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Understanding Thermodynamic
Singularities: Phase Transitions, Data,

and Phenomena*

Sorin Bangu†‡

According to standard (quantum) statistical mechanics, the phenomenon of a phase
transition, as described in classical thermodynamics, cannot be derived unless one
assumes that the system under study is infinite. This is naturally puzzling since real
systems are composed of a finite number of particles; consequently, a well-known
reaction to this problem was to urge that the thermodynamic definition of phase
transitions (in terms of singularities) should not be “taken seriously.” This article takes
singularities seriously and analyzes their role by using the well-known distinction be-
tween data and phenomena, in an attempt to better understand the origin of the puzzle.

1. In “Taking Thermodynamics Too Seriously,” Craig Callender (2001)
signals the “mistake” of understanding classical thermodynamics (TD)
“too literally.”1 He identifies three areas of foundational research in sta-
tistical mechanics (SM) where this problem occurs: the analyses of the
Second Law, the concept of equilibrium, and the account of a class of
physical processes called ‘phase transitions’ (PT). The present work deals
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1. The argumentative strategy used in the article under scrutiny here is, it seems to
me, the same as the one employed in Callender 1999. This latter article could have
been titled “Taking the Monotonic Behavior of Thermodynamic Entropy Too Seri-
ously.”
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with the last issue, which has received surprisingly little attention in the
recent literature.2

This article is organized as follows. I begin (in Section 2) by spelling
out Callender’s ‘mistake argument’, as I will call it. This is the argument
for the claim that the SM attempt to recover the classical TD treatment
of PT is problematic. (By ‘treatment’ I mean, as will become clear shortly,
the representation of PT in TD in terms of singularities in the thermo-
dynamic potentials.) In doing this, I focus on the issue raised by the role
of infinite idealizations (or ‘infinite models’); the presentation of this prob-
lem draws on a number of useful details provided in two earlier related
articles by Chuang Liu (1999, 2001). Against this backdrop, I argue (in
Sections 3 and 4) that while the problem noted by Callender is a genuine
puzzle for the relationship between TD and SM, it is less clear what exactly
the conceptual origin of the puzzle actually is. My main aim here, however,
is not to solve the puzzle but to better grasp its significance. More precisely,
I will be making a proposal with regard to its source: I submit that the
problem is not so much the mismatch between the mathematical for-
malisms of TD and SM but that it has a more general methodological
nature—and thus transcends these two particular theories. I approach (in
Section 5) the PT issue by drawing on Bogen and Woodward’s well-known
distinction between data and phenomena (Bogen and Woodward 1988;
Woodward 1989). This distinction was introduced while they were ana-
lyzing a series of scientific examples, one of which, interestingly enough,
was that of a phase transition.3

2. The term ‘phase transition’ refers to a physical process such as va-
porizing, melting, liquefying, or sublimating; water’s phases—ice, liquid,
and vapor—are familiar to everybody. (Perhaps less-familiar PT involve
magnetization.) What characterizes this type of behavior in a substance
is a marked and quite sudden change of its physical properties. While
there can be more than one type of phase transition, from now on I will
be discussing only the so-called first-order transitions, a category that still
encompasses many of the most interesting natural processes happening
around us.

One of the first systematic examinations of phase-change phenomena
was carried out by Andrews (1869). Subsequent attempts to explore them
with the conceptual apparatus of classical TD have been remarkably suc-
cessful, as the standard TD concepts turned out to be appropriate in

2. With one important exception, Batterman 2005a, discussed further later in this
article. See also the doctoral dissertations by Jones (2006) and Mainwood (2006).

3. Bogen and Woodward (1988, 307–308) discuss the melting point of lead, an example
from Nagel 1961, 79.
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Figure 1. Graphs are drawn for a temperature less than the critical temperature .Tc

Variables G and A are Gibbs and Helmholtz free energies, respectively. The pressure
corresponding to the singularities is not the critical pressure but the value of thePc

saturated vapor pressure. From Stanley 1971, 31.

describing these processes in a very accurate mathematical vocabulary.4

Consider, for instance, a system evolving along an isotherm, such that
the system is ‘near equilibrium’ at every state in the process (see Figure
1, taken from Stanley 1971, 31). After introducing the concept of ‘free
energy’, TD represents a (first-order) phase transition as a finite discon-
tinuity in the first derivative of the free energy.5 Graphically, the curve
depicting the Gibbs free energy G (plotted as a function of pressure P for
a constant temperature) features a point where the slope of the tangent
changes discontinuously (see Figure 1a). This point is also called a ‘sin-
gularity’, since G displays singular behavior there (its curvature is infinite).

The partition function Z plays the essential role in connecting the above
macroscopic TD representation of PT to the microscopic SM viewpoint.

4. For more details on how the conceptualization of PT has evolved, see Brush 1976,
560–564.

5. There are two kinds of free energies: the Helmholtz free energy, (whereA p U � TS
U is the internal energy of the system, T is its absolute temperature, and S is the
entropy), and the Gibbs free energy, (where H is the enthalpy of theG p H � TS
system). The terms ‘representation’ and ‘represents’ have a bewildering variety of uses
in recent work in the philosophy of science; here I use ‘represents’ as a synonym for
‘defines’ or ‘models’. I will have much more to say about how a theory represents
phenomena (in opposition to collecting a body of data) shortly.

https://doi.org/10.1086/648601 Published online by Cambridge University Press

https://doi.org/10.1086/648601


PHASE TRANSITIONS, DATA, AND PHENOMENA 491

In SM, the Helmholtz free energy A is given in terms of the partition
function Z for the canonical ensemble, as follows:

A p �k T ln Z,B

where

Z p exp (�bE ).� r

The sum is taken over all microstates having energy , and ,E b p 1/k Tr B

where is the Boltzman constant. (Quantization is implicit here; oth-kB

erwise the expression should be an integral.) Appropriate differentiations
of G or A give us all thermodynamic quantities (Reif 1965, 164, 213–216;
see Figure 1c and 1d ). Note that while A is a fundamental TD macrolevel
concept, the partition function Z is a genuine SM microlevel concept,
since Z is dependent on the number of particles N composing the system
(by definition, , where R is the ideal gas constant).k p R/NB

Now the difficulties crop up almost immediately. By following TD, SM
states that a phase transition occurs when the free energy has a singular
(i.e., nonanalytic) point. Given the above relationship between A and Z,
this entails that a phase transition can occur only when the partition
function Z has a nonanalytic point. Yet Z is analytic, since it is a finite
sum of analytic functions, and such a sum is analytic. (This is a mathe-
matical fact.) Hence, (a nonzero) Z cannot feature any singularities. So
the problem is how to show that Z has singularities while keeping it
nonzero.

A way around this difficulty was found and essentially consisted in
taking what is now called ‘the thermodynamic limit’. This amounts to
considering an idealized version of the system—a system having an infinite
number of particles N and occupying an infinite volume V, while the ratio

is fixed and finite. It turns out that, as a matter of pure mathematics,V/N
a nonanalyticity can actually be identified for such an idealized system
in equilibrium (also subject to other stability conditions). In particular,
for lattice systems (more specifically, two-dimensional Ising models), the
now infinite number of solutions z of the partition function Z ‘pack’ along
the circle and, at , the real axis is ‘pinched’. In other words,FzF p 1 T ! Tc

physicists devised a method to show that Z can harbor singularities (with-
out vanishing); moreover, even an indication where the singularity is lo-
cated is possible. Thus, SM can show that the infinitely idealized version
of the system undergoes a phase transition after all.6

6. See Liu 1999 and Emch and Liu 2002. Following Van der Waals’s, Maxwell’s, and
Gibbs’s initial breakthroughs in understanding PT in statistical-mechanical terms, the
next major advances are due, among others, to Einstein, London, Peierls, and Lev
Landau and especially to Onsager (1944), Yang (1952), Yang and Lee (1952), and Lee
and Yang (1952).
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But this achievement is problematic, since within SM the systems ex-
hibiting PT are finite. As Callender formulates it, the puzzle of the infinite
idealizations is this:

Phase transitions—as understood by statistical mechanics—can only
occur in infinite systems, yet the phenomena that we are trying to
explain clearly occur in finite systems. (2001, 549)

Given the failure of finite SM to derive PT, it is natural to conclude that
the property ‘undergoing a phase transition’ represents an excellent can-
didate for an emergent property, one that is not reducible (in a finite
model) to its alleged fundamental basis (Humphreys 1997; Liu 1999; Rue-
ger 2000).7

Callender is not impressed by this conclusion (and this is presumably
one of the “strange conclusions” [2001, 547] he thinks one draws when
understanding TD [too] literally). He urges a different take on the issue,
which would significantly weaken the support for the emergentist position.
He notes that central to the derivation of this conclusion is the assumption
that the SM definition of PT has to be the same as the TD representation
of these phenomena. It is this assumption that he presents as a “mistake.”
In other words, he claims that the TD mathematical definition of PT
should not be automatically imported into the SM mathematical frame-
work and adopted as a definition of PT there too. To do this would be
to take thermodynamics “too seriously” (2001, 550):

After all, the fact that thermodynamics treats phase transitions as
singularities does not imply that statistical mechanics must too. (2001,
550)

Callender thus protests against what he calls “a knee-jerk identification
of mathematical definitions across levels” (2001, 550).

It should be clear at this stage in the argument that the serious trouble
(the appeal to an infinite model) arises from the attempt to transfer a
mathematical representation (or definition) from one domain to another.
So before I move on, let me insert a brief remark here about the connection
between this aspect of the issue and the positions one can encounter in
the recent literature on the applicability of mathematics to physics. What

7. Here I shall use ‘reducible to’ and ‘derivable from’ interchangeably, where deriva-
bility is understood in the physicists’ sense (i.e., not mere logical deduction). There is
no need, for the purposes of this article, to delve into all the subtle distinctions between
the various versions of reductionism (e.g., Nagel 1961; Nickles 1973; Schaffner 1974;
for more recent reviews of the problems of the reduction of TD to SM, see Sklar 1993
and Batterman 2002). See Humphreys 2006 and Batterman, forthcoming, for the var-
ious types of emergence encountered in the literature.
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is interesting here is that usually this kind of transfer move has been
attended by great successes in the history of science and has led to im-
portant physical insight (see, for instance, the idea to model the equations
governing the flow of charge or heat on the hydrodynamic equations
describing the flow of fluids). Moreover, following the insight offered by
the mathematical formalism itself has led to developing and discovering
new theories (Steiner 1998, 2005) that explain physical phenomena or
even predict new physical entities.8 Generally speaking, philosophers and
physicists reflecting on these issues have thought that what is often called
‘the role of mathematics in natural science’ has been a positive one: math-
ematics used to solve problems for physicists, not create new ones.9 Yet
this episode seems to show that this enthusiasm needs to be tempered. It
shows that the reverse phenomenon is possible, as carrying the formalisms
across the board may lead to unwelcome developments.

3. One way to sum up (simplifying a bit) Callender’s position is to describe
it as a modus tollens: If SM follows the TD representation of PT, then
SM must use infinite idealizations. But real systems displaying PT are not
infinite, so the consequent should be rejected. Hence, the negation of the
antecedent is derived, and thus we are advised that SM should not follow
TD. To see the force of this position, just deny the requirement that SM
define PT as singularities (like TD). The appeal to the infinite idealization
(i.e., taking the thermodynamic limit) is no longer necessary, so the prob-
lem dissolves right away.

At this point, let me note that I am in total agreement with this argument
so far: it is premature for an SM theorist to worry that SM cannot recover
the PT as modeled in TD. (Consequently, it is premature for a philosoph-
ically inclined SM theorist to celebrate the discovery of a seemingly in-
disputable emergent phenomenon.) The correctness of this point granted,
the question I ask now is what (if anything) follows from it, especially
with regard to the TD treatment of PT. Is this treatment to be dismissed?
Is it ‘wrong’ in any of the relevant senses (i.e., grounded in unreasonable
assumptions, etc.)? Note also that just dropping this definitional/repre-
sentational requirement cannot be the end of the matter. If (quantum)
SM is meant to be the fundamental theory in this area, then one expects
it to be able to represent these familiar phenomena in its own, less prob-

8. See Steiner 1978; Colyvan 2001; Baker 2005; Leng 2005; Pincock 2007; Saatsi 2007;
Bangu 2008a, 2008b; and Batterman 2009. Field (1980) and Bueno (2005) also recognize
the heuristic, though dispensable, role of mathematics.

9. Recall that even Wigner (1960), despite being famous for the (often underestimated)
insight that mathematics is ‘unreasonably effective’ in science, talks about the effec-
tiveness of mathematics!
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lematic, way—that is, without following the TD representation, which
leads, as a matter of mathematical necessity, to taking the thermodynamic
limit. So, at this point, one might want to learn about the resources of
finite SM to deal with PT in a less problematic way.

Unfortunately, Callender is not very forthcoming about what these
resources are. And, one suspects, he cannot even be. He first voices his
hope (an “article of faith”) that “there are non-singular solutions of the
partition function describing real systems that give rise to the macroscopic
transitions called phase transitions” (2001, 550). Yet when it comes to the
justification of the claim that “physics is hardly impotent in the face of
phase transitions in finite N systems” (2001, 551), he mentions mean field
theory as the primary tool able to help us. But, as is well known, this is
not so straightforward, since all the approximation methods that Callen-
der might have in mind (mean field theory techniques included) bring
with them a host of new difficulties because they “introduce considerations
not justifiable on grounds of SM” (Liu 1999, S97).10 Even a glance at
some of the ongoing research in this area reveals that the question ‘Can
physicists get around the thermodynamic limit in the SM account of PT?’
(or, equivalently, ‘How do PT arise in “small” systems?’) is actually far
from being decided.11 For this reason, the appeal to the infinite idealization
(i.e., taking the thermodynamic limit) is for the moment essential in prov-
ing what physicists call ‘rigorous results’ about PT.12

When one goes back to Callender’s position, it is not hard to see that
his modus tollens is vulnerable to the familiar objection raised against any
reductio arguments. It is sufficient that one makes the proverbial move
and converts his modus tollens into a modus ponens; thus, by accepting
the antecedent of the conditional (the idea that the TD treatment of PT
is physically well motivated), one derives the standard conclusion—
roughly, that ‘SM is able to derive PT only in the thermodynamic limit’.
Let me stress that this conversion is not just an academic exercise; it is,
as a matter of fact, responsible for the received view among physicists.

10. More recently, Batterman (2005a, 234–235) notes that mean field theory does
employ the thermodynamic limit, so further problems may arise for Callender on this
front.

11. See some recent attempts by Gross (2001) and Casetti, Pettini, and Cohen (2003).

12. As Batterman (2005a) emphasizes, insofar as this idealization is ineliminable or
essential, it is fundamentally unlike other idealizations encountered in physics and
discussed in the philosophical literature so far (by McMullin [1985] and Laymon [1995],
among others). Its specificity consists in the fact that making the idealized system more
‘realistic’ (by restoring its finiteness) will not result in an improvement like the one that
happens, for instance, when we make the ideal pendulum model more realistic by
adding back damping terms. This is so because, as we saw, no finite SM system is able
to undergo a phase transition.
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Voicing this view, the physicist Kadanoff urges that “the existence of a
phase transition requires an infinite system. No phase transitions occur
in systems with a finite number of degrees of freedom” (2000, 238). In
most cases, however, what motivates the physicists’ relaxed attitude in
this matter is not a suspect metaphysical easiness with infinities but rather
an outright dismissal of the whole finite versus infinite business on the
basis of considerations having to do with the limits of experimental ac-
curacy. Since it is virtually impossible to point out observable differences
between the behavior of infinite systems and systems featuring a really
big number of components (of the order of 1023 or larger), the philoso-
phers’ worry (do finite systems really undergo PT?) becomes immaterial.
As the physicist Baierlein once joked, “It all works because Avogadro’s
number is closer to infinity than to ten.”13

4. We have now reached the point where the main task of this article can
be formulated. Despite the problems I gestured to above, I concede that
Callender is right to maintain that there is no good reason to require SM
follow TD; hence, the antecedent of the conditional in the (emergentist’s)
modus ponens, formulated more imperatively as ‘SM should follow TD’,
is untenable. Yet taking the rejection of this antecedent to be the final
outcome of this discussion is not entirely satisfactory. One would like to
know the deeper reason (if any) for which TD introduces singularities.

In asking for this, my intention is to sketch a way to rethink the puzzle’s
overall significance. One natural way to react to the claim that ‘SM should
not follow TD’ is to construe this assessment as implicitly highlighting a
flaw of TD, an intrinsic deficiency of it—after all, we are told not to take
it “too seriously.” I claim that while there is an important insight in this
urge, this is not the whole story. As I will try to explain in more detail
below, we should not think that the puzzle is generated by any intrinsic
flaw of TD; instead, I will argue that the singularity puzzle arises from
the fact that scientific investigation in thermal physics conforms to a more
general methodological requirement common to perhaps all modern math-
ematized theories. The key element involved in this requirement is the
distinction between data (as collected in thermal measurements) on the
one hand and their shaping into (thermal) phenomena on the other. In
what follows, I will attempt to use, in a way to be explained, Bogen and
Woodward’s important insight that our understanding of scientific enter-
prise has to take into account this distinction. The upshot of this dis-

13. Quoted in Schroeder 2000, 67. Morrison (2009) addresses the experimental issue
as well. Gelfert (2005, 724) notes that “the (relative) error of a statistical average behaves
as ,” so if , the effect of fluctuations is way below the threshold of23∼ 1/�N N ≈ 10
experimental error.
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Figure 2. After Liu 1999, S102.

cussion, however, will not be the dissolution of the puzzle (recall that this
was not my intention) but, I hope, a deeper appreciation of its overall
significance. We should be able to see why the ‘mistake’ is not trivial after
all, why it has been made, and to what extent it is perhaps unavoidable.
Now let me fill in the details needed to substantiate the above proposal.

5. When pointing out his agreement with Liu, Callender notes that “be-
cause of the fluctuations we don’t actually measure perfect singularities”
(2001, 550; my emphasis). Unpacked, Callender and Liu’s position is as
follows. The singularities of the thermodynamic functions are, strictly
speaking, not observable, or not measurable. From an SM perspective,
real systems have a finite number of degrees of freedom; hence, they are
subject to fluctuations—which, importantly, disappear when the idealized
infinite system is considered within the SM framework.14 Therefore, for
a real system, from the perspective of SM, the thermodynamic potentials
will not feature any singular points. A graph like the one shown in Figure
2, rather than the one in Figure 1d, offers a most accurate description of
the relevant physics. Thus, for a real system, from the viewpoint of SM,
“the transition is neither ‘smooth’ nor ‘singular’” (Liu 1999, S103). The
singularities are in fact posited by TD—added, as it were, to the isotherms.
These singularities are “artifacts” (Liu 1999, S104), “fictions of TD,” and
“do not exist in reality” (Liu 2001, S336). So the status of singularities

14. Landau and Binder (2005, 11) calculate the relative fluctuation of internal energy,
. The term is the Hamiltonian of the system in the mth microstateDU p H � AH S Hm m m

state, , and is the probability that the system is in microstate m. TheAH S p S P H Pm m m m m

term is of the order of . Hence, fluctuations increase as the system becomesDU 1/N
‘smaller’ and disappear in infinite systems. Sklar (2000, 66) gives some reasons why
the TD limit is so useful in SM, which are also listed by Liu (1999, S102): establishing
the equivalence of ensembles, dealing with PT, dealing with the system’s boundaries,
and eliminating fluctuations. See also Styer 2004.
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is problematic precisely because they are not observable, or not measur-
able.

To begin applying Bogen and Woodward’s terminology, we can say
that the graph in Figure 2 displays a set of data collected from experi-
ments. In it, no singularities are shown. As Liu insightfully notes, “No
experiments, no matter how finely tuned, can ever determine whether the
‘corners’ which bound PT regions are sharp or round” (2001, S328). The
relevance of this observation is supposed to be considerable: realizing that
the singularities are artifacts, or posits, would amount to no less than a
“conceptual shift” whose effect would be that “the isotherms of systems
with multiple phases coming back from the laboratories will no longer
have singularities in them” (Liu 1999, S105).

Yet, notably, the actual scientific practice (both past and present, both
TD and SM) does not quite conform to the ‘conceptual shift’ foresight.
A glance at the phase diagrams coming back from the laboratories shows
that the scientists are not particularly anxious about the precise geomet-
rical form of the reported phase diagrams. Typically, a phase diagram
will display either continuous curves or data points. In some cases the
data points are connected, but in other cases they are not, and many
phase diagrams feature only continuous curves and what looks like sharp
corners.15 While contemporary scientists realize that, strictly speaking, the
transitions are neither smooth nor sharp, they continue to talk in terms
of and to ‘see’ singularities in the phase diagrams even if, again, strictly
speaking, there are none there to be seen. Consequently, a way to make
sense of this interesting and rather strange conceptual illusion has to be
articulated. As announced, the proposal I shall develop here is that we
can better understand the role of singularities by adopting Bogen and
Woodward’s distinction between data and phenomena. While the distinc-
tion is now a classic one, it still draws philosophers’ attention.16 I will
begin by presenting a rough sketch of it.

According to Bogen and Woodward, data are constituted by experi-

15. Places to look for what is actually “coming back from the laboratories” are journals
such as Journal of Physics: Condensed Matter or the Journal of Chemical Thermody-
namics. The Journal of Chemical Physics contains Holste et al. 1987, on the phase
diagrams of pure carbon dioxide. The more popular Nature also publishes such dia-
grams; see, for instance, Poole et al. 1992. Some computational details (in terms of
the computer logistics), as well as depictions of phase diagrams featuring sharp corners,
can be found at the CRYSTAL Tutorial Project Web site, http://www.crystal.unito.it/
tutojan2004/tutorials/H_phase/H_tut.html.

16. A recent issue of Synthese, edited by P. Machamer, is devoted to this topic. For
earlier work on this topic, see Brown 1994, Psillos 2004, Suarez 2005, and Massimi
2007. For criticisms, see McAllister 1997, Glymour 2000, Schindler 2007, and Votsis
2009. Woodward (2009) responds to some of these objections.
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mental observations performed by instruments (1988, 305) and are, in
most cases, reported in quantitative form; in this particular context, they
consist of thermometer and/or manometer readings. The record of these
observations typically takes the form of a region of scattered individual
points on a graph. Yet, essentially, the stage of collecting and recording
this raw information constitutes only the starting point of scientific in-
vestigations. Bogen and Woodward stress that the role of data is to serve
as the basis for the inference of what they call ‘phenomena’ (1988, 309,
311, 313, etc.) While the specific procedures by which phenomena are
inferred from data depend on the particular area of scientific research,
they all involve statistical techniques and data analysis (1988, 311).

One important feature of the collected data is that they reflect the
particular measurement contexts. In our case, it is unavoidable that the
data points shown on the P-V diagrams include extraneous factors. They
not only contain ‘noise’ from measurement errors but also exhibit the
effect of random fluctuations occurring in the particular sample of sub-
stance. These elements are distorting insofar as they do not reflect the
stable, enduring, characteristic properties of the substance under scrutiny
but rather reflect accidental features of it (for one thing, no examined
sample is perfectly pure); additional distortions are due to the measure-
ment process itself, since it occurs at a particular time (always further
away from perfect equilibrium) and in a particular lab and is carried out
using a particular instrument, and so on. Unlike the regions of scattered
data points, phenomena are not supposed to be “idiosyncratic to specific
experimental contexts” (Bogen and Woodward 1988, 317). They are re-
producible, and this is so because they do have stable characteristics in-
variant over various experimental setups (Bogen and Woodward 1988,
317, 326; Woodward 2009).

This contrast between the stability of phenomena and the relative var-
iability of the collected data implies a difference in what I will call ‘epi-
stemic relevance’. To be sure, data do have epistemic relevance since they
constitute the basis for the inference to phenomena; their relevance, how-
ever, is limited to this inferential role. It is what the data are ‘shaped into’,
the phenomena, that possess full epistemic relevance, precisely in virtue
of their stability. This relevance is epistemic insofar as it is the reproduci-
ble, invariant, stable phenomena that are explained and predicted by our
theories (Bogen and Woodward 1988, 305–306; Woodward 2000, S163);
thus, phenomena are the object of scientific knowledge, as embodied in
systematic explanations and predictions. Yet it is important to note that
Bogen and Woodward’s use of the term ‘phenomenon’ departs from the
typical meaning one encounters in the philosophical literature. They point
out that while data are collected by making observations and measure-
ments, “phenomena for the most part cannot be observed and cannot be
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reported by observational claims” (1988, 343, 306). And, as Machamer
(2009) remarks, this meaning is different from what most authors (Duhem,
for one) take phenomena to be, namely, “observable happenings.” In the
philosophical tradition, phenomena to be ‘saved’ included observed plan-
etary positions, the rising of stars, eclipses, and so on.

The idea to use the data versus phenomena framework to illuminate
the epistemic status of singularities is prima facie promising, I believe,
since a look at the standard modern scientific practice seems to confirm
Bogen and Woodward’s view. Physicists begin by measuring various ther-
mal quantities and then record them in the form of a region of scattered
P-V data points. These records show that transitions are indeed neither
smooth nor sharp (see Figure 2). But in light of the data/phenomena
distinction, it is crucial to realize that this is true at the level of data
collection; however, we should bear in mind that phenomena constitute
the real focus of scientific interest. In practice, in both TD and SM, there
is always a further step to take after gathering the data points through
measurements. This step consists in “transform[ing] the discrete values
into mathematical functions,” as the experimental physicist Malanowski
(1988, 281) describes it. What is inferred, through various (usually com-
puterized) techniques of data fitting (polynomial fit, the method of least
squares, etc.), is “the algebraic shape of the thermodynamic functions”
(Malanowski 1988, 282). Insofar as they are the result of the inferences
from data, these functions encode actual information about the thermal
processes of interest. More precisely, depending on what kind of ther-
modynamic properties are measured, different procedures of fitting the
data points are used.17 Essentially, then, the singularities are posited at
this second, inferential stage. They describe the behavior of these functions
(and of their derivatives). Within this framework, we can now say that
the role of a singularity is to represent a phase change phenomenon. Note
that the term ‘phenomenon’ is used here in the specific sense of Bogen
and Woodward. Thus, it is meant to stress the idea that singularities are
representative at the phenomenal/unobservable level and not at the data/
observable level.

If this framework is to be useful in analyzing PT, it is important to try
to clarify the ontological status of phenomena and how this status is

17. Malanowski offers some further details: “For the vapor-liquid equilibrium there
are two basic procedures in use, first called the ‘gamma-phi’ method and second the
‘equation of state’ method. The first one is using separate functions for description of
the activity coefficient of the liquid phase (‘gamma’) and the fugacity of the vapor
phase (‘phi’). The liquid-liquid and solid-solid equilibria are almost exclusively com-
puted with the use of ‘gamma-phi’ method” (1988, 282–283).
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connected to the introduction of the singularities.18 Phenomena are what
generate, or produce, the data we collect, so they are physically real pat-
terns of behavior ‘out there’ in the world (Bogen and Woodward 1988,
321). However, in accepting that, one might still be puzzled by the role
of the observable/unobservable distinction. One way to understand this
is to note that phenomena are not to be found at the extreme ends of the
continuum of difficulty of access by instruments. Thus, in making sense
of the claim that phenomena are “detected” (Bogen and Woodward 1988,
306), a claim that could prompt the puzzlement hinted at above, we should
pay attention to the qualification that they are “detected through the use
of data” (306). A better instrument (say, a microscope) would not even-
tually reveal a phenomenon; instead, it would provide more accurate data,
which in turn would be available to be used to reinforce our confidence
that a genuine phenomenon exists. What about the thermodynamic sin-
gularities, then? As the above characterization of their role suggests, a
singularity is not so much a feature of the physical system itself but a
feature of its mathematical representation. While phenomena are real,
data-producing patterns of physical behavior, their representations—the
mathematical singularities—can be said to be theoretical constructs. One
might thus suspect that this amounts to maintaining that singularities do
not have genuine physical meaning, especially because phenomena were
said to be ‘unobservable’.19 Yet if the functions (whose graphs are depicted
in the diagrams) describe what is going on within the thermal system
under scrutiny, then identifying a singularity of such a function still
amounts to characterizing the actual physics: singularities are connected
to the actual physics indirectly, via their role in representing (unobserv-
able) phenomena. But, one might ask, aren’t PT observable after all? It
turns out that understanding them as phenomena proves appropriate once
again, insofar as it reflects the real difficulty to answer this question. The
problem is that, on the one hand, it is unquestionable that we witness a
physical discontinuity taking place—we all see the condensation of vapors
on the walls of the tea kettle every morning; on the other hand, we can’t
point out the precise moment when the transition occurs.20 Strictly speak-
ing, then, we cannot observe the moment when the physical discontinuity
occurs. Hence, insofar as a singularity is supposed to characterize it, a
singularity does lack observational significance—while, again, this does

18. What follows is actually one way, realistically inclined, to understand this issue.
For more discussion, see Bailer-Jones 2009, Chapter 6, and Falkenburg 2009.

19. Here, I address and try to clarify the question of whether “mathematical singu-
larities” have any physical meaning, raised in Batterman 2005a.

20. See the insightful discussion of recording the exact temperature at which a sample
of lead melts in Bogen and Woodward 1988, 309.
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not preclude the singularity having physical significance. Thus, singular-
ities do not occur at the level of direct observation (the level of data) but
at the next level up, so to speak, the level of phenomena, which are inferred
from the data.21 The significance of a perfectly sharp corner cannot be
grasped at the observational, or data, level but only at the phenomenal
level. Since scientists’ interest is to “move from claims about data to claims
about phenomena” (Bogen and Woodward 1988, 314), one sees why and
how singularities do legitimately fall under their concern after all.

How does this bear on Callender and Liu’s primary worry that sin-
gularities are not observable, or not measurable, and thus that they are
not (about) data? It is immediate that within this framework this worry
lacks the kind of epistemic relevance (in the sense introduced above)
assigned to it. Despite misleading appearances (which Bogen and Wood-
ward take great pains to correct), the “claims about data”—such as Liu’s,
that the isotherms recorded on diagrams of the type in Figure 2 cannot
show, even in principle, sharp corners—are not what science (TD and SM
in particular) is usually concerned with. Essentially, a dominant feature
of scientific inquiry is its interest in phenomena, not data: “Scientific
theories are expected to provide systematic explanations of facts about
phenomena rather than facts about data” (Bogen and Woodward 1988,
322).

To sum up, it is true that no singularity (i.e., perfectly sharp corner) is
or can be found on the data-recording graphs such as that in Figure 2.
But the mere record of scattered data points is not the right place to look,
methodologically speaking, since from neither a TD perspective nor an
SM perspective will one find there what one is really interested in—the
phenomenon of a phase change. Therefore, that singularities are not mea-
surable (i.e., do not show up on graphs) is of little epistemic import. They
retain their central place in the modern treatment of PT via their (rep-
resentational) connection to PT phenomena, in both TD and SM.

So while I agree that the singularities on isotherms are posits, I em-
phasize that what really matters is the reason for introducing them. The
idea that “phase transitions are characterized as singularities in TD be-
cause there is no fluctuation in TD systems, and this is so because TD
systems are considered as of continuous matter” (Liu 1999, S102; my
emphasis) is not wrong but is somewhat misleading. The reason for in-
troducing singularities, I have argued, is scientifically (methodologically)
legitimate and transcends the TD and SM perspectives. They occupy
center stage not so much because TD, unlike SM, works with an idealized
(hence, literally false) ontology but to mark the presence of a phenomenon,

21. Woodward (2009) talks in terms of levels too, speaking of ‘upward’ inferences.
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the actual concern of scientific investigation for either of those theories.
This is why calling them ‘artifacts’, or ‘fictions’, conveys the deceptive
suggestion that the definition of PT in TD is somewhat defective and thus
should not be taken “too seriously.”

Note, finally, that the data/phenomena distinction proves to be rather
rough at this point, and we should perhaps refine it by distinguishing
further between TD phenomena and SM phenomena. This distinction
allows us to realize that, from the methodological viewpoint adopted here,
there is actually no difference between the ways TD and SM construct
their phenomena—so, before a case for the contrary view is made, I reject
the idea that we should introduce a distinction between what may be
called ‘levels of phenomena’. Both theories infer phenomena from the
same set of data points (obtained from measurements), and both need
(again, in a methodological sense) to shape them into continuous curves
that exhibit the sought stability and independence from the vagaries of
data collection techniques and thus constitute the proper object of sci-
entific study.22

6. Let me finish by stressing that I have not argued that SM should
(must) take thermodynamics seriously full stop (in the matter of PT).
Such a requirement is misguided, indeed, together with the hopes that an
unquestionable emergent phenomenon has finally been demonstrated
(though Liu seems to entertain such hopes; see Liu 1999, S92). And, in
fact, this is not surprising, as there are many other contexts where we
should not follow TD—for instance, in assuming ontological or epistemic
views of the world that are literally false (matter is not continuous but
granulate, the second law is not absolute but statistical, etc.). Moreover,
we should give full credit to the SM theorists’ efforts to account for PT
without appealing to the thermodynamic limit. After all, there is no no-
go type of theorem claiming that one who begins with a system with a
finite number of degrees of freedom and ignores the TD definition of PT
as singularities, replacing it with a new and ‘pure’ SM definition, cannot
show that PT will occur. Granted that, I emphasize that despite a number
of critical points I have raised here, my main aim in this article has been
a constructive one, namely, to open up a new way to understand the
nature of the infinite idealizations puzzle. I attempted to use Bogen and
Woodward’s distinction between data and phenomena to elucidate phys-
icists’ reasons to model such systems in terms of singularities and thus
to highlight their epistemic significance.23 On this conception, the data do

22. I thank Chuang Liu for hinting at this last distinction.

23. See Batterman 2002, 2005b and Belot 2005 for an insightful exchange on singular
behavior.
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not exhibit singularities; essentially, it is the modeling techniques (fun-
damentally, statistical data analysis) that introduce them as a way to
capture the phenomena, the true object of scientific interest.

REFERENCES

Andrews, Thomas (1869), “The Bakerian Lecture: On the Continuity of the Gaseous and
Liquid States of Matter”, Philosophical Transactions of the Royal Society of London
159: 575–590.

Bailer-Jones, Daniela (2009), Scientific Models in Philosophy of Science. Pittsburgh: Uni-
versity of Pittsburgh Press.

Baker, Alan (2005), “Are There Genuine Mathematical Explanations of Physical Phenom-
ena?”, Mind 114: 223–237.

Bangu, Sorin (2008a), “Inference to the Best Explanation and Mathematical Realism”,
Synthese 160: 13–20.

——— (2008b), “Reifying Mathematics? Prediction and Symmetry Classification”, Studies
in History and Philosophy of Modern Physics 39: 239–258.

Batterman, Robert (2002), The Devil in the Details. Oxford: Oxford University Press.
——— (2005a), “Critical Phenomena and Breaking Drops: Infinite Idealizations in Physics”,

Studies in History and Philosophy of Modern Physics 36: 225–244.
——— (2005b), “Response to Belot’s ‘Whose Devil? Which Details?’”, Philosophy of Science

72 (1): 154–163.
——— (2009), “On the Explanatory Role of Mathematics in Empirical Science”, British

Journal for the Philosophy of Science, forthcoming.
——— (forthcoming), “Emergence in Physics”, in Routledge Encyclopedia of Philosophy

Online. London: Routledge.
Belot, Gordon (2005), “Whose Devil? Which Details?”, Philosophy of Science 72 (1): 128–

153.
Bogen, Jim, and James Woodward (1988), “Saving the Phenomena”, Philosophical Review

97: 303–352.
Brown, James R. (1994), Smoke and Mirrors. London: Routledge.
Brush, Stephen (1976), “Statistical Mechanics and the Philosophy of Science: Some

Historical Notes”, in Frederick Suppe and Peter D. Asquith (eds.), PSA 1976: Pro-
ceedings of the 1976 Biennial Meeting of the Philosophy of Science Association, vol. 2.
East Lansing, MI: Philosophy of Science Association, 551–584.

Bueno, Otavio (2005), “Dirac and the Dispensability of Mathematics”, Studies in History
and Philosophy of Modern Physics 36: 465–490.

Callender, Craig (1999), “Reducing Thermodynamics to Statistical Mechanics: The Case of
Entropy”, Journal of Philosophy 96: 348–373.

——— (2001), “Taking Thermodynamics Too Seriously”, Studies in History and Philosophy
of Modern Physics 32: 539–553.

Casetti L., M. Pettini, and E. Cohen (2003), “Phase Transitions and Topology Changes in
Configuration Space”, Journal of Statistical Physics 111 (5/6): 1091–1123.

Colyvan, Mark (2001), The Indispensability of Mathematics. New York: Oxford University
Press.

Emch, Gerard, and Chuang Liu (2002), The Logic of Thermo-Statistical Physics. Berlin:
Springer.

Falkenburg, Brigitte (2009), “What Are the Phenomena of Physics?” Synthese, forthcoming.
Field, Hartry (1980), Science without Numbers. Princeton, NJ: Princeton University Press.
Gelfert, Axel (2005), “Mathematical Rigor in Physics: Putting Exact Results in Their Place”,

Philosophy of Science 72 (5): 723–738.
Glymour, Bruce (2000), “Data and Phenomena: A Distinction Reconsidered”, Erkenntnis

52: 29–37.
Gross, David (2001), Microcanonical Thermodynamics: Phase Transitions in “Small” Systems.

Singapore: World Scientific.

https://doi.org/10.1086/648601 Published online by Cambridge University Press

https://doi.org/10.1086/648601


504 SORIN BANGU

Holste, J. C., K. R. Hall, P. T. Eubank, G. Esperb, M. Q. Watson, W. Warownyc, D. M.
Bailey, J. G. Young, and M. T. Bellomy (1987), “Experimental (p, Vm, T) for Pure CO2

between 220 and 450 K”, Journal of Chemical Thermodynamics 19: 1233–1250.
Humphreys, Paul (1997), “Emergence, Not Supervenience”, Philosophy of Science 64: S334–

S345.
——— (2006), “Emergence”, in Donald Borchert (ed.), The Encyclopedia of Philosophy. 2nd

ed. New York: Macmillan.
Jones, Nicholaos (2006), Ineliminable Idealizations, Phase Transitions, and Irreversibility.

PhD Dissertation. Columbus: Ohio State University.
Kadanoff, Leo (2000), Statistical Physics. Singapore: World Scientific.
Landau, D., and K. Binder (2005), A Guide to Monte Carlo Simulations in Statistical Physics.

Cambridge: Cambridge University Press.
Laymon, Ronald (1995), “Experimentation and the Legitimacy of Idealization”, Philo-

sophical Studies 77: 353–375.
Lee, T. D., and C. N. Yang (1952), “Statistical Theory of Equations of State and Phase

Transitions. II. Lattice Gas and Ising Model”, Physical Review 87: 410–419.
Leng, Mary (2005), “Mathematical Explanation”, in C. Cellucci and D. Gillies (eds.), Math-

ematical Reasoning and Heuristics. London: King’s College Publications.
Liu, Chuang (1999), “Explaining the Emergence of Cooperative Phenomena”, Philosophy

of Science 66 (Proceedings): S92–S106.
——— (2001), “Infinite Systems in SM Explanations: Thermodynamic Limit, Renormali-

zation (Semi-) Groups, and Irreversibility”, Philosophy of Science 68 (Proceedings):
S325–S344.

Machamer, Peter (2009), “Phenomena, Data and Theories: A Special Issue of Synthese”,
Synthese, forthcoming.

Mainwood, Paul F. (2006), Is More Different? Emerging Properties in Physics. PhD Disser-
tation. Oxford: Oxford University.

Malanowski, S. (1988), “Error Analysis in Thermodynamic Measurements”, in S. Malan-
owski and A. Anderko (eds.), Thermodynamics of Fluids: Measurement and Correlation.
Singapore: World Scientific.

Massimi, Michela (2007), “Saving Unobservable Phenomena”, British Journal for the Phi-
losophy of Science 58: 235–262.

McAllister, James (1997), “Phenomena and Patterns in Data Sets”, Erkenntnis 47: 217–228.
McMullin, Ernan (1985), “Galilean Idealization”, Studies in History and Philosophy of Mod-

ern Science 16: 247–273.
Morrison, Margaret (2009), “Understanding in Physics and Biology: Encounters with In-

finity”, in H. de Regt, S. Leonelli, and K. Eigner (eds.), Scientific Understanding: Phil-
osophical Perspectives. Pittsburgh: University of Pittsburgh Press, forthcoming.

Nagel, Ernest (1961), The Structure of Science. New York: Harcourt.
Nickles, Thomas (1973), “Two Concepts of Inter-theoretic Reduction”, Journal of Philosophy

70: 181–201.
Onsager, Lars (1944), “Crystal Statistics. I. A Two-Dimensional Model with an Order-

Disorder Transition”, Physical Review 65: 117–149.
Pincock, Chris (2007), “A Role for Mathematics in the Physical Sciences”, Noûs 41 (2):
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