
Statistical inference about two binomial parameters implies that they are both estimated by binomial
sampling. There are occasions in which one aims at testing the equality of two binomial parameters
before and after the occurrence of the first success along a sequence of Bernoulli trials. In these
cases, the binomial parameter before the first success is estimated by negative binomial sampling
whereas that after the first success is estimated by binomial sampling, and both estimates are
related. This paper derives statistical tools to test two hypotheses, namely, that both binomial
parameters equal some specified value and that both parameters are equal though unknown.
Simulation studies are used to show that in small samples both tests are accurate in keeping the
nominal Type-I error rates, and also to determine sample size requirements to detect large, medium,
and small effects with adequate power. Additional simulations also show that the tests are
sufficiently robust to certain violations of their assumptions.
Keywords: statistical tests, binomial parameters, power, effect size, Monte Carlo simulations

El contraste de hipótesis acerca de dos proporciones supone que cada una de ellas se ha
estimado mediante muestreo binomial, pero hay ocasiones en que interesa evaluar la hipótesis
de que la probabilidad de éxito a medida que se repite una determinada tarea varía una vez
que se ha obtenido el primer éxito. En estos casos, la probabilidad de éxito antes de que ocurra
el primer éxito se estima mediante muestreo binomial negativo, en tanto que la probabilidad de
éxito después del primer éxito se estima mediante muestreo binomial, y ambas estimaciones
están relacionadas. En este trabajo se presentan procedimientos para contrastar dos hipótesis
aplicables a esta situación. Una es la de que las dos probabilidades son iguales y tienen un
determinado valor; la otra es más general y sólo expresa que las dos probabilidades son iguales.
El comportamiento de estos dos contrastes en muestras finitas se analiza mediante simulaciones
cuyos resultados muestran que en ambos casos se preserva adecuadamente la tasa nominal
de error de tipo I. También se ha determinado mediante simulación los tamaños muestrales
necesarios para detectar efectos grandes, medianos o pequeños con potencia suficiente.
Finalmente, otro grupo de simulaciones muestra que ambos contrastes son suficientemente
robustos ante violaciones de sus supuestos.
Palabras clave: contraste de hipótesis, proporciones, potencia, tamaño del efecto, simulación
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Consider the hypothesis that the first success in a task
alters the subsequent probability of success in the same
task. This hypothesis underlies studies of avoidance
learning, where the very existence of learning implies that
the probability of observing the behavior that is to be
avoided decreases after administration of negative
reinforcers. This is also the hypothesis underlying priming
in studies on inattentional blindness (Neisser & Becklen,
1975), where it is assumed that the probability of detecting
an unexpected event increases once the first such event
has been detected.

Testing this type of hypothesis involves estimating and
comparing binomial parameters before and after the first
occurrence of a success in a sequence of Bernoulli trials.
By the nature of the process, the binomial parameter pa
before the first occurrence of a success must be estimated
under geometric sampling, that is, through the number of
Bernoulli trials before the first success; on the other hand,
the binomial parameter pb after the first success is estimated
under binomial sampling, that is, through the number of
successes in a fixed number of Bernoulli trials. Figure 1
shows sample data for such situation, which will be useful
to introduce some notation and terminology. Typically, the
data consist of R replicates of a sequence of T Bernoulli
trials, each replicate r (1 ≤ r ≤ R) being split into two parts
at the trial where the first success is observed, with the
characteristic that the first success occurs on trial T − 1 at
the latest or otherwise the replicate is discarded. The first
part thus consists of a sequence of yr

(a) failures (the random
variable in this part) followed by xr

(a) = 1 successes for a
total of nr

(a) = yr
(a) + 1 trials; the second part consists of nr

(b)

= T – nr
(a) trials among which xr

(b) (the random variable in
this part) turn out to be successes and yr

(b) = nr
(b) – xr

(b) are
failures. Thus, yr

(a) has a geometric distribution with
parameter pa (assumed constant across trials), whereas xr

(b)

has a (conditional) binomial distribution with parameters
nr

(b) and pb (also assumed constant across trials). If the
probabilities pa and pb remain invariant across replicates,
ya = ∑R

r = 1 yr
(a) has a negative binomial distribution with

parameters xa = ∑R
r = 1 xr

(a) = R and pa, whereas xb = ∑R
r = 1

xr
(b) has a (conditional) binomial distribution with parameters

nb = ∑R
r = 1 nr

(b) and pb. Thus, p̂a = xa/na with na = xa + ya is
the maximum likelihood estimate of pa, whereas p̂b = xb/nb
is the maximum likelihood estimate of pb.

A less formal description, also based on Figure 1,
follows. Note that (i) ya is the total number of failures in
the first sequence for all replicates (i.e., the total number of
zeros on the left of the thick line running down the data
array in Figure 1), (ii) xa is the total number of successes
in the first sequence for all replicates (i.e., the total number
of ones on the left of the thick line in Figure 1, which makes
xa = R because by definition there is only one success per
replicate), (iii) p̂a is thus the proportion of successes in the
first sequence for all replicates (i.e., the proportion of
successes on the left of the thick line in Figure 1), and (iv)

yb and xb are the numbers of failures and successes
analogously defined for the second sequence across all
replicates (i.e., on the right of the thick line in Figure 1) so
that p̂b is the proportion of successes in the second sequence
for all replicates.

The practical problem that arises in a case like this is
that typical statistical tests for the comparison of two
binomial parameters assume that sample proportions are
unrelated and estimated under binomial sampling. Under
the conditions established in the preceding paragraph, the
sample proportion p̂a comes from a truncated negative
binomial distribution for ya (since there is a maximal number
of T – 1 trials for each of its constituent geometric variates),
whereas the conditional binomial distribution of xb yields
the sample proportion p̂b. This paper proposes test statistics
for the comparison of two binomial parameters that come
from related samples in the situation just described, that is,
in a series of Bernoulli trials that are split into two subsets
at the occurrence of the first success in the sequence so
that one of the binomial parameters is estimated under
negative binomial sampling whereas the other is estimated
under binomial sampling. This paper lies out the derivation
of the asymptotic distribution of the test statistic in two
different cases, presents the results of a series of simulation
studies that investigate the small-sample accuracy of the
tests and their small-sample power, presents the results of
additional simulation studies investigating the robustness
of the tests to violation of the assumptions of invariance
of pa and pb across replicates and invariance of pb during
the entire second stage, and provides an example with
empirical data.
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Figure 1. Sample data illustrating the situation for a test of equality
of negative binomial and binomial parameters. Each cell in the
array indicates success (1) or failure (0) at each of the Bernoulli
trials in each replicate. The negative binomial case arises for data
up to and including the first success in each replicate, and is
represented by Bernoulli variates on the left of the thick line running
down the data array; the binomial case arises for data after the
first success in each replicate, and is represented by variates on
the right of the thick line. Numerical values on the right of the
data array indicate the numbers of trials (n), numbers of successes
(x), and estimates of the probability of success (p̂) in parts a
(negative binomial) and b (binomial).
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Derivation of the Test Statistic

Consider a fixed number R of replicates of a truncated
geometric experiment, each replicate r (1 ≤ r ≤ R) consisting
of a maximum of T – 1 Bernoulli trials (with success
probability pa) until xr

(a) = 1 successes are observed, and
with the entire replicate discarded if a success has not
occurred within the T – 1 trials. Let yr

(a) be the applicable
geometric variable and let nr

(a) = xr
(a) + yr

(a) = 1 + yr
(a). Thus,

yr
(a) is the number of failures until the first success and nr

(a)

is the total number of Bernoulli trials up to and including
the first success. Across the R replicates, ya = ∑R

r = 1 yr
(a)

is a negative binomial random variable with parameters xa
= ∑R

r = 1 xr
(a) = R and pa, and let na = ∑R

r = 1 nr
(a) = xa + ya.

Then, by the central limit theorem,

1       na         xa + ya                ∑
R
r = 1 yr

(a)

——— = —— = ————— = 1 + ———––––––—— (1)
p̂a        xa         xa                          R

1      1 – pais asymptotically  N (——, ———–––—        ) and, hence,
pa       R  pa

2

1 / p̂a  – 1/pa——————–—–––––—— is asymptotically N(0, 1).
(1 – pa) / R  pa

2

Consider also a fixed number R of replicates of a
binomial experiment, where replicate r (1 ≤ r ≤ R) moves
ahead the sequence of trials in the r-th negative binomial
experiment described above to an overall total of T trials so
that the binomial experiment r has parameters nr

(b) = T – nr
(a)

and pb. Let xr
(b) be the applicable binomial variable in 

replicate r and let yr
(b) = nr

(b) – xr
(b). Across the R replicates,

xb = ∑R
r = 1 xr

(b) is a binomial random variable with parameters
nb =  ∑R

r = 1 nr
(b) and pb, and let yb =  ∑R

r = 1 yr
(b) = nb – xb.

Then, by the central limit theorem,

xb       ∑
R
r = 1 xr

(b)

p̂b = ——= ————––––––— (2)
nb         nb          

pb(1 – pb)
is asymptotically  N (pb, ———––––––––––––        ) and, hence,

nb

p̂b  –  pb—————–————–— is asymptotically N(0, 1).
pb (1 – pb) / nb

Now, testing the null hypothesis H0: pa = pb is equivalent
to testing H0: pb/pa = 1. This can be done with a test statistic
based on the ratio  p̂b / p̂a or a transformation thereof. Under
the null hypothesis of identity, there is a single underlying
probability p = pa = pb and it can then be shown (see
Appendix A) that the statistic

p̂b – pb 1/p̂a – 1/p        
B = ——––—––––––––––– —–—––––––––––––––––––— = 

p(1 – p)/nb   (1 – p)/R p2

(p̂b – p) (1/p̂a – 1/p)   p nb R
= ———————–––––––––––––––––––––––––––––––––—– (3)

1 – p

—which is the product of the two N(0, 1) variables
introduced above—is asymptotically distributed as

K0 (|b|)       1         cos (|b|t)
f(b) = ——––—–––––– = —–– ∫0

∞
——————–– dt,                 (4)

π π   1 + t2

where K0 is the modified Bessel function of the second kind
and zero order. This function is available in subroutine
packages such as the so-called numerical recipes (Press,
Flannery, Teukolsky, & Vetterling, 1986), IMSL (Visual
Numerics, Inc., 1997), or NAG (Numerical Algorithms
Group, 1999) and it is also available in software packages
such as Mathematica (Wolfram, 1992) or MATLAB (The
MathWorks, Inc., 2004).

Since B ~ K0(|b|)/π, it follows that B’ =  p̂b / p̂a = γB – δ
with

γ = (1 – p)/   p nb R,                                                (5)

δ = 1 – p̂b / p – p / p̂a (6)

is distributed as K0(b’ + δ/γ)/πγ. Note that parameters γ
and δ are functions of (i) the fixed quantity xa, which equals
the number R of replicates; (ii) the random variable nb =
RT – na = R(T – 1) – ya, which is a linear transformation of
the random variable ya distributed as negative binomial with
parameters R and p and ranging from R to R(T – 1); and
(iii) the unknown population parameter p. Next we consider
two separate cases which vary as to the status of the
population parameter p.

Case 1. Testing H0: pb = pa = p0.

This hypothesis tests for a given common value p0 for
both binomial parameters, yielding an essentially two-tailed
test. Note also that the hypothesis assumes that both binomial
parameters are indeed equal and that we do not aim at testing
their equality per se. Testing this hypothesis amounts to
computing B’ = p̂b / p̂a from the data and comparing its value
with the critical limits  b’α/2 and b’1–α/2 obtained from the
scaled Bessel distribution for a two-sided size-α test using
p̂a, p̂b, and nb from the data and p = p0 from the null
hypothesis. From the linear transformation relating B’ to B,
it follows straightforwardly that b’ν = γ bν – δ, where bν is
the critical limit from the Bessel distribution in Equation
(4). Although these critical limits are easily obtained with
the software mentioned above, Appendix B tabulates bν for
ν ∈ [.9, .999].
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Case 2. Testing H0: pb / pa = 1.

This case aims at testing for equality of the two binomial
parameters, whatever their value may be. Then, the
occurrence of p in Equations (5) and (6) should be replaced
with its maximum likelihood estimate under the null
hypothesis (as is done in the typical two-sample binomial
test), which is given by (see Appendix C)

xa + xb R + xbp̂• = ——––—–––––––– = —–––––––––––– (7)
na + nb RT

The distribution of the test statistic B’ = p̂b / p̂a in these
conditions can be determined by noting that parameter nb
in the binomial distribution during the second stage is
actually a random variable whose value depends on the

outcomes of the first stage of negative binomial sampling
given the unknown value of parameter p. Thus, we need to
condition on the actual value of nb and marginalize across
values of xb. The joint distribution f(b’, nb, xb) can be written
out as f(b’xb, nb) × f(xbnb) × f(nb). Given that nb ranges
from R to R(T – 1) and has a negative binomial distribution
with parameters R and p̂• and that xb ranges from 0 to nb
and has a binomial distribution with parameters nb and p̂•,
conditioning on nb and marginalizing across xb yields

1     K0(b’+ δ/ γ) nbf
~

(b’nb) = –– ∑ –––––––––––––– (   ) p̂•
xb (1 – p̂• )nb–xb ×

S πγ           xb

RT – nb – 1(                ) p̂•
R (1 – p̂• ) R(T–1)–nb (8)

R – 1

Figure 2. Probability density (top panel) and cumulative density (bottom panel) for two sample cases (columns) with values for R, T, and
nb as given at the top of each column. The spikes in the top panels are each a discontinuity similar to that in the left panel of Figure 13,
but these cannot be adequately rendered graphically at the scale of these plots.

nb

xb= 0
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with γ and δ defined as in Equations (5) and (6) and p as
in Equation (7), all of them with values entirely determined
by the dummy variable in the sum, that is,

R + xb       nb (R + xb)
γ = (1 –  ––––––– ) / ––––––––––, (9)

RT         T

xbRT         (R + xb) (RT – nb)
δ = 1 – –––––––––– – ––––––––––––––––,              (10)

nb (R + xb)              R2T

and where

nb                                 RT – nb – 1
S = ∑ ( ) p̂•

xb(1 – p̂• )nb–xb (              ) ×xb                                       R – 1

p̂•
R (1 – p̂• ) R(T–1)–nb (11)

to rescale the conditional distribution so as to make it a
proper probability density function. The density in Equation
(8) is a weighted sum of scaled Bessel distributions that is
difficult to integrate, but the cumulative distribution is easy
to obtain directly through

1      b’+ δ nbF
~

(b’nb) = –– ∑ F* (–––––––) (    ) p̂•
xb(1 – p̂• )nb–xb ×

S           γ       xb

RT – nb – 1(                 ) p̂•
R (1 – p̂• ) R(T–1)–nb (12)

R – 1

where F* is the cumulative Bessel distribution in Equation
(A5) in Appendix A. Figure 2 shows the probability and
cumulative distributions in Equations (8) and (12) for sample
values of R, T, and nb.

Note that, by marginalization and conditioning, this
distribution is a function of T and R (which are fixed
parameters for each data set) but also of nb (which has a
fixed value after the data have been collected). Determining
critical limits from this distribution is simple with the
software described above, and a FORTRAN program that
computes these limits as well as general p-values for
empirical B’ given T, R, and nb is available from the first
author. Testing this hypothesis (which accommodates two-
tailed and one-tailed tests) amounts to computing B’ = p̂b /
p̂a from the data and comparing its value with the critical
limits for a size-α test obtained from the distribution in
Equation (12) or the program just mentioned.

Small-Sample Accuracy

The small-sample accuracy of the test statistic in each
of the two cases described in the preceding section was
determined using simulation methods that generated data
under the null hypothesis of identity of the negative binomial
and the binomial parameters. Distinct simulation conditions
were defined as the factorial combination of several values
for parameter p (between .1 and .9 in steps of .1), several
numbers T of trials within each replicate (between 5 and
100 in steps of 5), and several numbers R of replicates
(between 5 and 100, in steps of 5). Given the values of p,
T, and R in the current simulation condition, data were
generated to fill up a table similar to that in Figure 1 but
whose size was adjusted to the current values of T and R.
The outcome of each of the T × R Bernoulli trials (all of
which have success probability p) was simulated using NAG
subroutine G05DZF (Numerical Algorithms Group, 1999),
and 20,000 such tables were generated per simulation
condition. In each of these tables, where xa = R by
definition,1 na, p̂a, xb, nb, and p̂b were computed as illustrated
in Figure 1 and the value of B’ was computed from these
quantities.

The resultant 20,000 values of the test statistic were used
to determine empirical Type-I error rates slightly differently
in each case. In Case 1, Type-I error rates of two-tailed tests
were determined at significance levels 1 – α = .90, .95, and
.99 by computing the proportion of occasions (across the
set of 20,000 tables) in which the statistic value exceeded
either of the critical limits b’α/2 and b’1–α/2 for a two-sided
size-α test, where these critical limits were determined for
each table by obtaining coefficients γ and δ through
Equations (5) and (6) using the data from the current table
and then transforming the limits in Appendix B through
these coefficients. In Case 2, Type-I error rates were
determined for two-tailed and one-tailed tests at analogous
significance levels by computing the proportion of occasions
(across the set of 20,000 tables) in which the statistic value
exceeded the applicable critical limit that was obtained
numerically from Equation (12).

Small-Sample Accuracy in Case 1

Figure 3 summarizes empirical Type-I error rates at
nominal test sizes α = .1, .05, and .01 for all of our
simulation conditions. Quite clearly, the test is not accurate
in all conditions but its failures are easy to describe. To a
first approximation, the number R of replicates does not
greatly affect accuracy: The 20 curves (one for each value
of R) making up each of the three bundles in each panel of
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1 If no success was observed across the T trials in a given replicate but also if the first success occurred on trial T (something that
was not uncommon when p and T were both small), the entire set of outcomes (either a string of T failures or a string of T – 1 failures
followed by a success) was discarded and the replicate redrawn.

nb

xb= 0

nb

xb= 0
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Figure 3. Empirical Type-I error rates in Case 1. Each panel shows results for a different true value of p. Tick marks on the vertical axis
are drawn at the nominal test sizes α = .01, .05, and .1. Data are plotted as a function of the number T of trials; the number R of replicates
is the parameter that renders the 20 curves (unmarked) that thread each of the three bundles that respectively converge on the three
nominal error rates as T increases.
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Figure 2 are packed when the number T of trials (along the
abscissa in Figure 3) is sufficiently large, although how large
must T be for this to occur depends on the value of p.
Nevertheless, differences in accuracy as a function of R can
be observed at a finer scale when both p and T are
sufficiently large (see, e.g., the panel for p = .9, where some
of the curves in each bundle appear to meander around the
wrong ordinate), but this characteristic cannot be clearly
seen in Figure 3 and will be described and illustrated in
Figure 5 below.

The test is accurate even with T = 10 trials provided p
≥ .5; otherwise, the test becomes increasingly liberal as p
decreases, and T must hence be increasingly larger to restore
accuracy. The reason for this inaccuracy is easy to understand
on consideration of the characteristics of the data array, as
illustrated in Figure 1. Small T implies few trials per replicate
and, if p is also small, most of those trials are spent during
the first phase of geometric sampling, leaving very few trials
for the second phase of binomial sampling. Whether or not
the number R of replicates is large, p̂b ends up being

estimated from small nb, violating the normality assumption
that underlies the derivation of the test statistic (i.e., nb is
too small for the central limit theorem to apply). The
foregoing analysis suggests that a similar pattern of
inaccuracy should occur when the number R of replicates
is small and p is large: In this case, the first phase of
geometric sampling would finish very early in each replicate
and p̂a would now be estimated from small na. Our results
confirm this point, although Figure 3 cannot show this
characteristic very clearly except for the fact that each of
the three bundles of curves loosen out in the panels for large
p as compared to their pattern for intermediate p, revealing
differences in accuracy according to the value of R when p
is large.

From a practical point of view, some indication of the
minimal values that T and R must have to guarantee accurate
tests for each true p would be useful. This, in turn, calls for
a quantitative criterion that defines when a test is sufficiently
accurate. This is an issue that seems to have received little
attention in the literature, as most studies on the accuracy

GARCÍA-PÉREZ AND NÚÑEZ-ANTÓN294

Figure 4. Left panel: Empirical Type-I error rates in Case 1 when p = .1 and R = 15, as a function of the number T of trials (abscissa).
The ordinate thus represents the empirical small-sample error rate α* of a two-tailed test of nominal size α, with α = .1 (thin curve), .05
(mid-weight curve), and .01 (thick curve). Right panel: Discrepancy index obtained from each curve in the left panel by computing d =
(α* − α)/α. Superposition of the three curves indicates that the relative inaccuracy of the test is similar at all nominal α. The gray scale
on the right indicates how the magnitude of d is coded for subsequent display: Mid gray corresponds to accurate tests in which −0.05 ≤
d ≤ 0.05, whereas increasing darkness corresponds to increasingly liberal tests and increasing lightness corresponds to increasingly
conservative tests as determined by the ranges of d implied along the gray scale. All d > 0.25 is represented with black, and all d < −
0.25 is represented with white. The three bars underneath are the gray-coded representations of the three curves shown in the panel.
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Figure 5. Small-sample accuracy of two-tailed tests in Case 1 with α = .1 (left column), .05 (center column), and .01 (right column) for
selected values of p (rows). The image in each panel shows accuracy according to the gray-scale code illustrated in Figure 4, as a function
of the number T of trials (abscissa) and the number R of replicates (ordinate). Each image consists of a 20×20 array of blocks each of
which pertains to the particular T and R at the coordinates of the block. Each of the three bars shown underneath the right panel in Figure 4
is located here as the third-from-bottom row of blocks (for R = 15) in the appropriate column in the top row of images.
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of diverse tests have almost invariably reported only the
raw values of empirical test sizes. In the analysis of
contingency tables, Rudas (1986) addressed the issue of
small-sample accuracy by determining whether the
confidence interval around empirical critical limits contained
the asymptotic critical limit, but this approach is unfeasible
in our case because critical limits are table-dependent as
described above.2 We will use instead an index of
discrepancy that was introduced by García-Pérez and Núñez-
Antón (2004), namely, d = (α* – α)/α, where α* is the
empirical test size and α is the nominal test size. The
discrepancy index d quantifies the mismatch α* – α between
actual and nominal test sizes by expressing it as a fraction
of the nominal size α which is, then, interpretable as a
proportion. Thus, a nominal size-.05 test actually yielding
α* = .04 is regarded as equally inaccurate as a nominal size-
.1 test actually yielding α* = .08: Both of them result in d
= –0.2, implying that the test will reject a true null hypothesis
20% less often than expected from the nominal size α. The
sign of the index indicates whether the test is conservative
(i.e., α* < α, yielding negative d) or liberal (i.e., α* > α,
yielding positive d). The behavior of this index is illustrated
in Figure 4 for two-tailed tests with α ∈ {.1, .05, .01} when
p = .1 and R = 15 and for all values of T, where a gray-
scale code is also introduced for subsequent use in our
reporting of discrepancies. With this gray-scale code, mid
gray corresponds to accurate tests for which –0.25 ≤ d ≤
0.25 whereas increasing darkness corresponds to increasingly
liberal tests and increasing lightness corresponds to
increasingly conservative tests with the ranges of d indicated
by the key bar on the right of Figure 4. In addition, all d >
0.25 are represented in black and all d < –0.25 are
represented in white.

Figure 5 uses the gray scale just introduced to report
two-tailed size discrepancy at each pairing of R and T for
selected values of p. Note that for p = .1 (topmost row of
images) the test is either two liberal (black areas, where d
> 0.25) or too conservative (white areas, where d < –0.25)
for all α when T ≤ 40 trials regardless of the number R of
replicates; conversely, for p = .9 (bottommost row of
images) the test is also either too liberal or too conservative
for all α when R ≤ 10 replicates regardless of the number
T of trials per replicate. It should be noted that index d
does not carry with it any decision as to when a test is
unacceptably liberal or conservative. The gray-scale code
with which our data are presented in Figure 5 reveals our
endorsing the position that departures larger than ±25%
from the nominal α are unacceptable and, thus, conditions
represented with black or white blocks in the images of
Figure 4 should be avoided. This criterion is a little more

permissive than the limit of ±10% used by García-Pérez
and Núñez-Antón (2004) or the limit of ±20% used by
Serlin and Harwell (2004) but not so much as the limit of
±40% implied by Larntz (1978) when he claimed that
empirical levels within .02 of his nominal α = .05 were
acceptable. Nevertheless, we admit that how permissive
should one be must depend on the particular application
and that, providing this allowance, there is still ample room
for debate.

Small-Sample Accuracy in Case 2

Because the test should be accurate in this case
regardless of the true value of parameter p, a first
simulation generated 50,000 tables each of which had a
true p drawn from a uniform distribution on [.1, .9]. Figure
6 summarizes empirical Type-I error rates in this case,
with left-tail and right-tail rates separately displayed.
Overall and provided T ≥ 30, the test is minimally liberal
at nominal levels of .025 and higher, and it is sufficiently
accurate when α ≤ .01. Note also that the patterns of
accuracy (or lack thereof) are similar in both tails, that is,
in the upper and lower halves of Figure 6. This feature
reveals that one-tailed tests are equally accurate or
inaccurate regardless of which tail is involved and that the
difference between actual and nominal sizes for two-tailed
tests doubles the magnitude of the corresponding difference
for one-tailed tests.

But it is still interesting to check whether the test behaves
differently for different p (which it should not). Thus, we
ran a second set of simulations as in the preceding section,
that is, with 20,000 tables at each true p (with p between
.1 and .9 in steps of .1) from which error rates were
separately determined at each true p. The results (not shown)
yielded a pattern at each p that was very similar to the
overall pattern shown in Figure  6 but also sharing the major
characteristics found in Case 1 and displayed in Figure 2:
inaccuracy for small T when p is also small that turns into
adequate behavior as p increases.

Small-Sample Power

To evaluate power, data sets were generated under the
alternative hypothesis that pa = pb with a different value
from that stated in the null hypothesis in Case 1, and that
pa > pb or pa < pb, for different values of pb and pa in Case
2. Then, appropriate critical limits described above were
used to assess rejection rates. Simulations ran for the same
combinations of T and R as in the preceding section.

2 Note that, even if critical limits were fixed, confidence intervals for estimates of test size based on samples of 20,000 would be
infinitesimally small.
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Figure 6. Empirical Type-I error rates in Case 2. Tick marks on the split vertical axis are drawn at the nominal probabilities that the
statistic falls below each of the two critical points for a two-tailed size-α test with α = .01, .02, .05, and .1. To avoid clutter, empirical
error rates are reported—quite unconventionally—by indicating the proportion of times that the statistic fell below each of the critical
points that are designated by tick marks along the ordinate. Thus, data in the lower part actually indicate error rates, whereas data in the
upper part indicate one’s complement of error rates. Data are plotted as a function of the number T of trials; the number R of replicates
is the parameter that renders the 20 curves (unmarked) that thread each of the eight bundles approximately converging on the nominal
error rates as T increases.
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Small-Sample Power in Case 1

Given the null hypothesis H0: pa = pb = p0, power was
assessed by generating data for which pa = pb = p1 with p1
≠ p0. We considered testing null hypotheses where p0 varies
from .1 to .9 in steps of .1 and, in each case, p1 varied also
from .1 to .9 in steps of .01. Figure 7 shows sample results
for the cases R = 60, T = 10 (left column) and R = 60, T =
25 (right column) as a function of the value of p1 when p0
= .3 (top row), p0 = .5 (center row), and p0 = .7 (bottom
row). Consider, for instance the case represented in the
bottom row of Figure 7. When α = .1 (topmost curve in
each panel), testing H0: pa = pb = .7 against H1: pa = pb =
.75 yields a power of .642 when R = 60 and T = 10 (left

panel in the bottom row of Figure 7) and a power of .809
when R = 60 also but T = 25 (right panel in the bottom
row). Adopting the common requirement that power be at
least .8 (Clark-Carter, 1997; Cohen, 1992; Maxwell, 2004),
the test is sufficiently powerful to detect a difference of .05
in probability when R = 60 but only if T = 25. In any case,
inspection of Figure 7 reveals that the test has adequate
power at all p0 provided that R and T are sufficiently large
for the conditions for small-sample accuracy to hold (i.e.,
in all the cases depicted in Figure 7 except when R = 60
and T = 10 with p0 = .3; see the corresponding blocks in
Figure 5). Note also that the test seems equally powerful to
detect differences on either side except in non-accurate cases
like the one just mentioned.

GARCÍA-PÉREZ AND NÚÑEZ-ANTÓN298

Figure 7. Sample results on power in Case 1 for two pairings of R and T (with values given at the top of each column) when testing the
null hypothesis H0: pa = pb = p0 (with values for p0 given on the right of each row) as a function of the actual value p1 of the two
binomial parameters in the population. The three curves in each panel pertain to three test sizes (α = .1, .05, and .01). Note that the
power function is similar—though appropriately displaced—at all p0 when the test is accurate (i.e., in all conditions except the top-left
panel; see the corresponding blocks in Figure 5) and that the spread of the power function shrinks as RT increases.
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Figure 8. Small-sample power of two-tailed tests in Case 1 with α = .1 (left column), .05 (center column), and .01 (right column) for
selected values of p0 (rows). The image in each panel shows a gray code for each combination of the number T of trials (abscissa) and
the number R of replicates (ordinate), where light gray, dark gray, and black respectively indicate that power is at least .8 to detect a
small, medium, or large effect, defined in turn as p1 − p0 = .05, .1, and .2. The test may not be equally powerful for values of p1 at
the same distance from p0 but on opposite sides (as illustrated in the top-left panel of Figure 7), but here a block of a given shade of
gray indicates that the corresponding effect can actually be detected on either side.
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For a more complete picture, we determined sample size
(i.e., T and R) requirements for power to be at least .8 for
detecting differences p1 – p0 = .05, .10, or .20 (which
we will loosely refer to as small, medium, and large effects)
as a function of the null value p0 (between .3 and .7) and
at each of three test sizes (α = .1, .05, and .01). Figure 8
shows the results, where the smallest effect that can be
detected for each combination of T (abscissa in each panel)
and R (ordinate in each panel) is indicated by a shaded block
at the corresponding coordinates: light gray, dark gray, and
black respectively indicate the possibility of detecting a
small, a medium, and a large effect, whereas white blocks
indicate that there is not enough power to detect even a
large effect with the given choices for T and R. Clearly, the
capability of the test to detect small effects increases with
R and T, and the test appears slightly more powerful at
intermediate p0.

One other situation in which power should be evaluated
is in the case that, contrary to what the null hypothesis
assumes, pb ≠ pa. When this is the case, one would expect
the test statistic to reject the null hypothesis quite frequently,
and results presented in Figure 9 show that this is actually
the case: Rejection rates are quite high as soon as either pb
or pa are minimally different from p0.

Small-Sample Power in Case 2

Given the null hypothesis H0: pb/pa = 1, power was
assessed by generating data for which pa ≠ pb and, given
that the test can be left or right tailed, the power of each
type of test was assessed separately. Values for pa varied
between .1 to .9 in steps of .1 and, in each case, pb varied
also from .1 to .9 in steps of .01. Figure 10 shows sample
results for the case R = 30, T = 40 as a function of the value

Figure 9. Sample results on power in Case 1 for the same conditions depicted in Figure 7 except that now pa = .4 (and, then, generally
pa ≠ pb in contrast with what the null hypothesis assumes).
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of pb when pa = .3 (top row), pa = .5 (center row), and pa
= .7 (bottom row); the left column depicts power against
H0: pb/pa < 1 and the right column depicts power against
H0: pb/pa > 1. Again, in all cases the test has sufficient and
similar power to test against one-sided alternatives on either
side, regardless of the slight inaccuracies that were reported
above. Also, the test appears less powerful than in Case 1,
considering that the power functions in Figure 10 are broader
than those in Figure 7 (for Case 1) despite the fact that the
product RT is larger here.

Sample size requirements for power were also determined
as in the preceding section, but small, medium, and large
effects were now respectively defined as pb – pa = .15,
.20, or .25. Results are shown in Figure 11, which were
obtained for pa between .3 and .7 and for left and right tail
tests of two sizes (α = .05 and .01). The most salient

characteristic of these results is that power increases with
R but is largely unaffected by T.

Robustness to Violations of the Assumptions

In all of the simulations reported thus far parameter p
did not vary across replicates. In actual practice, each
replicate may involve a different experimental subject or
otherwise non-identical conditions. This characteristic will
introduce variations in p across replicates and, then, the
issue arises as to whether the tests are robust to these
variations. To assess robustness, a simulation study was
carried out that was thoroughly analogous to the ones used
to evaluate accuracy of the tests, except that now p was
not constant but varied randomly across replicates. For

Figure 10. Sample results on power in Case 2 for R = 30 and T = 40 when testing H0: pb/pa = 1 (with values for pa given on the right of
each row) as a function of the actual value of pb. The three curves in each panel pertain to three test sizes (α = .05, .025, and .01). The
left column shows the power of a left tail test (i.e., a test against H1: pb/pa < 1) and the right column shows the power of a right tail test
(i.e., a test against H1: pb/pa > 1).
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Figure 11. Small-sample power of left-tailed tests (left pair of columns) and right-tailed tests (right pair of columns) in Case 2 with α =
.05 (left column within each pair) and .01 (right column within each pair) for selected values of pa (rows). Gray codes as in Figure 8,
but light gray, dark gray, and black respectively indicate now small, medium, and large effects of size pb − pa = .15, .20, and .25.
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this purpose we followed a strategy introduced by Riefer
and Batchelder (1991) and, thus, when the nominal
probability of success was p, the probability pr in replicate
r (with 1 ≤ r ≤ R) was drawn from a beta distribution with
parameters

p (p – p2 – σ 2)
v = ––––––––––––––,                                         (13)

σ 2

(1 – p) (p – p2 – σ 2)
w = –––––––––––––––––––,                                 (14)

σ 2

so that the mean is actually p and the standard deviation is
σ, which varied between 0.01 and 0.05 across simulations.

In Case 1, parameter heterogeneity produced an
increase in Type-I error rates when p was close to its
boundaries, particularly when R was small. On the other
hand, error rates remained fairly accurate at intermediate
p when σ ≤ 0.02. This deterioration is not surprising
because Case 1 tests for a particular value of p which,
in actual fact, does not exist as a constant across the R
replicates. Moreover, the average p across a small number
R of replicates (which might be thought of as the “true”
p in these circumstances) rarely matches the nominal p
in the null hypothesis, particularly when R and the
nominal p are both small and the beta distribution is very
skewed. Thus, the null hypothesis is always bound to be
literally false even on average, which accounts for the
larger Type-I error rates. In Case 2, on the other hand,
the test was naturally much more robust and heterogeneity
of true p only had the effect (shown in Figure 12) of
producing occasionally more accurate Type-I error rates
than in the absence of parameter heterogeneity (compare
with Figure 6).

One other situation that may occur in practice is that
the probability of success continues to vary as the number
of successes increases, in contrast with the assumption
thus far that it changes only after the first success. In these
cases, the probability of success will generally vary
monotonically as opposed to cyclically (i.e., it will either
continue to increase or continue to decrease with the
number of successes). The net effect will then be that the
average probability of success in the second stage of
binomial sampling will be much more different from that
during the first stage of negative binomial sampling. We
will not present simulation results in these conditions
because it is clear from power results presented above that
the methods developed in this paper will detect this
situation, although these methods are certainly inadequate
to test for specific trends in the pattern of change of the
binomial parameter.

Example

Apfelbaum, Apfelbaum, Woods, and Peli (2008) used
the “selective looking” experiment of Neisser and Becklen
(1975) to study the potential benefits of a vision multiplexing
device to aid the visually impaired. The subjects had to
attend to one of two scenes that were viewed simultaneously
and perform some counting task while unexpected events
might be occurring in the unattended scene. Subjects were
asked at the end whether they had seen any of the
unexpected events, and Apfelbaum et al. expected some
priming in the form that subjects could have a higher chance
of detecting unexpected events after they had detected the
first such event. These are exactly the conditions for the
methods derived in this paper. Thirty-six subjects confronted
six trials in which unexpected events occurred in the
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Figure 12. Empirical Type-I error rates in Case 2 under parameter
heterogeneity. Simulation conditions are identical to those which
produced the results in Figure 6 except that each of the R replicates
(which had the same, uniformly-distributed random p in Figure 6)
has now a different true p arising from a beta distribution with
mean p (uniformly-distributed again) and standard deviation 0.02.
All graphical conventions as in Figure 6.
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unattended scene. One of the subjects did not detect any of
the events and, thus, the string of six zeroes from this subject
was discarded. Hence, with 35 subjects (replicates) R = 35
and with six trials per subject T = 6 for a 35 × 6 data array
involving 210 total trials for analysis. As it turns out, there
were 69 trials in the first sequence, with xa = R = 35
successes (one per subject) and ya = 34 failures for an
estimate p̂a = 35/69 = .5072. This left nb = 141 trials for the
second sequence of which xb = 88 were successes across
subjects, yielding p̂b = 88/141 = .6241. Thus, B’ =  p̂b / p̂a
= .6421/.5072 = 1.230. The probability and distribution
functions that apply in this case were shown in the right
column of Figure 2. At α = .05, the critical limit for a right-
tail test with R = 35, T = 6, and nb = 141 is b’.95 = 1.224
(computed with the FORTRAN program referred to earlier in
this paper). The p-value is indeed 0.0468. Hence, the data
of Apfelbaum et al. reveal the presence of priming in that
the probability of detecting unexpected events in the
unattended task is significantly higher after the first such
event has been detected.

Conclusion

We have derived a method to test hypotheses involving
the equality of two binomial parameters which are
respectively estimated by negative binomial and by binomial
sampling in related samples. Two different cases have been
considered: Case 1 states that the two binomial parameters
equal some specified value and yields a two-sided test,
whereas Case 2 states that the two parameters are simply
equal to one another and yields one-sided or two-sided tests.
Simulations have shown that in both cases the test is
sufficiently accurate and powerful in small samples, and in
Case 2 the test is also reasonably robust to violations of the
assumption that the binomial parameter does not vary across
replicates.

We have not addressed confidence intervals for different
reasons in each of the two cases. In Case 1, a closed-form
expression for the confidence interval of the common
binomial parameter under the null hypothesis cannot be
derived, but the confidence interval can easily be obtained
numerically by solving for p the well-known inequality

p̂b – p 1/p̂a – 1/p
bα/2 < –––––––––––––––– ––––––––––––––––– < b1-α/2, where bα/2

p (1 – p)/nb      (1 – p)/ R p2

and b1-α/2 are quantiles from the Bessel distribution given
in Appendix B. In Case 2, on the other hand, a confidence
interval cannot be derived for lack of the term pb/pa in the
corresponding test statistic.  
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APPENDIX A

The probability distribution of a transformation of two random variables is obtained by marginalizing the product of
their joint density evaluated at the variables expressed in terms of the transformation and the absolute value of the Jacobian
of the transformation (Bain & Engelhardt, 1992, p. 206).

1/ p̂a  – 1/ pa                                 p̂b – pbWe know that, asymptotically, Ya =  –––––––––––––––  and Yb = ––––––––––––––– are both distributed N(0, 1) and 
(1 – pa) / R pa

2                          pb (1 – pb) / nb

the joint distribution of Ya and Yb can be written as f(Ya, Yb) = f1(Yb Ya) × f2(Ya). We are now interested in finding the
probability distribution of the product of Ya and Yb, so let W = YaYb and V = Ya. Then, Yb = W/V, Ya = V, and the Jacobian
of the transformation is

∂Ya/ ∂W ∂Ya/ ∂V 0          1
J =   =                 = 1/V.                                                                             (A1)

∂Yb/ ∂W ∂Yb/ ∂V 1/V    –W/V2

The joint density of V and W is then given by f *(V, W) = f(Ya = V, Yb = W/V) / V. Therefore,

1             1      1             1   W2      1
f *(V, W) = –––––– exp[– –– V2] × –––––– exp[ – –– ––––] × ––––, V, W ∈ RR.                                            (A2)

2π 2           2π 2   V2     V

Finally, the marginal distribution of W = YaYb is obtained by integrating V out, that is,

1         1         1          1   W2          1    K0(W)
f *(W) = ∫–∞

∞ ––––––– exp [ – –– V2] × –––––– exp [ – –– ––––] × –––—dV = ––––––––, W ∈ RR.           (A3)
2π 2            2π 2   V2    V             π

where K0 is the modified Bessel function of the second kind and zero order. The left panel of Figure 13 plots the probability
density of the Bessel distribution in Equation (A3).

Although the integral of the Bessel distribution cannot be obtained in closed form because of its singularity at zero,
the cumulative density function can nevertheless be easily obtained. First note that the Bessel distribution is even symmetric
about zero so that the cumulative density is odd symmetric about zero. Thus, for x > 0, let

K0(b) x
g(x) = ∫0

x
f* (b) db = ∫0

x
––––––––– db = ––– (K0(x) L–1(x) + K1(x) L0(x)) ,                                                     (A4)

π 2

where K1 is the modified Bessel function of the second kind and order 1 and Ln is the modified Struve function of order
n. Then, finally, for b ∈ RR,

1
—— – g(–b)  if b < 0
2

1
F*(b) = —— if b = 0      (A5)

2

1
—— + g(b)  if b > 0
2

The right panel of Figure 13 plots the 
cumulative density in Equation (A5).

Figure 13. Probability density (left panel) and cumulative density (right panel) of
a Bessel distribution.
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APPENDIX B

The table below gives percentage points of the Bessel distribution. These are the points bν for which P(B ≤ bν) = ν,
where B is a Bessel-distributed variable. The first two digits of ν are given at the left, and the third digit is given at the
top. The Bessel distribution is even symmetric around zero and, therefore, b1−ν = −bν. Thus, for a two-tailed size-.05 test,
the critical limits are b.975 = 2.18195 and b.025 = −2.18195.

ν 0 1 2 3 4 5 6 7 8 9  
.90 1.03438 1.04226 1.05023 1.05829 1.06644 1.07469 1.08303 1.09147 1.10001 1.10866  
.91 1.11741 1.12627 1.13524 1.14432 1.15351 1.16283 1.17226 1.18182 1.19150 1.20132  
.92 1.21127 1.22135 1.23158 1.24195 1.25246 1.26313 1.27395 1.28494 1.29609 1.30740  
.93 1.31889 1.33056 1.34242 1.35446 1.36670 1.37914 1.39179 1.40465 1.41774 1.43105  
.94 1.44460 1.45840 1.47244 1.48675 1.50133 1.51619 1.53135 1.54680 1.56257 1.57867  
.95 1.59510 1.61189 1.62905 1.64659 1.66453 1.68289 1.70169 1.72095 1.74068 1.76092  
.96 1.78169 1.80301 1.82492 1.84744 1.87061 1.89447 1.91906 1.94442 1.97059 1.99764  
.97 2.02562 2.05459 2.08463 2.11581 2.14822 2.18195 2.21712 2.25385 2.29228 2.33257  
.98 2.37490 2.41948 2.46657 2.51645 2.56945 2.62600 2.68658 2.75179 2.82239 2.89933  
.99 2.98381 3.07745 3.18244 3.30182 3.44008 3.60421 3.80591 4.06715 4.43747 5.07546  
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APPENDIX C

The maximum likelihood estimate of a common parameter in two independent data sets is given by the value that
maximizes the product of the individual likelihood of each data set. On the assumption that pa = pb = p, the maximum
likelihood estimate p̂• of p is, thus, the value that maximizes

na – 1                         nb                          na – 1     nb
L(xa; p) L(xb; p) = (           ) pxa(1 – p)na–xa (  ) pxb(1 – p)nb–xb  = (  ) (     ) pxa+xb(1 – p)na+nb–xa–xb (C1)

xa – 1                      xb xa – 1 xb

Differentiating the logarithm of this expression with respect to p and solving the resultant likelihood equation for p yields

xa + xbp̂• = –––––––––––– , (C2)
na + nb

a result that can be easily understood from the similarity of Equation (C1) with the likelihood of pure binomial data.
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