
THE REVIEW OF SYMBOLIC LOGIC

Volume 13, Number 1, March 2020

FORMAL REPRESENTATIONS OF DEPENDENCE AND
GROUNDEDNESS

EDOARDO RIVELLO

Department of Philosophy and Educational Sciences, Università degli Studi di Torino

Abstract. We study, in an abstract and general framework, formal representations of dependence
and groundedness which occur in semantic theories of truth. Our goals are (a) to relate the different
ways in which groundedness is defined according to the way dependence is represented and (b) to
represent different notions of dependence as instances of a suitable generalisation of the mathematical
notion of functional dependence.

§1. Introduction. The technical notions of semantic dependence and semantic ground-
edness crucially recur in many works on languages which contain their own truth pred-
icates. Groundedness is intended to capture what is characteristic of sentences whose
truth values seem to be determined, one way or another, by non-semantic states of af-
fairs, whereas dependence is invoked to make sense of apparent relationships between the
truth values the sentences bear. Moreover, groundedness is often explicated in terms of
dependence.

We can find, in the logical literature on truth, several attempts to formalise these notions,
making them operate in the context of some formal theory of self-referential truth. The
main theme of the present article is to abstract some general mathematical properties
shared by these formal counterparts of dependence and groundedness and to put them
into a unified and general framework.

This work is intended to serve two purposes: one is helping us to separate, in the logical
studies on truth involving dependence and/or groundedness, what is specific to truth from
what directly relies on more general mathematical facts; the other is facilitating the compar-
ison of different formal definitions intended to capture the informal notions of dependence
and groundedness. Concerning this second aim, we can observe that, in the literature on
truth, these two notions are formalised under a variety of terminology and notations that
makes it difficult, prima facie, to distinguish them from an extensional point of view:
Accordingly, this article is also conceived to serve the logico-philosophical community
by collecting in one place and in a systematic way some mathematical “equivalences”
between different approaches that often in the literature are assumed only implicitly.

The article is split into two parts, proceeding from the more abstract to the lesser. In the
first part (§2), I will study the relationship between groundedness, defined in terms of a
notion of dependence represented either by a set of rules or by a monotone operator, and
well-foundedness, with respect to a notion of dependence represented by either a binary
relation or a graph mapping. In the second part (§3) I will investigate the possibility of
representing the abstract notion of dependence dealt with in the first part as a suitable

Received: October 23, 2017.
2010 Mathematics Subject Classification: Primary 03E20, Secondary 03E75.
Key words and phrases: dependence, grounding, monotone operator.

c© Association for Symbolic Logic, 2019

105 doi:10.1017/S1755020319000315

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

106 EDOARDO RIVELLO

generalisation of the notion of “functional dependence” usually employed in computer
science and other disciplines.

1.1. General mathematical preliminaries. Throughout the article, “iff” abbreviates
“if and only if.” The symbol =Df means that identity is stated as a definition. Proofs are
ended by the symbol �. Subproofs inside one main proof are ended by the symbol �.

We refer to Lévy (1979) for standard set-theoretic notation. Let X, Y be sets. P(X)
denotes the set of all subsets of X, X × Y denotes the cartesian product of X and Y , XY
denotes the set of all functions from X to Y . The identity function on X, denoted by idX ,
is the function f : X → X such that f (x) = x for every x ∈ X. The domain of a function
f is denoted by dom(f), its range by ran(f). If f is a function and X ⊆ dom(f), f � X
denotes the restriction of f to X. Ordinal numbers are denoted by the initial letters of the
Greek alphabet α, β, γ, δ. The set of all natural numbers is denoted by ω and the class of
all ordinal numbers is denoted by On.

An inductive space (Yablo, 1982, p. 119) is a triple (U, P, J), where U is an arbitrary
set called the universe; P is an inductive family of subsets of U, namely, a family such that
(a) the empty set is in P, and (b) the union of any increasing sequence of members in P is
in P; and J is a monotone operator on (U, P), i.e., a function from P to P such that for any
S, S′ ∈ P, S ⊆ S′ ⇒ J(S) ⊆ J(S′). A subset S of U is J-sound iff S ⊆ J(S), and is a fixed
point of J iff S = J(S).

Yablo (1982, p. 120) proves that for every J-sound subset S of U there exists a fixed
point S′ of J such that S ⊆ S′. By the monotonicity of J, the construction of S′ in the proof
also shows that S′ is the least fixed point of J above S, i.e., for any other fixed point S′′ of
J, if S ⊆ S′′ then S′ ⊆ S′′. We denote the least fixed point of J above S by lfp(J, S). A dual
proof shows that if S is a subset of U such that J(S) ⊆ S then there exists the greatest fixed
point of J below S, which we denote by gfp(J, S).

For each J-sound S ∈ P, define by transfinite recursion the following sequence of
elements of P: 〈JS

α | α ∈ On〉, where JS
0 = S, JS

α+1 = J(JS
α), JS

δ = ⋃{JS
α | α < δ} for

δ limit. We call the sequence 〈JS
α | α ∈ On〉 the transfinite iteration of J starting with S.

The least fixed point of J above the empty set is also the least fixed point of J, and will
be denoted by lfp(J). Accordingly, the sequence 〈Jα | α ∈ On〉 will denote the transfinite
iteration of J starting with the empty set. It follows that lfp(J) = Jα for some α limit. For
every x ∈ lfp(J) the J-rank of x is the least β ∈ On such that x ∈ Jβ . The rank of x is
necessarily a successor ordinal.

We will work in an abstract setting in which all mathematical objects will be considered
relatively to a fixed, nonempty set A (subsets of A, functions from A, etc.). In the examples
taken from the literature on formal theories of truth, A will be the set of all sentences of
some first-order language augmented with a truth predicate. However, in this article, we
are only concerned with properties which do not depend on the internal structure of A, so
we simply take A to be an arbitrary nonempty set.

We will reserve the following letters, variously decorated, to range over the correspond-
ing classes of objects “from A”:

• x, y, z, u, v, w for elements of A.
• X, Y, Z for subsets of A, i.e., elements of P(A).
• f , g, h for functions with domain A, i.e., elements of AB for some set B.
• p, q, r for partial functions on A, i.e., functions with domain a subset of A.
• s for sequences of elements of A, i.e., elements of ωA.
• R, Q for binary relations on A, i.e., subsets of A × A.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 107

• D for domain functions on A, i.e., elements of AP(A).
• G for (directed) graphs on A, i.e., pairs (X, R), where X ⊆ A and R ⊆ X × X.
• � for graph mappings, i.e., mappings of elements of A to graphs on A.
• � for operators on A, i.e., functions from P(A) to P(A).
• 	 for sets of rules, i.e., elements of P(A) × A.
• X for families of subsets of A.
• R,Q for families of binary relations on A.
• D for families of domain functions on A.
• G for families of graphs on A.
• F,H for families of partial functions on A.
•
 for functions with domain a family of partial functions on A.
• � for operators � : F → F ′ between families of partial functions on A.

We will define several maps between subclasses of the objects listed above. Each map
will be denoted by the constant symbol K indexed by a natural number. We will adopt
the following convention: Given a map of the form K : B �→ CB we will often omit
the constant K, denoting the map and its result by CB only. For any pair of classes of
objects from A, there will be at most one map labelled with an indexed K, so that from
the particular letters C and B, taken from the above list, it will be easy to recover the map
K : B �→ CB itself. For instance, the notation R �→ �R will be reserved for the unique map
from binary relations on A to monotone operators on A which is labelled with K11 in the
article.

Most results will take the form either of a “natural correspondence” theorem or of a
“natural reduction” theorem, in the following sense. Suppose A, B, and C are subclasses
of objects from A endowed with functions F : B → A and G : C → A.

In a “natural correspondence” theorem we prove that there exists a bijection H : B → C
such that, for every B ∈ B and C ∈ C which correspond to each other, namely, such
that C = H(B), we have F(B) = G(C). Moreover, we prove the existence of such H by
explicitly exhibiting two maps K : B �→ CB and K′ : C �→ BC which are inverse each
other, namely, such that if C = CB then BC = B, and if B = BC then CB = C.

In a “natural reduction” theorem, we show that for every B ∈ B there exists C ∈ C such
that F(B) = G(C) by explicitly exhibiting a map K : B �→ CB such that F(B) = G(CB)
for every B ∈ B.

In Appendix B, Table 1 lists all maps enumerated by a “K” label, and Table 2 and 3 list
all correspondence and reduction theorems, respectively.

Further mathematical notation and terminology will be explained at the beginning of the
section where it is used the first time.

§2. Groundedness from dependence. In the literature on truth, we can find several
formalisms employed to represent an intuitive notion of dependence and to define a corre-
sponding notion of groundedness. Let us quickly review some of these options.

Herzberger (1970a; 1970b) defines his notion of groundlessness (the negation of ground-
edness) starting with that of domain (function), a function which associates to every sen-
tence φ the set of all sentences φ depends on.

Kripke (1975) defines his own notion of groundedness directly in terms of the least fixed
point of a monotone operator on partial sets of sentences.

Bolander (2002) formalises semantic dependence as a binary relation on the set of all
sentences, and, accordingly, takes groundedness to be well-foundedness.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

108 EDOARDO RIVELLO

Leitgeb (2005) starts with a notion of dependence expressed as a binary relation between
sets of sentences and sentences and derives groundedness in terms of the least fixed point
of the associated monotone operator.

Beringer and Schindler (2016) depict dependence by means of graph mappings, namely,
functions which associate to every sentence a graph, and identify the groundedness of a
sentence with the well-foundedness of the associated graph.

In this part of the article (§2), we study in our abstract setting the formal notions of de-
pendence and groundedness taken from the abovementioned examples, with the exception
of the Kripkean notion of grounding, which will be dealt with in the second part (§3), in
the context of Kripkean valuation systems.

In §2.1, we show that the notions of groundedness defined from notions of dependence
represented by binary relations, domain functions or graph mappings are in a sense all
equivalent to the set-theoretic notion of well-foundedness. In §2.2, we recall from Aczel’s
work that the representations of dependence and groundedness in terms of “sets of rules”
and of monotone operators are equivalent, and we reserve the technical term “grounded-
ness” for these two modes of representations, with the aim, in the subsequent sections,
of contrasting “(formal) groundedness” with “well-foundedness.” This aim will be made
more precise in §2.3, and will be achieved in two steps, in §2.4 for the restricted notion of
“essential-dependence,” and in §2.5 for the general case.

2.1. Binary relations, domain functions and graph mappings. In this section, I will
consider three substantially equivalent ways of representing a notion of dependence be-
tween the elements of a given set: binary relations, domain functions, and graph mappings.

2.1.1. Binary relations. One possible way of formalising an intuitive notion of de-
pendence between elements of A is by means of a binary relation R ⊆ A × A, reading
“(y, x) ∈ R” as something like “y contributes to determining the value of x.” An example
of a notion of dependence represented by a binary relation can be found in Bolander (2002,
p. 45). When a notion of dependence is represented by a binary relation, the natural
candidate as the formal counterpart of the informal notion of “groundedness” is “well-
foundedness.” Let us just recall some fundamentals about the set-theoretic notions of
binary relations and well-foundedness.

Let R ⊆ X × X be any binary relation. The restriction of R to a subset Y ⊆ X, denoted
by R � Y , is the binary relation R ∩ (Y × Y). R is transitive iff (z, y) ∈ R ∧ (y, x) ∈ R ⇒
(z, x) ∈ R, for all x, y, z ∈ X. R∗ denotes the transitive closure of R, namely, the least
transitive binary relation on X which extends R (Lévy, 1979, pp. 59–60). For x ∈ X, we
denote by xR the set of all R-predecessors of x in X, namely, xR = {y ∈ X | (y, x) ∈ R}.

We say that a subset Y of X is R-left-closed1 iff

∀y ∈ Y ∀z ((z, y) ∈ R ⇒ z ∈ Y).

For any R ⊆ A × A and Y ⊆ A, Y is R-left-closed iff Y is R∗-left-closed. The R-closure of
x, denoted by xR is the smallest R-left-closed subset of X containing x as an element. For
any x ∈ A, xR = {x} ∪ xR∗

. For y, x ∈ X, (y ∈ xR ⇒ yR ⊆ xR).
Following Aczel (1977, p. 743), we say that x ∈ X is R-well-founded2 iff there is no

infinite descending R-chain of elements of X starting with x, namely, iff there is no infinite

1 This notion and its related properties are the obvious counterpart of those which in (Lévy, 1979,
pp. 61–62) are formulated in terms of R-right-closure.

2 Actually, this notion is called “R-groundedness” by many authors. We assume the Axiom of
Dependent Choice throughout the article, so that R-groundedness is equivalent to the set-theoretic

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 109

sequence 〈xn | n ∈ ω〉 of elements of X such that (a) (xn+1, xn) ∈ R for every n ∈ ω, and
(b) x0 = x. The well-founded part of X (with respect to R), denoted by W(X, R), is the set
of all R-well-founded elements of X. A binary relation R ⊆ X × X is well-founded on X iff
W(X, R) = X: We abbreviate this notion by Wf(R, X).

2.1.2. Domain functions. A straightforwardly equivalent way of formalising depen-
dence, between the elements of a set A, is by means of a function D : A → P(A). Functions
of this sort are considered, for instance, in Herzberger (1970a, p. 148) and called domain
functions: each domain function D associates to every x ∈ A a subset D(x) ⊆ A which
constitutes the “domain of x,” namely, the set of all elements of A which contribute to
determine the value of x. Given a domain function D : A → P(A), Herzberger (1970b)
defines x ∈ A to be “groundless” iff “x is the first member of some infinite sequence of
[elements], each of which belongs to the domain of its predecessor.”

REMARK 2.1 (Correspondence Theorem I). There exists a one-to-one correspondence
between domain functions D : A → P(A) and binary relations R ⊆ A × A given by the
following maps:3

K1 : D �→ RD, defined by

(y, x) ∈ RD =Df y ∈ D(x),

for every x, y ∈ A, and,
K2 : R �→ DR, defined by

DR(x) =Df xR,

for every x ∈ A.
Moreover, whenever D and R correspond to each other, an element x ∈ A is D-groundless

in Herzberger’s sense iff is not R-well-founded.

The proof of Correspondence Theorem I is straightforward.
2.1.3. Graph mappings. A third way of representing dependence between elements of

A is by means of “graph mappings.”
A (directed) graph on A can be identified with a pair G = (V(G), E(G)) where V(G)

is a subset of A, called the set of all vertices of G, and E(G) is a binary relation on V(G),
i.e., E(G) ⊆ V(G) × V(G), called the set of all edges of G. We write, for short, x ∈ G
for x ∈ V(G) and (y, x) ∈ G for (y, x) ∈ E(G). G∗ denotes the graph (V(G), (E(G))∗). A
graph G is well-founded, iff E(G) is well-founded on V(G): We abbreviate this notion by
Wf(G).

A graph mapping is a map � : x �→ �(x), where x ∈ A and �(x) is a graph on A,
namely, V(�(x)) is a subset of A. We say that an element x ∈ A is �-well-founded iff the
graph �(x) is well-founded.

In what follows we will establish a natural correspondence between the class of all
binary relations on A and the following subclass of the class of all graph mappings on A:

DEFINITION 2.2. We say that a graph mapping � is coherent iff it satisfies the following
conditions:

definition of R-well-foundedness. We rest on this latter terminology in order to avoid confusion
with “groundedness with respect to a monotone operator,” which will be introduced in the next
section.

3 An instance of the map K1 : D �→ RD is in Bolander (2002, p. 45), except that Bolander actually
defines the converse relation of our RD.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

110 EDOARDO RIVELLO

1. x ∈ �(x).

2. y ∈ �(x) ∧ y �= x ⇒ (y, x) ∈ (�(x))∗.

3. ∃z (y, x) ∈ �(z) ⇒ ∀z′ (x ∈ �(z′) ⇒ (y, x) ∈ �(z′)).

PROPOSITION 2.3 (Correspondence Theorem II). There exists a one-to-one correspon-
dence between coherent graph mappings � : x �→ �(x) and binary relations R ⊆ A × A
given by the following maps:

K3 : � �→ R�, defined by

R� =
⋃

{E(�(x)) | x ∈ A},
and

K4 : R �→ �R, defined by

�R(x) = (xR, R�xR),

for every x ∈ A.
Moreover, whenever � and R correspond to each other, an element x ∈ A is R-well-

founded iff is �-well-founded.

Since the proof of Correspondence Theorem II is a bit long but rather uninformative, we
confine it in Appendix A.

An example of the use of graph mappings applied to a notion of dependence is in
Beringer & Schindler (2016, Definition 3, p. 6). Actually, the two authors use an instance
of the map K5 : D �→ �D which associates to each domain function D : A → P(A) a
graph mapping �D defined by

�D(x) = (DV(x), DE(x)),

for every x ∈ A, where (a) DV(x) is the least subset X of A such that x ∈ X and, for every
y ∈ X, D(y) ⊆ X; and4 (b) DE(x) = {(y, z) ∈ DV(x) × DV(x) | y ∈ D(z)}.

The diagram constituted by the maps K1 : D �→ RD, K4 : R �→ �R, and K5 : D �→ �D

commutes,5 in the sense that for every domain function D, �RD = �D, so that we obtain,6

as a corollary of Correspondence Theorems I and II, the following:

COROLLARY 2.4 (Correspondence Theorem III). There exists a one-to-one correspon-
dence between coherent graph mappings � : x �→ �(x) and domain functions D : A →
P(A) given by the following maps:

K5 : D �→ �D.
K6 : � �→ D�, defined by

D�(x) = xE(�(x)),

for every x ∈ A.
Moreover, whenever � and D correspond to each other, an element x ∈ A is D-groundless

iff it is not �-well-founded.

In the light of the correspondence Theorems I–III, in what follows we will loosely
speak of “well-foundedness” to collectively refer to the equivalent notions introduced

4 I only depart from Beringer & Schindler’s notation in that in their article they actually define the
converse relation of our DE(x).

5 Lemma 4.8, proved in Appendix A.
6 A proof of Correspondence Theorem III will be given in Appendix A.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 111

in this section, taking binary relations as our primary representatives for the notions of
dependence and well-foundedness which could be equivalently defined by using either
domain functions or coherent graph mappings.

2.2. Monotone operators and sets of rules. A notion of dependence on a set A can also
be represented either by means of a binary relation 	 between subsets X of A and members
y of A, to be read “y 	-depends on X,” or by means of an operator � : P(A) → P(A)
which assigns to every subset X of A the set �(X) of all members of A which “�-depend
on X.” In this section, we will investigate the relationship between these two modes of
representations, starting with the latter.

2.2.1. Monotone operators. In most cases, the intended interpretation of “y ∈ �(X)”
is that “to know the values assigned to each element in X is sufficient to determine the value
of x.” A desirable property of �, which intuitively follows from its intended interpretation,
is monotonicity, namely, for all X, Y ⊆ A,

X ⊆ Y ⇒ �(X) ⊆ �(Y).

A monotone operator can be seen as an instance of the more general notion of inductive
space recalled in the Introduction: Every monotone operator � on A can be identified
with the inductive space (A,P(A), �). The family P(A) of subsets of A is obviously an
inductive family. Therefore we can use the same notation and terminology introduced for
the inductive spaces also for the monotone operators on A: A subset X ⊆ A is �-sound iff
X ⊆ �(X), for every �-sound subset of A there exists the least fixed point of � above X
denoted by lfp(�, X), lfp(�) denotes the least fixed point of �, etc.

Let us recall here some definitions about monotone operators that will be used later in
the article.

DEFINITION 2.5. We say that a monotone operator � on A is surjective iff for every x ∈ A
there exists X ⊆ A such that x ∈ �(X).

Observe that, from monotonicity, it follows that a monotone operator � on A is surjective
iff A ⊆ �(A).

DEFINITION 2.6. A monotone operator � on A is a closure operator iff � satisfies the
following:

1. Progressivity, i.e., X ⊆ �(X), for every X ⊆ A, and

2. Transitivity, i.e., �(�(X)) ⊆ �(X), for every X ⊆ A.

Observe that, by monotonicity, Transitivity is in fact strengthened to Idempotency:
�(�(X)) = �(X). Moreover, by Progressivity, every closure operator is surjective.

DEFINITION 2.7. We say that a monotone operator � on A

• has the Binary intersection property iff

∀X, Y ⊆ A(�(X) ∩ �(Y) ⊆ �(X ∩ Y)).

• has the Generalised intersection property iff

∀F (∅ �= F ⊆ P(A) ⇒
⋂

{�(X) | X ∈ F} ⊆ �(
⋂

F)).

Observe that, by monotonicity, both inclusions in the last part of the above definitions
are in fact identities: �(X) ∩ �(Y) = �(X ∩ Y) and

⋂{�(X) | X ∈ F} = �(
⋂F).

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

112 EDOARDO RIVELLO

Moreover, the Generalised intersection property obviously implies the Binary intersection
property.

DEFINITION 2.8. Let � : P(A) → P(A) be monotone, and let x in A. We define

• S�(x) = {X ⊆ A | x ∈ �(X)}.
• E�(x) = ⋂

S�(x) if S�(x) �= ∅; otherwise E�(x) = A.

LEMMA 2.9. Let � be a monotone and surjective operator on A. Then, � has the
Generalised intersection property iff every x ∈ A �-depends on E�(x).

Proof. Whenever � is surjective, the family S�(x) = {X ⊆ A | x ∈ �(X)} is not empty,
hence E�(x) = ⋂

S�(x).
In one direction, suppose � has the Generalised intersection property and let x ∈ A. By

definition of S�(x) and by the Generalised intersection property,

x ∈
⋂

{�(X) | X ∈ S�(x)} ⊆ �(
⋂

S�(x)) = �(E�(x)).

In the other direction, assume that x ∈ �(E�(x)) for all x ∈ A. Let F ⊆ P(A) be
nonempty and suppose that x ∈ ⋂{�(X) | X ∈ F}. Hence F ⊆ S�(x). So E�(x) =⋂

S�(x) ⊆ ⋂F . By the assumption and by monotonicity, x ∈ �(E�(x)) ⊆ �(
⋂F). �

When a notion of dependence is represented by a monotone operator, the natural can-
didate as the formal counterpart of the informal notion of “groundedness” is given by the
following

DEFINITION 2.10. Let � : P(A) → P(A) be a monotone operator on A. We say that an
element x ∈ A is �-grounded iff x ∈ lfp(�).

2.2.2. Sets of rules. Given a monotone operator � on A, the relation “x ∈ �(X)” is a
binary relation between subsets of A and elements of A which could be taken to represent
the intuitive notion of dependence as an alternative to the monotone operator � itself.

Aczel (1977, Definition 1.1.1, p. 741) calls any binary relation 	 ⊆ P(A) × A a set of
rules and gives the following definitions. A set of rules 	 on A is monotone iff Y ⊆ X and
(Y, x) ∈ 	 implies (X, x) ∈ 	. A set X ⊆ A is 	-closed iff for every (Y, x) ∈ 	 if Y ⊆ X
then x ∈ X. The set inductively defined by 	 is the set

I() =
⋂

{X ⊆ A | X is 	-closed}.
PROPOSITION 2.11 (Correspondence Theorem IV). (Aczel, 1977, pp. 744–745) There

exists a one-to-one correspondence between monotone sets of rules 	 ⊆ P(A) × A and
monotone operators � : P(A) → P(A) given by the following maps:

K7 : 	 �→ �	, defined by

�	(X) =Df {x ∈ A | (X, x) ∈ 	},
for every X ⊆ A, and

K8 : � �→ 	�, defined by

(X, x) ∈ 	� =Df x ∈ �(X)

for every x ∈ A and X ⊆ A.
Moreover, whenever 	 and � correspond to each other, the set inductively defined by 	

and the least fixed point of � coincide, namely, I() = lfp(�).

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 113

Proof. Let 	 be a monotone set of rules on A and let Y ⊆ X ⊆ A. Let x ∈ �	(Y). By
definition of �	, the rule (Y, x) ∈ 	. Since 	 is monotone (X, x) ∈ 	. Hence x ∈ �	(X).
This shows that whenever 	 is monotone �	 is monotone too.

Conversely, let � be a monotone operator on A, and suppose Y ⊆ X ⊆ A and (Y, x) ∈
	�. By definition of 	�, x ∈ �(Y). Since � is monotone, x ∈ �(X). Hence (X, x) ∈ 	�.
This shows that whenever � is monotone 	� is monotone too.

Let � = �	. Then (X, x) ∈ 	� iff x ∈ �	(x) iff (X, x) ∈ 	. Conversely, let 	 = 	�.
Then x ∈ �	(X) iff (X, x) ∈ 	� iff x ∈ �(X). Hence, the two maps K7 : 	 �→ �	 and
K8 : � �→ 	� are inverse each other, establishing a one-to-one correspondence between
monotone sets of rules on A and monotone operators on A.

The proof that, whenever 	 and � correspond to each other, I() = lfp(�) is given
in Aczel (1977, pp. 744–745): For, just observe that for a monotone set of rules 	, the
monotone operator associated to 	 defined by Aczel at the bottom of page 744 coincides
with our �	. �

The two maps K7 : 	 �→ �	 and K8 : � �→ 	� also witness a one-to-one correspon-
dence between monotone and surjective operators and monotone and surjective (as binary
relations) sets of rules. For, if 	 is surjective as a binary relation then for every x ∈ A
there exists X ⊆ A such that (X, x) ∈ 	. Since x ∈ �	(X), X also witnesses that �	 is
surjective. Conversely, if � is surjective then for every x ∈ A there exists X ⊆ A such that
x ∈ �(X). Since (X, x) ∈ 	�, X also witnesses that 	� is surjective.

When we are merely interested in the set inductively defined by a set of rules we can
confine ourselves to monotone sets of rules only, as established in the following

LEMMA 2.12 (Reduction Theorem I). Let K9 : 	 �→ 	+ be the map between sets of
rules on A defined by

	+ =Df {(X, x) ∈ P(A) × A | ∃Y (Y ⊆ X ∧ (Y, x) ∈)}.
Then

1. 	+ is the monotone closure of 	, namely, the least (under inclusion) monotone set
of rules on A that extends 	.

2. I(+) = I(),

Proof. (1) Let Y ⊆ X and (Y, x) ∈ 	+. By definition, there exists Z ⊆ Y such that
(Z, x) ∈ 	. Since Z ⊆ Y implies Z ⊆ X, (X, x) ∈ 	+, so 	+ is monotone.

Let (X, x) ∈ 	. Since X ⊆ X, (X, x) ∈ 	+, hence 	+ extends 	.
Let 	′ be a monotone set of rules extending 	, and let (X, x) ∈ 	+. By definition,

there exists Z ⊆ X such that (Z, x) ∈ 	 ⊆ 	′. Since 	′ is monotone and Z ⊆ X, also
(X, x) ∈ 	′, hence 	+ ⊆ 	′.

(2) We prove that, for every Y ⊆ A, Y is 	-closed iff is 	+-closed, hence I() = I(+)
will follow from the definition of “set inductively defined from a set of rules.” In one
direction, assume that Y is 	-closed and let (X, x) ∈ 	+ and X ⊆ Y . By definition, there
exists Z ⊆ X such that (Z, x) ∈ 	. Since Z ⊆ Y and Y is 	-closed, it follows x ∈ Y . In the
other direction, assume that Y is 	+-closed and let (X, x) ∈ 	 and X ⊆ Y . Since 	 ⊆ 	+,
(X, x) ∈ 	+, so x ∈ Y . �

In the light of Correspondence Theorem IV, in what follows we will loosely speak of
“groundedness” to collectively refer to the equivalent notions introduced in this section,
taking monotone operators as our primary representatives for the notions of dependence
and groundedness which could be equivalently defined by using monotone sets of rules.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

114 EDOARDO RIVELLO

An example of a notion of dependence equivalently represented as a monotone set of
rules and as a monotone operator is Leitgeb’s notion of semantic dependence in Leitgeb
(2005, p. 161 and p. 166). This is an instance of a general method of defining a notion of
dependence from a system of functions: we will see several cases of application of this
method in the second part (§3) of the article.

2.3. Groundedness and well-foundedness. In the previous sections, we have intro-
duced two notions of “groundedness” for the elements of A: one expressed in terms of well-
foundedness with respect to a binary relation R representing dependence (or, equivalently,
in terms of well-foundedness with respect to a domain function or to a coherent graph
mapping), and the other expressed in terms of the least fixed point of a monotone operator
� (or, equivalently, in terms of the set inductively defined by a monotone set of rules). Let
us use the term groundedness, properly, only for this latter notion.

The general question we want to address concerns the possibility of representing ground-
edness in terms of well-foundedness and the other way round, in a uniform way. More
precisely, we have two distinct goals: first, we look for a suitable subclass of mono-
tone operators (called essential-dependence operators) for which it will be possible to
define a one-to-one correspondence with the set of all binary relations on A such that,
whenever one operator and one relation correspond to each other, groundedness defined
in terms of the former correspond to well-foundedness defined in terms of the latter;
second, we will consider a class of families of binary relations on A (called saturated
families), and a suitable notion of well-foundedness with respect to these families, such
that we will able to define a one-to-one correspondence with the class of all monotone
operators on A and establish the expected correspondence between groundedness and well-
foundedness.

I will elaborate on the first goal in §2.4, and on the second in §2.5. In this section, I
will make some preliminary considerations about mapping binary relations and monotone
operators on A, starting with recalling a related result on binary relations and sets of rules
which we will refer to in the following as Aczel’s theorem:7

PROPOSITION 2.13 (Aczel’s theorem). (Aczel, 1977, Prop. 1.2.1, p. 743) Let K10 :
R �→ 	R be the map between binary relations and sets of rules on A defined by

(X, x) ∈ 	R ⇔ X = xR,

for every x ∈ A and X ⊆ A. Then

W(A, R) = I(R).

COROLLARY 2.14. Let K11 : R �→ �R be the map between binary relations and
monotone operators on A defined by

�R(X) =Df {x ∈ A | xR ⊆ X},
for every X ∈ A. Then

lfp(�R) = W(A, R).

Proof. If Y ⊆ X then xR ⊆ Y implies xR ⊆ X, hence �R is monotone. For every X ⊆ A,

�R(X) = {x ∈ A | xR ⊆ X} = {x ∈ A | (X, x) ∈ (R)+} = K7((R)+)(X).

7 As Aczel himself noticed, this result need the Axiom of Dependent Choices.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 115

Hence, the map K11 : R �→ �R is the composition of the maps K10 : R �→ 	R, K9 : 	 �→
	+, and K7 : 	 �→ �	. Therefore, by Correspondence Theorem IV, Reduction Theorem
I, and Aczel’s theorem,

lfp(�R) = I((R)+) = I(R) = W(A, R). �
Corollary 2.14 establishes a correspondence from binary relations to monotone op-

erators on A which preserves the correspondence between R-well-foundedness and �-
groundedness. However, we will see in the next section that not all monotone operators
on A are of the form �R for some R ⊆ A × A.

In the other direction, in the literature on truth we can find two different ways of associ-
ating a binary relation to a monotone operator.

The first way is witnessed in Bolander (2002, p. 45). Bolander defines the set of all
D�-predecessors of x as follows:

D�(x) =
{

least X ∈ S�(x) if such an X does exist.

∅ otherwise.

As remarked in Correspondence Theorem I, Bolander’s definition gives us the binary
relation RBol

� = K1(D�) defined by

(y, x) ∈ RBol
� =Df y ∈ D�(x).

The second way of associating a binary relation to a monotone operator is witnessed in
Yablo (1982, no. 16, p. 136). The relation RYab

� is defined as follows:

(y, x) ∈ RYab
� =Df ∃X ⊆ A (y ∈ X ∧ x ∈ �(X) ∧ x /∈ �(X − {y})).

It follows immediately from the definitions that RBol
� ⊆ RYab

� ; hence, every infinite
descending RBol

� -chain of elements of A starting with x (witnessing that x is not RBol
� -

well-founded) is also an infinite descending RYab
� -chain witnessing that x is not RYab

� -well-
founded. Hence W(A, RYab

�) ⊆ W(A, RBol
�).

For every monotone operator �, lfp(�) ⊆ W(A, RBol
�).8 For his operator of seman-

tic dependence, Leitgeb (2005, Example 15, pp. 164–165) provides an example of a �-
ungrounded element x of A for which the set D�(x) is empty, showing that in this case the
inclusion lfp(�) ⊂ W(A, RBol

�) is proper.

LEMMA 2.15. Let � be a monotone operator on A having the Binary intersection
property. Then

lfp(�) ⊆ W(A, RYab
�).

Proof. Let R = RYab
� . Mimicking the proof of (Leitgeb, 2005, Lemma 13, p. 169), we

will prove the contrapositive: If x ∈ A is not R-well-founded then x /∈ lfp(�). Assume
that s ∈ ωA is an infinite descending R-chain of elements of A starting with s(0) = x and
suppose, towards a contradiction, x ∈ lfp(�).

CLAIM. s(n) ∈ lfp(�), for every n ∈ ω.

Proof of the Claim. By induction on n. Let n = k+1. By the inductive hypothesis, s(k) ∈
lfp(�). Let 〈�α | α ∈ On〉 be the transfinite iteration of � starting with the empty set, and

8 For a proof, the reader can check that the proof of the analogous statement (Leitgeb, 2005, Lemma
13, p. 169) about Leitgeb’s operator of semantic dependence actually works for any monotone
operator � and binary relation RBol

� defined as above.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

116 EDOARDO RIVELLO

let α = β + 1 be the rank of s(k). Hence s(k) ∈ �β+1 = �(�β). Since (s(k + 1), s(k)) ∈
RYab

� , there exists Y ⊆ A such that s(k+1) ∈ Y , s(k) ∈ �(Y), and s(k) /∈ �(Y −{s(k+1)}).
By the Binary intersection property, s(k) ∈ �(�β)∩�(Y) ⊆ �(�β ∩Y). Suppose, towards
a contradiction, s(k + 1) /∈ �β . Hence �β ∩ Y ⊆ Y − {s(k + 1)} and, by monotonicity of
�, s(k) ∈ �(Y − {s(k + 1)}): Contradiction. Thus s(k + 1) ∈ �β ⊆ lfp(�). �

By the claim, we can define a sequence of ordinals 〈αn | n ∈ ω〉 as follows: αn is the rank
of s(n) for every n ∈ ω. The proof of the claim shows, by induction on n, that if αn = β +1
is the rank of s(n) then s(n + 1) ∈ �β , hence its rank αn+1 is strictly lesser than αn. It
follows αn+1 < αn for every n ∈ ω, contradicting the fact that every set of ordinals is
well-ordered. Therefore, x /∈ lfp(�). �

We can show9 that Leitgeb’s operator of semantic dependence provides an example of a
monotone operator � having the Binary intersection property, yet for which all inclusions
lfp(�) ⊂ W(A, RYab

�) ⊂ W(A, RBol
�) are proper.

2.4. Aczel’s theorem and essential-dependence. In this section, we will prove a cor-
respondence theorem linking all binary relations on A with the subclass of monotone
operators on A given by the following

DEFINITION 2.16. A monotone operator � on A is an essential-dependence operator iff �
satisfies Surjectivity and the Generalised intersection property.

Observe that, by Lemma 2.9, whenever � is an essential-dependence operator,

S�(x) = {X ⊆ A | E�(x) ⊆ X},
for every x ∈ A.

LEMMA 2.17. If � is an essential-dependence operator, then

RYab
� = RBol

� .

.

Proof. We already remarked that RBol
� ⊆ RYab

� holds for every monotone operator �. It
remains to show that, whenever � is an essential-dependence operator, RYab

� ⊆ RBol
� holds

too.
Assume (y, x) ∈ RYab

� , namely, there exists Y ⊆ A such that y ∈ Y , x ∈ �(Y),
and x /∈ �(Y − {y}). As remarked above, S�(x) = {X ⊆ A | E�(x) ⊆ X}, hence
E�(x) ⊆ Y . Suppose, towards a contradiction, y /∈ E�(x). Hence E�(x) ⊆ Y −{y} and, by
monotonicity, x ∈ �(E�(x)) implies x ∈ �(Y −{y}): Contradiction. Therefore, y ∈ E�(x).
Since E�(x) is least in S�(x), by definition of RBol

� , (y, x) ∈ RBol
� . �

In the light of Lemma 2.17, let us denote by K12 : � �→ R� the map that, when � is
an essential-dependence operator, can equivalently be defined either by R� = RBol

� or by
R� = RYab

� .
We are now ready to state the main proposition of this section:

PROPOSITION 2.18 (Correspondence Theorem V). There exists a one-to-one corre-
spondence between binary relations R ⊆ A × A and essential-dependence operators � :
P(A) → P(A) given by the maps:

9 See Rivello (Forthcoming) for a proof.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 117

K11 : R �→ �R, and
K12 : � �→ R�.
Moreover, whenever R and � correspond to each other,

W(A, R) = lfp(�).

To prove Correspondence Theorem V we will first prove two related Correspondence
theorems about binary relations and sets of rules.

DEFINITION 2.19. (Aczel, 1977, Definition 1.2.2, p. 744) A set of rules 	 is deterministic
iff 	 is injective as a binary relation between P(A) and A.

Observe that, whenever 	 is both surjective and deterministic, the converse relation of
	 is the domain function D	 : A → P(A) which associates to each x ∈ A the unique
subset X of A such that (X, x) ∈ 	. We denote by K13 : 	 �→ D	 the bijection between
the surjective and deterministic sets of rules and their converse relations.

LEMMA 2.20 (Correspondence Theorem VI). There exists a one-to-one correspondence
between binary relations R ⊆ A × A and surjective and deterministic sets of rules 	 ⊆
P(A) × A given by the following maps:

K10 : R �→ 	R, where

(X, x) ∈ 	R =Df X = xR

for every x ∈ A and X ⊆ A, and
K14 : 	 �→ R	, where (Aczel, 1977, p. 744)

(y, x) ∈ R	 =Df ∃X ⊆ A (y ∈ X ∧ (X, x) ∈).

Moreover, whenever 	 and R correspond to each other,

I() = W(A, R).

Proof. We already know by Aczel’s theorem (Proposition 2.13) that whenever R and 	
correspond to each other in the map K10 : R �→ 	R, I() = W(A, R). So it only remains
to prove that the two maps K10 and K14 are inverse bijections between the set of all binary
relations on A and the set of all surjective and deterministic sets of rules on A.

We observed above that the map K13 : 	 �→ D	 is a bijection between surjective
and deterministic sets of rules and domain functions on A. The map K14 is clearly the
composition of the bijection K13 : 	 �→ D	 with the bijection K1 : D �→ RD, hence K14
is a bijection between surjective and deterministic sets of rules and binary relations on A.

Let R = R	. Then (X, x) ∈ 	R iff X = xR	 iff X = D	(x) iff (X, x) ∈ 	. Hence, the
map K10 : R �→ 	R is the inverse map of K14 : 	 �→ R	. �

DEFINITION 2.21. A set of rules 	 is essential iff

∀x ∈ A ∃Z ⊆ A ∀X ⊆ A ((X, x) ∈ 	 ⇔ Z ⊆ X).

Observe that an essential set of rules is both monotonic and surjective. Furthermore, for
each x ∈ A, the witnessing Z is unique and is given by

E	(x) =
⋂

{X ⊆ A | (X, x) ∈ 	}.
For, by definition Z ⊆ E	(x). Conversely, since Z ⊆ Z implies (Z, x) ∈ 	, E	(x) ⊆ Z.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

118 EDOARDO RIVELLO

LEMMA 2.22 (Correspondence Theorem VII). There exists a one-to-one correspon-
dence between surjective and deterministic sets of rules and essential sets of rules on A
given by the following maps:

K9 : 	 �→ 	+ (defined in Lemma 2.12), and
K15 : 	 �→ 	−, where 	 is essential and

	− = {(E	(x), x) | x ∈ A}.
Moreover, if 	 is surjective and deterministic, 	′ is essential and 	, 	′ correspond to

each other,

I(′) = I().

Proof. We show that whenever 	 is surjective and deterministic, 	+ is essential. Let
x ∈ A. Since 	 is surjective and deterministic there exists a unique Z ⊆ A such that
(Z, x) ∈ 	, the set Z = D	(x). Let X ⊆ A. If (X, x) ∈ 	+ then there exists Y ⊆ A
such that (Y, x) ∈ 	 and Y ⊆ X. Hence, Z = Y ⊆ X. Conversely, if Z ⊆ X then, by
monotonicity of 	+, (X, x) ∈ 	+. Therefore, 	+ is essential.

On the other hand, for an essential 	 the set of rules 	− is precisely defined as the con-
verse relation of the domain function x �→ E	(x), so is both surjective and deterministic
(injective).

Let 	 be surjective and deterministic. Then,

E	+(x) =
⋂

{Y ⊆ A | (Y, x) ∈ 	+} =
⋂

{Y ⊆ A | ∃Z (Z ⊆ Y ∧ (Z, x) ∈)} =⋂
{Y ⊆ A | D	(x) ⊆ Y} = D	(x).

Therefore, (X, x) ∈ (+)− iff X = E	+(x) = D	(x) iff (X, x) ∈ 	.
Conversely, let 	 be essential. Then (X, x) ∈ (−)+ iff ∃Y (Y ⊆ X ∧ (Y, x) ∈ 	−) iff

E	(x) ⊆ X iff (X, x) ∈ 	.
Hence, the two maps K9 : 	 �→ 	+ and K15 : 	 �→ 	− are inverse each other,

when restricted to surjective and deterministic sets of rules and to essential sets of rules,
respectively.

Finally, whenever 	 and 	′ correspond to each other, 	′ = 	+, hence I(′) = I() by
Reduction Theorem I. �

Proof of Correspondence Theorem V (Proposition 2.18).
CLAIM. The two maps K7 : 	 �→ �	 and K8 : � �→ 	� also witness a one-to-one

correspondence between essential sets of rules and essential-dependence operators.

Proof of the Claim. In one direction, let � be an essential-dependence operator and let
	 = 	�. By Lemma 2.9, for every x ∈ A and X ⊆ A,

(X, x) ∈ 	� ⇔ x ∈ �(X) ⇔ E�(x) ⊆ X.

Hence 	� is essential. In the other direction, let 	 be essential and let � = �	. Any
essential set of rules is monotone and surjective, and we already observed in §2.1 that
whenever 	 is monotone and surjective �	 is monotone and surjective too. So we only
have to check that � satisfies the Generalised intersection property. By Lemma 2.9, this is
equivalent to checking that every x ∈ A belongs to �(E�(x)). For, observe that

E�(x) =
⋂

S�(x) =
⋂

{X ⊆ A | x ∈ �	(X)} =
⋂

{X ⊆ A | (X, x) ∈ 	} =⋂
{X ⊆ A | E	 ⊆ X} = E	(x).

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 119

Hence, x ∈ �(E�(x)) iff (E	(x), x) ∈ 	, which is true for every x ∈ A. Hence, �	

satisfies the Generalised intersection property. �
Let X be any subset of A.

�(R)+(X) = {x ∈ A | (X, x) ∈ (R)+} = {x ∈ A | ∃Y ⊆ X (Y, x) ∈ 	R} =
{x ∈ A | ∃Y ⊆ X (Y = xR)} = {x ∈ A | xR ⊆ X} = �R(X).

Hence, the map K11 : R �→ �R can be constructed as the composition of the bijections
K10 : R �→ 	R, K9 : 	R �→ (R)+, and K7 : (R)+ �→ �(R)+ . Therefore, the
map K11 : R �→ �R is a bijection between binary relations and essential-dependence
operators.

Let � = �R. By Lemma 2.17,

(y, x) ∈ R� ⇔ y ∈ E�(x) ⇔ y ∈
⋂

{X ⊆ A | x ∈ �R(X)} ⇔
y ∈

⋂
{X ⊆ A | xR ⊆ X} ⇔ y ∈ xR ⇔ (y, x) ∈ R.

Therefore, the map K12 : � �→ R� is the inverse map of K11 : R �→ �R.
Finally, from Aczel’s theorem, Reduction Theorem I, and Correspondence Theorem IV

it follows

W(A, R) = I(R) = I((R)+) = lfp(�R). �

2.5. Yablo’s theorem and saturated families of binary relations. Correspondence The-
orem V establishes that every binary relation can be represented by a unique monotone
operator in such a way that the well-founded part of the relation coincides with the least
fixed point of the operator.

The particular correspondence established by Correspondence Theorem V
represents binary relations by essential-dependence operators. However, not all mono-
tone operators are essential-dependence operators: For instance, the operator defined in
(Leitgeb, 2005, p. 166) provides an example of a monotone and surjective operator
that satisfies the Binary intersection property but not the Generalised intersection prop-
erty. Hence, we cannot use the converse of the map K11 : R �→ �R to represent every
monotone operator by a binary relation preserving the identity of groundedness and well-
foundedness.

A technique for representing �-groundedness in terms of R-well-foundedness which
works in the general case of � monotone on A (and even in more general situations) is
offered by Yablo’s analysis of Kripke’s notion of groundedness in Yablo (1982).

Yablo deals with groundedness and well-foundedness, considered in an abstract setting,
in the first part of his article, where he formalises the “inheritance” aspects of groundedness
(with respect to a monotone operator) in terms of the generation of its least fixed point,
and the “dependence” aspect of the same intuitive notion of groundedness in terms of
well-foundedness with respect to a suitable family of binary relations associated with
the monotone operator (I recall that in the present article we chose to reserve the term
“groundedness” to refer to the least fixed point construction only).

Let us briefly recall Yablo’s theorem, reformulated in our current notation.
Let (A,X , J) be any inductive space with universe A. For each x ∈ A, define SJ(x) =

{X ∈ X | x ∈ J(X)}. To each element X of X , Yablo (1982, Definition 5, p. 121) associates a

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

120 EDOARDO RIVELLO

family RJ,X of binary relations on A (called X-dependence relations) defined as follows:10

R ∈ RJ,X iff R ⊆ A × A and satisfies the following condition for every x ∈ A:

• If x ∈ X then xR = ∅.
• If x /∈ X and SJ(x) �= ∅ then xR ∈ SJ(x).
• If x /∈ X and SJ(x) = ∅ then xR = {x}.

To establish the required correspondence between groundedness and well-foundedness,
we need a reasonable notion of “well-foundedness” with respect to a family of binary
relations, still due to Yablo:

DEFINITION 2.23. (Yablo, 1982, p. 122)11 Let R be a family of binary relations on A and
let x ∈ A. We say that x is R-well-founded iff there exists R ∈ R such that x is R-well-
founded.

The well-founded part of A with respect to R, denoted by W(A,R) is the set of all
R-well-founded elements of A.

Clearly, for any family R of binary relations on A, W(A,R) = ⋃{W(A, R) | R ∈ R}.
PROPOSITION 2.24 (Yablo’s theorem). (Yablo, 1982, p. 126) Let (A,X , �) be an in-

ductive space and let X be a J-sound element of X . Then

lfp(J, X) = W(A,RJ,X).

We already observed in §2.2 that any monotone operator � on A can be identified with
the inductive space (A,P(A), �). By applying Yablo’s theorem to the special case X = ∅
(which is �-sound for any �) we obtain

lfp(�) = lfp(�, ∅) = W(A,R�,∅).

Write R� for R�,∅. Then the map K16 : � �→ R� is a map from the class of all
monotone operators on A into the class of all families of binary relations on A, and the last
equation provides, for every monotone operator � on A, a representation of its least fixed
point as the well-founded part of the corresponding family R�. To turn Yablo’s theorem
in a Correspondence theorem in our sense, we need to define:

• A subclass B of the class of all monotone operators on A.
• A subclass C of the class of all families of binary relations on A.
• A function K : C → B

such that, whenever K16 : � �→ R� is restricted to B, its image is exactly C and K16 and
K are inverse each other, so witnessing a bijection between B and C which preserves, by
Yablo’s theorem, the identity of �-groundedness and R�-well-foundedness.

The subclass of monotone operators on A will be the class of all monotone and sur-
jective operators on A. Observe that, for a surjective monotone operator (A,P(A), �), the
definition of the map K16 : � �→ R� can be simplified in:

R ∈ R� =Df ∀x ∈ A (x ∈ �(xR)).

Moreover, � surjective implies that R� is not empty, since the trivial relation A×A belongs
to R�.

10 I only depart from Yablo’s definition in that each Yablo’s X-dependence relation is actually the
converse relation of a member of our RJ,X .

11 Actually, Yablo uses “R-grounded” for our “R-well-founded.”

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 121

The corresponding subclass of families of binary relations on A will be proved to be the
class of all families which are “saturated” according to the following

DEFINITION 2.25. Let R,Q be two families of binary relations on A. We write R � Q iff

R ⊆ Q ∧ ∀Q ∈ Q ∀x ∈ A ∃R ∈ R (xR ⊆ xQ).

We say that a family R is saturated iff R is nonempty and �-maximal, namely, for all
families Q:

R � Q ⇒ R = Q.

Finally, let K17 : R �→ �R be the map between families of binary relations on A and
operators on A defined as follows:

�R(X) =Df {x ∈ A | ∃R ∈ R (xR ⊆ X)},
for every X ⊆ A.

THEOREM 2.26 (Correspondence Theorem VIII). There exists a one-to-one correspon-
dence between saturated families of binary relations on A and surjective monotone opera-
tors on A given by the maps:

K16 : � �→ R�, and
K17 : R �→ �R.
Moreover, whenever R and � correspond to each other,

W(A,R) = lfp(�).

Proof. CLAIM I. For every surjective monotone operator �, R� is saturated.

Proof of Claim I. Let Q be a family such that R� � Q, and let Q ∈ Q and x ∈ A.
By definition of �, there exists R ∈ R� such that xR ⊆ xQ. By definition of R� and by
monotonicity of �, x ∈ �(xR) ⊆ �(xQ), so Q ∈ R�. �

CLAIM II. For every family R, �R is monotone and surjective.

Proof of Claim II. For monotonicity, let Y ⊆ X and let x ∈ �R(Y). Hence there exists
R ∈ R such that xR ⊆ Y ⊆ X, so x ∈ �R(X).

For surjectivity, let x ∈ A. Pick any R ∈ R. Since xR ⊆ xR it follows that
x ∈ �R(xR). �

CLAIM III. Let � = �R. Then R ⊆ R�. Moreover, if R is saturated then R = R�.

Proof of Claim III. By Claim II, � = �R is monotone and surjective, so R� is well
defined. Let R ∈ R and x ∈ A. Since xR ⊆ xR, x ∈ �R(xR), so R ∈ R�.

Suppose, further, that R is saturated. Since R ⊆ R� and R is �-maximal, it is enough
to show that ∀Q ∈ R� ∀x ∈ A ∃R ∈ R (xR ⊆ xQ), hence R � R�, so R = R�. For,
let Q ∈ R�. By definition of R�, for all x ∈ A, x ∈ �R(xQ). By definition of �R,
�R(xQ) = {y ∈ A | ∃R ∈ R (yR ⊆ xQ)}. Thus, ∃R ∈ R (xR ⊆ xQ). �

CLAIM IV. Let � be monotone and surjective and let R = R�. Then �R = �.

Proof of Claim IV. Let X ⊆ A and x ∈ �R(X). By definition of �R, there exists
R ∈ R� such that xR ⊆ X. By definition of R�, x ∈ �(xR) ⊆ �(X).

Conversely, let x ∈ �(X). Pick any R ∈ R and define R′ as follows: (y, z) ∈ R′ iff
(z = x ∧ y ∈ X) or (z �= x ∧ y ∈ zR). Clearly, R′ ∈ R = R�. Moreover, xR′ = X, hence
x ∈ �R(X). �

Finally, whenever � and R correspond to each other, R = R�, hence W(A,R) =
lfp(�) by Yablo’s theorem. �

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

122 EDOARDO RIVELLO

2.5.1. Reference graphs. An example of characterisation of groundedness in terms of
well-foundedness, which is covered by Correspondence Theorem VIII, is in Beringer &
Schindler (2017). Among other results, Beringer & Schindler (2017, Corollary 3.3, p. 459)
obtain that “a sentence is grounded [in Leitgeb’s sense] iff it has a well-founded reference
graph.”

We can recast Beringer & Schindler’s result in our abstract setting and show that the
characterisation in terms of reference graphs provided by the two authors for the least
fixed point of Leitgeb’s operator actually works for any surjective monotone operator, and
can be obtained as a consequence of Correspondence Theorem VIII.

First, we state the abstract version of Beringer & Schindler’ definition of “reference
graph.”12

DEFINITION 2.27. (Beringer & Schindler, 2017, Definition 2.8, p. 453) Let � be an
operator on A. For each x ∈ A, define a family G�(x) of graphs on A (the “reference
graphs” of x) as follows. For x ∈ A and G a graph on A, G ∈ G�(x) holds iff

1. x ∈ G,

2. ∀y ∈ G (y �= x ⇒ (y, x) ∈ G∗), and

3. ∀y ∈ G (y ∈ �(yE(G))).

Then, the abstract version of Beringer & Schindler’s theorem is:

PROPOSITION 2.28. Let � be a surjective monotone operator on A. Then

lfp(�) = {x ∈ A | ∃G (G ∈ G�(x) ∧ Wf(G))}.
Observe that, given any family R of binary relations on A, we can use the map K4 :

R �→ �R, defined in §2.1, to define, for each x ∈ A, a family GR(x) of graphs on A as
follows:

GR(x) = {�R(x) | R ∈ R}.
To obtain Proposition 2.28 as a corollary of Correspondence Theorem VIII, we only

need the following

LEMMA 2.29. Let � be a surjective monotone operator on A and let R = R�. Then,
for all x ∈ A,

GR(x) = G�(x).

Proof. In one direction, let G ∈ GR(x), hence G = �R(x) for some R ∈ R�, and
check that G verifies Condition 1–3 of Definition 2.27. By Lemma 4.4 (Appendix A), �R

is coherent, so Conditions 1 and 2 are satisfied.
CLAIM. For any relation R ⊆ A × A and for every y ∈ xR, yE(�R(x)) = yR.

Proof of the Claim. By definition, (z, y) ∈ E(�R(x)) iff z ∈ xR ∧ (z, y) ∈ R iff
(z, y) ∈ R, since (z ∈ yR ⇒ zR ⊆ yR).

Since R ∈ R�, by the claim y ∈ �(yR) = �(yE(�R(x))). Hence Condition 3 is
satisfied. �

12 I only depart from Beringer & Schindler definition in that in their article they actually define
the converse graph of our “reference graph.” Moreover, observe that Beringer & Schindler’s two
definitions of “reference graph” in Beringer & Schindler (2016) and in Beringer & Schindler
(2017), are extensionally equivalent.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 123

In the other direction, let G ∈ G�(x) and pick any R ∈ R�. Then define

RG = {(z, y) ∈ A × A | (y ∈ G ∧ (z, y) ∈ G) ∨ (y /∈ G ∧ (z, y) ∈ R)}.
By Condition 3 (of Definition 2.27), ∀y ∈ A (y ∈ �(yRG)). Hence RG ∈ R�. We have
to check that G = �RG = (xRG , RG � xRG). Let y ∈ G and (z, y) ∈ RG. By definition of
RG, (z, y) ∈ G, hence z ∈ G. This shows that V(G) is RG-left closed. By Condition 1,
x ∈ V(G), hence xRG ⊆ V(G). Conversely, let y ∈ xRG and (z, y) ∈ G. Since xRG ⊆ V(G),
y ∈ G. Hence, by definition of RG, (z, y) ∈ RG, so z ∈ xRG . This shows that xRG is E(G)-
left closed. Since x ∈ xRG , xE(G) ⊆ xRG . By Conditions 1 and 2, V(G) ⊆ xE(G). Therefore
V(G) ⊆ xRG . This shows that V(G) = V(�RG). From this, it follows by the definitions of
RG and �RG that E(G) = E(�RG). �

Proof of Proposition 2.28. Let R = R�. By Correspondence Theorem VIII,

lfp(�) = W(A,R) = {x ∈ A | ∃R ∈ R (x ∈ W(A, R))}.
For every x ∈ A, let GR(x) = {�R(x) | R ∈ R}. If G ∈ GR(x) then G = �R(x) for
some R ∈ R. Hence, by Correspondence Theorem II, x ∈ W(A, R) ⇔ Wf(G). Hence
lfp(�) = {x ∈ A | ∃G (G ∈ GR(x) ∧ Wf(G))}. By Lemma 2.29, for every x ∈ A,
GR(x) = G�(x). Therefore, lfp(�) = {x ∈ A | ∃G (G ∈ G�(x) ∧ Wf(G))}. �

2.5.2. Reducing inductive spaces to monotone operators. As noticed above, Yablo’s
theorem has a wider scope than Correspondence Theorem VIII, in that it applies to in-
ductive spaces of the form (A,X , J) for which it is not necessary that X is the power
set of A nor that J is surjective as a monotone operator on X . Yablo’s theorem is also
more informative, since it preserves the identity between the notions of groundedness and
well-foundedness even when their are considered relatively to a J-sound nonempty subset
of A.

Nonetheless, in the remaining of this section we want to show that the class of the
surjective monotone operators and the map K16 : � �→ R� are, in some sense, all we need
to extend Correspondence Theorem VIII to cover the full generality of Yablo’s theorem.

Let us start with extending Correspondence Theorem VIII to handle nonempty �-sound
subsets of A when � : P(A) → P(A) is surjective. Yablo obtains his result by defining a
distinct family R�,X for every subset X ⊆ A. We can uniformly recover each R�,X from
R� = R�,∅ as follows.

DEFINITION 2.30. Let R be any binary relation on A and let X ⊆ A. The truncation of R
at X, denoted by R \ X is the binary relation on A defined by

R \ X = {(y, x) ∈ R | x /∈ X}.
It follows immediately from the definitions that, for � : P(A) → P(A) surjective,

for every X ⊆ A, R�,X = {R \ X | R ∈ R�}. Hence, for surjective monotone operators
on A, we can recast Yablo’s theorem as an extension of Correspondence Theorem VIII as
follows:

COROLLARY 2.31. Let � be a surjective monotone operator on A and let R be a
saturated family of binary relations on A. Whenever � and R correspond to each other in
the maps K16 : � �→ R� and K17 : R �→ �R, for every �-sound X ⊆ A,

lfp(�, X) =
⋃

{W(A, R \ X) | R ∈ R}.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

124 EDOARDO RIVELLO

The next step is to show that, in order to compute lfp(J, X) for all J-sound X ∈ X ,
we can reduce any inductive space (A,X , J) to a surjective and monotone operator �, as
established by the following

THEOREM 2.32 (Reduction Theorem II). Let (A,X , J) be an inductive space on A. Then
there exist a subset A# of A and a surjective monotone operator � : P(A#) → P(A#) such
that

1. P(A#) ∩ X contains all J-sound members of X .

2. � and J agree on the set P(A#) ∩ X .

3. For every J-sound member X of X , X is �-sound and lfp(�, X) = lfp(J, X).

The proof of Reduction Theorem II will follow from two lemmata.
(I) First, we reduce any inductive space (A,X , J) on A to a surjective inductive space on

a subset of A, namely, an inductive space of the form (A#,X #, J′) for which A# ⊆ A and J′
is surjective as a monotone operator on X #, i.e., for every x ∈ A# there exists X ∈ X # such
that x ∈ J′(X).

LEMMA 2.33. Let (A,X , J) be an inductive space. Then there exists a subset A# ⊆ A
and a subfamily X # ⊆ X of subsets of A# such that

1. (A#,X #, J �X #) is a surjective inductive space.

2. X # contains all J-sound elements of X .

Proof.
(1) Define, by transfinite induction, A0 = ∅, Aα+1 = {x ∈ A | ∀X ∈ X (x ∈ J(X) ⇒

X ∩ Aα �= ∅)}, Aδ = ⋃{Aα | α < δ}, for δ limit. (Observe that A1 = {x ∈ A | ∀X ∈ X (x /∈
J(X))}).

CLAIM I. 〈Aα | α ∈ On〉 is a hierarchy, namely, β < α ⇒ Aβ ⊆ Aα .

Proof of Claim I. It is enough to show, by induction on α, that Aα ⊆ Aα+1, for every
α ∈ On. For α = 0, A0 = ∅, so A0 ⊆ A1. Let α = β + 1 and let x ∈ Aβ+1. Hence,
∀X ∈ X (x ∈ J(X) ⇒ X ∩ Aβ �= ∅). By the inductive hypothesis, Aβ ⊆ Aβ+1, so
X ∩ Aβ+1 �= ∅. Thus, x ∈ Aβ+2. Finally, let α be limit. Let x ∈ Aα and X ∈ X be such that
x ∈ J(X). By definition, there exists β < α such that x ∈ Aβ . By the inductive hypothesis,
Aβ ⊆ Aβ+1, so x ∈ Aβ+1. Thus, X ∩ Aβ �= ∅. Since α is limit and β < α, Aβ ⊆ Aα , hence
X ∩ Aα �= ∅. Thus, x ∈ Aα+1. �

Let A∞ = ⋃{Aα | α ∈ On} and define:

• A# = A − A∞.
• X # = {X ∈ X | X ∩ A∞ = ∅}.

CLAIM II. X # is an inductive family of subsets of A#.

Proof of Claim II. Let X ∈ X # and x ∈ X. Since X ∩A∞ = ∅, x /∈ A∞, so x ∈ A#. Hence,
X # is a family of subsets of A#. We check that X # is inductive.

∅ ∈ X # is trivial. Let C ⊆ X # be a chain, and let Z = ⋃ C. Since C ⊆ X # ⊆ X , and
X is inductive, it follows that Z ∈ X . Suppose, towards a contradiction, that there exists
z ∈ Z ∩ A∞. Hence, there exists X ∈ C ⊆ X # such that z ∈ X ∩ A∞: Contradiction. So,
Z ∩ A∞ = ∅, namely, Z ∈ X #. �

CLAIM III. J �X # is a surjective monotone operator from X # to X #.

Proof of Claim III. Monotonicity of J �X # immediately follows from the fact that J is
monotone.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 125

We want to show that ∀X ∈ X # (J(X) ∈ X #). Let X ∈ X #. Suppose, towards a
contradiction, that J(X) ∩ A∞ �= ∅ and let x ∈ J(X) ∩ A∞. Hence, there exists α such
that x ∈ J(X) ∩ Aα . Let α be the first such. Since A0 = ∅, α cannot be zero. Since α is
the first one, it cannot be limit. Let α = β + 1. Then, x ∈ J(X) ⇒ X ∩ Aβ �= ∅. Thus,
X ∩ A∞ �= ∅, namely X /∈ X #: Contradiction.

Finally, surjectivity means that ∀x ∈ A ∃X ∈ X # (x ∈ J(X)). Let x ∈ A and suppose,
towards a contradiction, that ∀X ∈ X # (x /∈ J(X) or, equivalently, that ∀X ∈ X (x ∈
J(X) ⇒ X ∩ A∞ �= ∅). By the definition of A∞ and by first-order logic, this is equivalent
to saying that ∀X ∈ X ∃α (x ∈ J(X) ⇒ X ∩ Aα �= ∅). Let αX = min{α ∈ On | x ∈
J(X) ⇒ X ∩ Aα �= ∅}, and let α = sup{αX | X ∈ X }. It follows that ∀X ∈ X (x ∈
�(X) ⇒ X ∩ Aα �= ∅). For, let X ∈ X be such that x ∈ J(X). By definition, X ∩ AαX �= ∅.
Since αX ≤ α ⇒ AαX ⊆ Aα , we have that X ∩ Aα �= ∅. Therefore, x ∈ Aα+1 ⊆ A∞:
Contradiction. Thus, ∃X ∈ X (x ∈ J(X) ∧ X ∩ A∞ = ∅), namely, ∃X ∈ X # (x ∈ J(X)). �

CLAIM IV. A# = ⋃X #.

Proof of Claim IV. By Claim II, X # is a family of subsets of A#, so
⋃X # ⊆ A#.

Conversely, let x ∈ A#. By Claim III, there exists X ∈ X # such that x ∈ J(X). By Claim III
again, J(X) ∈ X #. Thus, x ∈ ⋃X #. �

Claims I–III show that (A#,X #, J �X #) is a surjective inductive space.
(2) Let X ∈ X be J-sound, i.e., X ⊆ J(X). We will show, by transfinite induction, that

X ∩ Aα = ∅ for every α ∈ On. In particular, X ∩ A∞ = ∅, so it will follow that X ∈ X #.
If α = 0, then A0 = ∅, so X ∩ ∅ = ∅. Let α = β + 1. Suppose, towards a contradiction,
that x ∈ X ∩ Aα . By the hypothesis, x ∈ X implies x ∈ J(X). On the other hand, x ∈ Aβ+1
and x ∈ J(X) implies X ∩ Aβ �= ∅. However, by the inductive hypothesis, X ∩ Aβ = ∅:
Contradiction. If α is limit, by the inductive hypothesis X ∩ Aβ = ∅ for all β < α, hence
X ∩ Aα = X ∩ ⋃{Aβ | β < α} = ∅. �

(II) Secondly, we reduce any surjective inductive space to a surjective monotone
operator.

LEMMA 2.34. Let (U, P, J) be a surjective inductive space. Then there exists a surjec-
tive monotone operator � : P(U) → P(U) such that ��P = J.

Proof. Define, for every S ⊆ U:

�(S) =
⋃

{J(S′) | S′ ⊆ S ∧ S′ ∈ P}.
It is immediate to see that � is monotone for every J and that � is surjective whenever J
is. Moreover, for S ∈ P, �(S) = J(S), by the monotonicity of �. �

Proof of Reduction Theorem II. Let (A,X , J) be an inductive space on A. By applying
Lemma 2.33 we obtain a surjective inductive space (A#,X #, J �X #) such that X # contains
all J-sound members of X . By applying Lemma 2.34 to the inductive space (A#,X #, J �
X #) we obtain a surjective monotone operator � on A# such that � � X # = J � X #. By
the proof of Lemma 2.33, A# = A − A∞ and X # = {X ∈ X | X ∩ A∞ = ∅}. Hence
X ∈ P(A#) ∩ X implies X ∩ A∞ = ∅, so X ∈ X #. By Lemma 2.33, X # ⊆ P(A)# ∩ X , so
X # = P(A#) ∩X . Therefore, P(A#) ∩X contains all J-sound members of X and � and J
agree on P(A#) ∩ X .

Finally, by transfinite induction, we can show that for each J-sound member X of X the
transfinite iterations �X

α and JX
α built from X applying � and J, respectively, coincide. So

lfp(�, X) = �X∞ = JX∞ = lfp(J, X). �

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

126 EDOARDO RIVELLO

Combining Yablo’s theorem with Correspondence Theorem VIII and Reduction
Theorem II, we get the following representation of J-groundedness in terms of R-well-
foundedness for generic inductive spaces:

COROLLARY 2.35. Let (A,X , J) be an inductive space, let � be the surjective mono-
tone operator on A# ⊆ A given by Reduction Theorem II and let R be the saturated family
of binary relations on A# given by the map K16 : � �→ R�. Then, for all J-sound X ∈ X ,

lfp(J, X) =
⋃

{W(A#, R \ X) | R ∈ R}.

§3. Dependence from a valuation system. In the first part of the article (§2) we
studied how the notion of “groundedness” can be defined from a given “dependence re-
lation,” and we contrasted different ways of representing dependence in the mathematical
language. In this section, we take monotone operators as our primary representatives of
dependence relations and study different ways of defining monotone operators intended to
represent dependence.

Our goal is to subsume all kinds of definitions of dependence we will deal with under one
umbrella notion of �-dependence (a generalisation of “functional dependence,” as we will
see) and to show that this notion is comprehensive enough to (a) represent all monotone
operators, and (b) capture most definitions of dependence we find in the literature on
semantic theories of truth and beyond.

In this section, I will formalise the notion of �-dependence, and I will prove Reduc-
tion Theorem III, stating that every monotone operator can be seen as the notion of �-
dependence induced by a suitable “valuation system” �. In the subsequent sections, I
will recast in the framework of �-dependence three usual ways of formalising relations
of dependence: Kripkean jump operators, functional dependence, and Leitgeb’s operator
of semantic dependence.

The general notion of dependence I have in mind can be roughly described as fol-
lows. We assume that the “data” (or the “independent variables”) are given by several
assignments of values to a collection of objects, while the “unknown” (or the “dependent
variables”) are represented by the values which are correspondingly assigned to some other
objects. We think that an object y “depends on” a collection of objects X whenever to know
the values of the objects in X under some assignment is sufficient in order to determine
the value of y under the corresponding assignment. This intuition entails that, in order to
define dependence, we first need a given “system of valuation” linking the assignments of
values to the independent variables to the assignments of values to the dependent ones. We
make precise this requirement in the following

DEFINITION 3.1. A valuation system is a triple (F,F ′, �), where both F and F ′ are
nonempty sets of functions and � is an operator � : F → F ′.

We put no constraint either on the domains or on the co-domains of the functions in F
and in F ′. However, it will prove more convenient to assume that domains and co-domains
are subsets of fixed sets that we can reconstruct from F and F ′ as follows. The common
domain of the valuation system (F,F ′, �) is the set A = dom(F ∪F ′) = ⋃{dom(p) | p ∈
F ∪ F ′}. Therefore, every function p ∈ F ∪ F ′ can be thought as a partial function
from A. Further, the common co-domain of the valuation system (F,F ′, �) is the set B =
ran(F ∪ F ′) = ⋃{ran(p) | p ∈ F ∪ F ′}. Then, the union F ∪ F ′ can be seen as a space
of partial functions from A to B, namely, as a subset of the set [A]B (partially ordered by
inclusion) of all partial functions from A to B.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 127

In the subsequent treatment of valuation systems what actually matter is not the full
knowledge of F ′, rather only the image of F under the operator �. Hence the relevant part
of a valuation system can be recovered from its operator alone. For this reason, sometimes
we will sloppy and we denote the valuation system (F,F ′, �) simply by �. We allow in
the definition of valuation system F and F ′ to be the same set of functions, and indeed this
will be the case in most applications.

Let y ∈ A and q ∈ F and suppose we know that y ∈ dom(�(q)). Then we can say that “y
depends on X” iff X ⊆ dom(q) and to know the values of q on the elements of X is enough
to determine the value of �(q) at y. This leads to our official definition of dependence that
we will state after introducing some convenient notation: Let X ⊆ A, q, q′ ∈ F , and y ∈ A.
We write

q ≡X q′

as short for “X ⊆ dom(q) ∩ dom(q′) ∧ q�X = q′ �X, ” and

�(q)(y) ≡ �(q′)(y)

as short for “y ∈ dom(�(q)) ∩ dom(�(q′)) ∧ �(q)(y) = �(q′)(y).”

DEFINITION 3.2. Let (F,F ′, �) be a valuation system and let A = dom(F ∪ F ′). Let
X ⊆ A and y ∈ A. We say that y �-depends on X iff

∀q, q′ ∈ F (q ≡X q′ ⇒ �(q)(y) ≡ �(q′)(y)).

Observe that if y �-depends on X then for every q ∈ F if X ⊆ dom(q) then y ∈
dom(�(q)).

The claim that Definition 3.2 captures the intuitive idea of a “functional” notion of
dependence is supported by our first proposition that provides an alternative equivalent
way of defining �-dependence:

PROPOSITION 3.3. Let (F,F ′, �) be a valuation system and let A = dom(F ∪F ′) and
B = ran(F ∪ F ′). Let X ⊆ A and y ∈ A. Then the following are equivalent:

1. y �-depends on X.

2. There exists a function
 : XB → B such that, for every q ∈ F , if X ⊆ dom(q) then
y ∈ dom(�(q)) and

�(q)(y) =
(q�X). (*)

Proof. In one direction, suppose that y �-depends on X. Let p ∈ XB. If there exists
q ∈ F such that p ⊆ q and y ∈ dom(�(q)), define
(p) = �(q)(y); otherwise, let

(p) = b, where b is an arbitrary element of B.
 is well defined. For, if q′ ∈ F is such
that p ⊆ q′, then q ≡X q′. Therefore, since y �-depends on X, �(q′)(y) ≡ �(q)(y). To
check that
 satisfies (*), let q ∈ F and suppose X ⊆ dom(q). Let p = q � X. Hence
p ∈ XB and p ⊆ q, so
(q�X) =
(p) = �(q)(y).

Conversely, suppose
 : XB → B is a function satisfying the condition stated in the
proposition. Let q, q′ ∈ F be such that q ≡X q′. In particular X ⊆ dom(q) ∩ dom(q′), so
y ∈ dom(�(q)) ∩ dom(�(q′)) and �(q)(y) =
(q � X) =
(q′ � X) = �(q′)(y). Hence,
�(q)(y) ≡ �(q′)(y). �

Clearly, the function
 whose existence is granted by Proposition 3.3 is not unique.
However, if we fix one element b ∈ B, as in the proof of Proposition 3.3, then for every
pair (X, y) there exists exactly one function
X,y satisfying the condition stated in the
proposition.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

128 EDOARDO RIVELLO

We think the dependence relation defined by the two equivalent conditions of Propo-
sition 3.3 as a sort of “generalised functional dependence” in that the usual notion of
“functional dependence” is just one special case, as we will see below in §2.4

The following remark allows us to apply to all instances of generalised functional depen-
dence the abstract treatment of dependence and groundedness developed in the first part of
the article:

REMARK 3.4. The operator �� : P(A) → P(A) defined by

��(X) = {y ∈ A | y �-depends on X},
is monotone.

Proof. Let X ⊆ Y ⊆ A, y ∈ ��(X) and let q, q′ ∈ F be such that q ≡Y q′ holds.
Clearly, q =X q′ holds too. Since y �-depends on X, �(q)(y) ≡ �(q′)(y) follows. Hence, y
�-depends on Y . So, y ∈ ��(Y). �

Observe that to get the monotonicity of �� we do not need to assume � itself to be
monotone.

We conclude this section by showing that every monotone operator � : P(A) → P(A)
can be reconstructed as the notion of dependence defined from a suitable valuation system.
For this purpose, we do not even need the full class of valuation systems given by Definition
3.1: a special class of valuation systems, that we call total valuation systems, will be enough
to represent all monotone operators.

DEFINITION 3.5. A valuation system (F,F ′, �) is total whenever F ⊆ AB, namely, F is
a set of total functions on A.

Observe that the operator � of a total valuation system is trivially monotone, because
any two distinct total functions are incomparable. When f , f ′ are total on A, X ⊆ dom(f) ∩
dom(f ′) obviously holds for every subset X of A: In this case, we write f =X f ′ as short for
f �X = f ′ �X.

PROPOSITION 3.6 (Reduction Theorem III). Let � : P(A) → P(A) be a monotone
operator on A. Then, there exists a total valuation system (F,F ′, �) such that dom(F ∪
F ′) = A and

�� = �.

Proof. First,13 we handle the trivial case in which �(∅) = A. By monotonicity of �,
�(∅) = A iff �(X) = A for every X ⊆ A. In this case, take B = {0}, f 0 : A → B be the
constant function whose image is 0 for every x ∈ A, F = F ′ = {f 0} = AB, and �(f 0) = f 0.
Hence, for all X ⊆ A, ��(X) = A = �(X), as required.

If �(∅) �= A, fix an element z0 of A such that z0 /∈ �(∅), and let B = {0, 1}×P(A) × A.
For each (X, y) ∈ P(A) × A define FX,y = {f 0

X,y, f 1
X,y} and GX,y = {g0

X,y, g1
X,y} as follows.

Both f 0
X,y and f 1

X,y are functions from A to B. For every x ∈ A,

f 0
X,y(x) = (0, X, y),

and

13 Our proof will mimic that given by Väänänen (2016, p. 7) for the special case in which � is a
closure operator on A.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 129

f 1
X,y(x) =

{
(0, X, y) if x ∈ X
(1, X, y) otherwise.

Observe that, for X �= A, f 0
X,y and f 1

X,y are distinct.

Next we define a total function g0
X,y ∈ AB and a partial function g1

X,y ∈ [A]B. For every
z ∈ A,

g0
X,y(z) =

{
(0, ∅, z0) if z �= y or z ∈ �(∅)
(0, X, y) otherwise.

and

g1
X,y(z) =

{
(0, ∅, z0) if z �= y or z ∈ �(∅)
undefined otherwise.

Let F = ⋃{FX,y | y /∈ �(X)} and F ′ = ⋃{GX,y | y /∈ �(X)}. By our assumption,
z0 /∈ �(∅), so both F and F ′ are not empty. Moreover, since both f 0

∅,z0
and g0

∅,z0
are total

functions, it follows that dom(F ∪ F ′) = A. Every f ∈ F is of the form f i
X,y (i = 0, 1)

for some index (i, X, y). If X �= A then the index is unique, otherwise there are exactly
two indices such that f = f 0

A,y = f 1
A,y. Every g ∈ G is of the form gi′

X′,y′ for a unique

index (i′, X′, y′). Define � : F → F ′ as follows. For every f = f i
X,y ∈ F , if X = A put

�(f) = g0
A,y, if y ∈ �(A), and �(f) = g1

A,y if y /∈ �(A). If X �= A, put �(f) = gi
X,y. We

want to show that, for every X ⊆ A, ��(X) = �(X).
In one direction, suppose y ∈ �(X) and let f , f ′ ∈ F , f = f i

Y,z, f ′ = f j
Y ′,z′ be such that

f =X f ′. Observe that, for g, g′ ∈ F ′, g(z) = (0, ∅, z0) = g′(z) for every z ∈ A such
that z ∈ �(∅). Hence, if X = ∅ then �(f)(y) = �(f ′)(y) by definition of �. Otherwise,
there exists x ∈ X such that f i

Y,z(x) = f j
Y ′,z′(x), hence it must be Y = Y ′ and z = z′.

If X = A then f = f ′. By the hypothesis, y ∈ �(A) implies that �(f) = g0
A,z is total,

hence �(f)(y) = �(f)(y) holds. If X �= A suppose, without loss of generality, f = f 0
Y,z and

f ′ = f 1
Y,z, hence �(f) = g0

Y,z and �(f ′) = g1
Y,z. Since, for all x ∈ X, f 0

Y,z(x) = f 1
Y,z(x), it

must be X ⊆ Y . By monotonicity of �, y ∈ �(Y). Since f ∈ F , z /∈ �(Y), so y �= z, hence
y ∈ dom(�(f ′)(y)) and �(f)(y) = g0

Y,z(y) = (0, ∅, z0) = g1
Y,z(y) = �(f ′)(y), namely

�(f)(y) = �(f ′)(y). Therefore, y ∈ ��(X).
In the other direction, assume y /∈ �(X). Hence f 1

X,y ∈ F and, whatever is X, �(f 1
X,y) =

g1
X,y. By monotonicity of �, y /∈ �(X) implies y /∈ �(∅), hence g1

X,y is not defined at

y. Thus, we have found a function f = f 1
X,y such that X ⊆ dom(f) but y /∈ dom(�(f)),

witnessing y /∈ ��(X). �
By Remark 3.4 every operator �� induced by a valuation system � is monotone so, by

Reduction Theorem III, for every valuation system � we can find a total valuation system
�′ inducing the same dependence relation as �.

We say that a valuation system (F,F ′, �) is regular iff for every total f ∈ F its image
�(f) ∈ F ′ is total too. The monotone operator �� associated to a total and regular
valuation system is surjective. Moreover, by adapting the proof of Reduction Theorem
III, we can see that every monotone and surjective operator � : P(A) → P(A) can be
reconstructed as the notion of dependence �� induced by a total and regular valuation
system �.

3.1. Kripkean valuation systems. The “jump” operators studied in Kripke (1975) can
be seen as particular cases of valuation systems. Kripke defines several monotone functions
taking as arguments “partial sets,” namely, pairs (X, Y) of disjoint subsets of the set A of all

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

130 EDOARDO RIVELLO

sentences of a suitable first-order language. Disregarding the internal structure of A as a set
of sentences, Kripke’s construction fits our present setting as follows. There is an obvious
one-to-one correspondence between the set of all partial sets on A and the set of all partial
characteristic functions on A, namely, functions of the form p : Z → {t, f}, where Z is a
subset of A and t and f are two distinct objects. For, it suffices to take the map (X, Y) �→
pX,Y , where pX,Y is defined as follows: dom(pX,Y) = X ∪Y , and, for every x ∈ dom(pX,Y),
pX,Y(x) = t if x ∈ X, and pX,Y(x) = f if x ∈ Y . Disjointness of X and Y ensures that pX,Y

is indeed well defined as a partial function from A into {t, f}. Moreover, it is not difficult
to check that (a) the map (X, Y) �→ pX,Y witnesses a one-to-one correspondence between
partial sets and partial characteristic functions, and (b) one partial set (X′, Y ′) extends (in
Kripke’s sense) another partial set (X, Y) iff pX,Y ⊆ pX′,Y ′ . Therefore, we can faithfully
reconstruct in our present setting every jump operator considered by Kripke in his article
as the monotone operator � of a valuation system (F,F ′, �), where F and F ′ are suitable
sets of partial characteristic functions from A.

Kripke considers five monotone jumps, usually denoted14 by the letters μ, κ, σ, σ1, and
σ2. All five Kripkean jumps are examples of the following class of valuation systems:

DEFINITION 3.7. A Kripkean valuation system is a valuation system (F,F ′, �) satisfying

1. F ′ = F .

2. F is an inductive15 family of partial functions from A.

3. � : F → F is monotone.

4. F is downward closed, namely, for all partial functions p, q on A, if q ∈ F and p ⊆ q
then p ∈ F .

5. For all q ∈ F there exists a total f ∈ F such that q ⊆ f .

Condition (1) of Definition 3.7 ensures the iterability of the jump operator �. Conditions
(2) and (3) grant the existence of the least fixed point of �. Observe, further, that a jump
operator � is also an instance of an inductive space,16 and indeed the main application of
inductive spaces in Yablo (1982).

The dependence relation induced on A by a Kripkean valuation system � can be ex-
pressed in terms of the domains (of the assignments in F) only, as shown by the following17

PROPOSITION 3.8. Let (F,F, �) be a Kripkean valuation system. Then the following
are equivalent:

1. y ∈ ��(X).

2. y ∈ ⋂{dom(�(q)) | q ∈ F ∧ X = dom(q)}.
Proof. First, observe that by Condition (5) of Definition 3.7, there exists at least one

total function f in F . By Condition (4), for every X ⊆ A, the function q = f �X belongs to
F , hence the set {dom(�(q)) | q ∈ F ∧ X = dom(q)} is not empty and its intersection is
well defined.

14 See (Kremer, 2009, pp. 365–366 and 369) for definitions of the five jumps.
15 A family F of partial functions is inductive iff the empty function belongs to F and the union of

any increasing (under inclusion) sequence of members of F is also in F .
16 For, consider each element in F as a subset of the set U = A × B, where B = ran(F). Then the

triple (U,F , �) is an inductive space in the sense of Yablo.
17 Actually, Proposition 3.8 has a wider scope, in that the Conditions (1) and (2) of the definition of

“Kripkean valuation system” are not used in the proof.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 131

In one direction, if y ∈ ��(X) we already observed, immediately after Definition 3.2,
that for every q ∈ F if X = dom(q) then y ∈ dom(�(q)).

Conversely, assume that y ∈ ⋂{dom(�(q)) | q ∈ F ∧ X = dom(q)} and let q, q′ ∈ F
be such that q ≡X q′. Let p = q � X = q′ � X. Since F is downward closed, p ∈ F . By
the hypothesis, X = dom(p) implies y ∈ dom(�(p)). Since p ⊆ q, q′, by monotonicity
�(p) ⊆ �(q), �(q′), hence �(q)(y) ≡ �(q′)(y), namely, y ∈ ��(X). �

The kinds of “functionality” captured by the notions of �-dependence associated to (a)
a Kripkean valuation system and (b) a total and regular valuation system, respectively,
are complementary. Proposition 3.3 shows that, whenever y �-depends on X, for every
assignment of values to X of the form q � X for q ∈ F we can prove existence and
uniqueness of a value b for y satisfying �(q)(y) = b, whichever q ∈ F we choose. In
the case of a total and regular valuation system, whenever an assignment of values to
X is given in the form f � X for some total function f ∈ F , the existence of a value
�(f)(x) is already granted by the regularity of �, namely, by the fact that �(f) is total
too, so that y necessarily belongs to its domain. What the notion of �-dependence adds
is the uniqueness of such value, namely, the fact that for every other f ′ ∈ F such that
f ′ � X = f � X the values �(f)(y) and �(f ′)(y) coincide. By contrast, in a Kripkean
valuation system, whenever an assignment of values to X is given in the form q � X for
some q ∈ F , the uniqueness of the value of x is already granted by the downward closure
of F , namely, by the fact that the function p = q �X belongs to F , so that we can directly
apply the operator � to p, i.e., to a partial function whose domain is exactly X. However,
in general, if p is partial so is �(p), and the possibility of applying �(p) to y, namely, the
existence of a value for y, is exactly what the �-dependence of y from X states, as shown by
Proposition 3.8

Actually Kripke (1975) does not define a notion of dependence associated to a jump
operator: Such an investigation is conducted, for instance, in Yablo (1982) and in Bolander
(2002). However, Kripke (1975, p. 706) directly defines a notion of groundedness with
respect to a jump operator �: An element x ∈ A is �-grounded iff x ∈ dom(lfp(�)).

By contrast, observe that for any valuation system (F,F ′, �) we can consider the notion
of �-groundedness (Definition 2.10) as applied to the monotone operator �� , obtaining
that, for every valuation system (F,F, �), an element x ∈ A = dom(F ∪ F ′) is ��-
grounded iff x ∈ dom(lfp(��)).

Therefore, for Kripkean valuation systems we have two notions of groundedness at
work, and we can show that ��-groundedness implies �-groundedness,18 as it results
from the following

THEOREM 3.9. Let (F,F, �) be a Kripkean valuation system. Define an auxiliary jump
operator �aux : F → F by putting, for every q ∈ F ,

�aux(q) = �(q)���(dom(q)).

Then

1. There exists a monotone Galois connection19 between the set of all fixed points of �
and the set of all fixed points of �aux.

18 In general, the converse is not true. See Rivello (Forthcoming).
19 A pair (d, e) of functions d : P → P′ and e : P′ → P between two partially ordered sets (P, �P)

and (P′,�P′) is a monotone Galois connection iff (1) both d and e are monotone maps; and (2)
p �P e(d(p)) and d(e(q)) �P′ q, for every p ∈ P and q ∈ P′.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

132 EDOARDO RIVELLO

2. lfp(�, lfp(�aux)) = lfp(�).

3. lfp(��) = dom(lfp(�aux)) ⊆ dom(lfp(�)).

Proof. First, we check that �aux : F → F is well defined. We already observed
that, for y ∈ ��(X) and q ∈ F , if X ⊆ dom(q) then y ∈ dom(�(q)). In particular,
��(dom(q)) ⊆ dom(�(q)), hence �aux(q) is well defined. Moreover, being F downward
closed, �aux(q) ∈ F .

(1) Monotonicity of � and �� directly implies the monotonicity of �aux. Immediately
from the definition, we have that �aux(q) ⊆ �(q) for every q, hence q is �-sound whenever
q is �aux-sound and �aux(q) ⊆ q whenever �(q) ⊆ q. In particular, lfp(�, q) exists for
every fixed point q of �aux and gfp(�aux, q) exists for every fixed point q of �. Let d :
Fix(�aux) → Fix(�) be defined by d : q �→ lfp(�, q), and let e : Fix(�) → Fix(�aux) be
defined by e : q �→ gfp(�aux, q). Clearly, both d and e are monotone maps. By definition,
e(d(q)) is the greatest fixed point of �aux below d(q): Since q ∈ Fix(�aux) and q ⊆ d(q),
q ⊆ e(d(q)). Dually, d(e(q)) is the least fixed point of � above e(q): since q ∈ Fix(�) and
e(q) ⊆ q, d(e(q)) ⊆ q. Hence (d, e) is a monotone Galois connection between Fix(�aux)
and Fix(�).

(2) Let q̄aux = lfp(�aux) and q̄ = lfp(�). By definition of q̄ and e, q̄aux ⊆ e(q̄) ⊆ q̄. By
definition of q̄aux and d and by (1), q̄ ⊆ d(q̄aux) ⊆ d(e(q̄)) ⊆ q̄. Hence

lfp(�) = q̄ = d(q̄aux) = lfp(�, lfp(�aux)).

(3) By definition of �aux the domain of any fixed point of �aux is also a fixed point of
�� , so lfp(��) ⊆ dom(lfp(�aux)). Let q = lfp(�aux), X = lfp(��), and q′ = q � X.
By definition, �aux(q) = �(q) ���(X) = �(q) �X. Since q′ ⊆ q and �aux is monotone,
�aux(q′) ⊆ �aux(q) = q, hence �aux(q′) = q � X = q′. Since q′ is a fixed point of �aux

it follows that q ⊆ q′, hence q′ = q, so dom(lfp(�aux)) = dom(q′) = X = lfp(��).
Moreover, by (2), dom(lfp(�aux) ⊆ dom(lfp(�)). �

3.2. Functional dependence. The notion of “functional dependence” is ubiquitous in
mathematics, logic, computer science, economics, . . . We refer to Väänänen (2016) for
a comprehensive illustration of variants and applications of this notion. In this section,
we only recall some features that characterise functional dependence as a special case of
�-dependence (Definition 3.2).

Väänänen calls a team any set of functions F on a same domain20 A, and define an
operator ClF on A as follows: for any X ⊆ A,

ClF (X) = {y ∈ A | ∀f , f ′ ∈ F (f �X = f �X′ ⇒ f (y) = f (y′))}.
In our setting, a team F is clearly identifiable with a total valuation system (F,F, �)

in which � is the identity function on F , i.e., for every f ∈ F , �(f) = f . For, since every
f ∈ F is total, f ≡X f ′ is equivalent to f � X = f � X′, and f (y) ≡ f ′(y) is equivalent to
f (y) = f ′(y). Hence our notion of �-dependence and Väänänen’s definition of functional
dependence coincide, i.e., ClF = �� .

With a slight abuse of language we will use the term “team” both for the family F
and for the valuation system (F,F, idF). A team is a total and regular valuation system,
so we already know that ClF is a monotone and surjective operator on A. Actually, as

20 We only drop from Väänänen’s definition of “team” the requirement that the domain A has to be
finite.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 133

Väänänen observes, ClF is a closure operator on A, namely (a) surjectivity is strengthened
in progressivity, i.e., X ⊆ ClF (X), and (b) the operator also satisfies idempotency, i.e.,
ClF (ClF (X)) = ClF (X). Moreover, Väänänen (2016, Theorem 1, p. 7) shows that for
every closure operator � on A there exists a team F such that � = ClF .

The notion of functional dependence, as noticed by Väänänen (2016), traces back to
the work of Grelling and Oppenheim. Grelling’s functional setting can be identified with a
team, in Väänänen’s sense. From a given team, Grelling defines several notions of de-
pendence. Among them, the notion labelled “Equidep” by Grelling shows an intimate
connection with the modern notion of functional dependence. However, at the first glance,
Equidep and ClF are operators on different objects.

Indeed, Grelling (1939, p. 217) insists on the idea that the entities between which we
can predicate a notion of dependence have to be functions: “The analysis . . . leads to the
following statements concerning the logical form of the propositions involved:

1. Anything said to depend upon something else is—or at least can be described as—a
function.

2. What something is said to depend upon is a class generally consisting of several
functions. In special cases this class may have only one element.

3. All the functions involved in the same statement of dependence must have the same
argument, i.e., it must be possible to use the same letter, say ‘z’, as the argument for
all the functions occurring in one formula.”

Grelling describes the notion of functional dependence in the following terms: “(E) If,
for some argument x1, every function belonging to F, i.e., every function upon which f
depends, takes the same values as for the argument x2, then f itself must take equal values
for x1 and x2 as well.” (Grelling, 1939, p. 218). Grelling proposes formalising the notion
expressed by the statement (E) by means of a binary relation Equidep between a function
f and a set of functions H defined on the same arguments. In the present setting

DEFINITION 3.10 (Grelling’s Equidep). Let F be a team and let A = dom(F), f ∈ F and
H ⊆ F . Then

Equidep(f ,H) =Df ∀x, y ∈ A (∀h ∈ H h(x) = h(y) ⇒ f (x) = f (y)).

Actually, it is not so difficult to turn Grelling’s relation Equidep into a relation between
arguments, rather than between functions. There is a sort of intuitive duality between the
fact that the value of a function depends on the values of some other functions and the fact
that the values assigned to some argument depends on the values assigned to some other
arguments, as noticed in (Väänänen, 2016, p. 5).

The duality between Väänänen’s ClF and Grelling’s Equidep can be made explicit as
follows. In a team, the functions are the elements of F while the arguments are the elements
of A = dom(F). We can reverse the roles of function and argument in the pair (F, A) by
associating, to each team F , a team Fd in such a way that Grelling’s notion of Equidep in
F corresponds to Väänänen’s notion of ClFd , and the other way round. Formally, for each
x ∈ A, let Fx denote the function defined by Fx(f) = f (x) for all f ∈ F . Accordingly, for
X ⊆ A let FX = {Fx | x ∈ X}.
DEFINITION 3.11. Let F be a team with domain A. The dual team of F is the team Fd =
FA = {Fx | x ∈ A} with domain F .

PROPOSITION 3.12. Let F be a team with domain A and let Fd be its dual team. Then,
for every X ⊆ A, x ∈ A, H ⊆ F , f ∈ F :

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

134 EDOARDO RIVELLO

1. x ∈ ClF (X) ⇔ Equidep(Fx, FX).

2. Equidep(f ,H) ⇔ f ∈ ClFd(H).

Proof. In one direction, assume x ∈ ClF (X), let f , f ′ ∈ F and suppose that, for all
g ∈ FX , g(f) = g(f ′). Let y ∈ X. By definition, Fy ∈ FX , so f (y) = Fy(f) = Fy(f ′) = f ′(y).
By the arbitrariness of y, this means f =X f ′ thus, by the assumption, Fx(f) = f (x) =
f ′(x) = Fx(f ′).

In the other direction, assume Equidep(Fx, FX) and let f , f ′ ∈ F be such that f =X f ′.
Let g ∈ FX . By definition, g = Fy for some y ∈ X. Hence, g(f) = Fy(f) = f (y) =
f ′(y) = Fy(f ′) = g(f ′). So, by the assumption, f (x) = Fx(f) = Fx(f ′) = f ′(x). Therefore,
x ∈ ClF (X).

(2) In one direction, assume Equidep(f ,H) and let Fy, Fz ∈ Fd be such that Fy =H Fz.
Hence, for all h ∈ H, h(y) = Fy(h) = Fz(h) = h(z). By the assumption, Fy(f) = f (y) =
f (z) = Fz(f). So, f ∈ ClFd(H).

In the other direction, assume f ∈ ClFd(H), let y, z ∈ A and suppose that, for all h ∈ H,
h(y) = h(z). It follows that, for all h ∈ H, Fy(h) = h(y) = h(z) = Fz(h), namely
Fy =H Fz. By the assumption, f (y) = Fy(f) = Fz(f) = f (z). Therefore, Equidep(f ,H)
holds. �

3.3. Leitgeb-style valuation systems. We conclude this section by recasting in our
framework Leitgeb’s notion of dependence.

(Leitgeb, 2005, p. 166) defines a monotone operator21 �L (on the set A of all sentences
of a suitable first-order language) intended to capture an informal notion of semantic de-
pendence. As in the Kripkean case, we can reconstruct Leitgeb’s definition in our abstract
setting, disregarding the internal structure of A. To every subset Y ⊆ A, Leitgeb associates a
function ValY : A → {t, f}, and give the following definition of dependence: For y ∈ A and
X ⊆ A, “y �L-depends on X,” writing y ∈ �L(X), iff for all Y1, Y2 ⊆ A, if Y1 ∩ X = Y2 ∩ X
then ValY1(y) = ValY2(y).

Every subset Y ⊆ A can be identified with its characteristic function, namely with the
function hY : A → {t, f} such that hY(x) = t ⇔ x ∈ Y . Moreover, for every Y ⊆ A,
ValY itself is a characteristic function. Hence we can identify the map Y �→ ValY with an
operator τ : A{t, f} → A{t, f} from the set of all characteristic functions on A into itself.
Finally, if h1 and h2 are the characteristic functions of the subsets Y1, Y2, respectively, then
Y1∩X = Y2∩X holds iff h1 =X h2 holds. Hence, Leitgeb’s operator �L can be equivalently
defined as follows:

y ∈ �L(X) ⇔ ∀h1, h2 ∈ A{t, f} (h1 =X h2 ⇒ τ (h1)(y) = τ (h2)(y)).

Consequently, Leitgeb’s operator of dependence is an example of �-dependence, for �
falling in the following class of valuation systems

DEFINITION 3.13. A Leitgeb-style valuation system is a valuation system (F,F ′, �) such
that F ′ = F = AB, where A = dom(F) and B = ran(F).

Both teams and Leitgeb-style valuation systems are total and regular valuation systems
for which F ′ = F . A special case falling under both classes is that of a valuation system
� of the form (AB, AB, �), where � is the identity on AB. In this case, provided the set of
values B has at least two elements, the induced dependence operator �� is the identity on

21 Leitgeb’s notation is D−1. We use �L to avoid possible confusion with the inverse map of a
domain function D.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 135

P(A), namely, ��(X) = X for every X ⊆ A. Teams are characterised by the condition
� = idF , however they admit a nontrivial dependence operator �� by allowing F to be a
proper subset of AB. By contrast, Leitgeb-style valuation systems are characterised by the
condition F = AB, and admit a nontrivial dependence operator �� by allowing � not to
be the identity idF .

Since a Leitgeb-style valuation system � is total and regular, we already know that ��

is a monotone and surjective operator on A. Moreover, as noticed by Leitgeb for �L, ��

has the Binary intersection property, namely, for all X, Y ⊆ A

��(X) ∩ ��(Y) ⊆ ��(X ∩ Y).

For, let y ∈ ��(X) ∩ ��(Y) and let f , f ′ ∈ AB be such that f =X∩Y f ′. Let g = f �X ∪ f ′ �
A − X. Then g =X f and g =Y f ′ hold, hence f (y) = g(y) = f ′(y), namely, y ∈ ��(X ∩ Y).

In §2.4 we saw that every monotone and surjective operator on A of the form �R for
some binary relation R ⊆ A×A satisfies the Generalised intersection property. The operator
�L originally defined in (Leitgeb, 2005, p. 166) provides an example of a monotone and
surjective operator which satisfies the Binary intersection property but not the Generalised
intersection property.

§4. Appendix A. In this Appendix we will prove Correspondence Theorem II (Propo-
sition 2.3) and Correspondence Theorem III (Corollary 2.4).

4.1. Correspondence Theorem II. There exists a one-to-one correspondence between
coherent graph mappings � : x �→ �(x) and binary relations R ⊆ A × A given by the
following maps:

K3 : � �→ R�, defined by

R� =
⋃

{E(�(x)) | x ∈ A},
and

K4 : R �→ �R, defined by

�R(x) = (xR, R�xR),

for every x ∈ A.
Moreover, whenever � and R correspond to each other, an element x ∈ A is R-well-

founded iff is �-well-founded.
The proof of both statements in Correspondence Theorem II will follow from a series of

lemmata.

LEMMA 4.1. Assume that � satisfies Condition 3 in the Definition 2.2 of coherent graph
mapping. Then for every y, x ∈ A,

∃z ∈ A (y, x) ∈ (�(z))∗ ⇒ ∀u ∈ A (x ∈ �(u) ⇒ (y, x) ∈ (�(u))∗).
Proof. For every u ∈ A, Let H(u) = {(y, x) | x ∈ �(u) ⇒ (y, x) ∈ (�(u))∗)}.
CLAIM. ∀z, u ((�(z))∗ ⊆ H(u)).
Proof of the Claim. By definition of transitive closure, it is enough to show that H(u)

extends �(z) and that H(u) is transitive.
Let (y, x) ∈ �(z). Suppose x ∈ �(u). Hence, by Condition 3, (y, x) ∈ �(u) ⊆ (�(u))∗.

Hence (y, x) ∈ H(u).
For transitivity, let (y, w) ∈ H(u) and (w, x) ∈ H(u). Suppose x ∈ �(u). Since (w, x) ∈

H(u), it follows that (w, x) ∈ (�(u))∗. Thus, w ∈ �(u). From (y, w) ∈ H(u) and w ∈
�(u) it follows (y, w) ∈ (�(u))∗. Since (�(u))∗ is transitive, (y, x) ∈ (�(u))∗. We have

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

136 EDOARDO RIVELLO

shown that x ∈ �(u) implies (y, x) ∈ (�(u))∗, therefore (y, x) ∈ H(u). Thus, H(u) is
transitive. �

Let z ∈ A be such that (y, x) ∈ (�(z))∗. Let u ∈ A. By the claim, (�(z))∗ ⊆ H(u), hence
x ∈ �(u) ⇒ (y, x) ∈ (�(u))∗. �

LEMMA 4.2. Let � : x �→ �(x) be a coherent graph mapping, and let R = R�. Then

R∗
� =

⋃
{(E(�(x)))∗ | x ∈ A}.

Proof. Let Q = ⋃{(E(�(x)))∗ | x ∈ A}. To prove that R∗
� ⊆ Q we show that Q

is a transitive binary relation on A which extends R�. R� ⊆ Q since for every x ∈ A,
E(�(x)) ⊆ (E(�(x)))∗. Let (y, u) ∈ Q and (u, z) ∈ Q. By definition of Q there exists
x, w ∈ A such that (y, u) ∈ (E(�(x)))∗ and (u, z) ∈ (E(�(w)))∗. The latter condition
implies u ∈ �(w) hence, by Lemma 4.1, (y, u) ∈ (E(�(w)))∗. By transitivity, (y, z) ∈
(E(�(w)))∗ follows. Hence (y, z) ∈ Q. Therefore, Q is transitive.

For the converse, we have to show that for every x ∈ A, (E(�(w)))∗ ⊆ R∗
�. This imme-

diately follows from the fact that R∗
� is transitive and extends E(�(x)), since E(�(x)) ⊆

R� ⊆ R∗
�. �

LEMMA 4.3. For every x ∈ A, (�R(x))∗ = �R∗(x).

Proof. By definition, (�R(x))∗ = (xR, (R�xR)∗), and �R∗(x) = (xR∗
, R∗ �xR∗

).
xR is R-left-closed, so it is also R∗-left-closed. Since x ∈ xR it follows xR∗ ⊆ xR.

Symmetrically, xR∗ is R∗-left-closed, so it is also R-left-closed. Since x ∈ xR∗ it follows
xR ⊆ xR∗ . Hence xR∗ = xR. So, it only remains to prove that (R�xR)∗ = R∗ �xR.

Since R ⊆ R∗, it follows R � xR ⊆ R∗ � xR. Since R∗ is transitive so is R∗ � xR. Since
R∗ �xR is transitive and extends R�xR it follows (R�xR)∗ ⊆ R∗ �xR.

For the converse, suppose (y, z) ∈ R∗ � xR. In particular, (y, z) ∈ R∗, so there exists an
R-chain from y to z. Let (yi, yi+1) be a member of this chain. Since both (yi, z) ∈ R∗ and
(yi+1, z) ∈ R∗ hold, and since z ∈ xR, it follows that also (yi, x) ∈ R∗ and (yi+1, x) ∈ R∗
hold. Thus, yi and yi+1 belong to xR. This means that z is reachable from y by means of an
R-chain all whose members belong to xR, namely, that z is reachable from y by means of
an (R�xR)-chain. Thus, (y, z) ∈ (R�xR)∗. �

LEMMA 4.4. For any relation R, �R is a coherent graph mapping (Definition 2.2).

Proof. (Condition 1). Trivial.
(Condition 2). Suppose y ∈ �R(x) and y �= x. So y ∈ xR∗

, namely (y, x) ∈ R∗ and both y
and x are in �R(x). So, by Lemma 4.3, (y, x) ∈ �R∗(x) = (�R(x))∗.

(Condition 3). Suppose ∃z (y, x) ∈ �R(z), let u ∈ A and suppose x ∈ �R(u). Hence
y, x ∈ {z} ∪ zR∗

, (y, x) ∈ R and x ∈ {u} ∪ uR∗
. We have to show that (y, x) ∈ �R(u), namely

that y ∈ {u} ∪ uR∗
. If x = u, then (y, x) ∈ R implies y ∈ uR ⊆ uR∗

. If x ∈ uR∗
, then

(y, x) ∈ R and (x, u) ∈ R∗ implies (y, u) ∈ R∗, so y ∈ uR∗
. �

LEMMA 4.5. Let � : x �→ �(x) be a coherent graph mapping, and let R = R�. Then
�R(x) = �(x), for every x ∈ A.

Proof. First we show that V(�R(x)) = V(�(x)).
V(�R(x)) = xR ⊆ V(�(x)) since V(�(x)) contains x (by Condition 1 of the definition

of coherent graph mapping) and is R-left-closed, i.e., ∀y, z ∈ A, if y ∈ �(x) and (z, y) ∈ R,

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 137

then z ∈ �(x). For, (z, y) ∈ R = R� implies that there exists u ∈ A such that (z, y) ∈ �(u).
Hence, by Condition 3, y ∈ �(x) implies (z, y) ∈ �(x), so z ∈ �(x).

Conversely, we want to show that V(�(x)) ⊆ V(�R(x)). Suppose y ∈ �(x). If y = x
then y ∈ �R(x) since, by Lemma 4.4, �R satisfies Condition 1. Otherwise, by Condition 2,
(y, x) ∈ (�(x))∗ hence, by Lemma 4.2, (y, x) ∈ R∗

� = R∗. Hence y ∈ �R∗(x). By Lemma
4.3, y ∈ (�R(x))∗, so y ∈ V(�R(x)).

We have shown that the sets of the vertices of �(x) and �R(x) coincide. Now we have
to show that also the sets of the edges of the two graphs coincide. Let (y, z) ∈ �R(x).
Hence (y, z) ∈ R�, namely there exists u such that (y, z) ∈ �(u). Since z ∈ R�(x)
and V(�R(x)) = V(�(x)), it follows that z ∈ �(x) so, by Condition 3, (y, z) ∈ �(x).
Conversely, let (y, z) ∈ �(x). Hence (y, z) ∈ R�. Since y, z ∈ V(�(x)) = V(�R(x)) = xR,
and (y, z) ∈ R� = R, it follows (y, z) ∈ R�xR = E(�R(x)). �

LEMMA 4.6. Let R be any binary relation on A and let � = �R. Then (y, x) ∈ R� ⇔
(y, x) ∈ R, for every x, y ∈ A.

Proof. Let (y, x) ∈ R�. Hence, there exists z ∈ A such that (y, x) ∈ �R(z). Thus (y, x) ∈
R. Conversely, let (y, x) ∈ R. By definition, y, x ∈ V(�R(x)), hence (y, x) ∈ E(�R(x)).
Thus (y, x) ∈ R�. �

By the Lemmatas 4.5 and 4.6, the two maps � �→ R� and R �→ �R between coherent
graph mappings and binary relations on A are inverse each other.

LEMMA 4.7. Let R be any binary relation on A, and let �R : x �→ �R(x) be its
corresponding graph mapping. Then, for every x ∈ A,

x ∈ W(A, R) ⇔ �R(x) is well-founded.

Proof. From the definitions it follows that x ∈ W(A, R) ⇔ Wf(xR∗
, R � xR∗

), and that
Wf(�R(x)) ⇔ Wf(xR, R � xR). From xR∗ ⊆ xR, it follows R � xR∗ ⊆ R � xR. Hence
Wf(xR, R � xR) implies Wf(xR, R � xR∗

) (Lévy, 1979, p. 63), and Wf(xR, R � xR∗
) implies

Wf(xR∗
, R�xR∗

) (Lévy, 1979, p. 67). Therefore Wf(�R(x)) ⇒ x ∈ W(A, R).
Conversely, let x ∈ W(A, R). Suppose, towards a contradiction, that �R(x) is not well-

founded: hence, there exists Z ⊆ xR such that ∅ �= Z and ∀z ∈ Z ∃y ∈ Z (y, z) ∈ R�xR. Let
Z′ = Z ∩ xR∗

. If Z′ = ∅, then Z = {x}, therefore (x, x) ∈ R�xR. But, (x, x) ∈ R ⇒ x ∈ xR∗
,

so x /∈ W(A, R): Contradiction. If Z′ �= ∅, from x ∈ W(A, R) it follows that there exists
z′ ∈ Z′ such that ∀u ∈ Z′ (u, z′) /∈ R � xR∗

. Since Z′ ⊆ Z, we have z′ ∈ Z, so by the
hypothesis that �R(x) is not well-founded, there exists y′ ∈ Z such that (y′, z′) ∈ R � xR.
From x ∈ W(A, R) it follows that x /∈ xR∗

, hence z′ �= x. Suppose y′ ∈ Z′, hence both
y′, z′ ∈ xR∗

and (y′, z′) ∈ R, so (y′, z′) ∈ R � xR∗
, contradicting x ∈ W(A, R). Thus y′ /∈ Z′,

namely, y′ = x. (x, z′) ∈ R � xR implies (x, z′) ∈ R, and z′ ∈ xR∗
implies (z′, x) ∈ R∗. By

transitivity of R∗, (x, x) ∈ R∗, contradicting x ∈ W(A, R). �

4.2. Correspondence Theorem III. There exists a one-to-one correspondence between
coherent graph mappings � : x �→ �(x) and domain functions D : A → P(A) given by
the following maps:

K5 : D �→ �D.
K6 : � �→ D�, defined by

D�(x) = xE(�(x)),

for every x ∈ A.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

138 EDOARDO RIVELLO

Moreover, whenever � and D correspond to each other, an element x ∈ A is D-groundless
iff it is not �-well-founded.

LEMMA 4.8. Let D : A → P(A) be any domain function and let R = RD be the image
of D in the map K1. Then

�D = �R.

Proof. By definition of the map K1 : D �→ RD, for any y ∈ A, yR = yRD = D(y). Thus,
by definition of the map K5 : D �→ �D, DV(x) = xR and DE(x) = R � xR. Hence, by
definition of the map K4 : R �→ �R,

�D(x) = (DV(x), DE(x)) = (xR, R�xR) = �R(x). �
Proof of Correspondence Theorem III. Lemma 4.8 shows that the map K5 : D �→

�D defined by Beringer & Schindler (2016, Definition 3, p. 6) can be expressed as the
composition of the two bijections K1 : D �→ RD and K4 : R �→ �R. This proves that
K5 is a one-to-one correspondence between the class of all domain functions and the class
of all coherent graph mappings on A. The map K6 : � �→ D� is explicitly defined as
the composition of the inverse map K3 of K4 with the inverse map K2 of K1: Hence K6
coincides with the inverse map of K5. Finally, if � and D correspond to each other, then
� = �D = �RD . Therefore, by Correspondence Theorems I and II, an element x ∈ A
is D-groundless iff is not RD-well-founded iff is not �RD-well-founded iff is not �-well-
founded. �

§5. Appendix B. In this Appendix we list all enumerated maps, correspondence the-
orems and reduction theorems which we dealt with in the article.

Table 1. List of enumerated maps

Map Domain Co-domain Page

K1 : D �→ RD Domain functions Binary relations p. 109
K2 : R �→ DR Binary relations Domain functions p. 109
K3 : � �→ R� Graph mappings Binary relations p. 110
K4 : R �→ �R Binary relations Graph mappings p. 110
K5 : D �→ �D Domain functions Graph mappings p. 110
K6 : � �→ D� Graph mappings Domain functions p. 110
K7 : 	 �→ �	 Sets of rules Set operators p. 112
K8 : � �→ 	� Set operators Sets of rules p. 112
K9 : 	 �→ 	+ Sets of rules Sets of rules p. 113
K10 : R �→ 	R Binary relations Sets of rules p. 114
K11 : R �→ �R Binary relations Set operators p. 114
K12 : � �→ R� Set operators Binary relations p. 116
K13 : 	 �→ D	 Surjective and deterministic sets of rules Domain functions p. 117
K14 : 	 �→ R	 Surjective and deterministic sets of rules Binary relations p. 117
K14 : 	 �→ R	 Sets of rules Binary relations p. 117
K15 : 	 �→ 	− Essential sets of rules Sets of rules p. 118
K16 : � �→ R� Monotone operators Families of binary relations p. 120
K17 : R �→ �R Families of binary relations Set operators p. 121

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

DEPENDENCE AND GROUNDEDNESS 139

Table 2. List of correspondence theorems

Theorem Objects Objects Page

I Domain functions Binary relations p. 109
II Coherent graph mappings Binary relations p. 110
III Coherent graph mappings Domain functions p. 110
IV Monotone sets of rules Monotone operators p. 112
V Binary relations Essential-dependence operators p. 116
VI Binary relations Surjective-deterministic sets of rules p. 117
VII Surjective-deterministic sets of rules Essential sets of rules p. 117
VIII Saturated families of binary relations Surjective monotone operators p. 121

Table 3. List of reduction theorems

Theorem Objects Objects Page

I Sets of rules Monotone sets of rules p. 113
II Inductive spaces Surjective monotone operators p. 124
III Monotone operators Total valuation systems p. 128

§6. Acknowledgments. I would like to thank Jouko Väänänen for making available to
me his contribution (Väänänen, 2016) which was a source of inspiration for the second part
of this article. The first part was partially presented at the Panhellenic Logic Symposium
held in Delphi in July 2017: I wish to thank both the organisers and the audience of my
talk. Finally, let me specially thank two anonymous referees in acknowledgement of their
efforts in helping me improve the original version of this article.

BIBLIOGRAPHY

Aczel, P. (1977). An introduction to inductive definitions. In Barwise, J., editor. Handbook
of Mathematical Logic. Amsterdam: North Holland, pp. 739–782.

Beringer, T. & Schindler, T. (2016). Reference graphs and semantic paradox. In Arazim, P.
and Dancak, M., editors. The Logica Yearbook 2015. London: College Publications, pp.
1–15.

Beringer, T. & Schindler, T. (2017). A graph-theoretic analysis of the semantic paradoxes.
Bulletin of Symbolic Logic, 23(4), 442–492.

Bolander, T. (2002). Restricted truth predicates in first-order logic. In Childers, T. and
Mayer, O., editors. The Logica Yearbook 2002. Prague: Philosophia Press, pp. 41–55.

Grelling, K. (1939). A logical theory of dependence. In 5th International Congress for the
Unity of Science. Reprinted in: Smith, B., editor. Foundations of Gestalt Theory. Munich
and Vienna: Philosophia, 1988.

Herzberger, H. (1970a). Paradoxes of grounding in semantics. The Journal of
Philosophy, XVII, 145–167.

Herzberger, H. G. (1970b). Erratum to: Paradoxes of grounding in semantics. The Journal
of Philosophy, XVII, 317.

Kremer, P. (2009). Comparing fixed-point and revision theories of truth. Journal of
Philosophical Logic, 38, 363–403.

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

140 EDOARDO RIVELLO

Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72, 690–716.
Leitgeb, H. (2005). What truth depends on. Journal of Philosophical Logic, 34, 155–192.
Lévy, A. (1979). Basic Set Theory. Berlin: Springer-Verlag.
Rivello, E. (Forthcoming). Notes on the mathematical aspects of Leitgeb’s “What truth

depends on”, submitted.
Väänänen, J. (2016). Grelling on dependence. In Abramsky, S., Kontinen, J., Väänänen,

J., and Vollmer, H., editors. Dependence Logic: Theory and Applications. Cham:
Birkhäuser, pp. 33–52.

Yablo, S. (1982). Grounding, dependence and paradox. Journal of Philosophical Logic, 11,
117–137.

DEPARTMENT OF PHILOSOPHY AND EDUCATIONAL SCIENCES
UNIVERSITÀ DEGLI STUDI DI TORINO

VIA SANT’OTTAVIO, 20
10124, TORINO, ITALY

E-mail: edoardo.rivello@unito.it

https://doi.org/10.1017/S1755020319000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000315

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

