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Probiotic microorganisms, especially lactic acid bacteria, are effective in the treatment of
infectious diarrhoeal diseases and experimental colitis. Although the mechanisms by which
these organisms exert their anti-inflammatory effects are largely unknown, immunomodulating
effects are suggested. The objective of this study was to examine the effect of a 5-week oral
administration of Lactobacillus rhamnosus subspecies GG (Lb. GG) on the cellular immune
response to intestinal microorganisms in ten healthy volunteers. Peripheral blood cells (PB) were
stimulated with either ‘self ’ or ‘non-self ’ preparations of faecal samples and isolated Bacteroides
fragilis group-organisms (Bfg) or Escherichia coli (Esch. coli ), and pro- and anti-inflammatory
cytokines (IL-10, IL-4, IL-6, IFN-c, TNF-a) were measured in the culture supernatant. CD4+

T-lymphocyte activation was determined by measurement of intracellular ATP following lysis
of the cells. The activational response of CD4+ T-lymphocytes towards isolated and heat-
inactivated intestinal organisms was increased after the probiotic treatment. Additionally, TNF-a,
IL-6 and in part IFN-c cytokine secretion by PB cells following stimulation with whole stool
preparations and single members of the flora was significantly decreased, whereas the IL-10 and
in part IL-4 cytokine secretion was increased at the end of the study. In contrast, the activational
response of CD4+ T-lymphocytes following stimulation with whole ‘non-self ’ intestinal flora
was higher than by ‘self ’ intestinal flora, but both responses showed a trend towards a reduction
at the end of the study. This study documents a direct effect by Lb. GG on the cellular immune
system of healthy volunteers and offers a promising tool to investigate systemic immunomodu-
lation due to oral administration of probiotic microorganisms.
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In healthy individuals there seems to be a genetically deter-
mined, regulated balance between pro- and anti-inflam-
matory mediators (Fiocchi, 1998), stimulated by intestinal
contents leading to homeostasis, also called physiological
inflammation. The immune response, induced by patho-
genic and non-pathogenic intestinal microorganisms and
food antigens, following transmucosal passage through
M cells and other pathways, is characteristic for each
antigen (Wahl et al. 1988; Kraehenbuhl & Neutra, 2000).
As a result, subsets of T cells (T-helper, T-suppressor,
T-regulatory) may be activated and re-circulate throughout

the periphery (Rothkotter et al. 1999). In healthy indi-
viduals, the ‘ tolerance’ towards non-pathogenic antigens
prevents the mucosal immune system from over-respond-
ing (Husby, 2000). This normal tolerance could be used to
gain access to the immune system with potentially im-
munomodulating agents, e.g. probiotic bacteria.

T cell response to normal intestinal bacteria or their
products may be important in the immunopathogenesis
of chronic enterocolitis. Duchmann et al. suggested that
the immune system of the healthy individual is tolerant
towards its own intestinal flora and that this tolerance might
be broken in inflammatory bowel disease (IBD) (Duch-
mann et al. 1995, 1996b, 1997). It seems, however, that
bacteria differ in their capacity to stimulate inflammation.
Bacteroides sp. especially might play a crucial role in the
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initiation and perpetuation of inflammatory colitis whereas
Esch. coli sp. are neutral (Rath et al. 1996b).

As early as 1907, probiotics were regarded as health-
promoting to the human organism (Metchnikoff, 1907).
Later, Lactobacilli and other probiotic organisms were
used as adjuvants to treat mainly infectious diarrhoeal dis-
eases and, more recently, also chronic inflammatory in-
testinal conditions (Gorbach et al. 1987; Oksanen et al.
1990; Hilton et al. 1997; Guandalini et al. 2000; Shana-
han, 2000; Vanderhoof, 2000). The mechanisms by which
probiotic organisms exert their effects are still largely un-
known. Several theories are currently under investigation
(Kohashi et al. 1979; Isolauri et al. 1993; Mack et al.
1999; Madsen et al. 1999). While the impact on the intes-
tinal flora might be limited (Venturi et al. 1999; Tannock
et al. 2000), there is mounting evidence that Lactobacilli
and other probiotic bacteria somehow directly influence
the human immune system (Cunningham-Rundles et al.
2000; Erickson & Hubbard, 2000). The regulatory role of
cytokines within the immune system, and the impact of
probiotic organisms have been studied intensively in re-
cent years, using cell lines and primary cells of both
rodents and humans (Nicaise et al. 1993; Miettinen et al.
1996; Marin et al. 1998; Miettinen et al. 1998; Nicaise
et al. 1999; Tejada-Simon et al. 1999a, b; Ha et al. 1999;
Miettinen et al. 2000; Christensen et al. 2002). There are,
however, very few reports on the effects in vivo of pro-
biotic bacteria in healthy individuals.

This study examined the effect of oral administration of
the probiotic microorganism Lb. GG to healthy volunteers
on the cytokine secretion profile and T-lymphocyte acti-
vation following stimulation with ‘self ’ and ‘non-self ’ in-
testinal organisms and whole stool preparations.

Materials and Methods

Two groups each of five healthy adult volunteers with
no known intestinal disorders and no concurrent anti-
biotic therapy (six female, four male) aged from 21–43
years (29.9±2.1 years) were recruited from amongst the
staff of the University of Regensburg, Germany. Two
groups of five volunteers were investigated 6 months apart,
but the cytokine measurement was performed at one time-
point to rule out external influences on cytokine secretion.
All participants received a daily oral dose of 2r109 cfu
freeze-dried Lactobacillus rhamnosus GG (Lb. GG; CAG
Functional Foods, Omaha, NE 68110) in capsule form for
35 d. The organism was coated in gelatine to allow its re-
lease in the stomach. No special advice on food intake
was given. A fresh stool sample was collected 3 weeks
prior to the study and again, together with a peripheral
heparinized blood sample the day before the first dose
was given and on the day following the last dose of
Lb. GG. The study was approved by the local ethics
committee of the University of Regensburg, School of
Medicine.

Microbiological procedures

Stool specimens from each volunteer were collected in
10 ml thioglycolate broth on day 1 and day 35 of the trial.
Inoculated specimens were homogenized thoroughly, and
gross debris was allowed to settle on the bottom and on
the surface of the tube for 10 min. Five ml of the super-
natant was transferred to another tube and incubated at
75 8C for 45 min. The suspension was then centrifuged at
4000 g for 5 min, the sediment was washed twice with
sterile phosphate-buffered-saline (PBS), and adjusted to
an optical density of 1.0 (560 nm; Perkin-Elmer, 63110
Überlingen, Germany), and finally diluted at 1 : 100 and
1 : 1000 in PBS.

To isolate Esch. coli and organisms of the Bacteroides
fragilis group (Bfg), stool samples from each volunteer
were collected in thioglycolate broth 3 weeks before the
start of the trial. Only one colony was picked from each
species of each volunteer. Esch. coli was isolated from
MacConkey agar plates (Merck, 64293 Darmstadt, Ger-
many), and lactose-positive colonies were further tested
for negative citrate and positive SIM reactions (Merck). All
ten strains of Esch. coli were checked for the absence of
the pathogenetic factors stx 1, stx 2, hly, and eae by PCR
(Paton, 1998). Organisms of the Bact. fragilis group were
isolated on Bacteroides Bile Aesculin agar plates (Merck),
and black colonies were further identified by the Vitek AN
card (Vitek Systems, bioMérieux-Vitek Inc., Hazelwood,
MO 63042 USA). Lb. GG was cultured from freeze-dried
powder (CAG) in MRS bouillon (deMan-Rogosa-Sharpe,
Difco Laboratories, Becton-Dickinson, Sparks, MD 21152
USA). All bacteria were heat killed at 75 8C for 45 min,
washed twice with ice-cold PBS, adjusted to an optical
density of 1.0 (560 nm), diluted at 1 : 100 and 1 : 1000 in
PBS, and finally stored at –70 8C until use. Aliquots
(100 ml) of the heat killed bacterial preparations, cultured
on Columbia agar plates (Merck) remained sterile for 48 h.
The indigenous (‘self ’) flora corresponds to the blood
donor, the ‘unrelated’ (‘non-self ’) flora was picked at
random from other volunteers participating in the study.

Measurement of CD4+ T-lymphocyte responses following
stimulation in whole blood assays

Heparinized peripheral blood was taken from each vol-
unteer and the assay was begun within 4 h. The Luminetics
assay for T-cell activation (Cylex Inc., Columbia, MD
21045 USA) was used for the stimulation, separation and
measurement of activation of peripheral CD4+ T-lympho-
cytes as described by Sottong et al. (2000). Use of ATP
was recently confirmed as a suitable surrogate marker
to measure T-lymphocyte proliferation (White et al. 1989;
Sottong et al. 2000). Peripheral blood was diluted 1 : 4
in RPMI 1640 (Sigma, 89552 Steinheim, Germany) and
different stimuli were added: Lb. GG; ‘self ’ and ‘non-
self ’ Bfg; Esch. coli ; whole faecal preparations; and
phytohaemagglutinin-M (PHA-M) (Roche Diagnostics
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GmbH, 68305 Mannheim, Germany). Various concen-
trations of stimuli were tested. Highest stimulatory results
were achieved with Lb. GG y2r106 cfu/ml, Bfg
y9r103 cfu/ml, Esch. coliy7.5r107 cfu/ml, correspond-
ing to a 1 : 100 dilution, PHA-M 1 mg/ml, and faecal
preparations at a 1 : 100 dilution. Stimulation with lower
concentrations yielded lower results (data not shown).
After 24 h of cultivation in 96-well round bottom plates
at 37 8C ambient air, supplemented with 5% CO2, stimu-
lated CD4+ T-lymphocytes were separated using para-
magnetic beads coated with monoclonal antibodies
(anti-CD4). Following lysis of the separated cells, the
amount of released ATP was quantified by the use of a
luciferin-luciferase enzyme system. Luminescence was
measured with a top counter (Packard Bioscience GmbH,
63303 Dreieich, Germany). All measurements were per-
formed in triplicate, and the amount of ATP was expres-
sed as mean±SEM relative light units (rlu) (White et al.
1989).

Cytokine ELISA

Peripheral blood, diluted 1 : 4 in supplemented (2 mM glu-
tamine, 100 IU penicillin, 100 mg/ml streptomycin; Bio-
chrom, 12247 Berlin, Germany) RPMI 1640 (Sigma) was
incubated with the above mentioned stimuli for 24 h at
37 8C ambient air, supplemented with 5% CO2 as de-
scribed by Hartung et al. (1996). Culture supernatants
were collected and kept at –70 8C until assayed at the
same time. Cytokine levels in the culture supernatant were
quantified using commercially available ELISA kits (EH-
IFNG, EH2-IL-6, EH2-TNFA, EH-IL-10, EM-IL-4-2 Endo-
gen-Perbio Science, 53113 Bonn, Germany) based on
antibodies against IFN-c, IL-6, IL-4, TNF-a, and IL-10.
Measurements were performed in duplicate and results
given as difference of the mean±SEM.

Statistical analysis

For statistical analysis, Sigma Stat 2.03 (SPSS Inc., Chicago,
IL 60606 USA) software was used. To control for normally
distributed variables, the Kolmogorow-Smirnow test was
used, followed by a paired t test to determine if the effect
of the treatment on the same individual was significant.
If the test for normality failed, a Wilcoxon-signed-
rank-test for paired data was performed. A probability of
P<0.05 was regarded as significant, while higher values
were regarded as non-significant (NS).

Results

After 5 weeks of daily oral administration of 2r109 cfu/ml
Lb. GG to ten volunteers, lactobacilli indistinguishable
from Lb. GG were isolated from the faeces of all partici-
pants. With the exception of mild abdominal bloating
and meteorism in three individuals, no side effects were
reported.

Peripheral CD4+ T-lymphocyte activation

The pattern of CD4+ T-lymphocyte activation prior to and
after the study period following stimulation with whole
‘self ’ and ‘non-self ’ faecal samples and PHA as a standard
stimulus is summarized in Table 1. Stimulation with ‘non-
self ’ faecal samples caused a higher ATP release, corre-
sponding to a higher activational level, than stimulation
with ‘self ’ intestinal flora, and the effect was significant
at the end of the study (P<0.01). After the 5-week course
of Lb. GG, for both the stimulation with ‘self ’ and ‘non-
self ’ faecal samples, the amount of ATP release was
unchanged.

The activational response of CD4+ T-lymphocytes upon
stimulation with sonicates from isolated, single intestinal
organisms (‘self ’ and ‘non-self ’ Bfg and Esch. coli) and Lb.
GG is shown in Fig. 1. Whereas the effect of stimulation
with ‘self ’ and ‘non-self ’ whole faecal samples was un-
changed following 5 weeks of oral Lb. GG, the stimulation
with isolated microorganisms led to increased released
of ATP from lysed CD4+ T-lymphocytes, being significant
following stimulation with ‘self ’ Bfg (mean (10–3 rlu) :
22±8 v. 36±6; P<0.001; Fig. 1A), and ‘self ’ and ‘non-
self ’ Esch. coli (mean (10–3 rlu) : ‘self ’ 25±7 v. 46±5 and
‘non-self ’ 27±10 v. 63±9; P<0.05; Fig. 1C/D). Stimu-
lation with ‘non-self ’ Bfg resulted in a trend towards in-
creased activation (mean (10–3 rlu) : 22±6 v. 29±4;
P<0.10; Fig. 1B), while there was no significant difference
following stimulation with Lb. GG (mean (10–3 rlu) :
42±10 v. 60±13; Fig. 1E). There were marked differences
between individuals in the activational response of CD4+

T-lymphocytes upon stimulation with different isolated
bacterial strains. However, there was no significant differ-
ence between the stimulation with ‘own’ or ‘ foreign’ in-
testinal organisms, as opposed to stimulation with whole
faecal samples.

Cytokine secretion by peripheral blood (PB) cells

The effect of the 5-week course of oral Lb. GG on cytokine
production, induced by stimulation with PHA, sonicated
faecal samples (‘self ’ and ‘non-self ’), or single intestinal
organisms (‘self ’ and ‘non-self ’ Bfg and Esch. coli ) and
Lb. GG is shown in Fig. 2. The amount of TNF-a was

Table 1. Activation of peripheral CD4+ T-Lymphocytes follow-
ing stimulation with sonicates of ‘self ’, to the donor corresponding
bowel flora, ‘non-self ’ bowel flora and phytohaemagglutinin
(PHA) as a standard stimulus. The amount of ATP released is
given in relative light units (rlu)

Values are means± SEM

‘Self ’
intestinal flora

‘Non-self ’
intestinal flora PHA

pre (in 10– 3 rlu) 52±15 129±46 1198±301
post (in 10– 3 rlu) 38±5 73±11** 844±127

** P<0.01 v. ‘self ’ intestinal flora
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Fig. 1. Activation of peripheral CD4+ T-Lymphocytes prior to and following a 5-week course of oral Lb. GG upon stimulation with
‘self ’ Bacteroides fragilis group organisms (Bfg) (A), ‘non-self ’ Bfg (B), ‘self ’ Esch. coli (C), ‘non-self ’ Esch. coli (D), and Lb. GG (E).
The amount of released ATP prior to and after the 5-week study period is given in rlu.
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significantly decreased following stimulation with PHA
(P<0.001), ‘self ’ and ‘non-self ’ faecal samples (P<0.05),
and ‘self ’ Bfg (P<0.001) at the end of the study period
(Fig. 2A). Moreover the amount of IL-6 secreted by PB cells
was significantly decreased at the end of the 5 week
course of Lb. GG following stimulation with Lb. GG
(P<0.01), ‘self ’ faecal samples (P<0.05), ‘self ’ (P<0.05)
and ‘non-self ’ Esch. coli (P<0.01), and PHA (P<0.05).
A trend towards decreased secretion of IL-6 was noted
following the stimulation with ‘self ’ Bfg (Fig. 2B).

Furthermore, stimulation with PHA (1134±139 v. 664±
60 pg/ml; P<0.001) and ‘self ’ Bfg (28±13 v. 8 pg/ml±
2 pg/ml; P<0.05) led to a significant decrease of IFN-c
secretion at the end of the study. In contrast to the above
findings, IL-10 production was significantly increased fol-
lowing the stimulation with ‘non-self ’ faecal sample
(P<0.05) and ‘non-self ’ Bfg (P<0.01) while a trend was
seen following the stimulation with ‘non-self ’ faecal sam-
ple (Fig. 2C). There was also a trend to increased IL-4
production following stimulation (Fig. 2D).
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Fig. 2A–D. Difference of the mean cytokine secretion by peripheral blood (PB cells) following a 5-week course of Lb. GG
administration compared with the beginning of the study, upon stimulation with Lb. GG, ‘self ’ and ‘non-self ’ faecal samples, ‘self ’
and ‘non-self ’ Bfg, ‘self ’ and ‘non-self ’ Esch. coli and phytohaemagglutinin (PHA). *P<0.05; **P<0.01; ***P<0.001 v. pre study
levels.
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Discussion

Evidence is accumulating for the benefit of probiotic prep-
arations in the treatment of intestinal disorders (Gorbach
et al. 1987; Oksanen et al. 1990; Hilton et al. 1997;
Gorbach et al. 1999; Madsen et al. 1999; Isolauri, 2000;
Gionchetti et al. 2000; Guandalini et al. 2000; Shanahan,
2000; Vanderhoof, 2000; Schultz et al. 2002). Several
mechanisms have been suggested for the effects of pro-
biotics. Although, to begin with, a change in the compo-
sition of the indigenous microflora had been expected,
only transient alterations were found (Venturi et al. 1999;
Tannock et al. 2000). More recently, other possible mech-
anisms of probiotic action, such as barrier-enhancing
effects (Isolauri et al. 1993; Mack et al. 1999) or immuno-
modulation (Dugas et al. 1999; Neish et al. 2000) have
been suggested. The present study gives the first evi-
dence for a direct modulation of the systemic cellular im-
mune response to intestinal microorganisms in vivo due
to oral administration of the probiotic microorganism
Lb. GG.

It is assumed that naı̈ve T-lymphocytes, derived from
the bone marrow via the thymus, are primed by circulation
through the intestinal mucosa and by close contact with
intestinal antigens presented by specific antigen-presenting
cells in Peyer’s Patches and mesenteric lymph nodes.
These cells can then circulate through the peripheral blood
before homing to the intestine (Groux, 2001). In our exper-
imental setting, we used unfractionated human peripheral
blood, which offers the advantages of few preparation arti-
facts and a more natural cell environment. Our method is
regarded as especially suitable for the evaluation of pro-
and anti-inflammatory properties of extrinsic stimuli (Har-
tung et al. 2000). With the use of a whole blood assay, it is
unclear which cells are responsible for the release of cyto-
kines but it is known that CD4+ T-lymphocytes, periph-
eral macrophages, and dendritic cells have a role in the
production of various cytokines, including supressive
cytokines, such as IL-10 (Howard & O’Garra, 1992; de
Waal-Malefyt, 1992) and IL-4 (MacDermott, 1996), and
pro-inflammatory cytokines, such as TNF-a (Owen-Schaub
et al. 1991), IFN-c (Bogdan, 2000), and IL-6 (Hirano, 1990),
depending on the antigenic stimulus. To overcome poss-
ible alterations of the cytokine release due to culture
handling or interindividual variations, the study population
was divided into two groups, receiving treatment 6 months
apart. The cytokine measurements, however, were per-
formed at one time point.

We used stimulation assays with heat-treated ‘self ’ and
‘non-self ’ faecal preparations and single bacterial com-
ponents to measure CD4+ T-lymphocyte activation and
cytokine secretion by PB. We were able to confirm the
previously reported tolerance to ‘self ’ intestinal antigens
(Duchmann et al. 1995, 1996a) by demonstrating firstly
that stimulation with ‘non-self ’ faecal samples resulted in
a higher activation of CD4+ T-lymphocytes compared with
‘self ’ faecal samples (Table 1). Secondly, we showed

that after 5 weeks of oral Lb. GG this effect on CD4+

T-lymphocytes was unchanged, while the response to anti-
gens of individual intestinal bacteria (‘self ’ and ‘non-self ’
Bfg and Esch. coli) increased (Fig. 1). Thirdly, we demon-
strated that the secretion of TNF-a, IL-6 and IFN-c by PB
cells was decreased, while the IL-10 and IL-4 response was
increased (Fig. 2), irrespective of the origin of the antigen
(‘self ’ or ‘non-self ’).

Inflammatory bowel diseases (IBD), especially Crohn’s
disease, are thought to be Th-1 mediated diseases, with
CD4+ T-lymphocytes playing a central role in the patho-
genesis (Powrie, 1995; Fuss et al. 1996; van Deventer,
2000). Although the antigens that drive T-cell activation
(Schreiber et al. 1991) and clonal expansion in IBD (Pro-
bert et al. 1996) still need to be defined, both clinical and
experimental evidence strongly incriminate normal lumi-
nal bacteria as a source of antigen (Brand et al. 1996; Rath
et al. 1996a; Sartor et al. 1996; Schultz, 1997a, b; Yama-
naka et al. 1997; Cong et al. 1998). Duchmann et al.
(1995) suggested that the immune system of the healthy
individual is tolerant towards its own indigenous intestinal
flora and that this tolerance might be broken in IBD. In
accordance with this suggestion, the present study with
healthy volunteers showed CD4+ T-lymphocyte activation
to be 2.5-fold higher in response to ‘non-self ’ than to ‘self ’
faecal preparations, with the effect being significant at the
end of the study period. The discrepancy between the de-
creased response towards stimulation with whole faecal
samples and the increased response towards the isolated
individual bacterial strains before and following probiotic
treatment, however, points up the complexity of the in-
testinal microflora and their interaction with the intestinal
immune system (Schultz, 1997b). It would be expected
that all constituents of the intestinal flora would be needed
to form the immune response seen in an individual and
that this immune response could not be mimicked by only
a few selected microorganisms.

Evidence from animal models for experimental colitis
shows that not all bacterial components of the intestinal
microflora are equal in their capacity to induce inflam-
mation (Schultz, 1997b). Rath et al. (1996b, 2001) dem-
onstrated the primary role for Bacteroides sp. in the
induction and perpetuation of experimental colitis in
HLA-B27 transgenic rats, while Esch. coli was neutral.
Bacteroides sp. played an essential role in the pathogenesis
of carrageenan-induced colitis in guinea pigs (Onderdonk
et al. 1981). In the present study, the activational response
of peripheral CD4+ T-lymphocytes upon stimulation with
bacterial sonicates was significantly increased at the end
of the study period, irrespective of the source (‘self ’ v.
‘non-self ’). This effect must be attributed to the adminis-
tration of the probiotic agent, and might indicate a gen-
eral enhancement of the immune system. A similar effect
was noted by Cunningham-Rundles et al. (2000) who
found an increased immune response towards vacci-
nations in HIV-positive children, following the treatment
with Lactobacillus plantarum 299v.
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Subsequently, we measured the cytokine release of PB
cells following stimulation. According to results of exper-
iments in vitro, lactic acid bacteria induce the production
of mainly pro-inflammatory cytokines such as TNF-a, IFN-
c, IL-6, IL-12, IL-18, and to a lesser extent suppressive cyto-
kines such as IL-10 in PBMC (Miettinen et al. 1996, 1998).
A more differential modulation of cytokine expression,
however, was shown recently (Christensen et al. 2002). A
recent report describes the possibility of anti-inflammatory
action of members of the intestinal microflora by inhibition
of the inhibitor kB/nuclear factor kB pathway by blockade
of IkB-a degradation (Neish et al. 2000). We were able to
demonstrate a strong induction of TNF-a, less IL-6 and
IFN-c, and minimal IL-10 and IL-4 secretion in PB cells
prior to the study. At the end of the study period, following
a 5-week course of oral Lb. GG, we noted a significant
decrease in the release of IL-6 and TNF-a whereas release
of IL-10 and IL-4 was increased. These findings confirm
earlier studies, documenting increased IL-10 tissue levels
following the clinically effective treatment of pouchitis
with a combination of probiotic organisms (Ulisse et al.
2001).

In summary, this study in healthy volunteers demon-
strates that oral administration of the probiotic micro-
organism Lb. GG exerts immunomodulatory effects on the
systemic immune response towards intestinal organisms,
leading to a heightened activational response of peripheral
CD4+ T-lymphocytes to intestinal bacterial components.
The cytokine profile induced by these organisms is shifted
towards an enhanced anti-inflammatory response by a
heightened secretion of suppressive cytokines (IL-10, IL-4)
and decreased secretion of pro-inflammatory cytokines
(TNF-a, IL-6, IFN-c). This outlines a possible mechanism
by which probiotic bacteria may mediate a therapeutic
effect. Moreover, immunomodulation of antibacterial im-
mune responses may represent an option for IBD treat-
ment. These results, however, cannot be extrapolated to
other probiotic strains. Moreover, if Crohn’s disease is a
Th-1 driven disease, it has to be shown that treatment with
Lb. GG is able to shift the cytokine profile into a Th-2
mediated cytokine release, not only in healthy adults but
also in those suffering from this disease.

We thank Helga Staudner and Claudia Göttl for technical as-
sistance, Udo Reischl for performing PCR reactions on Esch. coli,
and Jon Vanderhoof of CAG Functional Foods, Omaha, NE, USA,
for the provision of the study medication. This work was sup-
ported in part by the Deutsche Morbus Crohn/Colitis ulcerosa
Vereinigung (DCCV e.V.).
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