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We consider a dynamical one-dimensional nonlinear von K¶arm¶an model depending on
one parameter " > 0 and study its weak limit as " ! 0. We analyse various boundary
conditions and prove that the nature of the limit system is very sensitive to them.
We prove that, depending on the type of boundary condition we consider, the
nonlinearity of Timoshenko’ s model may vanish.

1. Introduction

A widely accepted dynamical model describing large de®ections of thin plates is the
von K´arm´an system of equations. There is a large literature on this model specially
in the last ten years or so, when several authors considered problems of existence,
uniqueness, asymptotic behaviour in time (when some damping e¬ect is considered)
as well as some other important properties (see [2,4,7] and the references therein).

In a recent work, Lagnese and Leugering [5] considered a one-dimensional version
of the von K´arm´an system describing the planar motion of a uniform prismatic beam
of length L. More precisely, in [5] the following system was considered:

vtt [vx + 1
2
w2

x]x = 0;

wtt + wxxxx hwxxtt [wx(vx + 1
2 w2

x)]x = 0;

)

(1.1)

where 0 < x < L and t > 0. In (1.1), subscripts mean partial derivatives and
h > 0 is a parameter related to the rotational inertia of the beam. The quantities
v = v(x; t) and w = w(x; t) represent, respectively, the longitudinal and transversal
displacement of the point x at time t. In [5], suitable dissipative boundary conditions
at x = 0, x = L and initial conditions at t = 0 were given and the stabilization
problem was studied.

On the other hand, when we consider a uniform beam of length L and study the
transverse de®ections (represented by u = u(x; t)) of its centreline at the point x
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at time t, then the following model can be deduced (Timoshenko’s equation):

utt + uxxxx h uxxtt
1

2L

³Z L

0

u2
x dx

´
uxx = 0 (1.2)

(see [1,11] and the references therein).
Evidently, since both models (1.1) and (1.2) describe approximately the same

phenomenon, there should be certain `proximity’ between (1.1) and the solution
u = u(x; t) of (1.2). This paper is devoted to the analysis of the convergence of (1.1)
towards (1.2) or its variations when an appropriate parameter tends to zero. To be
more precise, we need to recall brie®y our previous work [8].

In [8] we considered the following problem. Let " > 0 and v = v", w = w" be
solutions of the problem

"vtt [vx + 1
2w2

x]x = 0; (1.3)

wtt + wxxxx hwxxtt [wx(vx + 1
2w2

x)]x = 0; (1.4)

in the interval « = (0; L) and t > 0, with boundary conditions

v(0; t) = v(L; t) = 0 8 t > 0

w(0; t) = w(L; t) = wx(0; t) = wx(L; t) = 0 8 t > 0

)

(1.5)

and initial conditions

v(x; 0) = v0(x); w(x; 0) = w0(x);

vt(x; 0) = v1(x); wt(x; 0) = w1(x):

)

(1.6)

The following result was proved in [8].

Assume that (v0; v1; w0; w1) 2 H1
0 (0; L) £ L2(0; L) £ H2

0 (0; L) £ H1
0 (0; L). Then

(w"; w"
t )

" ! 0
* (u; ut)

weakly in L2(0; T ; H2
0 (0; L))£L2((0; L)£(0; T )), where u solves (1.2) with u(x; 0) =

w0(x), ut(x; 0) = w1(x) and

u(0; t) = u(L; t) = ux(0; t) = ux(L; t) = 0 8 t > 0:

Here, Hm(0; L) and Hm
0 (0; L) denote the usual Sobolev spaces.

The above result guarantees that, as the velocity of propagation of longitudinal
vibrations tends to in­ nity, solutions of (1.3){(1.4) converge weakly to the solutions
of Timoshenko’s beam model under Dirichlet boundary conditions (1.5).

In simple situations, the above result could be expected. For example, sup-
pose that v in (1.3) only depends on x, i.e. v = v(x). Then (1.3) implies that
vx + 1

2 w2
x = ² (t) for some function ² = ² (t). Integration (in x) from zero to L and

boundary conditions (1.5) give us that

1

2

Z L

0

w2
x dx = L² (t): (1.7)
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Substitution in (1.4) gives us that

wtt + wxxxx hwxxtt [wx ² (t)]x = 0;

that is,

wtt + wxxxx hwxxtt
1

2L

³Z L

0

w2
x dx

´
wxx = 0: (1.8)

In the above motivation we can see how crucial were the boundary conditions (1.5)
on v, since they can a¬ect identity (1.7). The boundary conditions play also a key
role in the rigorous proof of [8].

The main purpose of this paper is to study the general case, in which, of course,
v = v(x; t), and see how sensitive to the boundary conditions is this limit process
as " ! 0.

In this paper we consider mainly the following two types of boundary conditions
(although some other cases will be brie®y discussed at the end of the paper as well).

(I) Neumann conditions on v and clamped ends for w.

(II) Dirichlet boundary conditions on v and hinged ends for w.

Let us brie®y describe each of these cases.
In case I, we consider the problem (1.3){(1.4) with initial conditions (1.6) and

Neumann boundary conditions for v and clamped end conditions for w. Then, as
" ! 0, the weak limit problem turns out to be a linear equation. More precisely, the
nonlinearity of the problem vanishes when passing to the limit. A similar conclusion
was noticed in a paper due to Cimeti³ere et al . [3] in a quite di¬erent context (static
case and convergence with respect to a geometric parameter) for nonlinear three-
dimensional elastic straight slender rods.

In case II, we consider Dirichlet boundary conditions for v and hinged end con-
ditions for w. The limit problem turns out to be the Timoshenko equation (1.8)
in agreement with the result of [8] described above (valid in the case of Dirichlet
boundary conditions for v and clamped end conditions on w).

Let us now brie®y explain the methods we employ. Classical energy estimates
provide easily uniform (with respect to ") bounds on the solutions. The main dif-
­ culty when passing to the limit is the identi­ cation of the limit of the nonlinear
term. This is done by using ad hoc test functions which depend on the boundary
conditions on a sensitive way and that, as indicated above, may led to rather drastic
changes on the nature of the limit system.

We point out that many other important situations could be treated using the
main ideas of this paper. For example, instead of the boundary conditions (1.5) or
the ones worked out in this paper, we could also consider the following ones.

v(0; t) = vx(L; t) = 0 8 t > 0;

w(0; t) = w(L; t) = wxx(0; t) = wxx(L; t) = 0 8 t > 0;

¼
(III)

or

v(0; t) = vx(L; t) = 0 8 t > 0;

w(0; t) = w(L; t) = wx(0; t) = wx(L; t) = 0 8 t > 0:

¼
(IV)
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The results presented in this paper are an attempt to give a precise mathematical
justi­ cation (at least in the one-dimensional case) to statements usually claimed in
the engineering literature (see [10, pp. 501{506]) and known as Berger’s approxi-
mation.

Our notations in this paper are standard and can be found in the book of Lions [6].
Let us brie®y describe all sections in this paper. In all sections we will consider

the coupled system (1.3), (1.4) with initial conditions (1.6). In x 2 we study the well-
posedness of system (1.3), (1.4) for both classes of boundary conditions I and II.
In x 3 we brie®y recall from [8] the main steps to prove the (weak) convergence as
" ! 0 in the case of Dirichlet conditions on v and clamped ends for w. In x 4 we
pass to the limit in the case of boundary conditions of type I. In x 5 we analyse the
asymptotic behaviour for boundary conditions of type II. In x 6 we analyse other
boundary conditions and formulate an open problem. We end up with x 7 devoted
to present some closely related results and open problems.

2. Global well-posedness: existence and uniqueness of solutions

As we mentioned in the introduction, in this section we analyse the existence and
uniqueness of solutions of system (1.3), (1.4) with initial conditions (1.6) subject
to boundary conditions of type I and II. Let us write explicitly these boundary
conditions.

(I) Neumann conditions on v and clamped ends for w.

vx(0; t) = vx(L; t) = 0 8 t > 0;

w(0; t) = w(L; t) = wx(0; t) = wx(L; t) = 0 8 t > 0:

)

(2.1)

(II) Dirichlet conditions on v and hinged ends for w.

v(0; t) = v(L; t) = 0 8 t > 0;

w(0; t) = w(L; t) = wxx(0; t) = wxx(L; t) = 0 8 t > 0:

)

(2.2)

In order to study the well-posedness of system (1.3), (1.4), (1.6), with either one
of the above boundary conditions, we formulate the system as an abstract evolution
equation in a suitable Hilbert space.

Local (in-time) existence will be obtained using standard semigroup theory.
Global existence will be deduced as a consequence of the conservation of energy.

This section is divided in two subsections, devoted, respectively, to boundary
conditions of type I and II.

2.1. Boundary conditions of type I

We consider the problem (1.3), (1.4), (1.6), with " > 0, h > 0 and boundary
conditions (2.1). We introduce the Hilbert space

X = V £ H £ H2
0 (0; L) £ H1

0 (0; L);

where

H =

»
’ 2 L2(0; L) :

Z L

0

’ dx = 0

¼
; V = H1(0; L) \ H:
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The choice of space X is justi­ ed by the conservation law

d2

dt2

Z L

0

v dx = 0;

which is obtained by integrating (1.3) with respect to x.
The norm in X is given by

k(v; y; w; z)k2
X = kvxk2 + "kyk2 + kwxxk2 + kzk2 + hkzxk2

for any (v; y; w; z) 2 X . Here, k ¢ k denotes the norm in L2(0; L). We write our
problem in the form

DUt = AU + N(U);

U(0) = U0 2 X;

)

(2.3)

where

D =

2

664

1 0 0 0

0 " 0 0

0 0 1 0

0 0 0 (1 h(@2=@x2))

3

775 ; U =

2

664

v

y

w

z

3

775 ;

A =

2

664

0 1 0 0

@2=@x2 0 0 0

0 0 0 1

0 0 @4=@x4 0

3

775 ; U0 =

2

664

v0

v1

w0

w1

3

775

and

N(U) =

2

664

0
1
2 (w2

x)x

0

[wx(vx + 1
2w2

x)]x

3

775 :

It is easy to see that D 1A, with domain

D(D 1A) = H1 £ V £ [H3(0; L) \ H2
0 (0; L)] £ H2

0 (0; L);

where
H1 = f’ 2 H2(0; L) \ V; ’x = 0 at x = 0; Lg;

is the in­ nitesimal generator of a group of isometries in X . In fact,

hD 1AU; U iX =

Z L

0

yxvx dx +

Z L

0

vxxy dx +

Z L

0

wxxzxx dx

Z L

0

(1 h@2
x) 1@4

xwz dx h

Z L

0

@x(1 h@2
x) 1 @4

xw@xz dx = 0

for any U 2 D(D 1A).
On the other hand, given F = (f; g; j; k) 2 X, system

D 1AU = F
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admits a unique solution U 2 D(D 1A). Indeed, this system is reduced to

y = f;

(1=")@2
xv = g; vx = 0; x = 0; L;

z = j;

(1 h @2
x) 1@4

xw = k; w = wx = 0; x = 0; L:

Obviously, y = f 2 V . Moreover, the equation of v admits an unique solution
v 2 H1, since g 2 H . On the other hand, z = j 2 H2

0 (0; L) and the equation
satis­ ed by w is equivalent to

@4
xw = (1 h@2

x)k; w = wx = 0; x = 0; L;

which admits an unique solution w 2 H3 \ H2
0 (0; L), since (1 h@2

x)k 2 H 1(0; L)
because of the fact that k 2 H1

0 (0; L). Observe that here (1 h@2
x) 1 denotes the

inverse of the operator 1 h@2
x with Dirichlet boundary conditions.

This implies that, in order to show the local existence of solutions to the prob-
lem (2.3), it is enough to show that D 1N (U ) is locally Lipschitz continuous in X.
Clearly, if

U =

0
BB@

v

y

w

z

1
CCA and ~U =

0
BB@

~v

~y

~w

~z

1
CCA

belong to X, then

D 1[N(U) N ( ~U )] =

0
BB@

0

f

0

g

1
CCA ;

where

f =
1

2"
[w2

x ~w2
x]x and g =

³
1 h

@2

@x2

´ 1

[wx(vx + 1
2 w2

x) ~wx(~vx + 1
2 ~w2

x)]x:

Consequently,

kD 1[N (U ) N ( ~U )]k2
X = "kfk2

L2(0;L) + kgk2
L2(0;L) + hkgxk2

L2(0;L):

Using the embedding H1(0; L) ,! L 1 (0; L), we can easily show that

kfkL2(0;L) 6 c("; h)[1 + kUkX + k ~UkX ]kU ~UkX ; (2.4)

for some constant c("; h) > 0. Since the operator

³
1 h

@2

@x2

´ 1
@

@x

is bounded from L2(0; L) ! H1
0 (0; L), then

kgkH1(0;L) 6 ckwx(vx + 1
2 w2

x) ~wx(~vx + 1
2 ~w2

x)kL2(0;L): (2.5)
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Adding and subtracting the term (vx + 1
2
w2

x) ~wx (inside the norm in (2.5)), and
using the triangle inequality, we obtain that

kgkH1(0;L) 6 ckwx ~wxkL1 (0;L)kvx + 1
2
w2

xkL2(0;L)

+ ck ~wxkL1 (0;L)fjjvx ~vxkL2(0;L)kvx + ~vxkL1 (0;L)

+ 1
2
kwx ~wxkL1 (0;L)kwx + ~wxkL2(0;L)g: (2.6)

Again, we use the embedding H1(0; L) ,! L 1 (0; L) and deduce from (2.6) that

kgkH1(0;L) 6 c(kUkX ; k ~UkX )kU ~UkX ;

which together with (2.4) shows that D 1N (U ) is locally Lipschitz continuous in
X . In order to obtain global existence, we need an a priori estimate. In our case,
this is not di¯ cult because the total energy associated with the problem (1.3), (1.4)
is conserved. Indeed, let

E"(t) =
1

2

Z L

0

f"v2
t + [vx + 1

2w2
x]2 + w2

t + w2
xx + hw2

xtg dx: (2.7)

Then we can easily verify that the time derivative of E"(t) is given by

d

dt
E"(t) = [wtwxtt + wxtwxx wtwxxx + (vx + 1

2
w2

x)vt + wtwx(vx + 1
2
w2

x)]L0 ;

which is identically equal to zero due to the boundary conditions (2.1). Conse-
quently, the energy is conserved, i.e. we have that E"(t) = E"(0) for all t > 0.
This implies that kU (t)kX is bounded in each interval where the solution exists,
since E"(t) is equivalent to kU (t)k2

X . Therefore, the solution exists globally in time.
Uniqueness is proved in the usual way using Gronwall’s inequality. Therefore, the
following result holds.

Theorem 2.1. Let " > 0, h > 0 and (v0; v1; w0; w1) 2 X . Then problem (1.3),
(1.4), (1.6), with boundary conditions (2.1), has a (unique) global weak solutions
such that

(v"; v"
t ; w"; w"

t ) 2 C([0; 1); X)

and the total energy E"(t) given by (2.7) satis¯es

E"(t) = E"(0) for all t > 0:

Remark 2.2. Theorem 2.1 guarantees the existence and uniqueness of ­ nite-energy
solutions for initial data (v0; v1; w0; w1) 2 X . In particular, we assume that

Z L

0

v0 dx =

Z L

0

v1 dx = 0: (2.8)

This condition is not necessary to obtain a unique ­ nite-energy solution. Indeed,
as indicated above, integrating equation (1.3) with respect to x, we obtain

d2

dt2

Z L

0

v(x; t) dx = 0;
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and therefore
Z L

0

v(x; t) dx =

Z L

0

v0(x) dx + t

Z L

0

v1(x) dx: (2.9)

In view of (2.9), the unique solution of the system is easy to construct without the
compatibility conditions (2.8). We set

v =
1

L

Z L

0

v0(x) dx +
1

L

Z L

0

v1(x) dx t + ~v;

w = ~w;

where (~v; ~w) is the unique solution provided by theorem 2.1 with the initial data
(~v0; ~v1; w0; w1), where

~v0 = v0
1

L

Z L

0

v0 dx; ~v1 = v1
1

L

Z L

0

v1 dx;

which, obviously, do satisfy conditions (2.8).

2.2. Boundary conditions of type II

We now consider the system (1.3), (1.4), (1.6), with boundary conditions (2.2).
We introduce the Hilbert space

Y = H1
0 (0; L) £ L2(0; L) £ [H2 \ H1

0 (0; L)] £ H1
0 (0; L): (2.10)

The norm in Y is as follows:

k(v; y; w; z)k2
Y = kvxk2 + "kyk2 + kwxxk2 + kzk2 + hkzxk2: (2.11)

We write the problem in the form

DUt = AU + N (U );

U (0) = U0 2 Y;

where A, D are as in x 2.1 above. The domain of D 1A is now

D(D 1A) = [H2 \ H1
0 (0; L)] £ H1

0 (0; L) £ H2 £ [H2 \ H1
0 (0; L)];

where

H2 = f’ 2 H3(0; L) : ’ = ’xx = 0; x = 0; Lg:

Following the arguments of x 2.1 above it is easy to see that D 1A is the in­ nites-
imal generator of a group of isometries in Y . It is also easy to check that D 1N is
locally Lipschitz in Y . Moreover, the energy E" is also conserved in time.

As a consequence of all these facts, we deduce that the following holds.

Theorem 2.3. Let " > 0 and h > 0. Then, for any (v0; v1; w0; w1) 2 Y , prob-
lem (1.3), (1.4), (1.6), with boundary conditions (2.2), admits a unique global so-
lution (v; vt; w; wt) 2 C([0; 1); Y ).
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3. The asymptotic limit with Dirichlet boundary conditions

For the sake of completeness, we brie®y recall the main steps of the convergence
result in [8].

Let " > 0, h > 0 and consider the initial boundary-value problem (1.3), (1.4),
(1.5), (1.6), with initial conditions (v0; v1; w0; w1) belonging to the Hilbert space
X = H1

0 (0; L) £ L2(0; L) £ H2
0 (0; L) £ H1

0 (0; L). A similar discussion as the one
given in the previous section shows that the problem (1.3), (1.4), (1.5), (1.6) is
globally well posed in the space X, and the total energy E"(t) is given by

E"(t) =
1

2

Z L

0

["(v"
t )2 + [v"

x + 1
2 (w"

x)2]2 + (w"
t )2 + (w"

xx)2 + h(w"
xt)

2] dx

is constant, i.e. E"(t) = E"(0) for all t > 0. Here, fv"; w"g denote the solution-pair
of the system (1.3), (1.4), (1.5), (1.6). Thus the following sequences (in ") remain
bounded in L 1 (0; 1; L2(0; L)):

f
p

"v"
t g; fv"

x + 1
2 (w"

x)2g; fw"
t g; fw"

xtg; fw"
xxg:

Extracting subsequences (that we still denote by the index " in order to simplify
notations), we deduce that there exist ¹ (x; t), ² (x; t) and u(x; t) such that

p
"v"

t * ¹ weakly¤ inL 1 (0; 1; L2(0; L)); (3.1)

v"
x + 1

2
(w"

x)2 * ² weakly¤ in L 1 (0; 1; L2(0; L)) (3.2)

and

w" * u weakly¤ in L 1 (0; 1; H2(0; L)) \ W 1; 1 (0; 1; H1
0 (0; L)) (3.3)

as " ! 0.
Clearly, the weak convergence in (3.3) su¯ ces to pass to the limit in the linear

terms of (1.4). It remains to identify the weak limit of the nonlinear term

[w"
x(v"

x + 1
2 (w"

x)2)]x

as " ! 0.
Since E"(t) is bounded, then fw"g">0 is uniformly bounded in

L 1 (0; 1; H2
0 (0; L)) \ W 1; 1 (0; 1; H1

0 (0; L)):

Then we can use the Aubin{Lions compactness criteria to deduce that

w" ! u strongly in L 1 (0; T ; H2 ¯
0 ( « )) (3.4)

as " ! 0, for any ¯ > 0 and T < 1. Combining (3.2) with (3.4), it follows that

w"
x[v"

x + 1
2(w"

x)2] * ux ² weakly in L2((0; L) £ (0; T )) (3.5)

as " ! 0 for any T < 1.
To conclude our result, it su¯ ces to identify the weak limit ² in (3.2). Again, we

use the boundedness of E"(t) to observe that fv"
xg is bounded in L2((0; L)£(0; T )).

Consequently, we can extract a subsequence such that

v"
x * » weakly in L2((0; L) £ (0; T )) (3.6)
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as " ! 0, for some » = » (x; t). From (3.4) and (3.6), we deduce that

v"
x + 1

2
(w"

x)2 * » + 1
2
u2

x weakly in L2((0; L) £ (0; T )): (3.7)

Together with (3.2), this implies that

² = » + 1
2u2

x: (3.8)

We claim that ² is independent of x. In fact, due to (3.1), we have that

"v"
tt * 0 weakly in H 1(0; T ; L2(0; L)) (3.9)

as " ! 0. From (1.3), (3.9) and (3.7), it follows that

² x = [ » + 1
2
u2

x]x = 0;

which proves our claim. Thus ² = ² (t). Integrating identity (3.8) from x = 0 to
x = L, we get

L² (t) =

Z L

0

» dx +
1

2

Z L

0

u2
x dx =

1

2

Z L

0

u2
x dx;

because Z L

0

» dx = 0:

Indeed,
Z L

0

» dx = lim
" ! 0

Z L

0

v"
x dx = 0;

since v"(0; t) = v"(L; t) = 0 and (3.6) holds. Hence

² ux =

³
1

2L

Z L

0

u2
x dx

´
ux:

Consequently,

[w"
x(v"

x + 1
2
(w"

x)2)]x *

³
1

2L

Z L

0

u2
x dx

´
uxx weakly in L2(0; T ; H 1(0; L))

as " ! 0. The above convergences hold along suitable subsequences. However,
taking into account that the limit u has been identi­ ed as the unique solution of

utt + uxxxx huxxtt

³
1

2L

Z L

0

u2
x dx

´
uxx = 0 in « £ (0; 1); (3.10)

u(0; t) = u(L; t) = ux(0; t) = ux(L; t) = 0; t > 0; (3.11)

u(x; 0) = w0(x); ut(x; 0) = w1(x); x 2 (0; L) (3.12)

we deduce that the whole family converges as " ! 0.
We can summarize the above result as follows.
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Theorem 3.1 (see [8]). Let (v0; v1; w0; w1) 2 X , where

X = H1
0 (0; L) £ L2(0; L) £ H2

0 (0; L) £ H1
0 (0; L);

be ¯xed. Let h > 0 and consider the solution fw"; v"g of the system (1.3), (1.4),
(1.5), (1.6). Then the following convergences hold as " ! 0:

w" * u weakly in L2(0; T ; H2
0 (0; L));

v"
x *

1

2L

Z L

0

u2
x dx 1

2u2
x weakly in L2(0; L £ (0; T ))

for all T < 1.

The function u = u(x; t) satis­ es (3.10), (3.11), (3.12).

4. The asymptotic limit with Neumann boundary conditions on v" and
clamped end conditions on w"

In this section we consider " > 0 (h > 0) and analyse the asymptotic behaviour
as " ! 0 of the global solution of the problem (1.3), (1.4), with boundary condi-
tions (2.1) and initial conditions (1.6). The existence of solutions is guaranteed by
theorem 2.1.

Our main purpose now is to study the asymptotic limit of fv"; w"g as " ! 0. We
shall use the method of [8, x 3], just pointing out the extra steps needed in this case
due to the new boundary conditions.

The total energy E"(t) given by (2.7) is constant for all t > 0. Therefore, the
following sequences are bounded in L 1 (0; 1; L2(0; L)):

f
p

"v"
t g; fv"

x + 1
2
(w"

x)2g; fw"
xg; fw"

xxg and fw"
xtg:

On the other hand, in view of (2.8), it follows that v" is bounded in

L 1 (0; T ; H1(0; L))

for any ­ nite T > 0. Extracting subsequences we deduce the existence of functions
¹ (x; t), ² (x; t) and u(x; t) such that

p
"v"

t * ¹ weakly ¤ in L 1 (0; 1; L2(0; L)); (4.1)

v"
x + 1

2(w"
x) * ² weakly ¤ in L 1 (0; 1; L2(0; L)); (4.2)

w" * u weakly ¤ in L 1 (0; 1; H2
0 (0; L)) \ W 1; 1 (0; 1; H1

0 (0; L)) (4.3)

as " ! 0.
Using (4.3) we can pass to the limit in the linear terms of (1.4). It remains to

identify the limit of the nonlinear term

[w"
x(v"

x + 1
2 (w"

x)2)]x

as " ! 0. Since E"(t) is bounded, then fw"g is uniformly bounded in

L 1 (0; 1; H2
0 (0; L)) \ W 1; 1 (0; 1; H1

0 (0; L)):
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Using the classical Aubin{Lions compactness lemma, we deduce that

w" ! u strongly in L 1 (0; T ; H2 ¯
0 (0; L)) (4.4)

as " ! 0, for any ¯ > 0 and T < 1. Combining (4.2) with (4.4), we obtain that

w"
x[v"

x + 1
2
(w"

x)2] * ux ² weakly in L2((0; L) £ (0; T )): (4.5)

We want to identify ² in (4.5). Taking into account that fv"g is bounded in
L 1 (0; T ; H1(0; L)), we can extract a subsequence such that

v"
x * » weakly in L2((0; L) £ (0; T )) (4.6)

as " ! 0, for some » = » (x; t). From (4.4) and (4.6) it follows that

v"
x + 1

2(w"
x) * » + 1

2u2
x weakly in L2((0; L) £ (0; T )) (4.7)

as " ! 0. Together with (4.2), this says that

² = » + 1
2
u2

x:

In view of (4.1), we also know that

"v"
tt * 0 weakly in H 1(0; T ; L2(0; L)) (4.8)

as " ! 0. From (4.8), (1.3) and (4.7), it follows that

² x = [ » + 1
2 u2

x]x = 0;

i.e. ² = ² (t). Let us identify ² (t). We take the derivative in x of (1.3) and multiply
the result by a(x) = 1

4 L2 (x 1
2L)2. Integration (in space) from zero to L followed

by integration by parts gives us

"
d2

dt2

Z L

0

v"
xa(x) dx =

Z L

0

[v"
x + 1

2
(w"

x)2]xxa(x) dx

= 2

Z L

0

[v"
x + 1

2(w"
x)2] dx: (4.9)

Note that, when integrating by parts, no boundary terms appear since a = 0 at
x = 0, L and also because of the boundary conditions that v" and w" satisfy that
guarantee that v"

x + 1
2
jw"

xj2 = 0 at x = 0, x = L.
Letting " ! 0 in (4.9) and using (4.7) we obtain that

"
d2

dt2

Z L

0

v"
xa(x) dx * 2L² (t): (4.10)

On the other side, since a 2 L2(0; L), then

Z L

0

v"
xa(x) dx *

Z L

0

» (x)a(x) dx weakly in L2(0; T );

therefore,

"
d2

dt2

Z L

0

v"
xa(x) dx * 0 in D0(0; T )
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as " ! 0. This information, together with (4.10), implies that

2L² (t) = 0;

that is, ² (t) = 0. Consequently,

v"
x + 1

2(w"
x)2 * 0 = ² weakly in L2((0; L) £ (0; T ))

as " ! 0. Returning to (4.5), we conclude that

[w"
x(v"

x + 1
2 (w"

x)2)]x * 0 weakly in L2(0; T ; H 1(0; L))

as " ! 0.
We have identi­ ed the weak limit of v"

x as » = 1
2u2

x. However, in order to have a
complete description of the limiting behaviour of v", we have to use identity (2.8),
which provides an exact formula for the average

Z L

0

v" dx:

We have proved the following theorem.

Theorem 4.1. Let (v0; v1; w0; w1) 2 X and fw"; v"g be the (unique) global solution
of problem (1.3), (1.4), (2.1), (1.6). Then

(w"; w"
t ) * (u; ut) weakly in L2(0; T ; H2

0 (0; L)) £ L2(0; T ; H1
0 (0; L))

as " ! 0, for all T < 1, where u = u(x; t) is the solution of

utt + uxxxx h uxxtt = 0 in (0; L) £ (0; 1);

u(0; t) = u(L; t) = ux(0; t) = ux(L; t) = 0 8 t > 0;

u(x; 0) = w0(x); ut(x; 0) = w1(x); 0 < x < L:

9
>=

>;
(4.11)

Moreover,

v"
x * 1

2 u2
x weakly in L2((0; L) £ (0; T ))

as " ! 0 and
Z L

0

v" dx =

Z L

0

v0 dx + t

Z L

0

v1 dx for all " > 0:

Remark 4.2. The ­ nal result of theorem 4.1 is kind of unexpected when compared
with the result given in theorem 3.1 (see also [8]) in the case of Dirichlet boundary
conditions for v". In the present case, the limit system is completely linear.

5. The asymptotic limit: boundary conditions of type II

In this section we analyse the limiting behaviour as " ! 0 of the system (1.3), (1.4),
(1.6), with boundary conditions (2.2) of type II.

Our main result is as follows.
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Theorem 5.1. Let (v0; v1; w0; w1) 2 Y and (v"; w") be the unique global weak so-
lution of (1.3), (1.4), (1.6) and (2.2). Then

(w"; w"
t ) * (u; ut) weakly in L2(0; T ; H2 \ H1

0(0; L)) £ L2(0; T ; H1
0 (0; L)) (5.1)

as " ! 0, for all 0 < T < 1, where u is the unique weak solution of

utt + uxxxx uxxtt
1

2L

³Z L

0

u2
x dx

´
uxx = 0 in (0; L) £ (0; 1);

u(0; t) = uxx(0; t) = u(L; t) = uxx(L; t) = 0; t > 0;

u(x; 0) = w0(x); ut(x; 0) = w1(x); 0 < x < L:

9
>>>=

>>>;
(5.2)

Moreover,

v"
x *

1

2

Z L

0

u2
x dx 1

2 u2
x weakly in L2((0; L) £ (0; T )) (5.3)

as " ! 0 for all T < 1.

Remark 5.2. Note that in this case we obtain the nonlinear Timoshenko model
in the limit as in x 3 above.

Proof of theorem 5.1. The proof of theorem 5.1 is similar to that of theorem 3.1.
We give a sketch of the proof emphasizing the new developments.

By conservation of the energy we deduce that the sequences

f
p

"v"
t g; fv"

x + 1
2
jw"

xj2g; fw"
t g; fw"

xxg and fw"
txg

are bounded. In view of the boundary conditions, we deduce that

f(
p

"v"
t ; v"; w"; w"

t )g">0

is bounded in L 1 (0; 1; L2(0; L) £ H1
0 (0; L) £ [H2 \ H1

0 (0; L)] £ H1
0 (0; L)):

By extracting subsequences, we deduce that
p

" v"
t * ¹ weakly ¤ in L 1 (0; 1; L2(0; L)); (5.4)

w" * u weakly ¤ in L 1 (0; 1; H2 \ H1
0 (0; L)) \ W 1; 1 (0; 1; H1

0 (0; L));
(5.5)

v" * v weakly ¤ in L 1 (0; 1; H1
0 (0; L)): (5.6)

Consequently,

v"
x + 1

2
jw"

xj2 * vx + 1
2
juxj2 = ² weakly¤ in L 1 (0; 1; L2(0; L)) (5.7)

and
w"

x(v"
x + 1

2
jw"

xj2) * ² ux weakly¤ in L 1 (0; 1; L2(0; L)):

The limit u satis­ es the equation

utt + uxxxx uxxtt ( ² ux) x = 0 in (0; L) £ (0; 1);

u(0; t) = uxx(0; t) = u(L; t) = uxx(L; t) = 0; t > 0;

u(x; 0) = w0(x); ut(x; 0) = w1(x); 0 < x < L:

9
>=

>;
(5.8)
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Therefore, to conclude the proof of the theorem it is su¯ cient to identify the limit ² .
In view of (5.4), (5.7) and passing to the limit in equation (1.3), we deduce that

² x = 0 and therefore ² = ² (t). In order to identity ² we integrate the identity
² = vx + 1

2
juxj2 in (5.7). Taking into account that v(t) 2 H1

0 (0; L) for all t > 0, we
deduce that

L² (t) =
1

2

Z L

0

jux(x; t)j2 dx:

This concludes the proof of theorem 5.1.

6. Other boundary conditions

The techniques developed in [8] and in the present paper allow us to pass to the
limit under other boundary conditions as well. We describe here some of these cases.
At the end of the paper we discuss the case where v satis­ es Neumann boundary
conditions and we impose hinged end conditions on w. In this case, the uniform
boundedness of the sequence (v"; w") is an open problem.

6.1. Dirichlet{Neumann boundary conditions on v

Up to now we have only considered the case where v satis­ es either Dirichlet or
Neumann boundary conditions in both extremes x = 0; L. We now consider the
system (1.3), (1.4), (1.6), with boundary conditions

v(0; t) = vx(L; t) = 0; t > 0;

w(0; t) = wx(0; t) = w(L; t) = wx(L; t) = 0; t > 0:

)

(6.1)

In this case, global existence of solutions can be proved as in previous sections since,
in view of the boundary conditions (6.1), the energy E"(¢) is conserved in time.

Due to the conservation of energy, we also obtain uniform bounds on the solutions
as " ! 0. We may pass to the limit as in previous sections. As usual, the only
di¯ culty to determine u, the weak limit of w", is the identi­ cation of the limit of
the nonlinear term w"

x(v"
x + 1

2
jw"

xj2). As usual, we have

w"
x(v"

x + 1
2
jw"

xj2) * ux(vx + 1
2
juxj2)

weakly in L2((0; L) £ (0; T )) as " ! 0, and ² = vx + 1
2
juxj2 is independent of x. It

remains to identify the value of ² (t).
Proceeding as in x 4, we have

"
d2

dt2

Z L

0

v"
x a(x) dx =

Z L

0

(v"
x + 1

2
jw"

xj2)xxa(x) dx

=

Z L

0

(v"
x + 1

2
jw"

xj2)@2
xa(x) dx

+ (v"
x + 1

2
jw"

xj2)xa(x)jL0 (v"
x + 1

2
jw"

xj2)@xa(x)jL0 ; (6.2)

for any smooth function a(x).
The left-hand side of (6.2) converges to zero in D0(0; T ) as " ! 0. On the other

hand, taking a = a(x) such that

a(0) = a(L) = 0; @xa(0) = 0; (6.3)
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the right-hand side of (6.2) coincides with

Z L

0

(v"
x + 1

2
jw"

xj2)@2
xa(x) dx;

which converges to

² (t)

Z L

0

@2
xa(x) dx:

We deduce that

0 = ² (t)

Z L

0

@2
xa(x) dx = ² (t)[@xa(L) @xa(0)] = ² (t)@xa(L) (6.4)

holds for any smooth function a(x). But with @xa(L) 6= 0, we deduce that ² ² 0.
This shows that, as in x 4, the limit of the system is once again a linear beam

equation for w.

6.2. A nonlinear boundary condition

In the context of the beam equations (1.3), (1.4) it is also natural to impose
boundary conditions on the quantity vx + 1

2
jwxj2, which is related to the variation

of the length of the beam under the deformation (see [5]).
Let us consider, for instance, the boundary conditions

v(0; t) = w(0; t) = wx(0; t) = 0; t > 0; (6.5)

[vx + 1
2 w2

x](L; t) = w(L; t) = wxx(L; t) = 0; t > 0: (6.6)

With these boundary conditions, it is easy to prove the existence and uniqueness
of ­ nite-energy solutions. Moreover, the energy E"(¢) is constant in time. This
provides uniform bounds on the solutions (v"; w") which allow to pass to the limit.
The only di¯ culty is once again to identity the limit of the nonlinear term. We
have

w"
x(v"

x + 1
2
jw"

xj2) * ² ux weakly in L2((0; L) £ (0; T ))

as " ! 0, where
² = vx + 1

2
juxj2

and ² = ² (t).
Moreover,

"
d2

dt2

Z L

0

v"a(x) dx =

Z L

0

(v"
x + 1

2
jw"

xj2)xa(x) dx (6.7)

=

Z L

0

(v"
x + 1

2
jw"

xj2)@xa(x) dx; (6.8)

provided a(0) = 0. The left-hand side in (6.7) tends to zero in D0(0; T ) as " ! 0.
On other hand, the right-hand side converges to

² (t)

Z L

0

@xa(x) dx = ² (t)a(L):

Taking a(L) 6= 0, we deduce, once again, that the limit system is linear.
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6.3. An open problem

We now consider the system (1.3), (1.4), (1.6), with boundary conditions

vx = 0; x = 0; L;

w = wxx = 0; x = 0; L:

)

(6.9)

We introduce the Hilbert space

Z = H1(0; L) £ L2(0; L) £ [H2 \ H1
0 (0; L)] £ H1

0 (0; L): (6.10)

The norm in Z is

k(v; y; w; z)k2
Z = kvk2 + kvxk2 + "kyk2 + kwxxk2 + kzk2 + hkzxk2: (6.11)

We write the problem in the form

DUt = AU + N(U);

U(0) = U0 2 Z;

)

(6.12)

where A, D are as in x 2.1. The domain of D 1A is now

D(D 1A) = H3 £ H1(0; L) £ H2 £ [H2 \ H1
0 (0; L)]; (6.13)

where H2 is as in x 2.2 and H3 = fu 2 H2(0; L) : ’x = 0; x = 0; Lg.
This operator D 1A is the in­ nitesimal generator of a continuous semigroup in

Z .
On the other hand, proceeding as in x 2.1 above, it follows that D 1N is locally

Lipschitz in Z.
Therefore, we deduce the following local existence result.

Theorem 6.1. Let " > 0, h > 0. Then, for any (v0; v1; w0; w1) 2 Z the prob-
lem (1.3), (1.4), (1.6), with boundary conditions (6.9) admits a unique local weak
solution. More precisely, there exists T = T (k(v0; v1; w0; w1)kZ) > 0 such that

(v; vt; w; wt) 2 C([0; T ); Z):

Moreover, the following alternative holds. Either T = 1 or

lim
t% T

k(v(t); vt(t); w(t); wt(t))kZ = 1:

Note that theorem 6.1 does not guarantee global existence. In order to analyse
the global existence issue, let us consider the energy

E"(t) =
1

2

Z L

0

["v2
t + (vx + 1

2
jwxj2)2 + w2

t + jwxxj2 + hjwxtj2] dx:

In this case, according to boundary conditions (6.9), it follows that

dE"

dt
(t) = w2

xvtjL0 = w2
x(L; t)vt(L; t) w2

x(0; t)vt(0; t): (6.14)

Obviously, this identity does not allow to obtain global (in-time) estimates.
Therefore, our existence and uniqueness result remains to be of local nature.
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On the other hand, identity (6.14) does not allow to obtain uniform estimates
on the (local) solutions as " ! 0. Therefore, we may not pass to the limit on the
system.

But let us assume for a moment that (v"; w") remains bounded in the energy
space as " ! 0 to see what the nature of the limit system should be.

As usual, the main problem is the identi­ cation of the weak limit ² (t) of v"
x +

1
2
jw"

xj2. Going back to (1.3), we have

"
d2

dt2

Z L

0

v"
xa(x) dx =

Z L

0

(v"
x + 1

2
jw"

xj2)xx a(x) dx: (6.15)

The limit of the left-hand side of (6.15) is zero as usual. On the other hand,

Z L

0

(v"
x + 1

2
jw"

xj2)xxa(x) dx =

Z L

0

(v"
x + 1

2
jw"

xj2)@2
xa(x) ds

+ (v"
x + 1

2
jw"

xj2)xa(x)jL0 (v"
x + 1

2
jw"

xj2)@xa(x)jL0 :

(6.16)

Taking a(x) = 1
4
L2 (x 1

2
L)2 and passing to the limit on the right-hand side

of (6.16), we deduce that

0 = ² (t)

Z L

0

@2
xa(x) dx + L[jux(L; t)j2 + jux(0; t)j2]:

This implies

² (t) = 1
2 [jux(L; t)j2 + jux(0; t)j2]:

According to this fact, the limit system should be

utt + uxxxx uxxtt
1
2 [jux(0; t)j2 + jux(L; t)j2]uxx = 0: (6.17)

However, as we said above, these developments are formal, since we do not have
uniform bounds on (v"; w").

The analysis of the asymptotic limit under the boundary conditions (6.9) together
with a rigorous proof of how to obtain the limit system (6.17) is an open problem.

7. Further comments and results

In this section we describe some possible extensions of our results and also indicate
open problems on the subject.

7.1. Thermoelastic beams

System (1.3), (1.4) could be considered under the presence of thermal e¬ects. For
example, we can consider the model

"vtt [vx + 1
2
w2

x]x = 0;

wtt + wxxxx hwxxtt [wx(vx + 1
2(wx)2)]x + ¬ ³ xx = 0;

³ t ³ xx ¬ wxxt = 0
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in « £ (0; T ), « = f0 < x < Lg, with boundary conditions

vx(0; t) = vx(L; t) = ³ (0; t) = ³ (L; t) = 0 8 t > 0;

w(0; t) = w(L; t) = wx(0; t) = wx(L; t) = 0 8 t > 0;

and initial conditions

v(x; 0) = v0(x); w(x; 0) = w0(x);

vt(t; x) = v1(x); wt(x; 0) = w1(x);

³ (x; 0) = ³ 0(x):

The arguments of x 4 allow us to describe the limit of fw"; v"; ³ "g as " ! 0. The
limit (u; ³ ) of (w"; ³ ") satis­ es a linear system of equations modelling a thermoelastic
beam.

The same problem can be analysed with other boundary conditions as well.

7.2. Strong convergence

One may show that when the initial data satisfy suitable compatibility conditions,
the convergences in (for instance) theorem 4.1 hold in the strong topologies. Indeed,
by weak lower semicontinuity of the L2-norm, we have

lim inf
" ! 0

E"(t) > 1

2

Z L

0

fj¹ j2 + u2
t + u2

xx + hu2
xtg dx; (7.1)

where E"(t) is given by (2.7), u solves (4.1) and ¹ was found in (4.1). Using the
conservation of energy, we also know that

E"(t) = E"(0)
"! 0! 1

2

Z L

0

»µ
@v0

@x
+

1

2

³
@w0

@x

2́¶2

+ w2
1 +

³
@2w0

@x2

2́

+ h

³
@w1

@x

2́ ¼
dx

= E(0): (7.2)

The energy for the limit system (4.11) in theorem 4.1 is given by

F (t) =
1

2

Z L

0

[u2
t + u2

xx + hu2
xt] dx; (7.3)

and it is conserved along time, i.e. F (t) = F (0) for all t > 0. Combining (7.1)
with (7.3), we deduce that

E(0) = lim
" ! 0

E"(t) > F (t) +
1

2

Z L

0

j ¹ j2 dx = F (0) +
1

2

Z L

0

j ¹ j2 dx: (7.4)

Suppose that the initial data fw0; w1g are such that

E(0) = F (0): (7.5)

Note that (7.5) holds if and only if

@v0

@x
+

1

2

­­­­
@w0

@x

­­­­
2

= 0: (7.6)
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Then, combining (7.4), (7.5), we would have ¹ ² 0 and

lim inf
" ! 0

E"(t) = F (t) 8 0 6 t 6 T: (7.7)

As a consequence of (7.6), we deduce that

(
p

"v"
t ; v"

x + 1
2
jw"

xj2) ! (0; 0) strongly in (L2((0; L) £ (0; T )))2 (7.8)

and

(w"; w"
t ) ! (u; ut) strongly in L2(0; T ; H2

0 (0; L) £ H1
0 (0; L)) (7.9)

as " ! 0.
When the compatibility condition (7.6) does not hold, we have

E(0) > F (0)

and, more precisely,

E(0) = F (0) +
1

2

Z L

0

(@xv0 + 1
2
j@xw0j2)2 dx:

Consequently,

lim
" ! 0

E"(t) = F (t) +
1

2

Z L

0

(@xv0 + 1
2
j@xw0j2)2 dx

for all t > 0, and therefore strong convergences (7.8), (7.9) do not hold.
As a consequence of this analysis, we deduce that the convergences in theorem 4.1

hold in the corresponding strong topologies if and only if the compatibility condi-
tion (7.6) holds.

A similar discussion also works in all other cases we studied in the previous
sections.

7.3. Varying initial data

In the proof of theorems 3.1, 4.1 and 5.1, we considered the case when the initial
data (v0; v1; w0; w1) are ­ xed. The same results hold if we consider the case when
they do depend on ", provided we assume that (v"

0; v"
1 ; w"

0; w"
1) are such that the

energy E"(0) remains bounded and (w"
0; w"

t ) converge weakly to (w0; w1) in the
corresponding spaces.

7.4. Asymptotic limit of the Cauchy problem

The same problems may be analysed for the Cauchy problem on the whole line R.
When passing to the limit as " ! 0, by weak lower semicontinuity of the energy in
the limit one has vx + 1

2
jwxj2 2 L 1 (0; 1; L2(R)). But passing to the limit in (1.3),

one also gets that vx + 1
2
jwxj2 is independent of x. This immediately implies that

vx + 1
2
jwxj2 ² 0. Therefore, the weak limit u of w" in this case satis­ es the linear

equation
utt + @4

xu uxxtt = 0 in R £ (0; 1):

The same arguments apply when the spatial domain under consideration is the
half-line (0; 1).
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7.5. Two-dimensional models

Similar problems arise in two space dimensions. For instance, one may consider
the full nonlinear von K´arm´an equations or related models (see [2,4] and the ref-
erences therein) and try to show that it remains `close’ to the two-dimensional
Timoshenko’s model,

utt + ¢2u h¢utt

³Z

«

jruj2 dx dy

´
¢u = 0:

In the engineering literature, there is a formal procedure named Berger’s approxi-
mation where such proximity is claimed (see, for instance, [10, x 7.6.1]). The math-
ematical justi­ cation of this limit has been proved in [9].
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