs in PAMs.

2.3. Labeled subgraphs

As mentioned before, the PAM in Definition 1 is a multigraph, i.e. any pair of vertices may
be connected by m different edges. One could erase multiple edges in order to obtain a simple
graph, similarly to [8] for the configuration model. In the PAM in Definition 1 there are at
most m edges between any pair of vertices, so that the effect of erasing multiple edges is small,
unlike in the configuration model. We do not erase edges, so that we may count a subgraph
on the same set of vertices multiple times. Not erasing edges has the advantage that we do not
modify the law of the graph; therefore, we can directly use known results on PAM.

More precisely, to count the number of subgraphs, we analyze labeled subgraphs, i.e.
subgraphs where the edges are specified. In Figure 1 we give the example of two labeled
triangles on three vertices u, v,w, one consisting of edges { jv,1, jw,1, jw,3} and the other of
edges { jv,1, jw,2, jw,3}. As it turns out, the probability of two labeled subgraphs being defined
by the same vertices and different edges is independent of the choice of the edges. For a more
precise explanation, we refer the reader to Section 4.1.

Notation. We use ‘
P−→’ for convergence in probability. We say that a sequence of events

(En)n≥1 happens with high probability (w.h.p.) if limn→∞ P(En)= 1. Furthermore, we
write f (n)= o(g(n)) if limn→∞ f (n)/g(n)= 0, and f (n)=O(g(n)) if |f (n)|/g(n) is uniformly
bounded, where (g(n))n≥1 is nonnegative. We say that Xn =OP(g(n)) for a sequence of random
variables (Xn)n≥1 if |Xn|/g(n) is a tight sequence of random variables, and Xn = oP(g(n)) if
Xn/g(n)

P−→ 0. We further use the notation [k]= {1, 2, . . . , k}.
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3. Main results

In this section, we present our results on the number of directed subgraphs in the PAM.
We first define subgraphs in more detail. Let H = (VH, EH) be a connected, directed graph.
Let π : VH �→ 1, . . . , |VH| be a one-to-one mapping of the vertices of H to 1, . . . , |VH|. In the
PAM, vertices arrive one by one. We let π correspond to the order in which the vertices in H
have appeared in the PAM, that is, π (i)<π (j) if vertex i was created before vertex j. Thus, the
pair (H, π ) is a directed graph, together with a prescription of the order in which the vertices
of H have arrived. We call the pair (H, π ) an ordered subgraph.

In the PAM, it is only possible for an older vertex to connect to a newer vertex but not
the other way around. This puts constraints on the types of subgraphs that can be formed. We
call the ordered subgraphs that can be formed in the PAM attainable. The following definition
describes all attainable subgraphs.

Definition 3. (Attainable subgraphs.) Let (H, π ) be an ordered subgraph where Aπ (H)
denotes the adjacency matrix of H, such that the rows and columns of the adjacency matrix
of H are permuted by π . We say that (H, π ) is attainable if Aπ (H) defines a directed acyclic
graph, where all out-degrees are less than or equal to m.

3.1. Scaling of the number of subgraphs

We now investigate how many of these attainable subgraphs are typically present in the
PAM. We introduce the optimization problem

B(H, π )= max
s=0,1,...,k

−s+
k∑

i=s+1

[
τ − 2

τ − 1
(d(in)

H (π−1(i))− d(out)
H (π−1(i)))− d(in)

H (π−1(i))

]

:= max
s=0,1,...,k

−s+
k∑

i=s+1

β(π−1(i)), (3)

where d(out)
H (i) and d(in)

H (i) respectively denote the in-degree and out-degree of vertex i in the
subgraph H. Let Nt(H, π ) denote the number of times the connected graph H with ordering
π occurs as a subgraph of a PAM of size t. The following theorem studies the scaling of
the expected number of directed subgraphs in the PAM, and relates it to the optimization
problem (3).

Theorem 1. Let H be a directed subgraph on k vertices with ordering π such that (H, π ) is
attainable and there are r different optimizers to (3). Then, there exist 0<C1 ≤C2 <∞ such
that

C1 ≤ lim inf
t→∞

E[Nt(H, π )]

tk+B(H,π ) logr−1 (t)
≤ lim sup

t→∞
E[Nt(H, π )]

tk+B(H,π ) logr−1 (t)
≤C2. (4)

Theorem 1 gives the asymptotic scaling of the number of subgraphs where the order in
which the vertices appeared in the PAM is known. The total number of copies of H for any
ordering, Nt(H), can then easily be obtained from Theorem 1.

Corollary 1. Let H be a directed subgraph on k vertices with � 	=∅ the set of orderings π
such that (H, π ) is attainable. Let

B(H)=max
π∈� B(H, π ), (5)
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and let r∗ be the largest number of different optimizers to (3) among all π ∈� that maximize
(5). Then, there exist 0<C1 ≤C2 <∞ such that

C1 ≤ lim inf
t→∞

E[Nt(H)]

tk+B(H) logr∗−1 (t)
≤ lim sup

t→∞
E[Nt(H)]

tk+B(H) logr∗−1 (t)
≤C2.

Note that, from Corollary 1, it is also possible to obtain the undirected number of subgraphs
in a PAM, by summing the number of all possible directed subgraphs that create some
undirected subgraph when the directions of the edges are removed.

3.1.1. Interpretation of the optimization problem. The optimization problem in (3) has an
intuitive explanation. Assume that π is the identity mapping, so that vertex 1 is the oldest
vertex of H, vertex 2 the second oldest, and so on. We show in Section 4.2 that the probability
that an attainable subgraph is present on vertices with indices u1 < u2 < · · ·< uk scales as∏

i∈[k]

uβ(i)
i ,

with β(i) as in (3). Thus, if, for all i, ui ∝ tαi for some αi, then the probability that the subgraph
is present scales as t

∑
i∈[k] αiβ(i). The number of vertices with index proportional to tαi scales as

tαi . Therefore, heuristically, the number of times subgraph H occurs on vertices with indices
proportional to (tαi)i∈[k] such that α1 ≤ α2 ≤ · · · ≤ αk scales as

t
∑

i∈[k] (β(i)+1)αi .

Because the exponent is linear in αi, the exponent is maximized for αi ∈ {0, 1} for all i. Because
of the extra constraint α1 ≤ α2 ≤ · · · ≤ αk which arises from the ordering of the vertices in
the PAM, the maximal value of the exponent is k+ B(H). This suggests that the number
of subgraphs scales as tk+B(H). Thus, the optimization problem B(H) finds the most likely
configuration of a subgraph in terms of the indices of the vertices involved. If the optimum
is unique, the number of subgraphs is maximized by subgraphs occurring on one set of very
specific vertex indices. For example, when the maximum contribution is αi = 0, this means
that vertices with constant index, the oldest vertices of the PAM, are most likely to be a
member of subgraph H at position i. When αi = 1 is the optimal contribution, vertices with
index proportional to t, the newest vertices, are most likely to be a member of subgraph H
at position i. When the optimum is not unique, several maximizers contribute equally to the
number of subgraphs, which introduces the extra logarithmic factors in (4).

3.1.2. Most likely degrees. As mentioned above, the optimization problem (3) finds the most
likely orders of magnitude of the indices of the vertices. When the optimum is unique,
the optimum is attained by some vertices of constant index, and some vertices with index
proportional to t. The vertices of constant index have degrees proportional to t1/(τ−1) with high
probability [28], whereas the vertices with index proportional to t have degrees proportional to
a constant. When the optimum is not unique, the indices of the vertices may have any range,
so that the degrees of these vertices in the optimal subgraph structures have degrees ranging
between 1 and t1/(τ−1). Thus, the optimization problem (3) also finds the optimal subgraph
structure in terms of its degrees. The most likely degrees of all directed connected subgraphs on
three and four vertices resulting from Corollary 1 and the asymptotic number of such subgraphs
for 2< τ < 3 are visualized in Figures 2 and 3. For some subgraphs, the optimum of (3) is
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FIGURE 2: Order of magnitude of Nt(H) for all attainable connected directed graphs on three vertices and
for 2< τ < 3. The vertex color indicates the optimal vertex degree.

FIGURE 3: Order of magnitude of Nt(H) for all attainable connected directed graphs on four vertices and
for 2< τ < 3. The vertex color indicates the optimal vertex degree.

attained by the same s and therefore the same most likely degrees for all 2< τ < 3, while, for
other subgraphs, the optimum may change with τ .

One such example is the complete graph of size four. For the directed complete graph,
there is only one attainable ordering satisfying Definition 3, so we take the vertices of H to
be labeled with this ordering. For τ < 5

2 , the optimizer of (3) is given by s= 3 with optimal
value −3− 3(τ − 2)/(τ − 1), whereas, for τ > 5

2 , it is given by s= 4 and optimal value -4.
Thus, for τ < 5

2 , a complete graph of size four typically contains three hub vertices of degree
proportional to t1/(τ−1) and one vertex of constant degree, and the number of such subgraphs
scales as t1−(τ−2)/(τ−1), whereas, for τ > 5

2 , the optimal structure contains four hub vertices
instead and the number of such subgraphs scales as a constant.
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3.2. Fluctuations of the number of subgraphs

In Theorem 1 we investigate the expected number of subgraphs, which explains the average
number of subgraphs over many PAM realizations. Another interesting question is what the
distribution of the number of subgraphs in a PAM realization behaves like. In this paper, we
mainly focus on the expected value of the number of subgraphs, but here we argue that the
limiting distribution of the rescaled number of subgraphs may be quite different for different
subgraphs.

As shown in Definition 2, by viewing the PAM as a Pólya urn graph we can associate a
sequence of random independent random variables (ψv)v∈[t] to the vertices of the PAM, where
ψv has a beta distribution with parameters depending on m, δ, and v. Once we condition on
ψ1, . . . , ψt, the edge statuses of the graph are independent of each other. Furthermore, the
degree of a vertex v depends on the index v and ψv. The higher ψv, the higher Dv(t). Thus, we
can interpret ψv as a hidden weight associated to the vertex v.

Using this representation of the PAM, we can view the PAM as a random graph model
with two sources of randomness: the randomness of the ψ-variables, and then the randomness
of the independent edge statuses determined by the ψ-variables. Therefore, we can define
two levels of concentration for the number of ordered subgraphs Nt(H, π ). Denote by
Eψt [Nt(H, π )] :=E[Nt(H, π ) | ψ1, . . . , ψt]. Furthermore, let Nt,ψ (H, π ) denote the number
of ordered subgraphs conditionally on ψ . Then, the ordered subgraph (H, π ) can be in the
following three classes of subgraphs.

• Concentrated: Nt,ψ (H, π ) is concentrated around its conditional expectation
Eψt [Nt(H, π )], i.e. as t→∞,

Nt,ψ (H, π )

Eψt [Nt(H, π )]
P−→ 1, (6)

and, as t→∞,
Nt(H, π )

E[Nt(H, π )]
P−→ 1.

• Only conditionally concentrated: condition (6) holds, and, as t→∞,

Nt(H, π )

E[Nt(H, π )]
d−→ X (7)

for some random variable X.

• Nonconcentrated: condition (6) does not hold.

For example, it is easy to see that the number of subgraphs as shown in Figure 2(d) satisfies
N(H)/t

P−→m(m− 1)/2, so that it is a subgraph that belongs to the class of concentrated
subgraphs. Below we argue that the triangle belongs to the class of only conditionally
concentrated subgraphs. We now give a criterion for the conditional convergence of (6) in
the following proposition.

Proposition 1. (Criterion for conditional convergence.) Consider a subgraph (H, π ) such that
E[Nt(H, π )]→∞ as t→∞. Denote by Ĥ the set of all possible subgraphs composed by two
distinct copies of (H, π ) with at least one edge in common. Then, as t→∞,∑

Ĥ∈Ĥ
E[Nt(Ĥ)]= o(E[Nt(H, π )]2) �⇒ Nt,ψ (H, π )

Eψt [Nt(H, π )]
P−→ 1. (8)
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FIGURE 4: The order of magnitude of this subgraph containing two merged copies of the subgraph of
Figure 3(q) is t4/(τ−1), so that the condition in Proposition 1 is not satisfied for the subgraph in Figure 3(q).

Proposition 1 gives a simple criterion for conditional convergence for a subgraph (H, π ),
and it is proved in Section 7. The condition in (8) is simple to evaluate in practice. We denote
the subgraphs consisting of two overlapping copies of (H, π ) sharing at least one edge by
Ĥ1, . . . , Ĥr. To identify the order of magnitude of E[Ĥi], we apply Corollary 1 to Ĥi or, in
other words, we apply Theorem 1 to all possible orderings π̂ of Ĥi. Once we have all orders of
magnitude of (Ĥi, π̂) for all orderings π̂ , and for all Ĥi, it is immediate to see if the hypothesis
of Proposition 1 is satisfied.

There are subgraphs where the condition in Proposition 1 does not hold. For example,
merging two copies of the subgraph of Figure 3(q) as in Figure 4 violates the condition in
Proposition 1. We show in Section 7 that this subgraph is in the class of nonconcentrated
subgraphs with probability close to 1.

3.3. Exact constants: triangles

Theorem 1 allows us to identify the order of magnitude of the expected number of subgraphs
in the PAM. In particular, for a subgraph H with ordering π , it assures the existence of two
constants 0<C1 ≤C2 <∞ as in (4). A more detailed analysis is necessary to prove a stronger
result than Theorem 1 of the type

lim
t→∞

E[Nt(H, π )]

tk+B(H,π ) logr−1 (t)
=C

for some constant 0<C<∞. In other words, given an ordered subgraph (H, π ), we want to
identify the constant C> 0 such that

E[Nt(H, π )]=Ctk+B(H,π ) logr−1 (t)(1+ o(1)). (9)

We prove (9) for triangles to show the difficulties in the evaluation of the precise constant C
for general subgraphs. The following theorem provides the detailed scaling of the expected
number of triangles.

Theorem 2. (Phase transition for the number of triangles.) Let m≥ 2 and δ >−m be
parameters for (PAt)t≥1. Denote the number of labeled triangles in PAt by t. Then, as
t→∞,

1. if τ > 3 then

E[t]= m2(m− 1)(m+ δ)(m+ δ + 1)

δ2(2m+ δ) log (t)(1+ o(1));

2. if τ = 3 then

E[t]= m(m− 1)(m+ 1)

48
log3 (t)(1+ o(1));
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3. if τ ∈ (2, 3) then

E[t]= m2(m− 1)(m+ δ)(m+ δ+ 1)

δ2(2m+ δ) t(3−τ )/(τ−1) log (t)(1+ o(1)).

Theorem 2 in the case δ= 0 coincides with [6, Theorem 14]. For δ > 0,we retrieve the result
in [11, Proposition 4.3], noting that the additive constant β in the attachment probabilities in
the Móri model considered in [11] coincides with (1) for β = δ/m.

The proof of Theorem 2 in Section 6 shows that to identify the constant in (9), we need
to evaluate the precise expectations involving the attachment probabilities of edges. The
equivalent formulation of the PAM given in Definition 2 below simplifies the calculations, but
it is still necessary to evaluate rather complicated expectations involving products of several
terms as in (15). For a more detailed discussion, we refer the reader to Remark 1.

3.3.1. The distribution of the number of triangles. Theorem 2 shows the behavior of the
expected number of triangles. The distribution of the number of triangles across various PAM
realizations is another object of interest. We prove the following result for the number of
triangles t.

Corollary 2. (Concentration of triangles, conditionally on ψ .) For τ ∈ (2, 3), the number of
triangles t satisfies condition (6).

Corollary 2 is a direct consequence of Proposition 1, and the atlas of the order of magnitudes
of all possible realizations of the subgraphs consisting of two triangles sharing one or two
edges is presented in Figure 5. In Figure 6 we show a density approximation of the number of
triangles obtained by simulations. These figures suggest that the rescaled number of triangles
converges to a random limit, since the width of the density plots does not decrease in t. Thus,
while the number of triangles concentrates conditionally, it does not seem to converge to a con-
stant when taking the random ψ-variables into account. This would put the triangle subgraph

FIGURE 5: Order of magnitude of Nt(H) for all merged triangles on four vertices and for 2< τ < 3. The
vertex color indicates the optimal vertex degree as in Figure 3.
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FIGURE 6: Density approximation of the number of triangles in 104 realizations of the preferential
attachment model with τ = 2.5 and various values of t.

in the class of only conditionally concentrated subgraphs. Proving this and identifying the
limiting random variable of the number of triangles is an interesting open question.

4. The probability of a subgraph being present

In this section, we prove the main ingredient for the proof of Theorem 1, the probability of
a subgraph being present on a given set of vertices. The most difficult part of evaluating the
probability of a subgraph H being present in PAt is that the PAM is constructed recursively.

We consider triangles as an example. We write the event of a labeled triangle being present
by {u j1← v, u

j2←w, v
j3←w}, where {u j← v} denotes the event that the jth edge of vertex v is

attached to vertex u. In this way we express precisely which edges are used in the triangle
construction.

To evaluate the probability of the event {u j1← v, u
j2←w, v

j3←w}, we can only use (1), which
gives the conditional probabilities of attaching edges. Note that j2 and j3 are attached to the
same vertex w. Assuming that j2 < j3, we write

P(u
j1← v, u

j2←w, v
j3←w)=E[P(u

j1← v, u
j2←w, v

j3←w | PAt−1, j3−1)],

where we condition on PAt−1, j3−1, because the last edge we have to insert in the graph to create
the triangle is given by the event {v j3←w}. Using (1), we write

E[P(u
j1← v, u

j2←w, v
j3←w | PAt−1, j3−1)]

=E

[
1{u j1← v, u

j2←w} Dv(w− 1, j3 − 1)+ δ
2m(w− 2)+ (j3 − 1)+ (w− 1)δ

]
. (10)

In (10), the indicator function 1{u j1← v, u
j2←w} and Dv(w− 1, j3 − 1) are not independent,

therefore evaluating the expectation on the right-hand side of (10) is not easy. A possible
solution for the evaluation of the expectation in (10) is to rescale Dv(w− 1, j3 − 1) with
an appropriate constant to obtain a martingale, and then recursively use the conditional
expectation. For a detailed explanation of this, we refer the reader to [7], [26], and [28, Section
8.3]. This method is hardly tractable due to the complexity of the constants appearing (see
Remark 1 for a more detailed explanation).

We use a different approach to evaluate of the expectation in (10) using the interpretation
of the PAM as a Pólya urn graph, focusing mainly on the age (indices) of the vertices, and not
on precise constants. We give lower and upper bounds for the probability of having a finite
number of edges present in the graph, as formulated in the following lemma.
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Lemma 1. (Probability of a finite set of labeled edges.) Fix 
 ∈N. For vertices u
 =
(u1, . . . , u
) ∈ [t]
 and v
 = (v1, . . . , v
) ∈ [t]
, and edge labels j
 = ( j1, . . . , j
) ∈ [m]
, we
denote the set of 
 distinct labeled edges from ui to vi connected by the jith edge for i= 1, . . . , 

by M
(u
, v
, j
). Assume that the subgraph defined by set M
(u
, v
, j
) is attainable in the
sense of Definition 3. Define χ = (m+ δ)/(2m+ δ). Then the following assertions hold.

1. There exist two constants c1(m, δ, 
), c2(m, δ, 
)> 0 such that

c1(m, δ, 
)

∏

l=1

uχ−1
l v−χl ≤ P(M
(u
, v
, j
)⊆ E(PAt)) ≤ c2(m, δ, 
)


∏
l=1

uχ−1
l v−χl .

(11)

2. Define the set

J(u
, v
)= { j
 ∈ [m]
 : M
(u
, v
, j
)⊆ E(PAt)}. (12)

Then there exist two constants ĉ1(m, δ, 
), ĉ2(m, δ, 
)> 0 such that

ĉ1(m, δ, 
)

∏

l=1

uχ−1
l v−χl ≤E[|J(u
, v
)|]≤ ĉ2(m, δ, 
)


∏
l=1

uχ−1
l v−χl . (13)

Formula (11) in the above lemma bounds the probability that a subgraph is present on
vertices u
 and v
 such that the jith edge from ui connects to vi. Note that (11) is independent
of the precise edge labels (j1, . . . , j
). To be able to count all subgraphs, and not only subgraphs
where the edge labels have been specified, (13) bounds the expected number of times a specific
subgraph is present on vertices u
 and v
. This number is given exactly by the elements in set
J(u
, v
) as in (12). Note that the expectation in (13) may be larger than 1, due to the fact that
the PAM is a multigraph.

Lemma 1 gives a bound on the probability of the presence of 
 ∈N distinct edges in the
graph as a function of the indices (u1, v1), . . . , (u
, v
) of the endpoints of the 
 edges. Due to
the properties of the PAM, the index of a vertex is an indicator of its degree, due to the old-
get-richer effect. Lemma 1 is a stronger result than [10, Corollary 2.3], which gives an upper
bound of the form in (11) only for self-avoiding paths.

The proof of Lemma 1 is based on the interpretation of the PAM in Definition 1 as an urn
experiment as proposed in [3]. We now introduce urn schemes and state the preliminary results
we need for the proof of Lemma 1, which is given in Section 4.2.

4.1. Preliminary properties of Pólya urn graphs

The formulation in Definition 2 in terms of urn experiments allows us to investigate the
presence of subgraphs in an easier way than with the formulation given in Definition 1, since
the dependent random variables in (10) are replaced by the product of independent random
variables. We now state two lemmas that are the main ingredients for proving Lemma 1.

Lemma 2. (Attachment probabilities.) Consider PUt as in Definition 2. Then,

1. for k ∈ [t],

Sk =
t∏

h=k+1

(1−ψh); (14)
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2. conditioning on ψ1, . . . , ψt, the probability that the jth edge of k is attached to v is equal
to

P(Uk,j ∈ Iv | ψ1, . . . , ψt)=ψv
Sv

Sh−1
=ψv

k−1∏
h=v+1

(1−ψh). (15)

The proof of Lemma 2 follows from Definition 2, and the fact that (Sk)k∈[t] as in (2) can be
written as in (14) (see the proof of [3, Theorem 2.1]).

Before proving Lemma 1, we state a second result on the concentration of the positions
{Sk}k∈[t] in the urn graph (PUt)t∈N. In particular, it shows that these positions concentrate
around deterministic values.

Lemma 3. (Position concentration in PUt.) Consider a Pólya urn graph as in Definition 2. Let
χ = (m+ δ)/(2m+ δ). Then, for every ω, ε > 0, there exists N0 =N0(ω, ε) ∈N such that, for
every t≥N0,

P

( t⋂
i=N0

{∣∣∣∣Si −
(

i

t

)χ ∣∣∣∣≤ω( i

t

)χ})
≥ 1− ε

and, for large enough t,

P

(
max
i∈[t]

∣∣∣∣Si −
(

i

t

)χ ∣∣∣∣≥ω)≤ ε.
As a consequence, as t→∞,

max
i∈[t]

∣∣∣∣Si −
(

i

t

)χ ∣∣∣∣ P−→ 0. (16)

The proof of Lemma 3 is given in [3, Lemma 3.1].

4.2. Proof of Lemma 1

We now prove Lemma 1, starting with the proof of (11). Fix u
, v
, j
. In the proof, we
denote M
(u
, v
, j
) simply by M
 to keep the notation light. We use the fact that the Pólya
urn graphs PUt and PAt have the same distribution, and evaluate P(M
 ⊆ E(PUt)). We consider

 distinct labeled edges, so we can use (15) to write

P(M
 ⊆ E(PUt) | ψ1, . . . , ψt)=

∏

l=1

ψul

Sul

Svl−1
. (17)

Now fix ε > 0. Define Eε := {maxi∈[t] |Si − (i/t)χ | ≤ ε}. By (16), and the fact that the product
of the random variables in (17) is bounded by 1,

E

[ 
∏
l=1

ψul

Sul

Svl−1

]
=E

[
1Eε


∏
l=1

ψul

Sul

Svl−1

]
+ o(1). (18)

On the event Eε, we have, for every l ∈ [
],

(1− ε)
(

ul

vl

)χ
≤ Sul

Svl−1
≤ (1+ ε)

(
ul

vl

)χ
, (19)
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where in (19) we have replaced vl − 1 with vl with a negligible error. Note that, since vl is
always the source of the edge, this implies that vl ≥ 2; therefore, this is allowed. Using (19) in
(18), we obtain

(1− ε)


∏

l=1

(
ul

vl

)χ
E

[
1Eε


∏
l=1

ψul

]
≤ P(M
 ⊆ E(PUt))

≤ (1+ ε)


∏

l=1

(
ul

vl

)χ
E

[
1Eε


∏
l=1

ψul

]
. (20)

Even though ψ1, . . . , ψt depend on Eε, it is easy to show that we can ignore 1Eε in (20) and
obtain a similar bound. In fact, since the random variables ψu1 , . . . , ψu
 are bounded by 1, we
can write ∣∣∣∣E[ 
∏

l=1

ψul

]
−E

[
1Eε


∏
l=1

ψul

]∣∣∣∣=E

[
1Ec

ε


∏
l=1

ψul

]
≤ 1− P(E c

ε )= o(1), (21)

where o(1) is intended as t→∞ because of (16). Note that the bound in (21) depends on ε
through the event E c

ε , but not on the choice of M
. As a consequence, for some constants c1, c2
and large enough t, from (20) and (21),

(1− ε)


∏

l=1

(
ul

vl

)χ
E

[ 
∏
l=1

ψul

]
≤ P(M
 ⊆ E(PUt))≤ (1+ ε)



∏
l=1

(
ul

vl

)χ
E

[ 
∏
l=1

ψul

]
. (22)

What remains is to evaluate the expectation in (22). We assumed 
 distinct edges, which does
not imply that the vertices u1, v1, . . . , u
, v
 are distinct. The expectation in (22) depends only
on the receiving vertices of the 
 edges, namely u1, . . . , u
.

Let ū1, . . . , ūk denote the k≤ 
 distinct elements that appear among u1, . . . , u
. For h ∈ [k],
the vertex ūh appears in the product inside the expectation in (22) with multiplicity d(in)

h , which
is the degree of vertex ūk in the subgraph defined by M
. As a consequence, we can write

E

[ 
∏
l=1

ψul

]
=E

[ k∏
h=1

ψ
d(in)

h
ūh

]
=

k∏
h=1

E

[
ψ

d(in)
h

ūh

]
, (23)

where in (23) we have used the fact that ψ1, . . . , ψt are all independent. Note that E[ψd
1 ]= 1

for all d≥ 0, since ψ1 ≡ 1. Therefore, if ūh = 1 for some h ∈ [k], E[ψd
ūh

]= 1 and the terms
depending on the first vertex contribute to the expectation in (23) by a constant.

For the terms where ūh ≥ 2, recall that, if X(α, β) is a beta random variable then, for any
integer d ∈N,

E[X(α, β)d]= α(α + 1) · · · (α + d− 1)

(α+ β)(α+ β + 1) · · · (α+ β + d− 1)
.

Since ψūh is beta distributed with parameters m+ δ and 2(ūh − 3)+ (ūh − 1)δ,

E[ψ
d(in)

h
ūh

]= (m+ δ) · · · (m+ δ + d(in)
h − 1)

[m(2ūh − 2)+ ūhδ] · · · [m(2ūh − 2)+ ūhδ + d(in)
h − 1]

= ū
−d(in)

h
h

(m+ δ) · · · (m+ δ + d(in)
h − 1)

[2m+ δ− (2m)/ūh] · · · [2m+ δ + (d(in)
h − 1− 2m)/ūh]

.
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Note that if ūh ≥ 2, uniformly in t and the precise choice of the 
 edges,

(m+ δ)−
 ≤
([

2m+ δ− 2m

ū

]
· · ·

[
2m+ δ+ d(in)

h − 1− 2m

ū

])−1

≤ (2m+ δ + 
)−
.

As a consequence, we can find two constants c1(m, δ, 
), c2(m, δ, 
) such that

c1(m, δ, 
)
k∏

h=1

ū
−d(in)

h
h ≤

k∏
h=1

E[ψ
d(in)

h
ūh

]≤ c2(m, δ, 
)
k∏

h=1

ū
−d(in)

h
h . (24)

We now use (24) in (22) to obtain

c1(m, δ, 
)(1− ε)


∏

l=1

(
ul

vl

)χ k∏
h=1

ū
−d(in)

h
h ≤ P(M
 ⊆ E(PUt))

≤ c2(m, δ, 
)(1+ ε)


∏

l=1

(
ul

vl

)χ k∏
h=1

ū
−d(in)

h
h . (25)

In (25) we can just rename the constants c1(m, δ, 
)= c1(m, δ, 
)(1− ε)
 and c2(m, δ, 
)=
c2(m, δ, 
)(1+ ε)
. Since d(in)

h is the multiplicity of vertex ūh as the receiving vertex, we can
write

k∏
h=1

ū
−d(in)

h
h =


∏
l=1

u−1
l .

Combining this with (25) completes the proof of (11).
The proof of (13) follows immediately from (11) and the definition of the set J(u
, v
) in

(12). In fact, we can write

E[|J(u
, v
)|]=
∑

j
∈[m]


P(M
(u
, v
, j
)⊆ E(PAt)).

Recall that P(M
(u
, v
, j
)⊆ E(PAt)) is independent of the labels j
. For a fixed set of source
and target vertices u
 and v
, there is only a finite combination of labels j
 such that the
subgraph defined by M
(u
, v
, j
) is attainable in the sense of Definition 3. In fact, the number
of such labels j
 is larger than 1 (since the corresponding subgraph is attainable), and less than
m
 (the total number of elements of [m]
). As a consequence, taking ĉ1 = c1 and ĉ2 = c2m


proves (13).

5. Proof of Theorem 1

To prove Theorem 1, we write the expected number of subgraphs as multiple integrals.
Without loss of generality, we assume throughout this section that π is the identity permutation,
so that the vertices of H are labeled as 1, . . . , k, and therefore drop the dependence of the
quantities on π . We first prove a lemma that states that two integrals that will be important in
proving Theorem 1 are finite.
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Lemma 4. Let H be a subgraph such that the optimum of (3) is attained by s1, . . . , sr. Then

A1(H) :=
∫ ∞

1
uβ(1)

1

∫ ∞
u1

uβ(2)
2 · · ·

∫ ∞
us−1

uβ(s1)
s1

dus1 · · · du1 <∞,

A2(H) :=
∫ 1

0
uβ(k)

k

∫ uk

0
uβ(k−1)

k−1 · · ·
∫ usr+2

0
uβ(sr+1)

sr+1 dusr+1 · · · duk <∞.

Proof. Since the first integral iteratively integrates us1+1−z to the power z− 1+∑s1
i=s1−z β(i) from us1−z to ∞ for z= 1, . . . , s1, these integrals are finite as long as z− 1+∑s1
i=s1−z β(i)<−1, or similarly

z+
s1∑

i=s1−z

β(i)< 0 (26)

for all z ∈ [s1]. Suppose that (26) does not hold for some z∗ ∈ [s1]. Then, the difference between
the contribution to (3) for s̃= s1 − z∗ and s1 is

−(s1 − z∗)+
k∑

i=s1−z∗
β(i)+ s1 −

k∑
i=s1

β(i)= z∗ +
s1∑

i=s1−z∗
β(i)≥ 0,

which would imply that s1 − z∗ is also an optimizer of (3), which is in contradiction with s1
being the smallest optimum. Thus, (26) holds for all r ∈ [s] and A1(H)<∞.

Similarly to the analysis in the first integral, the second integral iteratively integrates uz to
the power z− 1− sr +∑z

i=sr+1 β(i) from 0 to uz+1 for z ∈ {sr + 1, . . . , k}. Thus, the integral
is finite as long as

z− sr +
z∑

i=sr+1

β(i)> 0

for all z ∈ {sr + 1, . . . , k}. Suppose that this does not hold for some z∗ ∈ {sr + 1, . . . , k}. Set
s̃= z∗ > sr. Then, the difference between the contribution to (3) for s̃= z∗ and sr is

−z∗ + sr −
z∗∑

i=sr+1

β(i)≥ 0,

which is a contradiction with sr being the largest optimizer. Therefore, A2(H)<∞. �
We now use this lemma to prove Theorem 1.

Proof of Theorem 1. Again, we assume that π is the identity mapping, so that we may drop
all dependencies on π . Suppose that the optimal solution to (3) is attained by s1, s2, . . . , sr for
some r≥ 1. Let the 
 edges of H be denoted by (ul, vl) for l ∈ [
]. Let Nt(H, i1, . . . , ik) denote
the number of times subgraph H is present on vertices i1, . . . , ik. We then use Lemma 1, which
proves that, for some 0<C<∞,

E[Nt(H)]=
∑

i1<···<ik∈[t]

E[Nt(H, i1, . . . , ik)]

≤C
∑

i1<···<ik∈[t]


∏
l=1

iχ−1
ul

i−χvl

=C
∑

i1<···<ik∈[t]

k∏
q=1

iβ(q)
q . (27)

https://doi.org/10.1017/apr.2019.36 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.36


Subgraphs in preferential attachment models 915

We then bound the sums by integrals as

E[Nt(H)]≤ C̃
∫ t

1
uβ(1)

1 · · ·
∫ t

uk−1

uβ(k)
k duk · · · du1

≤ C̃
∫ ∞

1
uβ(1)

1 · · ·
∫ ∞

us−1
uβ(s1)

s1
dus1 · · · du1

×
∫ t

1
uβ(s1+1)

s1+1

∫ ∞
us1+1

uβ(s1+2)
s1+2 · · ·

∫ t

us2−1

uβ(s2)
s2

dus2 · · · dus1+1

×
∫ t

1
uβ(s2+1)

s2+1

∫ ∞
us2+1

uβ(s2+2)
s2+2 · · ·

∫ t

us3−1

uβ(s3)
s3

dus3 · · · dus2+1 × · · ·

×
∫ t

1
uβ(sr−1+1)

sr−1+1

∫ ∞
usr−1+1

uβ(sr−1+2)
sr−1+2 · · ·

∫ t

usr−1

uβ(sr)
sr

dusr · · · dusr−1+1

×
∫ t

0
uβ(sr+1)

sr+1

∫ t

sr+1
uβ(sr+2)

sr+2 · · ·
∫ t

uk−1

uβ(k)
k duk · · · dusr+1 (28)

for some 0< C̃<∞. The first set of integrals is finite by Lemma 4 and independent of t. For
the last set of integrals, we obtain∫ t

0
uβ(sr+1)

sr+1

∫ t

usr+1

uβ(s+2)
sr+2 · · ·

∫ t

uk−1

uβ(k)
k duk · · · dusr+1

= tk−sr+∑k
i=sr+1 β(i)

∫ 1

0
wβ(sr+1)

sr+1

∫ 1

wsr+1

wβ(sr+2)
sr+2 · · ·

∫ 1

wk−1

wβ(k)
k dwk · · · dwsr+1

=Ktk+B(H) (29)

for some 0<K <∞, where we have used the change of variables w= u/t and Lemma 4. For
r= 1, this completes the proof, because then the middle integrals in (28) are empty. We now
investigate the behavior of the middle sets of integrals for r> 1. Because the optimum to (3)
is attained for s1 as well as s2,

− s1 +
k∑

i=s1+1

β(i)+ s2 −
k∑

i=s2+1

β(i)= s2 − s1 +
s2∑

i=s1+1

β(i)= 0. (30)

Therefore, when s2 = s1 + 1, the second set of integrals in (28) equals∫ t

1
u−1

s1
dus1 = log (t).

Now suppose that s1 < s2 + 1. Then, any s̃ ∈ [s1 + 1, s2 − 1] is a nonoptimal solution to (3),
and, therefore,

−s2 +
k∑

i=s2+1

β(i)+ s̃−
k∑

i=s̃+1

β(i)= s̃− s2 −
s2∑

i=s̃+1

β(i)> 0,

or
s2∑

i=s̃+1

β(i)< s2 − s̃. (31)
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This implies that ∫ t

1
uβ(s1+1)

s1+1

∫ ∞
us1+1

uβ(s1+2)
s1+2 · · ·

∫ t

us2−1

uβ(s2)
s2

dus2 · · · dus1+1

= K̃
∫ t

1
u

∑s2
i=s1+1 β(i)+s2−s1−1

s1+1 dus1+1

= K̃
∫ t

1
u−1

s1+1 dus1+1

= K̃ log (t) (32)

for some 0<C<∞. A similar reasoning holds for the other integrals, so that combining (28),
(29), and (32) yields

lim sup
t→∞

E[Nt(H)]

tk+B(H) logr−1 (t)
≤C2

for some 0<C2 <∞.
We now proceed to prove a lower bound on the expected number of subgraphs. Again, by

Lemma 1 and lower bounding the sums by integrals as in (27), we obtain, for some 0<C<∞,

E[Nt(H)]≥C
∫ t

1
uβ(1)

1 · · ·
∫ t

uk−1

uβ(k)
k duk · · · du1.

Fix ε > 0. We investigate the contribution where vertices 1, . . . , s1 have index in [1, 1/ε],
vertices s1 + 1, . . . , s2 have index in [1/ε, εt1/r], vertices s2 + 1, . . . , s3 have index in
[t1/r, εt2/r], and so on, and vertices sr + 1, . . . , sk have index in [εt, t]. Thus, we bound

E[Nt(H)]≥C
∫ 1/ε

1
uβ(1)

1

∫ 1/ε

u1

uβ(2)
2 · · ·

∫ 1/ε

us1−1

uβ(s)
s1

dus1 · · · du1

×
∫ εt1/r

1/ε
uβ(s1+1)

s1+1

∫ us1+1/ε

us1+1

uβ(s1+2)
s1+2 · · ·

∫ us2−1/ε

us2−1

uβ(s2)
s2

dus2 · · · dus1+1

×
∫ εt2/r

t1/r
uβ(s2+1)

s2+1

∫ us2+1/ε

us2+1

uβ(s2+2)
s2+2 · · ·

∫ us3−1/ε

us3−1

uβ(s3)
s3

dus3 · · · dus2+1 × · · ·

×
∫ εt(r−1)/r

t(r−2)/r
uβ(sr−1+1)

sr−1+1

∫ usr−1+1/ε

usr−1+1

uβ(sr−1+2)
sr−1+2 · · ·

∫ usr−1/ε

usr−1

uβ(sr)
sr

dusr · · · dusr−1+1

×
∫ t

εt
uβ(sr+1)

sr+1

∫ t

usr+1

uβ(sr+2)
sr+2 · · ·

∫ t

uk−1

uβ(k)
k duk · · · dusr+1. (33)

The first set of integrals equals A1(H) plus terms that vanishes as ε becomes small by Lemma 4.
For the last set of integrals, we use the change of variables w= u/t to obtain∫ t

εt
uβ(sr+1)

sr+1

∫ t

usr+1

uβ(sr+2)
sr+2 · · ·

∫ t

uk−1

uβ(k)
k duk · · · dusr+1

= tk−sr+∑k
i=sr+1 β(i)

∫ 1

ε

wβ(sr+1)
sr+1

∫ 1

wsr+1

wβ(sr+2)
sr+2 · · ·

∫ 1

wk−1

wβ(k)
k dwk · · · dwsr+1

= tk+B(H)(A2(H)− h1(ε)) (34)
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for some function h1(ε). By Lemma 4, h1(ε) satisfies limε→0 h1(ε)= 0. Again, if r= 1, the
middle sets of integrals in (33) are empty, so we are done.

We now investigate the second set of integrals in (33) for r> 1. Using the substitutions
ws1+1 = us1+1 and wi = ui/ui−1 for i> s1 + 1, we obtain

∫ εt1/r

1/ε
uβ(s1+1)

s1+1

∫ us1+1/ε

us1+1

uβ(s1+2)
s1+2 · · ·

∫ us2−1/ε

us2−1

uβ(s2)
s2

dus2 · · · dus1+1

=
∫ εt1/r

1/ε
w

s2−s1−1+∑s2
i=s1+1 β(i)

s1+1 dws1+1

∫ 1/ε

1
w

s2−s1−2+∑s2
i=s1+2 β(i)

s1+2 dws2+1 × · · ·

×
∫ 1/ε

1
wβ(s2)

s2
dws2 . (35)

The first integral equals, by (30),∫ εt1/r

1/ε
w−1

s1+1 dws1+1 = 1

r
log (t)+ log (ε2).

The integrand in all other integrals in (35) equals wγi
i for some γi <−1 by (31). Therefore,

these integrals equal a constant plus a function of ε that vanishes as ε becomes small so that∫ εt1/r

1/ε
uβ(s1+1)

s1+1

∫ us1+1/ε

us1+1

uβ(s1+2)
s1+2 · · ·

∫ us2−1/ε

us2−1

uβ(s2)
s2

dus2 · · · dus1+1

=
(

1

r
log (t)+ log (ε2)

)
(K + h2(ε)) (36)

for some 0<K <∞ and some h2(ε) such that limε→0 h2(ε)= 0. The other integrals in (33)
can be estimated similarly.

Combining (33), (34), and (36) we obtain

lim inf
t→∞

E[Nt(H)]

tk+B(H) logr−1 (t)
≥C1 + h(ε)

for some constant 0<C1 <∞ and some function h(ε) such that limε→0 h(ε)= 0. Taking the
limit for ε→ 0 then proves the theorem. �

6. Proof of Theorem 2

Fix m≥ 2 and δ >−m. The first step of the proof consists of showing that

E[t]= τ − 2

τ − 1

m2(m− 1)(m+ δ)(m+ δ + 1)

(2m+ δ)2

×
t−2∑
u=1

[(
u− 2m

2m+ δ
)(

u− 2m− 1

2m+ δ
)]−1

× �(u+ 2− (2m)/(2m+ δ)
�(u+ 2− (3m+ δ)/(2m+ δ))

�(u+ 2− (2m− 1)/(2m+ δ))
�(u+ 2− (3m+ δ − 1)/(2m+ δ))
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×
t−1∑

v=u+1

(
v− 3m+ δ− 1

2m+ δ
)−1

×
t∑

w=v+1

�(w− (3m+ δ)/(2m+ δ))
�(w− (2m)/(2m+ δ))

�(w− (3m+ δ − 1)/(2m+ δ))
�(w− (2m− 1)/(2m+ δ)) . (37)

We can write

t :=
t−2∑
u=1

t−1∑
v=u+1

t∑
w=v+1

∑
j1∈[m]

∑
j2,j3∈[m]

1{u j1← v, u
j2←w, v

j3←w}. (38)

Since there are m2(m− 1) possible choices for the edges j1, j2, j3,

E[t]=m2(m− 1)
t−2∑
u=1

t−1∑
v=u+1

t∑
w=v+1

E

[
ψu

Su

Sv−1
ψu

Su

Sw−1
ψv

Sv

Sw−1

]
. (39)

Recalling (15), we can write every term in the sum in (39) as

E

[(
ψu

v−1∏
h=u+1

(1−ψh)

)(
ψu

w−1∏
k=u+1

(1−ψk)

)(
ψv

w−1∏
l=v+1

(1−ψl)

)]
. (40)

Since the random variables ψ1, . . . , ψt are independent, we can factorize the expectation to
obtain

E[ψ2
u ]E[ψv(1−ψv)]

w−1∏
k=u+1, k 	=v

E[(1−ψk)2]=E[ψ2
u ]
E[ψv(1−ψv)]

E[(1−ψv)2]

w−1∏
k=u+1

E[(1−ψk)2].

(41)
Recall that, for a beta random variable X(α, β), we have

E[X]= α

α + β , E[X(1− X)]= αβ

(α + β)(α + β + 1)
,

E[X2]= α(α + 1)

(α+ β)(α+ β + 1)
,

(42)

and 1− X(α, β) is distributed as X(β, α). Using (42), we can rewrite (41) in terms of the param-
eters of ψ1, . . . , ψt. Since ψk has parameters α=m+ δ and β = βk =m(2k− 3)+ (k− 1)δ,
the first term in (41) can be written as

E[ψ2
u ]

(m+ δ)(m+ δ + 1)

(m(2u− 2)+ uδ)(m(2u− 2)+ uδ + 1)

= (m+ δ)(m+ δ+ 1)

(2m+ δ)2

[(
u− 2m

2m
+ δ

)(
u− 2m− 1

2m+ δ
)]−1

. (43)

For the second term, we have

E[ψv(1−ψv)]

E[(1−ψv)2]
= m+ δ

m(2v− 3)+ (v− 1)δ
= τ − 2

τ − 1

(
v− 3m+ δ − 1

2m+ δ
)−1

. (44)
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The last product in (41), for k= u+ 1, . . . ,w− 1, results in

E[(1−ψk)2]= (m(2k− 3)+ (k− 1)δ)(m(2k− 3)+ (k− 1)δ + 1)

(m(2k− 2)+ kδ)(m(2k− 2)+ kδ + 1)

= k− (3m+ δ)/(2m+ δ)
k− 2m/(2m+ δ)

k− (3m+ δ − 1)/(2m+ δ)
k− (2m− 1)/(2m+ δ) . (45)

Using the recursive property �(a+ 1)= a�(a) of the gamma function,

w−1∏
k=u+1

E[(1−ψk)2]= �(u+ 2− (2m)/(2m+ δ)
�(u+ 2− (3m+ δ)/(2m+ δ))

�(u+ 2− (2m− 1)/(2m+ δ))
�(u+ 2− (3m+ δ − 1)/(2m+ δ))

×�(w− (3m+ δ)/(2m+δ))
�(w− (2m)/(2m+ δ))

�(w− (3m+ δ− 1)/(2m+δ))
�(w− (2m− 1)/(2m+ δ)) . (46)

Equation (39) follows by combining (41), (43), (44), (45), and (46).
The last step of the proof is to evaluate the sum in (39), and combining the result with the

multiplicative constant in front in (39). By Stirling’s formula,

�(x+ a)

�(x+ b)
= xa−b

(
1+O

(
1

x

))
.

As a consequence, recalling that χ = (m+ δ)/(2m+ δ), the sum in (39) can be written as

t−2∑
u=1

u2χ−2
(

1+O

(
1

u

)) t−1∑
v=u+1

v−1
(

1+O

(
1

v

)) t∑
w=v+1

w−2χ
(

1+O

(
1

w

))
. (47)

We can approximate the sum in (47) with the corresponding integral using the Euler–Maclaurin
formula, thus obtaining ∫ t

1
u2χ−2 du

∫ t

u
v−1 dv

∫ t

v
w−2χ dw. (48)

As t→∞, the order of magnitude of the integral in (48) is predicted by Theorem 1. If
we evaluate the integral then we find that the coefficient of the dominant term in (48) is
(2m+ δ)2/δ2 for τ > 2, τ 	= 3, and 1

6 for τ = 3.
Putting together these coefficients with the constant in front of the sum in (37) completes

the proof of Theorem 2.

Remark 1. (Constant for general subgraphs.) In the proof of Theorem 2, the hardest step is to
prove (38), i.e. to find the expectation of the indicator functions in (37). This is the reason why,
for a general ordered subgraph (H, π ) on k vertices, it is hard to find the explicit constant as
in (9). In fact, as we have done to move from (39) to (40), it is necessary to identify precisely,
for every v ∈ [t], how many times the terms ψv and (1−ψv) appear in the product inside the
expectations in (39). This makes the evaluation of such terms complicated.

Typically, as shown in (41), (43), (44), (45), and (46), the product of the constants obtained
by evaluating the probability of an ordered subgraph (H, π ) being present can be written as
ratios of gamma functions. The same constants can be found using the martingale approach as
in [7], [26], and [28, Section 8.3], even though in this case constants are obtained through a
recursive use of the conditional expectation.

We remark that our method and the martingale method are equivalent. We focused on the
Pólya urn interpretation of the graph since it highlights the dependence of the presence of edges
on the age of vertices, which is directly related to the order of magnitude of degrees.
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7. Conditional concentration: proof of Proposition 1

In the previous sections, we have considered the order of magnitude of the expectation of
the number of occurrences of ordered subgraphs in the PAM. In other words, for an ordered
subgraph (H, ψ), we are able to identify the order of magnitude f (t) of the expected number
of occurrences Nt(H, π ), so that E[Nt(H, π )]=O (f (t)). We now show how these orders
of magnitude of the expected number of subgraphs determines the conditional convergence
given in (6).

7.1. Bound with overlapping subgraphs

The Pólya urn graph in Definition 2 consists of a function of uniform random variables
(Uv,j)

j∈[m]
v∈[t] and an independent sequence of beta random variables (ψv)v∈[t]. We can interpret

the sequence (ψv)v∈[t] as a sequence of intensities associated to the vertices, where a
higher intensity corresponds to a higher probability of receiving a connection. The sequence
(Uv,j)

j∈[m]
v∈[t] determines the attachment of edges. In particular, conditionally on the sequence

(ψv)v∈[t], every edge is present independently (but with different probabilities).
For t ∈N, let Pψt ( · )= P( · | ψ1, . . . , ψt), and similarly Eψt [ · ]=E[ · | ψ1, . . . , ψt].

Furthermore, let Nt,ψ (H, π ) denote the number of times subgraph (H, π ) appears conditionally
on the ψ-variables. We now apply a conditional second moment method to Nt,ψ (H, π ). We
use the notation introduced in Section 4, so that every possible realization of H in the PAM
corresponds to a finite set of edges M
(u
, v
, j
), where 
 is the number of edges in H such
that vh

jh→ uh, i.e. uh is the receiving vertex, and jh is the label of the edge. For simplicity, we
denote the set M
(u
, v
, j
) by M. For ease of notation, we assume that π is the identity map
and drop the dependence on π . We prove the following results.

Lemma 5. (Bound on the conditional variance.) Consider subgraph H. Then, P-almost surely,

varψt (Nt(H))≤Eψt [Nt(H)]+
∑

Ĥ∈Ĥ
Eψt [Nt(Ĥ)],

where Ĥ denotes the set of all possible attainable subgraphs Ĥ that are obtained by merging
two copies of H such that they share at least one edge.

Lemma 5 gives a bound on the conditional variance in terms of the conditional probabilities
of observing two overlapping subgraphs H at the same time. Note that we require these copies
to overlap at least one edge, which is different than requiring that they are disjoint (they can
share one or more vertices but no edges).

Proof of Lemma 5. We prove the bound in Lemma 5 by evaluating the conditional second
moment of Nt(H) as

Eψt [Nt(H)2]=Eψt

[ ∑
M,M′

1{M⊆E(PAt)}1{M′⊆E(PAt)}
]

=
∑
M,M′

Pψt (M⊆ E(PAt), M′ ⊆ E(PAt)),

where M and M′ are two sets of edges corresponding to two possible realizations of the
subgraph H. Note that M and M′ are not necessarily distinct. We then have to evaluate the
conditional probability of having both the sets M and M′ simultaneously present in the graph.
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As a consequence, the conditional variance in Lemma 5 can be written as∑
M 	=M′

Pψt (M⊆ E(PAt), M′ ⊆ E(PAt))− Pψt (M⊆ E(PAt))Pψt (M
′ ⊆ E(PAt)). (49)

We define

M := {(M,M′) : there exists (u, v, j) such that (u, v, j) ∈M, (u, v, j) ∈M′,
M 	=M′, (M ∪M′) defines an attainable subgraph}.

We then consider two different cases, i.e. whether (M,M′) is in M or not. If (M,M′) 	∈M then
one of the three following situations occurs.

• M ∪M′ defines a subgraph that is not attainable (for instance, M and M′ require that the
same edge is attached to different vertices).

• M ∪M′ defines a subgraph that is attainable, M and M′ are disjoint sets of labeled edges
(they are allowed to share vertices).

• M and M′ define the same attainable subgraph (so M =M′; thus labels of edges
coincide).

When M =M′, we have

Pψt (M⊆ E(PAt), M′ ⊆ E(PAt))= Pψt (M ⊆ E(PAt)),

so that the corresponding contribution in the sum in (49) is

Pψt (M⊆ E(PAt))− Pψt (M⊆ E(PAt))
2 ≤ Pψt (M⊆ E(PAt)),

and the sum over M gives the term Eψt [Nt(H)] in the statement of Lemma 5. When M 	=M′
and M ∪M′ is attainable and their sets of edges are disjoint, it follows directly from the
independence of (Uv,j)

j∈[m]
v∈[t] and (ψv)v∈[t] that

Pψt (M⊆ E(PAt), M′ ⊆ E(PAt))= Pψt (M⊆ E(PAt))Pψt (M
′ ⊆ E(PAt)).

Thus, in this situation the corresponding contribution is 0. When (M,M′) is not attainable,
the corresponding contribution is negative. When (M,M′) ∈M, we bound the corresponding

terms in (49) by Pψt

(
M ⊆ E(PAt), M′ ⊆ E(PAt)

)
, thus obtaining

varψt (Nt(H))≤Eψt [Nt(H)]+
∑

(M,M′)∈M
Pψt (M ∪M′ ⊆ E(PAt)).

We then rewrite this as

varψt (Nt(H, π ))≤Eψt [Nt(H)]+
∑

Ĥ∈Ĥ
Eψt [Nt(Ĥ)],

which proves the lemma. �
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7.2. Criterion for conditional convergence

We now prove Proposition 1 using Lemma 5 and Lemma 7.

Proof of Proposition 1. It is sufficient to show that, for every fixed ε > 0,

P(|Nt,ψ (H, π )−Et[Nt(H, π )]> εE[Nt(H, π )])= o(1).

We now apply Lemma 5, which yields

P(|Nt,ψ (H, π )−Eψt [Nt(H, π )]> εE[Nt(H, π )])

≤ 1

ε2E[Nt(H, π )]2
E[varψt (Nt(H, π ))]

≤ E[Eψt [Nt(H, π )]+∑Ĥ∈Ĥ Eψt [Nt(Ĥ)]]

ε2E[Nt(H, π )]2

= E[Nt(H, π )]+E[Nt(Ĥ)]

ε2E[Nt(H, π )]2

= o(1). �

To show how Proposition 1 may be applied to investigate the concentration properties
of subgraphs, we consider triangles. Theorem 2 identifies the expected number of triangles,
and by Theorem 1 we can show that E[2

t ]=�(E[t]2), so we are not able to apply the
second moment method to t. Figure 6 suggests that t/E[t] converges to a limit that is not
deterministic, i.e. in (7) the limiting X is a random variable. However, we can prove that t is
conditionally concentrated, as stated in Corollary 2. The proof of Corollary 2 follows directly
from Proposition 1, the fact that E[t]=�(t(3−τ )/(τ−1) log (t)) as given by Theorem 2, and
Figure 5, which contains the information on the subgraphs consisting of two triangles sharing
one or two edges.

7.3. Nonconcentrated subgraphs

We now show that, for most ψ-sequences, the other direction in Proposition 1 also holds.
That is, if there exists a subgraph composed of two merged copies of H such that the condition
in Proposition 1 does not hold then, for mostψ-sequences, H is not conditionally concentrated.

Proposition 2. Consider a subgraph (H, π ) such that E[Nt(H, π )]→∞ as t→∞. Suppose
that there exists a subgraph Ĥ, composed of two distinct copies of (H, π ) with at least one edge
in common such that E[Nt(Ĥ)]/E[Nt(H, π )] � 0 as t→∞. Then, for any ε > 0, there exists
η > 0 such that

P

(
varψt (Nt(H, π ))

E[Nt(H, π )]2
>η

)
≥ 1− ε.

To prove Proposition 2, we need a preliminary result on the maximum value of ψ , the
maximal intensity in the Pólya urn graph.

Lemma 6. For every ε > 0, there exists K =K(ε) ∈N such that

P

( ⋂
k≥K

{ψk ≤ (log k)2

(2m+ δ)k }
)
≥ 1− ε.
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Lemma 6 is a part of a more general coupling result between (ψk)k∈N and a sequence of
independent and identically distributed gamma random variables. We refer the reader to [3,
Lemma 3.2] and [27, Lemma 4.10] for more detail. We now state the lemma we need to prove
Proposition 2.

Lemma 7. (Maximal intensity.) For every ε > 0, there exists ω=ω(ε) ∈ (0, 1) such that, for
every t ∈N,

P

(
max

i∈2,...,t
ψi <ω

)
≥ 1− ε.

Proof. Fix ε > 0, and consider K(ε/2) as given by Lemma 6. For every ω ∈ (0, 1), we can
write

P

(
max

i∈2,...,t
ψi <ω

)
= P

(
max

i∈2,...,K
ψi <ω

)
P

(
max

i∈[t]\[K]
ψi <ω

)
, (50)

where we used the independence of ψ2, . . . , ψt. If t>K, the second term on the right-hand
side of (50) is well defined; otherwise, we have only the first term. Define

ω1 =
⎧⎨⎩

(log K)2

(2m+ δ)K if t>K,

0 if t≤K.

Note that, since the function k �→ (log k)2/(2m+ δ)k is decreasing, it follows that

P

(
max

i∈[t]\[K]
ψi <ω1

)
≥ 1− 1

2ε. (51)

Define the random variable XK =maxi∈2,...,K ψi, and denote its distribution function by FK and
the inverse of its distribution function by F−1

K . Consider ω2 = F−1
K (1− ε/2), which implies that

P

(
max
i∈[K]

ψi <ω2

)
= 1− 1

2ε. (52)

Consider then ω=max{ω1, ω2}. Using (51) and (52) with ω in (50), it follows that

P

(
max

i∈2,...,K
ψi <ω

)
P

(
max

i∈[t]\[K]
ψi <ω

)
≥ (1− 1

2ε
)2 ≥ 1− ε,

which completes the proof. �
Proof of Proposition 2. We use the expression of the conditional variance of (49). We first

study the term in the conditional variance corresponding to Ĥ. Let M̃ denote the set of labeled
edges M,M′ that together form subgraph Ĥ. Let the edges that M and M′ share be denoted by
Ms. Furthermore, let M̃1 denote the set of labeled edges M,M′ that together form subgraph Ĥ
that do not use vertex 1. We can then write this term as∑

M,M′∈M̃
Pψt (M ∪M′ ⊆ E(PAt))(1− Pψt (Ms ⊆ E(PAt)))

≥
∑

M,M′∈M̃1

Pψt (M ∪M′ ⊆ E(PAt))(1−ψmax)

= (1−ψmax)Eψt [Nt(Ĥ)],
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where the inequality uses (15), and ψmax =maxi∈2,...,t ψi. Note that here we excluded vertex
1 from the number of subgraphs with negligible error. By Lemma 7, there exists ω such that,
with probability at least 1− ε, ψmax <ω< 1.

By the assumption on Ĥ, E[Nt(Ĥ)]≥ C̃E[Nt(H, π )]2 for some C̃> 0. We use the fact that
Eψt [Nt(Ĥ)]=OP(E[Nt(Ĥ)]). Thus, for sufficiently large t, we can bound the contribution from
subgraph Ĥ to the conditional variance from below with probability at least 1− ε by

∑
M,M′∈M̃

Pψt (M ∪M′ ⊆ E(PAt))(1− Pψt (Ms ⊆ E(PAt)))≥CEψt [Nt(H, π )]2

for some C> 0.
Note that the only terms that have a negative contribution to (49) are the terms where

M ∪M′ is a nonattainable subgraph. In that situation, Pψt (M ⊆ E(PAt), M′ ⊆ E(PAt))= 0.
Furthermore, the sum over Pψt (M⊆ E(PAt))Pψt (M

′ ⊆ E(PAt)≤Eψt [Nt(H, π )]2/n2, since the
two subgraphs share at least two vertices. Therefore, the negative terms in the conditional
variance scale as most as Eψt [Nt(H, π )]/n2. We therefore find that, with probability at least
1− ε,

varψt (Nt(H, π ))≥ ηEψt [Nt(H, π )]2

for some η > 0, which proves the proposition. �

8. Discussion

In this paper, we investigated the expected number of times a graph H appears as a subgraph
of a PAM for any degree exponent τ . We found the scaling of the expected number of such
subgraphs in terms of the graph size t and the degree exponent τ by defining an optimization
problem that finds the optimal structure of the subgraph in terms of the ages of the vertices that
form subgraph H and by using the interpretation of the PAM as a Pólya urn graph.

We derived the asymptotic scaling of the number of subgraphs. For the triangle subgraph,
we obtained more precise asymptotics. It would be interesting to obtain precise asymptotics
of the expected number of other types of subgraphs as well. In particular, this is necessary
to compute the variance of the number of subgraphs, which may allow us to derive laws of
large numbers for the number of subgraphs. We showed that different subgraphs may have
significantly different concentration properties. Therefore, identifying the distribution of the
number of rescaled subgraphs for any type of subgraph remains a challenging open problem.

Another interesting extension would be to investigate whether our result still holds for other
types of PAMs, for example, models that allow for self-loops, or models that include extra
triangles.

We further proved results for the number of subgraphs of fixed size k, while the graph size
tends to infinity. It would also be interesting to let the subgraph size grow with the graph size,
for example, by counting the number of cycles of a certain length that grows in the graph size.

Finally, we investigated the number of times H appears as a subgraph of a PAM. It is also
possible to count the number of times H appears as an induced subgraph instead, forbidding
edges that are not present in H to be present in the larger graph. It would be interesting to
see whether the optimal subgraph structure is different from the optimal induced subgraph
structure.
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