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In this paper, we study the fractional Dirichlet problem with the homogeneous
exterior data posed on a bounded domain with Lipschitz continuous boundary.
Under an extra assumption on the domain, slightly weaker than the exterior ball
condition, we are able to prove existence and uniqueness of solutions which are
Hölder continuous on the boundary. In proving this result, we use appropriate
barrier functions obtained by an approximation procedure based on a suitable family
of zero-th order problems. This procedure, in turn, allows us to obtain an
approximation scheme for the Dirichlet problem through an equicontinuous family of
solutions of the approximating zero-th order problems on Ω̄. Both results are
extended to an ample class of fully nonlinear operators.
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1. Introduction

Let Ω ⊂ R
N be a bounded open domain and f ∈ C(Ω̄). In this paper, we are

concerned with the study of the Dirichlet problem

(−Δ)σu = f in Ω, u = 0 in Ωc, (1.1)

where, for σ ∈ (0, 1) fixed, the fractional Laplacian (−Δ)σ is explicitly defined as

(−Δ)σu(x) = −CN,σ P.V.
∫

RN

u(x+ z) − u(x)
|z|N+2σ

dz,
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where P.V. stands for the Cauchy principal value and CN,σ > 0 is a normalizing
constant, see [7].

Our goal in this paper is the study of existence and uniqueness of (viscosity)
solutions to (1.1) which are Hölder continuous in the whole space R

N , assuming the
domain has Lipschitz regularity on the boundary together with a weak version of the
exterior ball condition. The barrier functions for proving this result are obtained by
approximating them through a family of barriers associated with non-local zero-th
order problems. These barriers, in turn, allows us to study the behaviour of the
solutions of the mentioned zero-th order problems as an approximating scheme for
the fractional Dirichlet problem. The precise statements of the results and the
hypothesis on the domain will be made rigorous below.

This type of problem has been addressed in several frameworks in the last decade.
In the PDE setting, the fractional operator has an energy associated with fractional
Sobolev spaces, and well-posedness in the weak formulation is possible to get under
essentially no regularity on the boundary of the domain, see for example the work
of Bellido and Mora–Corral [3], of Felsinger, Kassmann and Voigt [10] and refer-
ences therein. However, the functional formulation lacks on information about the
continuity of the solution (as a function in the whole space) at this level of gener-
ality. We also remark that this variational formulation can be carried out for f in
a weaker functional space, see the work by Ros–Oton and Serra [14], and that an
ad-hoc formulation allows to treat semi-linear problems [16], and nonlocal versions
of the p-Laplacian [6].

In [1], Barles, Chasseigne and Imbert prove the well-posedness in the viscosity
sense for (1.1), as a particular case of a large variety of integro-differential elliptic
problems, in the case ∂Ω is of class C2 and, under the same assumptions, the
equivalence among weak and viscosity formulation is obtained by Servadei and
Valdinoci [15]. In [14], this equivalence it obtained in the case of Lipschitz boundary
regularity and the exterior ball condition. In an early result [9], the authors of this
paper prove the continuous well-posedness of (1.1) in the viscosity sense when the
boundary of the domain is of class C1 and it satisfies the exterior ball condition.
In this work, these two conditions are weakened in the sense of the following two
definitions.

First, we have the Lipschitz regularity of the boundary of the domain Ω or epi-
Lipschitz property of Ω, described through the following

Definition 1.1. We say that Ω has uniform Lipschitz boundary (or it is uniformly
epi-Lipschitz) if there exist constants Λ0, r0 > 0 such that for each point x ∈ ∂Ω
there exists a Lipschitz function φ : B′

r0
⊂ R

N−1 → R with

|φ(x′) − φ(y′)| � Λ0|x′ − y′| for all x′, y′ ∈ B′
r0

such that, up to a rotation and translation, Br0 ∩ Ω̄ = Br0 ∩ Epi(φ). Here Epi
denotes the epigraph of a function and Br0 ⊂ R

N is the ball centred at 0 and with
radius r0.

This is basically the definition of an epi-Lipschitz set given by Clarke in [5],
but where we have stressed on the uniformity of the Lipschitz constant. Notice
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that this definition gives us immediately that if Ω is epi-Lipschitz then Ωc is also
epi-Lipschitz.

Next, we have a relaxation of the exterior ball condition for the boundary of the
domain in the following

Definition 1.2. We say Ω satisfies the uniform exterior power condition if there
exist R > 0, c > 0 and α ∈ (1, 2] such that, for any point x̂ ∈ ∂Ω, there exists ν ∈ R

N

with |ν| = 1 satisfying

(z − x̂) · ν < c|(z − x̂)′|α for all z ∈ BR(x̂) ∩ Ω.

Here we have adopted the notation related to the orthogonal decomposition y =
y · ν + y′ for any y ∈ R

N .

In particular, it is easy to see that a domain satisfying the exterior ball condition
satisfies the exterior power condition, just taking α = 2. Now we state our first main
theorem on the existence of Hölder continuous solutions to our Dirichlet problem.

Theorem 1.3. Assume Ω is a bounded open epi-Lipschitz domain, f ∈ C(Ω̄) and
σ ∈ (0, 1). If σ ∈ [1/2, 1) assume additionally that Ω satisfies the uniform exterior
power condition with α = 2σ′, with σ < σ′ < 1. Then the nonlocal linear Dirichlet
problem (1.1) possesses a unique viscosity solution. Moreover, there exists β0 ∈
(0, σ) such that this solution is Hölder continuous with exponent β0 in all R

N .

The existence of continuous solutions for equation (1.1) under stronger assump-
tions on the regularity of the boundary has been proved, for example in [1], assuming
that the boundary is of class C2 and in [9], assuming that the boundary is of class
C1 together with the exterior ball condition when σ ∈ (1/2, 1). Further regularity
for the solution up to the boundary is obtained in [14], where assuming that the
boundary is Lipschitz continuous and it satisfies the exterior ball condition, they
proved the solution is Hölder continuous of order σ. Hölder continuity of the solu-
tion in the interior of the domain is proved by Caffarelli and Silvestre in [4], see also
the work by Barles, Chasseigne and Imbert in [2] and by Silvestre in [17]. In our
theorem, we obtain Hölder regularity of the solution, merely assuming Lipschitz
continuity on the boundary of Ω when σ ∈ (0, 1/2) and additionally assuming the
exterior power condition when σ ∈ [1/2, 1).

The proof of Theorem 1.3 will be made for a more general linear operator, in
order to prepare the arguments for the proof of Theorem 1.5 for non-linear oper-
ators. It is based on the construction of barriers attaining the boundary condition
continuously and Perron’s method, from which standard viscosity comparison prin-
ciple provides the uniqueness. The main point is that these barriers are constructed
as suitable powers of the distance function, and therefore they cannot be evalu-
ated classically on the fractional Laplacian (at least in the case σ � 1/2), due to
the weak assumption on the boundary. Nevertheless, we handle this by evaluating
such barriers in the viscosity sense by an indirect approach, by ‘approximating’ the
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fractional problem (1.1) by the following family of zero-th order non-local problems

−Iε(u) = f in Ω, u = 0 in Ωc, (1.2)

where σ ∈ (0, 1) and ε > 0. The operator Iε is defined as

Iε(u, x) := CN,σ

∫
RN

[u(x+ z) − u(x)]
dz

εN+2σ + |z|N+2σ
. (1.3)

The integrability of the kernel defining Iε allows the evaluation of functions which
are merely bounded. In particular, we can evaluate it in our barriers and then we
can prove the right inequality by using a geometric estimate inspired in the work
by Ishii and Nakamura [11], using the exterior power condition of the domain Ω,
instead of the exterior ball condition. Thus, the strategy is to construct barriers for
problem (1.2) with suitable compactness properties. It is easy to see that classical
solutions, sub and super-solutions to (1.2) are at the same time viscosity solutions,
sub and super-solutions for the same problem. Since −Iε approaches (−Δ)σ as
ε→ 0, the result follows by standard stability results in the viscosity theory. As
a consequence of the estimates for the solutions on the boundary, derived from
these barriers, we can prove their Hölder regularity on the boundary following the
strategy of Ros–Oton and Serra in [14].

A further study of the approximating family of problems (1.2) gives rise to the
second part of this paper. As it is stated in [9], problem (1.2) has a unique classical
solution uε which can be found via Fixed Point arguments and in which the regu-
larity of the boundary plays no role. In the context of a domain with the boundary
of class C1 and with the exterior ball condition, it is proven in [9] that the family
{uε} is compact in C(Ω̄). Hence, a natural question here is if such a compactness
property for the family {uε} of solutions to (1.2) still holds true under the current
weaker assumptions on ∂Ω. The answer is positive and it is stated in the following

Theorem 1.4. Assume Ω is a bounded open epi-Lipschitz domain, f ∈ C(Ω̄) and
σ ∈ (0, 1). If σ ∈ [1/2, 1) assume additionally that Ω satisfies the uniform exterior
power condition with α = 2σ′, for σ′ > σ. For ε ∈ (0, 1), let uε be a solution to the
problem (1.2). Then, there is a modulus of continuity m depending only on f , such
that

|uε(x) − uε(y)| � m(|x− y|), for x, y ∈ Ω. (1.4)

The proof of Theorem 1.4 is obtained by combining the translation invariance
of Iε and the comparison principle, following the Ishii–Lions method as in the
proof of Theorem 1.1 in [9]. However, the construction of barriers to manage the
discontinuities that uε may have on ∂Ω, and the understanding of the evolution of
uε, as ε approaches zero, pose the main difficulties. They are overcome by using
a power of the distance function corrected by adding ε, similarly to the proof of
Theorem 1.3. In the case σ � 1/2, the use of the distance function poses extra
difficulties in controlling the estimates of the operator Iε evaluated on the barriers,
independent of ε.

Still the estimates are quite delicate and we need to use the co-area formula,
requiring the Implicit Function Theorem in the case of locally Lipstchitz contin-
uous functions. The point here is to prove the non-degeneracy of the generalized
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derivative of the distance function, which is not an obvious fact. In order to do this,
we need to prove a result on tangent cones associated with the Lipschitz boundary
and the distance function, see proposition 3.1. We did not find such a result in the
literature and we think it may be useful in dealing with other PDE problems where
only Lipschitz regularity is assumed on the boundary of the domain.

We further mention that our approach allows us to obtain the results stated
in theorems 1.3 and 1.4 for fully non-linear operators. Associated with our linear
operators Iε and (−Δ)σ, there is an ample class of fully nonlinear operators appear-
ing in many problems related with stochastic control and stochastic game theory,
associated with jump Lévy processes.

A class for these operators is obtained by considering a family K of functions
K : R

N \ {0} → R+ satisfying the ellipticity assumption

γ � K(z) � Γ and K(z) = K(−z), (1.5)

for all z �= 0, where γ,Γ are fixed constants satisfying 0 < γ < Γ < +∞.
Given a fixed K satisfying (1.5) and for ε � 0, we consider the following

notation

Kσ
ε (z) =

K(z)
εN+σ + |z|N+2σ

, (1.6)

and we write Kσ = Kσ
0 . If ε > 0, we denote by Iε,K the linear operator

Iε,K(u, x) :=
∫

RN

[u(x+ z) − u(x)]Kσ
ε (z)dz, (1.7)

and when ε = 0, the limit operator as

IK(u, x) = I0,K(u, x) := P.V.
∫

RN

[u(x+ z) − u(x)]Kσ(z)dz, (1.8)

each time the integral makes a sense for u.
In order to consider Isaacs type operators in our study, we assume throughout

this paper that the family K can be expressed as K = {Kαβ}α∈A,β∈B where A,B
are index sets. Thus, the corresponding Isaacs Operator is given by

Fε(u, x) = inf
α∈A

sup
β∈B

IKαβ ,ε(u, x). (1.9)

We also consider the limit operator defined as F (u) := F0(u), for a sufficiently
smooth bounded function u. The operator F so defined is uniformly elliptic in the
sense of Caffarelli and Silvestre [4]. Now we state the results given in theorems 1.3
and 1.4 for non-linear operators as follows

Theorem 1.5. Under the assumptions of theorem 1.3, the exists a unique viscosity
solution to the problem

−F (u) = f in Ω, u = 0 in Ωc, (1.10)

and this solution is Hölder continuous with exponent β̃0 > 0 in all R
N .

https://doi.org/10.1017/prm.2018.38 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.38


538 P. Felmer and E. Topp

In addition, the approximating problem

−Fε(u) = f in Ω, u = 0 in Ωc (1.11)

has a unique solution uε and the family {uε} is compact in C(Ω̄).

The proof of this result follows the same ideas presented in the proofs of Theo-
rems 1.3 and 1.4. In fact, we present the proofs of these theorems in a slightly more
general setting in order to make easier the justification of theorem 1.5. In partic-
ular, this implies that the exponent of the Hölder regularity of the solution to the
non-linear problem is the same as the exponent for the linear problem, although it
is expected that the later has ‘better’ regularity.

This paper is organized as follows: In § 2, we prove theorem 1.3. In § 3, we prove
proposition 3.1 as a crucial step for proving theorem 1.4. In § 4, we prove theorem
1.4. Finally, we provide the main lines to get theorem 1.5 in § 5.

Basic Notation: For x ∈ R
N and r > 0, we write Br(x) for the open ball of centre

x and radius r, and we simply put B(x) if r = 1 and B if in addition x = 0.
For δ > 0 we write Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}.

2. Existence, uniqueness and regularity for the linear problem

In this section, we are concerned with the proof of Theorem 1.3, though we are
going to prove a slightly more general result which is gong to be useful for the
treatment of the nonlinear version of this theorem. More specifically, our interest
is the following

Theorem 2.1. Let Ω, f satisfying the assumptions of theorem 1.3. Consider K
satisfying (1.5) and let IK as in (1.8). Then, the problem

−IK(u) = f in Ω, u = 0 in Ωc (2.1)

posseses a unique viscosity solution u ∈ Cβ0(RN ), for some β0 ∈ (0, σ).

Notice that theorem 1.3 is a corollary of the previous result by considering γ =
Γ = CN,σ in (1.5).

Then, throughout this section, we fix K satisfying (1.5) and for ε > 0, we denote
Iε = Iε,K as in (1.7), and I = IK as in (1.8), that is, we omit the dependence on
K for simplicity of the notation. For ε � 0, u a bounded function and A ⊂ R

N

measurable, we write

Iε[A](u, x) =
∫

A

[u(x+ z) − u(x)]Kσ
ε (z)dz, (2.2)

each time the integral as a sense (in the case ε = 0 we must consider PV whenever
it is necessary).

2.1. Well-posedness

The main technical result for the existence result is the following
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Proposition 2.2. Assume hypotheses of theorem 2.1 hold. For β ∈ (0, 1) consider
the function

ψ(x) = (ε+ d(x))β1Ω̄(x), (2.3)

where d = dΩ is the distance function to ∂Ω. Then, there exists �̄, c∗, β0 > 0 such
that for all β ∈ (0, β0), we have

Iε(ψ, x) � −c∗(ε+ d(x))β−2σ for all x ∈ Ω�̄.

This estimate leads us to the

Proof of Theorem 2.1 – Existence and uniqueness. Notice that for each x ∈ Ω̄, we
see that

Iε(1Ω̄, x) = −
∫

Ωc−x

K(z)dz
εN+σ + |z|N+2σ

� −γ
∫

Bc
diam(Ω)

dz
1 + |z|N+2σ

=: −C̃,

where C̃ > 0 defined above just depends on N, γ and σ > 0.
Once we have proposition 2.2 at hand, by using that minimum of supersolutions

is a supersolution in the framework of nonlocal problems, we have the existence of
constants C1, C2 > 0 just depending on C̃, �̄ and c∗ in the last proposition to get
that the function

Ψε
+(x) = C1||f ||∞ min{C2ψ(x), (ε+ �̄/4)β}1Ω̄(x), x ∈ R

N (2.4)

is a supersolution to (1.2). By linearity, a subsolution to the same problem is
obtained with Ψε

− = −Ψε
+.

At this point, we notice that Ψε
+ → Ψ0

+ uniformly on Ω̄ and the nonlocal Dirichlet
problem associated with Iε approaches (2.1) in the viscosity sense. Then, stabil-
ity results imply that Ψ0

+ is a supersolution to (2.1) attaining the boundary data
pointwise. Similarly, we can get Ψ0

− as a subsolution to the same problem and we
clearly have that Ψ0

− � Ψ0
+ on Ω̄. Hence, applying Perron’s method as it was estab-

lished in [1], we conclude the existence of a solution to (2.1). Uniqueness comes as a
consequence of standard viscosity comparison principle for sub and supersolutions
ordered on Ωc. �

In what follows, we concentrate in the details of proposition 2.2, which is carried
out by a direct computation of the integral Iε(ψ, x). To simplify the exposition, we
present the most difficult estimates through the following two lemmas below, and for
this, we require to introduce some preliminaries concerning the main assumptions
over the boundary of the domain.

We start with some properties and definitions concerning the exterior power
condition. Let x ∈ Ω and x̂ ∈ ∂Ω with d(x) = |x− x̂| (i.e., a projection to the
boundary). We claim that if ν denotes the direction of the axis of the exterior
power condition at x̂, then

ν = (x̂− x)/|x̂− x|. (2.5)

In what follows, we adopt the notation ex = (x̂− x)/|x̂− x|. We prove (2.5) by
contradiction, assuming that 〈ν, ex〉 =: a ∈ (0, 1) (the case a ∈ [−1, 0] follows the
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same lines). For simplicity, we also assume that x̂ = 0 since the general case can be
reduced from this one by translation.

Let v ∈ R
N with |v| = 1 be the unique vector in the plane formed by ex, ν and

the origin, such that 〈v, ν〉 = 0 and 〈v, ex〉 = −√
1 − a2 < 0.

Then, for t, b > 0, we consider y = t(v + bν). Notice that

〈ex, y〉 = t(−
√

1 − a2 + ba),

from which, taking b small enough in terms of a, we get that 〈ex, y〉 < 0 for all t > 0.
Then, for all t small enough, we see that y ∈ Bd(x)(x) and, therefore, we conclude
y ∈ Ω. However, notice that

〈y, ν〉 = tb and |y′| = |tv| = t,

from which, taking t small in terms of c, b and α we conclude 〈y, ν〉 > c|y′|α, which
contradicts the exterior power condition assumption.

Assume Ω, such that x = (0′, 1 + ρ) ∈ Ω, d(x) = ρ for some ρ > 0, and such that
we can chose x̂ = (0′, 1) as a projection of x to the boundary. In view of the above
discussion, the equation characterizing the exterior power condition becomes

yn = 1 − c|y′|α, for (y′, yn) ∈ R
N . (2.6)

Consider z ∈ Bρ/2(x). The line joining z and the origin crosses the surface defined
by (2.6) at the point ȳ = (ȳ′, ȳn) = λ(z)(z′, zn), where λ(z) ∈ (0, 1) satisfies

λ(z)zn = 1 − cλα(z)|z′|α. (2.7)

Notice that d(x) = (1 − λ(x))|x| and since ȳ ∈ Ωc we remark the fundamental
inequality

d(z) � |z| − |(ȳ′, ȳn)| = (1 − λ(z))|z|. (2.8)

We see that the function λ(z), implicitly defined in (2.7) is differentiable with Dλ
Hölder continuous with power α− 1.

The above discussion is used in the following result, whose aim is to control the
portion of the integral defining Iε(ψ, x) close to the origin.

Lemma 2.3. For ε > 0 and x ∈ Ω, we denote

I1(x) := Iε[Bd(x)/2](ψ, x), (2.9)

where ψ is defined in (2.3). Then, under the assumptions of theorem 2.1, there
exists �̄, C > 0 such that

I1(x) � Cβ(ε+ d(x))β−2σ for all x ∈ Ω�̄.

Proof. Let x ∈ Ω close to the boundary and x̂ ∈ ∂Ω a choice of projection. Without
loss of generality, we can assume x = (0′, 1 + d(x)) and x̂ = (0′, 1). In fact, if we
denote Rx the rotation matrix making Rxx = Rxx̂+ d(x)eN and defining Ω̃x =
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R−1
x Ω − (x̂− (0′, 1)), then (0′, 1 + d(x)) ∈ Ω̃x, its projection to ∂Ω̃x is (0′, 1) and

by the symmetry of the domain of integration and the kernel Kε, we see that

I1(x) = Iε[Bd(x)/2](ψ̃x, (0′, 1 + d(x))),

where ψ̃x(y) = (ε+ d∂Ω̃x
(y))β .

Thus, from now on we assume x = (0′, 1 + d(x)) and x̂ = (0′, 1) is a choice of
projection of x to the boundary. Using the symmetry of K and the domain of
integration, we can write

I1(x) =
1
2

∫
Bd(x)/2

[ψ(x+ z) + ψ(x− z) − 2ψ(x)]Kσ
ε (z)dz.

Then, defining

φ(z) = (ε+ (1 − λ(z))|z|)β ,

in view of (2.8), we can write

I1(x) � 1
2

∫
Bd(x)/2

[φ(x+ z) + φ(x− z) − 2φ(x)]Kσ
ε (z)dz.

From this and Fundamental Theorem of Calculus we have

I1(x) � 1
2

∫
Bd(x)/2

∫ 1

0

[∇φ(x+ tz) −∇φ(x− tz)] · z dtKσ
ε (z)dz.

Next, using (2.7), we differentiate λ to obtain

∂λ

∂zn
=

−λ
zn + cα|z′|αλα−1

; and
∂λ

∂z′
=

−cαλα|z′|α−2

zn + cα|z′|αλα−1
z′.

Notice that these derivatives are Hölder continuous with power α− 1, in particular,
they are bounded. With this computation, we can write

∇φ(z) = β(ε+ (1 − λ(z))|z|)β−1

(
(1 − λ(z))

z

|z| − ∇λ(z)|z|
)

= ξ(x)ϕ(z),

where ξ(z) and ϕ(z) satisfy, for t̃ ∈ (−1, 1) and C > 0

|ξ(x+ tz) − ξ(x− tz)| � Cβ(1 − β)(ε+ (1 − λ(x+ t̃z)|x+ t̃z|)β−2|z|
� Cβ(1 − β)(ε+ d(x+ t̃z))β−2|z|

� Cβ(1 − β)
(
ε+

1
2
d(x)

)β−2

|z| � C(ε+ d(x))β−2|z|

and

|ϕ(x+ tz) − ϕ(x− tz)| � C|z|α.
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Consequently, we have

I1(x)

� Cβ

∫
Bd(x)/2

∫ 1

0

|ξ(x+ tz) − ξ(x− tz)||ϕ(x+ tz)|

+ |ξ(x− tz)||ϕ(x+ tz) − ϕ(x− tz)|Kσ
ε (z)dtdz

� C(ε+ d(x))β−1

∫
Bd(x)/2

[(ε+ d(x))−1|z|2 + |z|α]Kσ
ε (z)dz

� C(ε+ d(x))β−1

∫
Bd(x)/2

[(ε+ d(x))−1|z|2−(n+2σ) + |z|α−(n+2σ)]dz

� C(ε+ d(x))β−2σ + C(ε+ d(x))β−1+α−2σ � C(ε+ d(x))β−2σ,

since α = 2σ′ > 2σ. Here we have chosen β < 1 small and C is a constant depending
on the data and the Hölder seminorm of the gradient of the function λ. �

Now we present some preliminaries concerning the epi-Lipschitz condition. For a
point z ∈ R

N , we write z = (z′, zN ) with z′ ∈ R
N−1 and zN ∈ R. By the Lipschitz

property assumption over ∂Ω, for all y ∈ ∂Ω, we consider φ = φy as in definition 1.1
and, eventually up to a rotation and translation, we can write φ(0′) = 0 and

(Ω − y) ∩Br0 = {(z′, zN ) ∈ Br0 : zN > φ(z′)}
∂(Ω − y) ∩Br0 = {(z′, zN ) ∈ Br0 : zN = φ(z′)}. (2.10)

The above discussion is useful in the proof of the following

Lemma 2.4. For ε > 0 and x ∈ Ω, we denote

I2(x) := Iε[B ∩ (Ωc − x)](ψ, x),

with ψ defined in (2.3). Under the assumptions of theorem 2.1, there exists �̄ > 0
just depending on Ω and c > 0 not depending on ε such that

I2(x) � −c(ε+ d(x))β−2σ, for all x ∈ Ω�̄.

Proof. Let x̂ be a projection of x to ∂Ω. Similarly, as in the proof of Lemma 2.3,
we can assume x̂ = 0. Let φ = φx̂ be the local chart associated with x̂, consider the
function Φ(z′, r) = (z′, φ(z′) + r) for z′ ∈ B′

r0
⊂ R

N−1, r ∈ (−r0, 0), and define the
set

C− = Φ(B′
r0

× (−r0, 0)) ⊂ Ωc.

Notice that Φ : Br0 × (−r0, 0) → R
N is injective and is differentiable a.e. in its

domain of definition because φ is Lipschitz continuous. Moreover, direct computa-
tion shows that |Det DΦ(z′, r)| = 1 for a.a. (z′, r). Shortening r0 if it is necessary
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(in terms of Λ0) and taking �̄ small in terms of r0, we can assume that C− ⊂ B1(x).
Then, we see that

I2(x) = −(ε+ d(x))β

∫
Ωc∩B1(x)

Kσ
ε (z − x)dz

� −(ε+ d(x))β

∫
C−
Kσ

ε (z − x)dz =: −(ε+ d(x))β Ĩ2(x).

Using the Lipschitz version of the Change of Variables Formula (see [8]), we can
write

Ĩ2(x) =
∫ 0

−r0

∫
B′

r0

Kσ
ε (Φ(z′, r) − x)dz′dr,

and since

|Φ(z′, r) − x| � |x| + |Φ(z′, r)|
= d(x) + |Φ(z′, r)|
� d(x) +

√
2(|z′| + |φ(z′)| + |r|)

� d(x) +
√

2((1 + Λ0)|z′| + |r|),
there exists a constant c > 0 depending on Λ0, γ,N and σ such that

Ĩ2(x) � c

∫ r0

0

∫
B′

r0

dz′dr
εN+2σ + |z′|N+2σ + (d(x) + r)N+2σ

,

from which, by a direct computation, we obtain

Ĩ2(x) � c(ε+ d(x))−2σ,

for some contant c > 0 not depending on ε nor d(x).
Recalling that I2(x) � −(ε+ d(x))β Ĩ2(x), we conclude the result. �

Now we are in position to provide the

Proof of Proposition 2.2. Without loss of generality, we can assume �̄ of the
previous lemmas is the same one, and let x ∈ Ω with d(x) < �̄. Recalling the
notation (2.2), we write Iε(ψ, x) =

∑3
i=0 Ii(x) with

I0(x) = Iε[Bc](ψ, x); I1(x) = Iε[Bd(x)/2](ψ, x);

I2(x) = Iε[B ∩ (Ωc − x)](ψ, x); I3(x) = Iε[B ∩ (Ω − x) \Bd(x)/2](ψ, x)

Notice that the estimates for I1 and I2 are given by lemmas 2.3 and 2.4, respectively.
It remains to estimate I0 and I3.

For I0, by the boundedness of ψ independent of ε, β when ε, β ∈ (0, 1), we can
write

I0(x) � C, (2.11)

where C > 0 depends only on Ω and N .
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It remains to estimate I3(x). Denoting D = B ∩ (Ω − x) \Bd(x)/2 for simplicity,
using the Lipschitz continuity of the distance function (with Lipschitz constant 1),
we can write

I3(x) = (ε+ d(x))β

∫
D

[(
ε+ d(x+ z)
ε+ d(x)

)β

− 1

]
Kσ

ε (z)dz

� (ε+ d(x))β

∫
D

[(
1 +

|z|
ε+ d(x)

)β

− 1

]
Kσ

ε (z)dz

� (ε+ d(x))β

∫
B\Bd(x)/2

[(
1 +

|z|
ε+ d(x)

)β

− 1

]
Kσ

ε (z)dz

and thus, there exists a constant just depending on N and Γ such that

I3(x) � C(ε+ d(x))β

∫ 1

d(x)/2

[(1 + r/(d(x) + ε))β − 1]
rN−1dr

εN+2σ + rN+2σ
.

Now, defining τ = ε/(ε+ d(x)) ∈ (0, 1) and applying the change of variables t =
r/(ε+ d(x)) in the last integral, we conclude

I3(x) � C(ε+ d(x))β−2σ

∫ +∞

(1−τ)/2

((1 + t)β − 1)tN−1dt
τN+2σ + tN+2σ

,

and from here it is possible to take β small not depending on ε nor d(x) in order
to obtain

I3(x) � c(ε+ d(x))β−2σ/2,

where c > 0 is the constant given in lemma 2.4. Joining the estimates for Ii, i =
0, 1, 2, 3, we conclude the result. �

2.2. Regularity

We start with the following interior Hölder regularity result which is basically
contained in [2], but we provide here a proof for completeness, stressing on its
dependence with respect to the data since this is going to be crucial in the extension
of the regularity up to the boundary.

Theorem 2.5. Assume K satisfies (1.5), let I = IK as in (1.8) and assume u ∈
L∞ ∩ C(RN ) is a viscosity solution to the problem

−I(u, x) = f in B2. (2.12)

Then, for all β ∈ (0,min{1, σ}) there exists C > 0 such that

[u]Cβ(B̄1/4)
� C(||f ||L∞(B2) + ||u||L∞(B1) + ||uwσ||L1(RN )),

where wσ(y) = (1 + |y|)−(N+2σ) for all y ∈ R
N .
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Proof. We start considering a smooth, bounded, even function φ̃ : R → R, with
0 < φ̃(t) < 3/2 for all t > 0, φ̃(0) = 0, increasing in [0,+∞) and such that φ̃(t) � 1
for t � 1/4.

We fix x0 ∈ B1/4, denote φ(x) := oscB1(u)φ̃(|x− x0|) and for L > 0 to be fixed,
we consider the function

Φ(x, y) = u(x) − u(y) − L|x− y|β − φ(x), x, y ∈ B̄1. (2.13)

If we prove that for L > 0 large enough not depending on x0, we get that
maxB̄2

1
Φ � 0, Hölder regularity holds. Thus, we proceed by contradiction by

assuming that there exists (x̄, ȳ) ∈ B̄2
1 such that

Φ(x̄, ȳ) = max
B̄2

1

Φ > 0,

and from this it is direct to verify that

(i) x̄ �= ȳ.

(ii) |x̄− ȳ| � (L−1oscB1(u))
1/β .

(iii) |x̄− x0| � 1/4 for all L > 0 by construction of φ. Moreover, if L �
41/βoscB1(u), then ȳ ∈ B̄3/4 using (ii).

Then, denoting h(x, y) = L|x− y|β + φ(x), we have that x̄ is a local maximum point
to

x �→ u(x) − u(ȳ) − h(x, ȳ)

in B1/4(x̄) and ȳ is a local minimum point for

y �→ u(y) − u(x̄) + h(x̄, y)

in B1/4(ȳ). Thus, the corresponding viscosity inequalities can be written for all
0 < δ < |x̄− ȳ| as

−I[Bδ](h(·, ȳ), x̄) − I[Bc
δ ](u, x̄) � f(x̄)

I[Bδ](h(x̄, ·), ȳ) − I[Bc
δ ](u, ȳ) � f(ȳ).

Now, using the radiality of the kernel, we get that

J1(δ) − J2(δ) � f(x̄) − f(ȳ), (2.14)

where, denoting ā = x̄− ȳ, we have introduced the notation

J1(δ) = 2LI[Bδ](| · |β , ā) − I[Bδ](φ, x̄),

J2(δ) =
∫

Bc
δ

[u(x̄+ z) − u(ȳ + z) − (u(x̄) − u(z̄))]Kσ(z)dz.
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Using the maximality of (x̄, ȳ), for all z ∈ B1/4, we can write

u(x̄+ z) − u(ȳ + z) − (u(x̄) − u(ȳ)) � φ(x̄+ z) − φ(x̄)

u(x̄+ z) − u(x̄) � L(|ā+ z|β − |ā|β) + φ(x̄+ z) − φ(x̄)

u(ȳ + z) − u(ȳ) � −L(|ā− z|β − |ā|β).

(2.15)

Notice that by chosing L as in (iii) above, we have that |ā| � 1/4. At this point,
we consider ρ, η ∈ (0, 1) and the set

C = {z ∈ Bρ|ā| : |〈ā, z〉| � (1 − η)|ā||z|}.

Using the first inequality of (2.15) for z ∈ B1/4 \ C, and the second and third
inequalities of (2.15) for z ∈ C, we can write

J2(δ) � LI[C \Bδ](| · |β , ā) + I[B1/4 \ (C ∪Bδ)](φ, x̄) + J2(1/4).

Recalling that φ = oscB1(u)φ̃, by the smoothness of φ̃ we see that

J2(δ) � LI[C \Bδ](| · |β , ā) + CoscB1(u) + J2(1/4),

for some universal constant C > 0.
Now, recalling that x̄, ȳ ∈ B̄1 we arrive at

J2(1/4) � C ΓoscB1(u) +
∫

Bc
1/4

[u(x̄+ z) − u(ȳ + z)]Kσ(z)dz

� C ΓoscB1(u) + CΓ
∫

RN

|u(y)|(1 + |y|)−(N+2σ)dy,

from which we deduce the existence of C > 0 just depending on N,σ and Γ such
that

J2(δ) � LI[C \Bδ](| · |β , ā) + CoscB1(u) + C||uwσ||L1(RN ).

Since it is direct to see that |J1(δ)| → 0 as δ → 0 and using the last inequality
into (2.14), we obtain that

−LI[C](| · |β , ā) � C(1 + Γ)
(
oscB1(u) + ||uwσ||L1(RN )

)
+ (f(x̄) − f(ȳ)), (2.16)

where the term in the left-hand side is understood in the principal value sense
because of the symmetry of the domain of integration defining it. Next, we
concentrate on estimating this term.
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Following the lines of [2], using the definition of C, we get that

I[C](| · |β , ā)

=
β

2

∫ 1

0

(1 − s)
∫
C
|ā+ sz|β−2

(
(β − 2)|〈ā+ sz/|ā+ sz|, z〉|2 + |z|2)Kσ(z)dz

� β

2

∫ 1

0

(1 − s)
∫
C
|ā+ sz|β−2

(
(β − 2)(1 − η − ρ)2/(1 + ρ)2 + 1

)
Kσ(z)dz,

and since β < 1, there exists ρ, η > 0 small just depending on 2 − β > 1 such that

I[C](| · |β , ā) � C(β − 1)βγ|ā|β−2

∫
C
|z|2−(N+2σ)dz,

from which we conclude that there exists c > 0 such that

I[C](| · |β , ā) � c(β − 1)βγ|ā|β−2σ.

Hence, denoting c∗ = −(β − 1)βγc > 0 and replacing this into (2.16), we arrive at

c∗L|ā|β−2σ � C(1 + Γ)
(
oscB1(u) + ||uwσ||L1(RN )

)
+ oscB2(f).

From this inequality, we arrive at a contradiction after taking

L = C̄(oscB1(u) + ||uwσ||L1(RN ) + oscB2(f))

with C large in terms of C, c∗, β, σ, γ,Γ. �

Now we are in a position to provide the

Proof of Theorem 1.3 – Regularity. Interior regularity is a direct consequence of
theorem 2.5. For the boundary regularity, we follow closely the steps of [14]. We
consider x0 ∈ Ω close enough to the boundary and denote r = d(x0)/2.

We consider the scaled function ũ(y) = u(x0 + ry), y ∈ R
N . By the barriers

applied in the existence proof, we can see that

||ũ||L∞(B2) � Crβ0 ,

with β0 < min{1, σ} given in proposition 2.2. Moreover, using this and the L∞

bounds for u obtained in the existence proof, we see that

|ũ(y)| � Crβ0(1 + |y|)β0 , for all y ∈ R
N ,

where C > 0 depends on ||f ||∞ and diam(Ω).
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Now, for K as in (1.5), we denote Kr(z) = K(rz), z ∈ R
N , which still satis-

fies (1.5), and the nonlocal operator

Ĩ(φ, x) = P.V.
∫

RN

[φ(x+ z) − φ(x)]Kσ
r (z)dz.

A direct computation implies that ũ solves

−Ĩ(ũ, y) = r2σf(x0 + ry), y ∈ B2,

for which the interior regularity estimates given by theorem 2.5 apply. Then, we
get that

[ũ]Cβ (B̄1/4) � C
(
rβ0 ||uwσ−β0 ||L1(RN ) + r2σ||f ||L∞(B1) + Crβ0

)
� C̄rβ0 .

with C̄ > 0 just depending on the data. Then, using the homogeneity of the Hölder
seminorm, we see that

[u]Cβ(Br/4(x0)) = r−β [ũ]Cβ(B1/4),

from which we get uniformly bounded estimates for [u]Cβ(Br/4(x0)) with respect to
x0 ∈ Ω close to the boundary when β � β0. From this point, we follow the lines of
the proof of Proposition 1.1. of [14] to get the Hölder regularity up to the boundary
(with exponent β0). The proof is complete. �

3. Preliminaries for theorem 1.4: Non-degeneracy of the generalized
derivative of the distance function

As we mentioned in the introduction, the compactness result for the linear non-
local problem (1.2) given by theorem 1.4 is a consequence of the construction of
appropriate barriers to control the modulus of continuity of the solution to (1.2)
on Ω̄ which is independent of ε ∈ (0, 1). As it can be seen in the next section, these
barriers use in a significant way the distance function, and therefore, we require a
careful analysis of the behaviour of this function near the boundary.

Thus, the purpose of this section is to provide a significant property of
the distance function, coming from the Lipschitz assumption on the boundary
of the domain, and which is crucial to construct the mentioned barriers. See
proposition 3.1 bellow.

We start with some definitions, referring to the book of F.H. Clarke [5]. For more
insights on this topic, see also [12,13]. For a Lipschitz function f : A ⊂ R

N → R

(A open) and x ∈ A, we define the generalized gradient of f at x as

∂f(x) = co{ lim
k→∞

Df(xk) : xk → x, f is differentiable at xk}, (3.1)

where co denotes the convex hull of a set. For a closed set C ∈ R
N , we denote by

δC the usual distance function to C

δC(x) = inf
c∈C

||x− c||, x ∈ R
N ,
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and we also consider the signed distance function (which is nonnegative in C)
defined as

dC(x) = δCc(x) − δC(x). (3.2)

Proposition 3.1. Let Ω ⊂ R
N be an open set such that Ω̄ is epi-Lipschitz in the

sense of definition 1.1, and let d = dΩ : R
N → R the signed distance function rela-

vive to Ω̄. Then, there exists a > 0 such that for each x ∈ ∂Ω there exists a rotation
matrix R = Rx satisfying

vN > a for all v = (v′, vN ) ∈ R−1∂d(x).

The main point here is the uniformity of the constant a, which is a consequence
of the assumed uniformity of the Lipschitz bounds of the local parametrizations of
∂Ω given by definition 1.1.

We require further definitions and previously known results in the theory of
nonsmooth analysis to prove this proposition. We start with the following

Definition 3.2 (Tangent Cone). Let C ⊂ R
N a closed set and x ∈ C. We say that v

is in the tangent cone to C at x, denoted by TC(x), if for each sequence xk → x with
xk ∈ C and each τk ↘ 0, there exists a sequence vk → v such that xk + τkvk ∈ C
for all k large enough.

It is known that TC(x) is a closed convex cone containing 0. We notice that the
definition given above is not exactly the definition given by Clarke in [5], but it is
equivalent to it in virtue of theorem 2.4.5 in [5].

The following is the main technical result of this section.

Lemma 3.3. Let Ω ⊂ R
N be an epi-Lipschitz domain, and x ∈ ∂Ω. Then

TΩ̄(x) = −TΩc(x).

Proof. Up to a translation, we may assume that x = 0 and up to a rotation, an
∂Ω−neigbourhood of x can be seen as the graph of a Lipschitz function φ : Br0(0)′ ⊂
R

N−1 → R with Lipschitz constant Λ0 > 0.
It is sufficient to prove that

TΩ̄(x) ⊆ −TΩc(x), (3.3)

since the arguments below are local and then the boundedness of ∂Ω does not play
any role. In fact, if we denote by O = int(Ωc), then the last inclusion leads us to

TŌ(x) ⊆ −TOc(x),

which implies TΩc(x) ⊆ −TΩ̄(x), and subsequently the reverse inclusion in (3.3).
We proceed by considering v ∈ (TΩ̄(x))c and prove that v ∈ (−TΩc(x))c. Since the

complementary of a cone is also as cone, then it is sufficient to prove the property
by assuming that ||v|| = 1.
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By definition 3.2, v ∈ (TΩ̄(x))c implies the existence of sequences xk → x with
xk ∈ Ω̄ and τk ↘ 0 such that, for all vk → v, we have

xk + τkvk ∈ (Ω̄)c for infinitely many k′s, (3.4)

and in the particular case of the constant sequence vk = v, for all k, we denote
yk := xk + τkv.

In addition, we claim that we can assume that xk ∈ ∂Ω. In fact, let us denote lk
the line joining xk and yk and consider x̂k ∈ ∂Ω a choice of the intersection between
lx and ∂Ω, and for this choice, we also denote τ̂k = τk − |xk − x̂k| ∈ (0, τk]. Clearly,
we have that τ̂k ↘ 0. Then, for wk → v arbitrary, we can write

x̂k + τ̂kwk = xk + (x̂k − xk) + τ̂kwk

= xk + (τk − τ̂k)v + τ̂kwk

= xk + τk(v + τ̂k/τk(wk − v)),

and since 0 < τ̂k/τk � 1, we see that v + τ̂k/τk(wk − v) → v. Hence, we get the
claim by (3.4) replacing xk by x̂k and τk by τ̂k, but from this point we omit the
superscript ‘∧’ for simplicity.

Since yk → x and yk ∈ (Ω̄)c, for all k large enough, we see that yk must belong
to the hypograph of φ. Then, by the standard notation, we write yk = (y′k, y

N
k ) and

define ŷk = (y′k, ŷ
N
k ) as

ŷk := (y′k, φ(y′k)),

from which we immediately have that ŷk ∈ ∂Ω for all k. Since yk ∈ (Ω̄)c, we have
yN

k < ŷN
k , and more precisely, there exists a constant θ0 > 0 not depending on k

such that, up to a subsequence, |ŷk − yk| = ŷN
k − yN

k � θ0τk. In fact, if this does
not hold, we can write |ŷk − yk| = ok(1)τk with ok(1) → 0 and therefore, defining

vk := τ−1
k (ŷk − xk),

we see that vk = τ−1
k (yk − xk) + ok(1) → v as k → ∞, and that

xk + τkvk = xk + ŷk − xk = ŷk ∈ Ω̄ for all k,

but this contradicts (3.4).
In what remains we prove that ŷk, τk above chosen are suitable to get the desired

conclusion v /∈ −TΩc(x). For this, we define zk = ŷk − τkv. By the parallelogram
rule, we see that z′k = x′k and zN

k > φ(x′k), from which we get that zk is in the
(strict) epigraph of φ. Now, the epi-Lipschitzian property of the boundary of Ω
implies that

Θk := xk +Br0/2 ∩ {(z′, zN ) : zN � 2Λ0|z′|}
is a subset of Epi(φ) and therefore, Θk ⊂ Ω. Notice that since zk is on the ‘vertical
axis’ of Θk, we have

dist(zk,Θc
k) � c0τk (3.5)

for all k large enough, where c0 > 0 depends on Λ0 and θ0, but not on k.
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Now, considering wk → v arbitrary, we can write

ŷk − τkwk = ŷk − τkv + τk(v − wk) = zk + τkok(1),

with ok(1) → 0 as k → 0, and using (3.5), we get that ŷk − τkwk ∈ Ω for infinitely
many k′s, leading to −v /∈ TΩc(x), completing the proof. �

Next, we describe a uniformity property coming from the uniformity of the
Lipschitz constant in definition 1.1.

Lemma 3.4. Assume O is open and epi-Lipschitz boundary in the sense of
definition (1.1). Then, there exists ε0 > 0 such that, for each x ∈ ∂O, there exists
ξ ∈ TŌ(x) with |ξ| = 1 such that Bε0(ξ) ⊂ TŌ(x).

We sketch the proof. For x ∈ ∂O, we can consider a local parametrization φ such
that the epigraph of φ coincides with O in a neighbourhood of x. Then, by using
the characterization given by definition 3.2 for the tangent cone, it is possible to
prove that

{(z′, zN ) ∈ R
N : zN � 2Λ0|z′|} ⊆ TŌ(x),

from which the property holds with ξ = eN and ε0 small in terms of Λ0.
Now we are in position to provide the

Proof of Proposition 3.1. Using (3.2) and applying algebraic properties of the
generalized gradient (see propositions 2.3.1 and 2.3.3 in [5]), we can write

∂d(x) ⊆ ∂δΩc(x) − ∂δΩ̄(x).

Then, using the characterization of tangent cones in term of generalized gradients
of the distance function δ given by proposition 2.4.2 in [5], we conclude that

∂d(x) ⊂ (TΩc(x))∗ + (−TΩ̄(x))∗,

where for A ⊂ R
N , we denote A∗ = {x ∈ R

N : 〈x, v〉 � 0 foreach v ∈ A}, that is the
polar set relative to A.1

From here, lemma 3.3 and using the fact that C + C = C for a convex cone C,
we conclude that ∂d(x) ⊂ T ∗

Ωc(x). Hence, by lemma 3.4 (with Ō = Ωc), we have
ε0 ∈ (0, 1) and ξ = ξ(x) with ||ξ|| = 1 such that

B := {λz : z ∈ Bε0(ξ), λ � 0} ⊂ TΩc(x).

From this, denoting Πξ the normal plane to ξ we have the existence of ã > 0
(depending on ε0) such that 〈v, w〉 > ã for all v ∈ B∗ and w ∈ Πξ. Hence, we con-
clude the result by fixing 0 < a < ã small enough, noticing that ∂d(x) ⊆ T ∗

Ωc(x) ⊆
B∗ and considering the rotation matrix R making Rξ/|ξ| = −eN . �

1The mentioned characterization is described via normal cones in [5]
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4. Approximation scheme for the linear problem

As for theorem 1.3 in § 2, we present theorem 1.4 in a slightly more general way

Theorem 4.1. Let Ω and f satisfying the assumptions of theorem 1.4. Consider K
satisfying (1.5), and for each ε ∈ (0, 1), we consider IK,ε as in (1.7). Let uε ∈ C(Ω̄)
be the unique solution to the problem

−IK,ε(u) = f in Ω, u = 0 in Ωc. (4.1)

Then, there exists a modulus of continuity m depending only on f and K such
that

|uε(x) − uε(y)| � m(|x− y|) for x, y ∈ Ω̄.

Clearly, theorem 1.4 is a consequence of theorem 4.1 above. The existence and
uniqueness of uε can be directly obtained by adapting proposition 2.2 in [9] to the
current setting. Throughout this section, we are going to think of K satisfying (1.5)
is fixed and for ε > 0, we write Iε = IK,ε.

We fix y ∈ R
N , y �= 0 small enough and define the sets

O = O(y) = Ω \ Ω|y|; U = U(y) = {x ∈ R
N : −|y| � dΩ(x) < |y|}, (4.2)

and the function

w(x) = wy,ε(x) = uε(x+ y) − uε(x), x ∈ R
N . (4.3)

Thanks to the linearity and invariance under translation of the operator Iε, we see
that w satisfies the inequalities

−Iε(w, x) � mf (|y|) for x ∈ Ō
w(x) � C0(ε+ |y|)β01U (x) for x ∈ Ōc,

(4.4)

where mf is a modulus of continuity for f , and the upper bound in Ōc follows by
proposition 2.2 (see the begining of the proof of the existence part of theorem 1.3).

To give a precise reference of the barriers involved, we introduce some notation.
We consider C0, �, β0 as in proposition 2.2 and η, ζ : R

N → R the following functions
defined for each x ∈ R

N

ζ(x) = min{(ε+ �− |y|)ε, (ε+ dO(x))ε}1Ō(x),

η(x) = C0(ε+ |y|)β01U (x).
(4.5)

Recalling that mf represents a modulus of continuity for f in Ω̄, by replacing it by
mf (s) + Csθ with C > 0, 0 < θ < β0, we assume that

mf (s) � Csθ, for all s � 0. (4.6)
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Proposition 4.2. Let Ω be as in theorem 1.4 and assume (4.6) holds. Then, there
exists A > 0 large enough such that for all |y|, ε small we have the function

W (x) := η(x) +Amf (|y|)ζ(x), x ∈ R
N (4.7)

satisfies the inequality

−Iε(W,x) � mf (|y|) for all x ∈ Ō�̄.

The proof of this result is accomplished by obtaining appropriate estimates for
Iε(ζ) and Iε(η), given in lemmas 4.3 and 4.5 below, respectively.

We start remarking that the relevant assumptions over Ω are also satisfied by the
inner domain O in order to use previous results. In fact, it is straightforward that
O is an epi-Lipschitz domain. To see that it satisfies the exterior power condition,
we fix x0 ∈ ∂O, choose x̂0 ∈ ∂Ω such that |x0 − x̂0| = |y| and consider ν an exterior
normal to ∂Ω at x̂0. Thus, by the analysis driving to (2.5), we see that in this setting,
we necessarily have that ν = (x̂0 − x0)/|x̂0 − x0|. We claim that ∂O satisfies the
exterior power condition at x0 with the same α, c, ν for which ∂Ω satisfies it at x̂0,
but with R replaced by R/4 when |y| � R/4. In fact, traslating and rotating, we can
assume x̂0 = 0 and ν = −eN . Hence, x0 = (0′, |y|) and O ∩BR/2(x0) ⊂ Ω ∩BR(x̂0).
Let z ∈ O ∩BR/2(x0) and define zy = z − |y|ν. It is direct to see that zy ∈ Ω ∩
BR(x̂0) and that z − x0 = zy − x̂0. Then, using the exterior power condition for
∂Ω at x̂0, we get

(z − x0) · ν = (zy − x̂0) · ν < c|(zy − x̂0)′|α = c|(z − x0)′|α,
from which we get the exterior power condition for O.

Next, we have

Lemma 4.3. Under the assumptions of theorem 1.3, there exists c∗ > 0 and �̄ > 0
small such that for all 0 < ε, |y| � δ̄, we have

−Iε(ζ, x) � c∗(ε+ d(x) − |y|)−2σ, for all x ∈ Ō�̄. (4.8)

Proof. Since O satisfies the assumptions that allow us to apply proposition 2.2 and
noticing that d(x) − |y| = dO(x) for all x ∈ Ō, we get

−Iε(ζ, x) � c∗(ε+ d(x) − |y|)ε−2σ,

for all x close to the boundary. Now, since the quantity (ε+ d(x) − |y|)ε is uni-
formly bounded for all ε, |y| ∈ (0, 1), we conclude the result by shortening c∗ if it is
necessary. �

Before continuing, we prove a geometric lemma concerning the volume of the
set U .

Lemma 4.4. Assume hypotheses of theorem 1.3 hold and let U be defined in (4.2).
Then, there exists C > 0 depending only on ∂Ω such that

Vol(U) � C|y|.
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Proof. Let x ∈ ∂Ω and consider φ = φx : R
N−1 → R defined in (2.10) the mapping

associated to the chart at x. Let ξ = (ξ′, ξN ) ∈ Br0/2 ∩ U and chose ξ̂ = (ξ̂′, ξ̂N ) ∈
∂Ω ∩Br0 such that d(ξ) = |ξ − ξ̂|. Define ξ∗ = (ξ′, ξ̂N ) and assume ξ∗ �= ξ̂. Follow-
ing the arguments given in lemma 4.4 of [9], we see that |ξ̂′ − ξ′| � d(ξ) � r0/2
from which |ξ̂′| � r0, and using the Lipschitz continuity of φ, we get that

|ξ∗ − (ξ′, φ(ξ′))| � Λ0|ξ̂′ − ξ′| � Λ0d(ξ),

and therefore, |ξN − φ(ξ′)| � (1 + Λ0)d(ξ). Notice that this inequality trivially holds
when ξ̂ = ξ∗. Hence,

Br0/2 ∩ U ⊂ C1 := {(z′, zN ) : z′ ∈ Br0/2, |zN − φ(z′)| � (1 + Λ0)|y|}
and therefore, by applying the change of variables theorem in the same fashion as
in the estimate of Ĩ2 in lemma 2.4, we conclude that

Vol(U ∩Br0/2) � C

∫
C1

dz = C

∫ (1+Λ0)|y|

−(1+Λ0)|y|

∫
Br0/2

dz′ds,

from which the result follows by the compactness of Ω. �

The above lemma is the key step to get the following

Lemma 4.5. Under the assumptions of theorem 1.3, where c > 0 such that for all
ε, |y| > 0 small enough, we have

−Iε(η, x) � −c m(|y|)(ε+ d(x) − |y|)−2σ, for all x ∈ Ō.

Proof. By its very definition, for x ∈ Ō, we have

Iε(η, x) = C0(ε+ |y|)β0

∫
U−x

Kσ
ε (z)dz. (4.9)

We start considering the case for interior points x ∈ O. Consider �̄ as in
lemma 4.3 and x ∈ O \ O�̄/2. Then, there exists c1 > 0 depending only on �̄ such
that Kσ

ε (z)1U−x � c1. Using this and lemma 4.4, we conclude that

Iε(η, x) � c2|y| � c3mf (|y|), (4.10)

where we have used (4.6) in the last inequality. Notice that the term (ε+ d(x) −
|y|)−2σ is uniformly bounded below when x ∈ O \ O�̄/2 and by this observation, we
get the estimate asserted in the lemma for this case.

Now we deal with the case x ∈ O�̄/2. Without loss of generality, we can assume
that d(x) > |y| (or equivalently dO(x) > 0) since as it can be seen in [9], we conclude
the limit case by a continuity argument which is not related to the regularity of the
domain.

We require to precise some elements which are going to play an important role
in computing Iε(η, x) for this case. For z ∈ R, r ∈ R, we define F (z, r) = d(z) − r
which is a Lipschitz function in its domain of definition, and notice that ∂Ω = {z ∈
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R
N : F (z, 0) = 0}. In view of proposition 3.1, there exists a > 0 such that for each

ξ = (ξ′, ξN ) ∈ ∂Ω there exists a rotation matrix R = Rξ for which

vN > a for all v = (v′, vN ) ∈ R−1∂d(ξ).

Hence, assuming that R is the identity matrix (otherwise we argue over the
‘rotated’ function F̃ (z, r) = d(Rz) − r, but the conclusion follows exactly the
same ideas) and by definition of partial generalized gradient, we conclude that
∂zN

F (ξ, 0) ∈ [a, 1]. Therefore, by the Lipschitz Implicit Function theorem (see [5]),
there exists r̄ > 0 and a unique Lipschitz continuous function φr(z′) = φ(z′, r)
defined for z′ ∈ Br̄(ξ′) ⊂ R

N−1 and |r| � r̄, such that

F (z′, φr(z′), r) = 0, for all z′ ∈ Br̄(ξ′), |r| � r̄, (4.11)

and such that ||φr||Lip(Br̄(ξ′)) is bounded for all r ∈ (−r̄, r̄), by a universal constant
just depending on Λ0. This analysis can be done for each ξ ∈ ∂Ω and therefore, by
compactness of ∂Ω, we can assume r̄ > 0 is independent of ξ. Moreover, we can
assume that r̄ = r0 with r0 defined in (2.10).

Now we address Iε(η, x). We chose x̂ ∈ ∂Ω a projection of x to the boundary and
without loss of generality, we can shorten �̄ to get d(x) � r̄/4. Then, we split the
integral term as

Iε(η, x) = C0(ε+ |y|)β0

(
I1(x) + I2(x)

)
where

I1(x) :=
∫
U\Br̄/2(x̂)

Kσ
ε (z − x)dz; and I2(x) :=

∫
U∩Br̄/2(x̂)

Kσ
ε (z − x)dz.

Notice that x ∈ Br̄/2(x̂) by the above choice of �̄.
The same analysis leading us to (4.10) drives us to the estimate

I1(x) � c4(ε+ |y|)β0 |y|, (4.12)

where c4 > 0 is a universal constant (depending on r̄ and Γ).
Now we continue with the estimate of I2(x). We apply the coarea formula (see

[8]) to arrive at

I2(x) = C0(ε+ |y|)β0

∫ |y|

−|y|

∫
Sr

Kσ
ε (z − x)dS(z)dr,

where Sr = {z ∈ Br̄/2(x̂) : d(z) = r} and dS denotes the N − 1 dimensional
Haussdorf measure.

We assume R̄ = R̄x̂ given by proposition 3.1 is the identity matrix. Thus, the
Implicit Function expression (4.11) is valid in this case and we can cast φr as a
parametrization of the set Sr. Then, using φr as a change of variables, there exists
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a constant C > 0 depending only on Λ0 such that

I2(x) � C Γ C0(ε+ |y|)β0

∫ |y|

−|y|

∫
Br̄/2(x̂′)

dz′

εN+2σ + |(z′, φr(z′)) − x|N+2σ
dr. (4.13)

Now we estimate the integral in z′ dividing it in two parts. First, we consider

I21 :=
∫

Br̄(x̂′)∩Bd(x)−r(x′)

dz′

εN+2σ + |(z′, φr(z′)) − x|N+2σ
.

Noting that for each z such that d(z) = r, we have |x− z| � d(x) − r, we can write

I21 �
∫

Bd(x)−r(x′)

dz′

εN+2σ + (d(x) − r)N+2σ

� C(ε+ d(x) − r)−(N+2σ)

∫
Bd(x)−r(x′)

dz′,

that is

I21 � C(ε+ d(x) − r)−(1+2σ). (4.14)

On the contrary, we denote

I22 :=
∫

Br̄/2(x̂′)\Bd(x)−r(x′)

dz′

εN+2σ + |(z′, φr(z′)) − x|N+2σ
.

Then, applying the direct inequality |(z′, φr(z′)) − x| � |z′ − x′|, followed by the
change of variables ξ′ = x′ − z′, we can write

I22 �
∫

Br̄\Bd(x)−r

dz′

εN+2σ + |ξ′|N+2σ
.

Using spherical coordinates and defining τ = ε/(ε+ d(x) − r), we get

I22 � C

∫ r̄

d(x)−r

tN−2dt
εN+2σ + tN+2σ

� C(ε+ d(x) − r)−(1+2σ)

∫ +∞

1−τ

tN−2dt
τN+2σ + tN+2σ

,

and since the last integral is uniformly bounded, independent of τ , we conclude the
same estimate for I22 as in (4.14). Using this in (4.13), we conclude

I2(x) � C(ε+ |y|)β0

∫ |y|

−|y|
(ε+ d(x) − r)−(1+2σ)dr. (4.15)

At this point, we consider two cases: if ε � |y|, by integration and assump-
tion (4.6) we get

I2(x) � C|y|β0(ε+ d(x) − |y|)−2σ � Cm(|y|)(ε+ d(x) − |y|)−2σ,
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and when ε > |y|, we note that since d(x) > |y|, we have ε+ |y| � 2(ε+ d(x) − |y|)
and therefore, from (4.15), we see that

I2(x) � C(ε+ d(x) − |y|)β0

∫ |y|

−|y|
(ε+ d(x) − |y|)−(1+2σ)dr

� C(ε+ d(x) − |y|)−1−2σ+β0 |y|
� C(ε+ d(x) − |y|)−2σ+β0−α|y|α

� Cm(|y|)(ε+ d(x) − |y|)−2σ,

where we used again (4.6). From here and (4.12), we conclude the proof. �

Proof of Proposition 4.2. By linearity of Iε and using lemmas 4.3 and 4.5, we see
that

−Iε(W,x) � (−c+Ac∗)m(|y|)(ε+ d(x) − |y|)−2σ, for all x ∈ O.
Taking A > 0 large enough in terms of the data (but independent of ε or y), we
conclude the result. �

Now we are ready to provide the proof of the compactness of the family of
solutions of the approximating problems.

Proof of Theorem 4.1. Noticing that the quantity (ε+ �/2)ε is uniformly bounded
below by a strictly positive constant as ε→ 0, in view of the previous proposition,
arguing as in the proof of existence of theorem 1.3, there exist C1, C2 > 0 not
depending on ε, |y| such that the function

C1 min{W (x), C2mf (|y|)}, x ∈ R
N

is a supersolution to (4.4). Hence, by comparison principle, we get that w � W in
Ō and therefore, we get the inequality

uε(x+ y) − u(x) � c1Am(y) for all x ∈ Ō,
which establishes an upper bound for the modulus of continuity of uε. A similar
lower bound can be given. This concludes the proof. �

5. The non-linear problem

Here we briefly describe the main directions to get the results for the non-linear
case stated in theorem 1.5. It is going to be convenient for the forthcoming anal-
ysis to introduce the extremal Pucci operators associated witth the family K
satisfying (1.5). For ε � 0, we define

M+
ε (u, x) := sup

K∈K
Iε,K(u, x), and M−

ε (u, x) := inf
K∈K

Iε,K(u, x),

where the linear nonlocal operator Iε,K is given in (1.7) and (1.8).
The following properties concerning the extremal operators are useful in what

follows: recalling Fε defined in (1.9), for each ε � 0, we see that

M−
ε (u− v) � Fε(u) − Fε(v) � M+

ε (u− v). (5.1)
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5.1. Well-posedness

Using (5.1) with v = 0, it is easy to see that a supersolution to the problem

−M+
ε (u) = f in Ω; u = 0 in Ωc, (5.2)

is a supersolution to the problem (1.11). Hence, it is enough to construct an upper
barrier for (5.2) to get an upper barrier for (1.11), and for this task the key computa-
tions are related to the corresponding nonlinear estimate given by proposition 2.2.
In order to handle the supremum in M+

ε , we use the inequality K � Γ in the
estimates I0, I1 and I3, and the inequality γ � K in the estimate of I2 in propo-
sition 2.2. It is important to notice that the choice of the power profile β0 of the
barrier in this proposition is determined in the estimates concerning I3. Since our
analysis of the linear problem is carried out for a general kernel K, these estimates
are also valid for the non-linear case and therefore, the same β0 is obtained for the
non-linear case.

Then, in the proof of Theorem 1.3, we replace C̃ by C̃/λ and fixing C1, C2 >
0 adequate to the mentioned changes, we get the upper barrier. An analogous
procedure can be used to get lower barriers for problem (1.11) by addressing a
problem involving M−

ε .
Once we get the barriers, Perron’s method applies to get the result. Standard

viscosity comparison principle drives to the uniqueness.

5.2. Regularity

Concerning interior regularity, the nonlinear nature of F can be managed in the
proof of Theorem 2.5 through the following fact: For each a > 0, u and x, there
exists K∗ in the family of kernels K such that

F (u, x) � IK∗(u, x) + a.

Hence, considering u the viscosity solution to (1.10) given by the previous proce-
dure, and assuming that oscB1(u) > 0 (otherwise the result follows), the contrast of
the viscosity evaluations of u at x̄ (as subsolution) and of u at ȳ (as supersolution)
represented by formula (2.14) in the proof of Theorem 2.5 can be formally written
this time as

−IK∗(u, x̄) + IK∗(u, ȳ) � f(x̄) − f(ȳ) + oscB1(u),

for some K∗ depending on oscB1(u), x̄ and u. From this, we control the positive and
negative contributions of the different parts of the splitting of the integral terms
arising in the left-hand side of the above inequality with quantities depending on
the ratio Γ/γ ∈ (0,+∞) to get the interior regularity. The regularity up to the
boundary is basically accomplished by the positive homogeneity of the operator F .

5.3. Approximation Scheme

We start recalling that the properties coming from the Lipschitz regularity of ∂Ω
given in § 3 are independent of the nature of the equations we address. Thus, the
analysis of the nonlinear problem is circumscribed to § 4.
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In this case, given uε ∈ C(Ω̄) solution to (1.11) and defining w exactly as in (4.3),
the invariance under translation of the operator F together with (5.1), we see that
w solves

−M+
ε (w) � mf (|y|) in Ō; w � C̃0(ε+ |y|)β̃0 in Ōc, (5.3)

for some C̃0, β̃0 > 0 depending on the data (as we discussed above, we can take
β̃0 = β0 given in proposition 2.2).

From here, we follow exactly the arguments given in § 4 to construct an upper
barrier to (5.3) using W defined in (4.7) with A > 0 depending on the data and the
ratio Γ/γ.
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